KR102006877B1 - 유기 발광 표시 장치 및 그 제조 방법 - Google Patents

유기 발광 표시 장치 및 그 제조 방법 Download PDF

Info

Publication number
KR102006877B1
KR102006877B1 KR1020180111595A KR20180111595A KR102006877B1 KR 102006877 B1 KR102006877 B1 KR 102006877B1 KR 1020180111595 A KR1020180111595 A KR 1020180111595A KR 20180111595 A KR20180111595 A KR 20180111595A KR 102006877 B1 KR102006877 B1 KR 102006877B1
Authority
KR
South Korea
Prior art keywords
layer
barrier layer
light emitting
organic light
inorganic
Prior art date
Application number
KR1020180111595A
Other languages
English (en)
Other versions
KR20180109050A (ko
Inventor
김건식
이영산
조영미
채경찬
Original Assignee
삼성디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성디스플레이 주식회사 filed Critical 삼성디스플레이 주식회사
Priority to KR1020180111595A priority Critical patent/KR102006877B1/ko
Publication of KR20180109050A publication Critical patent/KR20180109050A/ko
Application granted granted Critical
Publication of KR102006877B1 publication Critical patent/KR102006877B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H01L51/5253
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L51/0533
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/474Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
    • H10K10/476Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure comprising at least one organic layer and at least one inorganic layer
    • H01L2251/558
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 기판과, 기판 상에 위치하는 유기 발광 소자와, 유기 발광 소자를 덮는 박막 봉지층, 및 유기 발광 소자 및 박막 봉지층 사이에 개재되는 배리어층;을 포함하며, 상기 배리어층은 알칼리 금속 함유 화합물을 포함하는 제1 배리어층, 또는 비정질의 무기 산화물을 포함하는 제2 배리어층을 구비하며, 박막 봉지층은 유기층 및 무기층을 포함하는, 유기 발광 표시 장치를 개시한다.

Description

유기 발광 표시 장치 및 그 제조 방법{Organic light emitting display apparatus and the method for manufacturing the same}
본 발명은 유기 발광 표시 소자 및 그 제조 방법에 관한 것이다.
유기 발광 표시 장치는 정공 주입 전극과 전자 주입 전극 그리고 이들 사이에 형성되어 있는 유기 발광층을 포함하는 유기 발광 소자를 구비하며, 정공 주입 전극에서 주입되는 정공과 전자 주입 전극에서 주입되는 전자가 유기 발광층에서 결합하여 생성된 엑시톤(exiton)이 여기 상태(exited state)로부터 기저 상태(ground state)로 떨어지면서 빛을 발생시키는 자발광형 표시 장치이다.
자발광형 표시 장치인 유기 발광 표시 장치는 별도의 광원이 불필요하므로 저전압으로 구동이 가능하고 경량의 박형으로 구성할 수 있으며, 넓은 시야각, 높은 콘트라스트(contrast) 및 빠른 응답 속도 등의 고품위 특성으로 인해 차세대 표시 장치로 주목받고 있다.
그러나, 유기 발광 표시 장치는 외부의 수분이나 산소 등에 의해 열화되는 특성을 가지므로, 외부의 수분이나 산소 등으로부터 유기 발광 소자를 보호하기 위하여 유기 발광 소자를 밀봉하여야 하며, 이와 같은 밀봉 소자를 형성함에 있어서 유기 발광 소자를 손상시키거나 않아야 한다.
본 발명의 일실시예는, 유기 발광 표시 소자 및 제조 방법에 관한 것이다.
본 발명의 일 측면에 따르면, 기판; 상기 기판 상에 위치하는 유기 발광 소자; 상기 유기 발광 소자를 덮는 박막 봉지층; 및 상기 유기 발광 소자 및 상기 박막 봉지층 사이에 개재되는 배리어층;을 포함하며, 상기 배리어층은, 알칼리 금속 함유 화합물을 포함하는 제1 배리어층, 또는 비정질의 무기 산화물을 포함하는 제2 배리어층을 구비하며, 상기 박막 봉지층은 유기층 및 무기층을 포함하는, 유기 발광 표시 장치를 개시한다.
본 실시예에 있어서, 상기 제1 배리어층은 LiF, CsF, NaF, 또는 Li2O 을 포함할 수 있다.
본 실시예에 있어서, SiO, TiOx, MoOx, ZnO, ZnSnOx, 및 AlOxNy 중 적어도 어느 하나를 포함할 수 있다.
본 실시예에 있어서, 상기 배리어층은 상기 박막 봉지층의 상기 무기층 바로 아래에 배치될 수 있다.
본 실시예에 있어서, 상기 배리어층은 상기 제2 배리어층을 포함하며, 상기 제2 배리어층의 상면은 상기 무기층과 직접 접촉할 수 있다.
본 실시예에 있어서, 상기 제2 배리어층은, 다른 영역보다 상대적으로 산소의 농도가 높은 일부 영역을 포함할 수 있다.
본 실시예에 있어서, 상기 무기층은 무기 산화물을 포함할 수 있다.
본 실시예에 있어서, 상기 제2 배리어층의 두께는 10Å 내지 100Å일 수 있다.
본 실시예에 있어서, 상기 제1 배리어층의 두께는 100Å 내지 3000Å일 수 있다.
본 실시예에 있어서, 상기 박막 봉지층은, 상기 무기층, 상기 무기층 위의 상기 유기층, 및 상기 유기층 위의 무기층을 포함할 수 있다.
상기와 같은 본 발명의 일실시예에 따르면, 제1 배리어층 및 비정질 산화 무기물을 포함하는 제2 베리어층을 구비함으로써, 박막 봉지층의 막질을 개선시킬 수 있으며, 진행성 암점에 의한 불량 발생을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 유기 발광 표시 장치를 개략적으로 나타낸 사시도이다.
도 2는 유기 발광 표시 장치의 구조를 개략적으로 나타낸 단면도이다.
도 3은 본 발명의 비교예에 따른 따른 유기 발광 표시 장치를 개략적으로 나타낸 단면도이다.
도 4는 도 3의 LiF의 배리어층의 결정 구조를 나타낸 SEM(Scanning Electron Microscope) 사진이다.
도 5a는 LiF의 제1 배리어층의 결정구조를 개략적으로 나타낸 것이다.
도 5b는 SiO의 제2 배리어층의 결정 구조를 개략적으로 나타낸 것이다.
도 6a 및 도 6b은 고에너지 산소 원자가 비교예 및 실시예에 따른 배리어층에 입사하였을 때의 거동을 나타낸 그래프로서, 도 6a은 LiF의 배리어층과 SiO의 제2 배리어층에 입사한 산소 원자의 에너지 변화를 나타낸 그래프이고, 도 6b은 LiF의 배리어층과 SiO의 제2 배리어층에 입사한 산소 원자의 침투 깊이를 나타낸 그래프이다.
도 7은 비교예에 따른 배리어층(40) 상에 무기층(51)이 형성된 상태를 나타낸 SEM 사진이다.
도 8a는 SiO의 제2 배리어층의 두께에 따른 청색 소자의 효율 및 CIE 1931 색좌표 중 y 좌표 값(CiEy)을 나타낸 그래프이다.
도 8b 및 도 8c는 SiO의 제2 배리어층의 두께에 따른 투과율 및 반사율을 나타낸 그래프이다.
도 9는 본 발명의 일 실시예에 따른 유기 발광 표시 장치를 형성하는 공정을 개략적으로 나타낸 흐름도이다.
도 10은 본 발명의 또 다른 실시예에 따른 유기 발광 표시 장치를 개략적으로 나타낸 단면도이다.
본 발명은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 또는 "위에" 있다고 할 때, 이는 다른 부분의 바로 위에 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
도 1은 본 발명의 일 실시예에 따른 유기 발광 표시 장치(100)를 개략적으로 나타낸 사시도이며, 도 2는 유기 발광 표시 장치(100)의 구조를 개략적으로 나타낸 것이다.
도 1 및 도 2를 참조하면, 본 실시예의 유기 발광 표시 장치(100)는 기판(110), 기판(110) 상에 형성된 유기 발광 소자(120), 박막 봉지층(150), 및 유기 발광 소자(120)와 박막 봉지층(150) 사이에 개재된 배리어층(140)을 포함한다.
기판(110)은, 가요성 기판일 수 있으며, 내열성 및 내구성이 우수한 플라스틱으로 구성될 수 있다. 예컨대, 기판(110)은 폴리에테르술폰(PES, polyethersulphone), 폴리아크릴레이트(PAR, polyacrylate), 폴리에테르 이미드(PEI,polyetherimide), 폴리에틸렌 나프탈레이트(PEN, polyethyelenen napthalate), 폴리에틸렌 테레프탈레이드(PET, polyethyeleneterepthalate), 폴리페닐렌설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyallylate), 폴리이미드(polyimide: PI), 폴리카보네이트(PC), 셀룰로오스 트리 아세테이트(cellulosetriacetate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate: CAP), 폴리아릴렌에테르술폰(poly(aryleneether sulfone)) 및 이들의 조합으로 이루어진 그룹에서 선택된 어느 하나를 포함할 수 있다. 그러나 본 발명은 이에 한정되지 않으며, 기판(110)은 금속이나 유리 등 다양한 소재로 구성될 수 있다.
도시되지는 않았으나, 기판(110) 상에는 소자/배선층이 배치될 수 있으며, 소자/배선층은 유기 발광 소자(120)를 구동시키는 구동시키는 구동 박막트랜지스터, 스위칭 박막트랜지스터, 커패시터, 상기 박막트랜지스터나 커패시터에 연결되는 배선들이 포함될 수 있다.
유기 발광 소자(120)는 기판(110) 상에 형성되며, 제1 전극(121), 제1 전극(121) 상에 형성된 유기 발광층(122), 및 유기 발광층(122) 상에 형성된 제2 전극(123)을 포함할 수 있다.
제1 전극(121)은 화소 전극으로 애노드(anode)일 수 있으며, 적색, 녹색, 청색의 부화소(R, G, B Sub-pixel)별로 패팅닝된 형태일 수 있다. 상기 제1 전극(121)은 전도성이 우수한 물질로 이루어지며, 공지된 제1 전극(121)용 물질을 포함할 수 있다. 제1 전극(121)용 물질은 예를 들면 Li, Mg, Al, Ag, Al-Li, Ca, Mg-In, Mg-Ag, Ca-Al, ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide)일 수 있으나, 이에 한정되는 것은 아니다. 제1 전극(121)은 투명 전극, 반투명 전극 또는 반사 전극일 수 있으며, 서로 다른 2 이상의 물질을 이용하여 2층 이상의 구조를 가질 수 있는 등, 다양한 변형이 가능하다.
제2 전극(123)은 대향 전극으로서 캐소드(cathode)일 수 있으며, Li, Ca, LiF/Ca, LiF/Al, Al, Ag, Mg 및 이들의 화합물을 포함하는 일함수가 작은 금속 박막으로 형성될 수 있다. 또는, ITO, IZO, ZnO 또는 In2O3 등의 투명 전극이나 반투명 전극일 수 있다.
본 실시예에서는, 제1 전극(121)은 애노드(anode)이고, 제2 전극(123)은 캐소드(cathode)로 구성될 수 있으나, 본 발명은 이에 한정되지 않고 유기 발광 표시 장치(100)의 구동 방법에 따라 제1 전극(121)이 캐소드이고, 제2 전극(123)이 애노드일 수 있다. 제1 전극(121)과 제2 전극(123)으로부터 각각 정공과 전자가 유기 발광층(122) 내부로 주입된다. 주입된 정공과 전자가 결합한 엑시톤(exiton)이 여기 상태로부터 기저 상태로 떨어지면서 광을 방출한다.
유기 발광층(122)은 공지된 다양한 발광 물질을 포함할 수 있다. 예컨대, 발광 물질은 옥사디아졸 다이머 염료(oxadiazole dimer dyes (Bis-DAPOXP)), 스피로 화합물(spiro compounds)(Spiro-DPVBi, Spiro-6P), 트리아릴아민 화합물(triarylamine compounds), 비스(스티릴)아민(bis(styryl)amine)(DPVBi, DSA), BCzVBi(4,4´-비스(9-에틸-3-카바조비닐렌)-1,1´-비페닐), 페릴렌(perylene), TPBe(2,5,8,11-tetra-tert-butylperylene), BCzVB(9H-카바졸-3,3´-(1,4-페닐렌-디-2,1-에텐-디일)비스[9-에틸-(9C)]), DPAVBi(4,4-비스[4-(디-p-톨일아미노)스티릴]비페닐), DPAVB(4-(디-p-톨일아미노)-4´-[(디-p-톨일아미노)스티릴]스틸벤), BDAVBi(4,4´-비스[4-(디페닐아미노)스티릴]비페닐), FIrPic(비스(3,5-디플루오로-2-(2-피리딜)페닐-(2-카르복시피리딜)이리듐 III)) 등 (이상 청색); Coumarin 6(3-(2-벤조티아졸일)-7-(디에틸아미노)쿠마린), C545T(2,3,6,7-테트라히드로-1,1,7,7,-테트라메틸-1H,5H,11H-10-(2-벤조티아졸일)퀴놀리지노-[9,9a,1gh]쿠마린), DMQA(N,N´-디메틸-퀸아크리돈), Ir(ppy)3(트리스(2-페닐피리딘)이리듐(III)) 등 (이상 녹색); 테트라페닐나프타센(Tetraphenylnaphthacene)(루브린: Rubrene), Ir(piq)3(트리스(1-페닐이소퀴놀린)이리듐(III)), 비스(2-벤조[b]티오펜-2-일-피리딘) (아세틸아세토네이트)이리듐(III) (Ir(btp)2(acac)), 트리스(디벤조일메탄)펜안트롤린 유로퓸(III) (Eu(dbm)3(phen)), 트리스[4,4'-디-tert-부틸-(2,2')-비피리딘]루테늄(III)착물 (Ru(dtb-bpy)3*2(PF6)), DCM1, DCM2, Eu(TTA)3 (europium(thenoyltrifluoroacetone)3), CJTB(butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran) 등 (이상 적색)일 수 있으나, 이에 한정되는 것은 아니다. 또한 상기 발광 물질은 고분자 발광 물질일 수 있으며, 예를 들면 페닐렌(phenylene)계, 페닐렌 비닐렌 (phenylene vinylene)계, 티오펜(thiophene)계, 플루오렌(fluorene)계 또는 스피로플루오렌(spiro-fluorene)계 고분자 등과 같은 고분자와 질소를 포함하는 방향족 화합물 등일 수 있으나, 이에 한정되는 것은 아니다.
제1 전극(121)과 제2 전극(123) 사이에는 유기 발광층(122) 이외에, 홀 수송층(HTL; hole transport layer), 홀 주입층(HIL; hole injection layer), 전자 수송층(ETL; electron transport layer) 및 전자 주입층(EIL; electron injection layer) 등과 같은 중간층이 선택적으로 배치될 수 있다.
캡핑층(130)은 유기 발광 소자(120) 상에 형성되며, 유기 발광 소자(120)을 보호할 수 있다. 혹은, 캡핑층(130)은 제2 전극(123)의 저항을 감소시킬 수 있다. 캡핑층(130)은 유기물, 무기물 또는 인들의 혼합물을 포함할 수 있다.
박막 봉지층(150)은 유기 발광 소자(120) 상에 형성되고, 상기 유기 발광 소자(120)를 덮으며 상기 기판(110) 상에 합착될 수 있다. 박막 봉지층(150)은 무기층(151)과 유기층(152)을 교대로 형성함으로써 구성될 수 있으며, 박막 봉지층(150)의 최하층과 최상층에는 무기층(151)이 배치될 수 있다.
무기층(151)은 무기 산화물로 구성될 수 있다. 예컨대, 무기층(151)은 AlOx, TiO2, ZrO, SiO2, AlON, SiON, ZnO, 및 Ta2O5 중 하나 이상의 무기물을 포함할 수 있다.
유기층(152)은 폴리머(polymer)계열의 소재를 포함할 수 있다. 폴리머 계열의 소재로는 아크릴계 수지, 에폭시계 수지, 폴리이미드 및 폴리에틸렌 등을 포함할 수 있다. 유기층(152)은 무기층(151)의 내부 스트레스를 완화시키고, 무기층(151)의 결함을 보완하며 평탄화하는 역할을 할 수 있다.
본 실시예에서는, 무기층(151)은 4회, 유기층(152)은 3회 적층된 경우를 예시하고 있으나, 본 발명은 이에 한정되지 않는다. 즉 무기층(151)과 유기층(152)이 교대로 적층되는 횟수에는 제한이 없다.
배리어층(140)은 유기 발광 소자(120) 및 박막 봉지층(150) 사이에 형성되며, 박막 봉지층(150)의 막질을 개선시킬 수 있으며, 진행성 암점에 의한 불량 발생을 방지할 수 있다. 이를 위해, 배리어층(140)은 제1 배리어층(141)과 제2 배리어층(142)을 포함할 수 있다.
제1 배리어층(141)은 유기 발광 소자(120) 상에 형성될 수 있으며, 제1 배리어층(141)과 유기 발광 소자(120) 사이에는 캡핑층(130) 상에 형성될 수 있다. 제1 배리어층(141)은 캡핑층(130) 상에 형성되며, 후술할 박막 봉지층(150)을 형성하는 공정시, 제2 배리어층(142)과 함께 유기 발광층(122)을 보호하는 역할을 수행할 수 있다.
제1 배리어층(141)은 알칼리 금속 함유 화합물을 포함할 수 있다. 알칼리 금속 함유 화합물로는 LiF가 사용될 수 있다. 또는, CsF, NaF, 및 Li2O 등이 사용될 수도 있다.
제1 배리어층(141)은 약 100Å ~ 3000Å의 두께로 형성될 수 있다. 제1 배리어층(141)의 두께가 100Å보다 작다면 제1 배리어층(141)의 기능, 즉 유기 발광층(122)의 열화를 방지하는 기능을 수행할 수 없고, 3000Å 보다 크다면 제1 배리어층(141)에 응력(stress)이 크게 작용하며, 박리되기 용이해지는 문제가 있다.
제2 배리어층(142)은 제1 배리어층(141) 상에 형성되며, 박막 봉지층(150)의 하부에 형성된다. 제2 배리어층(142)의 상부면은 박막 봉지층(150)의 하부면과 직접 접촉하도록 형성될 수 있다. 제2 배리어층(142)은 박막 봉지층(150)의 바로 아래에 개재됨으로써, 제2 배리어층(142) 상에 성막되는 박막 봉지층(150)의 막질을 개선할 수 있다. 또한, 무기 산화물을 포함하는 무기층(151)의 형성 공정에서 생성되는 고에너지 산소 입자의 투과를 효과적으로 저지할 수 있다.
제2 배리어층(142)은 비정질 무기 산화물을 포함할 수 있다. 예컨대, 제2 배리어층(142)은 SiO, TiOx, MoOx, ZnO, ZnSnOx, 및 AlOxNy를 포함하는 군에서 선택된 적어도 어느 하나를 포함할 수 있다.
제2 배리어층(142)의 일부 영역은 다른 영역에 비하여 산소의 농도가 높게 형성될 수 있다. 예컨대, 제2 배리어층(142)이 SiO로 형성된 경우, 전체적으로 제2 배리어층(142)은 SiO를 포함하되 국소적으로 SiO2 가 포함될 수 있다. 이와 같은 현상은, 후술할 무기층(151)의 형성 공정시 고에너지 산소 입자가 제2 배리어층(142)과 결합하면서 제2 배리어층(142)에 캡쳐되기 때문으로, 이에 대한 내용은 도 6a 및 도 6b를 참조하여 해당 부분에서 자세하게 설명한다.
제2 배리어층(142)은 약 10Å ~ 100Å의 두께로 형성될 수 있다. 제2 배리어층(142)의 두께가 10Å보다 작다면 박막 봉지층(150)을 형성하는 공정시 발생하는 고에너지 입자로부터 유기 발광층(122)을 보호하기 어렵고, 제2 배리어층(142)을 형성하기 위한 공정제어가 어려우며, 100Å 보다 크다면 광효율이 약 10% 정도 줄어들어 발광효율을 저하시키는 문제가 있다. 제2 배리어층(142)의 두께가 10Å보다 작은 경우 박막 봉지층(150)을 형성하는 공정시 발생하는 고에너지 입자로부터 유기 발광층(122)을 보호하기 어려운 것은 도 6a 및 도 6b의 그래프를 참조한 해당 설명 부분에서 확인할 수 있으며, 제2 배리어층(142)의 두께가 100Å보다 큰 경우의 문제는 도 8a 내지 도 8c, 특히 도 8a의 그래프를 참조한 해당 설명 부분에서 확인할 수 있다.
이하에서는 비교예를 참조하여, 배리어층(140)의 기능에 대하여 보다 구체적으로 설명한다.
도 3은 본 발명의 비교에에 따른 유기 발광 표시 장치를 개략적으로 나타낸 도면이다.
비교예에 따른 유기 발광 표시 장치는, 기판, 기판 상에 형성된 유기 발광 소자(20), 캡핑층(30), 배리어층(40) 및 박막 봉지층(50)을 포함한다. 비교예에 따른 배리어층(40)은 본 발명의 실시예에 따른 제1 배리어층(141)과 실질적으로 동일하며, 제2 배리어층(142)을 포함하지 않는 점에서만 차이가 있다.
이하에서는 설명의 편의를 위하여, 비교예에 따른 배리어층(40)은 LiF로 구성된 경우를 설명하며, 본 발명의 실시예에 따른 배리어층(140)은 LiF로 구성된 제1 배리어층(141)과, 비정질 무기 산화물 중 SiO으로 구성된 제2 배리어층(142)을 포함하는 경우로 설명한다.
먼저, 비교예와 실시예에 따른 배리어층(40, 140)의 결정 구조를 살펴보면 다음과 같다.
비교예에 따른 배리어층(40)의 LiF의 결정 구조는, 도 4에 나타난 사진과 같다. 도 4는 LiF으로 구성된 배리어층(40)의 SEM(Scanning Electron Microscope) 사진이다. 도 4에 나타난 바와 같이, LiF의 배리어층(40)은 컬럼(column) 구조를 갖는다.
본 발명의 실시예에 따른 배리어층(140)의 LiF와 SiO의 결정 구조는 도 5a 및 도 5b에 나타난 바와 같다. 도 5a에 나타난 바와 같이 제1 배리어층(141)의 LiF는 도 4와 같이 컬럼 구조를 갖는 반면, 제2 배리어층(142)의 SiO는 비정형의 구조를 갖는다. 본 실시예에 따른 배리어층(140)은 비정질 무기 산화물을 갖는 제2 배리어층(142)을 구비함으로써, 고에너지 입자의 확산을 저지하고 진행성 암점을 효과적으로 억제할 수 있으며, 무기층(151)의 막질을 개선하는 등의 효과를 나타낼 수 있다. 이를 자세하게 살펴보면 다음과 같다.
고에너지 입자의 확산 저지 및 진행성 암점 억제
배리어층(40, 140) 상에는 박막 봉지층(50, 150)의 무기층(51, 151)이 형성되는데, 이 경우 무기층(51, 151)은 산화물을 포함할 수 있다. 무기층(151)이 형성될 때, 무기층(51, 151) 형성 공정에서 고에너지를 갖는 입자, 예컨대 산소 원자는 배리어층(40, 140)에 입사될 수 있는데, 이 때 배리어층(40, 140)에 입사되는 산소 원자의 거동을 살펴보면 다음의 도 6a 및 도 6b에 나타난 그래프와 같다.
도 6a 및 도 6b은 고에너지 산소 원자가 배리어층(40, 140)에 입사하였을 때의 거동을 나타낸 그래프로서, 도 6a은 LiF의 배리어층(40)과 SiO의 제2 배리어층(142)에 입사한 산소 원자의 에너지 변화를 나타낸 그래프이고, 도 6b은 LiF의 배리어층(40)과 SiO의 제2 배리어층(142)에 입사한 산소 원자의 침투 깊이를 나타낸 그래프이다. 보다 구체적으로, 도 6a 및 도 6b에서는, LiF의 배리어층(40)과 SiO의 제2 배리어층(142)에 입사한 산소 원자는 10eV의 에너지를 갖는 경우와 20eV의 에너지를 갖는 경우에 대한 값을 나타낸다.
도 6a 및 도 6b을 참조하면, 비교예에 따른 배리어층(40)에 고에너지 산소 원자가 입사한 경우를 살펴보면, 산소 원자가 LiF의 표면에 닿은 후 내부로 침투하면서 Li와 F 원자들에 의한 마찰에 의해 점차적으로 속력이 줄어드는 것을 확인할 수 있다. 이 때, 산소 원자는 주변의 Li와 F원자들과 화학적으로 결합하지 않으면서 결정 격자 내의 침입형자리(interstitial site)를 돌아다닌다. LiF의 배리어층(40)을 침투한 산소 원자들은, 이후 충분한 온도가 주어진다면 LiF의 배리어층(40)의 바깥쪽, 즉 LiF의 하부에 위치한 캡핑층(30)으로 방출되어 진행성 암점의 원인이 될 수 있다.
그러나, 본 발명의 실시예에 따른 배리어층(140)에 고에너지 산소 원자가 입사한 경우는 다르다.
도 6a 및 도 6b을 참조하면, 실시예에 따른 배리어층(140)에 고에너지 산소 원자가 입사한 경우를 살펴보면, 산소 원자는 먼저 SiO의 제2 배리어층(142)에 침투하게 된다. SiO의 제2 배리어층(142)에 투입된 산소 원자는 SiO 결정 구조의 공극 부분을 한동안 자유롭게 유동하다가, Si 또는 O 원자를 만나면서 에너지를 잃으면서 화학 결합을 형성한다. 화학 결합을 통해 산소 원자는 제2 배리어층(142)의 내부에 캡쳐되며, 제2 배리어층(142)의 내부에는 국소적으로 SiO2 가 형성된다. 즉, 제2 배리어층(142)의 내부는 전체적으로 SiO를 포함하되 국소적으로 O의 농도가 높은, 즉 SiO2가 형성된 영역이 구비될 수 있다. SiO2는 광투과도가 우수하므로 배리어층(140)의 전체적 광학적 성능을 개선시킬 수 있다.
이와 같이 제2 배리어층(142)의 내부에 캡쳐된 산소 원자는, 이후 배리어층(140)이 특정 온도에 노출되더라도 화학 결합이 분해되지 않는 한, 캡핑층(130)을 향해 이동하지 않는다. 뿐만 아니라, 설령 제2 배리어층(142)의 내부에 캡쳐된 산소 원자가 제2 배리어층(142)를 투과한다 하더라도, 제2 배리어층(142) 하부에 LiF의 제1 배리어층(141)이 더 구비되므로 산소 원자의 진행은 제1 배리어층(141)의 상부 영역에서 억제될 수 있다.
도 6b을 참조하여 산소 원자의 침투 깊이를 살펴보면, 침투 깊이의 경우 LiF의 배리어층(140)의 침투 깊이가 SiO를 포함하는 배리어층(140)의 침투 깊이 보다 작지만 큰 차이는 아니며, 약 20eV의 에너지를 갖는 입자(산소 입자)의 운동을 저지하기 위해 SiO의 두께를 약 1nm(10Å) 이상 형성하면 충분하다.
도 6a 및 도 6b을 참조하여 설명한 바와 같이, 본 발명의 실시예에 따르면 배리어층(140)이 비정질 무기 산화물을 포함하는 제2 배리어층(142)을 구비함으로써, 배리어층(140) 형성 이후의 무기층(151) 형성 공정시 야기되는 고에너지 입자의 확산을 저지할 수 있다. 따라서, 진행성 암점을 예방할 수 있으며, 고에너지 입자에 의한 유기 발광층(122)의 손상을 예방할 수 있다.
무기층(151)의 막질 개선
또한, 본 발명의 실시예에 따른 배리어층(140)은 비정질 무기 산화물의 제2 배리어층(142)을 구비함으로써, 무기층(151)의 막질을 개선할 수 있다. 이하에서는, 무기층(151)의 막질 개선 효과를 도 7을 참조하여 설명한다.
도 7은 비교예에 따른 배리어층(40) 상에 무기층(51)이 형성된 상태를 나타낸 SEM 사진이다.
도 7을 참조하면, LiF의 배리어층(40) 상에 AlOx의 무기층(51)이 형성된 경우 핀홀(pin hole)이 다수 형성된 것을 확인할 수 있다. 이는, 도 4에 도시된 바와 같은 구조의 LiF의 배리어층(40)에 영향을 받은 것으로 예상된다. 즉, 컬럼 구조의 LiF 배리어층(40) 상에 형성되는 무기층(151)은, LiF의 컬럼 구조에 영향을 받으므로 다수의 핀홀이 형성될 수 있다.
그러나, 본 발명의 실시예에 따른 배리어층(140)은 LiF의 제1 배리어층(141)과 무기층(151) 사이에 비정형의 구조를 갖는 제2 배리어층(142)을 형성하므로 핀홀의 형성을 예방할 수 있고, 따라서 무기층(151)의 막질을 개선할 수 있다.
제2 배리어층(142)은 비정형의 결정 구조를 가지므로, 컬럼 구조를 갖는 제1 배리어층(141)이 무기층(151)의 결정 구조에 영향을 미치는 것을 원천적으로 차단할 수 있다. 또한, 제2 배리어층(142)의 결정 구조는 비정형으로서 컬럼 구조가 아니므로, 무기층(151) 내부에서 두께 방향을 따라 형성되는 핀홀의 형성을 억제할 수 있다.
만약, 무기층(151)을 원자증착(ALD: atomic layer deposition)법에 의해 형성하는 경우, TMA(Trimethyl Aluminum)을 사용할 수 있다. 이 때 TMA의 응착 에너지(adhesion energy)를 계산해보면 LiF에 대한 TMA의 응착에너지는 0.18eV인데 반하여, SiO에 대한 TMA의 응착 에너지는 1.32eV로 약 8배 가량 높다. 따라서, SiO를 포함하는 제2 배리어층(142) 상에 무기층(151)을 형성하는 경우 무기층(151)의 막질이 더욱 개선될 수 있다.
본 실시예에 따른 비정질 무기 산화물을 포함하는 제2 배리어층(142)은, 상술한 바와 같은 장점을 가지고 있으나, 두께가 증가할수록 광효율이 저하되므로 제2 배리어층(142)만으로 배리어층(140)을 구성할 수 없다. 이를 구체적으로 살펴보면 다음과 같다.
도 8a는 SiO의 제2 배리어층(142)의 두께에 따른 청색 소자의 효율 및 CIE 1931 색좌표 중 y 좌표 값(CiEy)을 나타낸 그래프이고, 도 8b 및 도 8c는 SiO의 제2 배리어층(142)의 두께에 따른 투과율 및 반사율을 나타낸 그래프이다. 유기 발광 소자(120)를 구성하는 적색, 녹색, 청색(R, G, B) 소자 중 특히 청색 소자의 효율 저하가 두드러지므로, 도 8a에서는 청색 소자에 대해서 살펴본다. 한편, 도 8a 내지 도 8c에서, 제2 배리어층(142)은 약 500Å의 두께로 형성된 LiF의 제1 배리어층(141) 상에 형성된 경우를 나타낸다.
도 8a 내지 도 8c를 참조하면, SiO의 두께가 증가할수록 청색 소자의 효율이 점차 저하되고 CiEy값이 낮게 나타나며, 투과율 및 반사율이 저하되는 것을 확인할 수 있다. CiEy 값이 낮게 나타날수록 발광되는 빛이 구현하고자 하는 청색에 가까운 경우에 해당한다. 도 8a를 참조하면, 특히 SiO의 두께가 약 10nm(100Å)만 되어도 효율이 10% 감소하는 것을 확인할 수 있다. 즉, 광학적으로는 제2 배리어층(142)의 두께가 얇을수록 좋다. 따라서, 광학적 조건을 만족하면서 고에너지 입자의 침투를 억제하기 위하여, 배리어층(140)은 제2 배리어층(142)과 제1 배리어층(141)을 함께 구비하는 것이 바람직하다.
이하에서는, 본 발명의 일 실시예에 따른 유기 발광 표시 장치(100)를 형성하는 공정을 설명한다.
도 9는 본 발명의 일 실시예에 따른 유기 발광 표시 장치(100)를 형성하는 공정을 개략적으로 나타낸 흐름도이다.
도 9를 참조하면, 단계 S910에서, 기판(110) 상에 유기 발광 소자(120)를 형성한다. 기판(110)은 가요성 기판으로서, 상술한 바와 같은 내열성 및 내구성이 우수한 고분자를 포함하는 플라스틱 기판일 수 있다. 가요성 기판은 가요성 기판을 지지하는 유리 등으로 구성된 지지 기판(미도시) 상에 배치될 수도 있다. 지지 기판(미도시)은 모든 공정이 끝난 후, 또는 공정 중에 제거될 수 있다.
유기 발광 소자(120)는 제1 전극(121), 유기 발광층(122), 및 제2 전극(123)을 포함하며, 이들은 공지의 방법에 따라 형성될 수 있다.
제1 전극(121)은 반사 전극이고, 제2 전극(123)은 투명 또는 반투명 전극일 수 있다. 따라서, 유기 발광층(122)에서 발생된 광은 제2 전극(123) 방향으로 직접 또는 제1 전극(121)에 의해 반사되어 방출될 수 있다. 이 때, 제2 전극(123)을 반투명 전극으로 형성하여 제1 전극(121)과 제2 전극(123)에 의한 공진 구조를 형성할 수도 있다.
유기 발광층(122)은 저분자 유기물 또는 고분자 유기물일 수 있으며, 구체적 물질은 앞서 설명한 바와 같다. 제1 전극(121)과 제2 전극(123) 사이에 유기 발광층(122) 이외에, 상술한 바와 같은 중간층이 선택적으로 더 형성될 수 있음은 물론이다.
기타, 유기 발광 소자(120)를 구동시키기 위한 소자/배선층이 기판(110) 상에 더 형성될 수 있다. 소자/배선층은 유기 발광 소자(120)를 구동시키는 구동시키는 구동 박막트랜지스터, 스위칭 박막트랜지스터, 커패시터, 상기 박막트랜지스터나 커패시터에 연결되는 배선들을 포함할 수 있다.
단계 S920에서, 캡핑층(130)을 형성한다.
캡핑층(130)은 유기 발광 소자(120) 상에, 보다 구체적으로 제2 전극(123) 상에 형성될 수 있다. 캡핑층(130)은 유기물, 무기물 또는 이들의 혼합물을 포함할 수 있으며, 구체적 물질은 앞서 설명한 바와 같다.
단계 S930에서, 제1 배리어층(141)을 형성한다.
제1 배리어층(141)은 알칼리 금속 함유 화합물로 형성할 수 있으며, 알칼리 금속 함유 화합물로는 LiF가 사용될 수 있다. 또는 CsF, NaF, 또는 Li2O 가 사용될 수 있다. 제1 배리어층(141)은 열증착(Thermal evaporation)법에 의하여 형성될 수 있다. 열증착법에 의해 제1 배리어층(141)을 형성함으로써,_다른 유기막에 미치는 데미지(damage)를 최소화할 수 있다.
제1 배리어층(141)은 약 100Å ~ 3000Å의 두께로 형성될 수 있다. 제1 배리어층(141)의 두께가 100Å보다 작다면 제1 배리어층(141)의 기능, 즉 유기 발광층(122)의 열화를 방지하는 기능을 수행할 수 없고, 3000Å 보다 크다면 제1 배리어층(141)에 응력(stress)이 크게 작용하며, 박리되기 용이해지는 문제가 있다.
단계 S940에서, 제2 배리어층(142)을 형성한다.
제2 배리어층(142)은 제1 배리어층(141) 상에 형성되며, 비정질 무기 산화물으로 형성될 수 있다. 예컨대, 제2 배리어층(142)은 SiO, TiOx, MoOx, ZnO, ZnSnOx, 및 AlOxNy를 포함하는 군에서 선택된 적어도 어느 하나를 포함할 수 있다. 제2 배리어층(142)은 열증착(Thermal evaporation)법에 의하여 형성될 수 있다.
제2 배리어층(142)은 약 10Å ~ 100Å의 두께로 형성될 수 있다. 제2 배리어층(142)의 두께가 10Å보다 작다면 도 6a 및 도 6b를 참조하여 설명한 바와 같이 고에너지 입자로부터 유기 발광층(122)을 보호하기 어렵고, 제2 배리어층(142)을 형성하기 위한 공정제어가 어렵다. 한편, 제2 배리어층(142)의 두께가 100Å 보다 크다면 도 8a 내지 도 8c를 참조하여 설명한 바와 같이 광학적 성능이 크게 저하되어 유기 발광 소자(120)의 발광효율을 저하시키는 문제가 있다.
단계 S950에서, 박막 봉지층(150)을 형성한다.
먼저, 제2 배리어층(142) 상에 무기층(151)을 형성할 수 있다. 무기층(151)은 무기 산화물로 형성될 수 있다. 예컨대, 무기층(151)은 AlOx, TiO2, ZrO, SiO2, AlON, SiON, ZnO, 및 Ta2O5 중 하나 이상의 무기물을 포함할 수 있다. 무기층(151)은 플라즈마 증착법, 또는 원자증착법에 의하여 형성될 수 있다.
특히, 앞서 설명한 바와 같이 원자 증착법에 사용되는 TMA의 SiO에 대한 응착 에너지가 높으므로, 무기층(151)은 원자 증착법에 의하여 형성되는 경우에 막질이 더욱 우수하다.
다음으로, 무기층(151) 상에 유기층(152)을 형성할 수 있다. 유기층(152)은 폴리머(polymer)계열의 소재를 포함할 수 있다. 폴리머 계열의 소재로는 아크릴계 수지, 에폭시계 수지, 폴리이미드 및 폴리에틸렌 등을 포함할 수 있다. 유기층(152)은 무기층(151)의 내부 스트레스를 완화시키고, 무기층(151)의 결함을 보완하며 평탄화하는 역할을 할 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 유기 발광 표시 장치를 개략적으로 나타낸 단면도이다.
도 10을 참조하면, 본 실시예에 따른 유기 발광 표시 장치도 유기 발광 소자(120), 박막 봉지층(150), 및 유기 발광 소자(120)와 박막 봉지층(150) 사이에 개재된 배리어층(140)을 포함하며, 박막 봉지층(150) 하부에 구비된 배리어층(140)은 제1 배리어층(141) 및 제2 배리어층(142)를 포함한다. 이들 구성의 구체적 설명은 앞서 도 1 및 도 2를 참조하여 설명한 내용과 같다.
다만, 본 실시예에서는 유무기 복합층인 박막 봉지층(150)의 중간에 배치된 무기층(151) 하부에 배리어층(160)이 더 포함된 점에서 차이가 있다.
배리어층(160)은 제3 배리어층(161)과 제4 배리어층(162)을 포함하며, 무기층(151)의 하부라면 어디든지 배치될 수 있다. 제3 배리어층(161)은 실질적으로 제1 배리어층(141)과 동일하며, 제4 배리어층(162)은 제2 배리어층(142)와 동일하므로, 구체적 설명은 앞서 설명한 내용으로 갈음한다.
배리어층(160)이 무기층(151)의 하부에 위치함으로써, 고에너지 입자로부터 유기 발광층(122)을 보호할 수 있으며, 진행성 암점을 억제할 수 있고, 무기층의 막질을 개선할 수 있음은 앞서 설명한 바와 같다.
본 실시예에서는 3번째 무기층(151) 하부에 배리어층(160)이 형성된 경우를 도시하였으나, 본 발명은 이에 한정하지 않는다. 예컨대, 배리어층(16))은 2번째 또는 4번째 무기층(151)의 하부에 형성될 수 있음은 물론이다.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되었지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위에는 본 발명의 요지에 속하는 한 이러한 수정이나 변형을 포함할 것이다.
100: 유기 발광 표시 장치 110: 기판
20, 120: 유기 발광 소자 21, 121: 제1 전극
22, 122: 유기 발광층 23, 123: 제2 전극
30, 130: 캡핑층 40, 140: 배리어층
141: 제1 배리어층 142: 제2 배리어층
50, 150: 박막 봉지층 51, 151: 무기층
52, 152: 유기층

Claims (10)

  1. 기판;
    상기 기판 상에 위치하는 유기 발광 소자;
    상기 유기 발광 소자를 덮는 박막 봉지층; 및
    상기 유기 발광 소자 및 상기 박막 봉지층 사이에 개재된 배리어층;을 포함하며,
    상기 배리어층은,
    알칼리 금속 함유 화합물을 포함하는 제1 배리어층, 또는 비정질의 무기 산화물을 포함하는 제2 배리어층을 구비하며,
    상기 박막 봉지층은 유기층 및 무기층을 포함하는, 유기 발광 표시 장치.
  2. 제1항에 있어서
    상기 제1 배리어층은 LiF, CsF, NaF, 또는 Li2O 을 포함하는, 유기 발광 표시 장치.
  3. 제1항에 있어서,
    상기 제2 배리어층은 SiO, TiOx, MoOx, ZnO, ZnSnOx, 및 AlOxNy 중 적어도 어느 하나를 포함하는, 유기 발광 표시 장치.
  4. 제1항에 있어서,
    상기 배리어층은 상기 박막 봉지층의 상기 무기층 바로 아래에 배치된, 유기 발광 표시 장치.
  5. 제4항에 있어서,
    상기 배리어층은 상기 제2 배리어층을 포함하며, 상기 제2 배리어층의 상면은 상기 무기층과 직접 접촉하는, 유기 발광 표시 장치.
  6. 제5항에 있어서,
    상기 제2 배리어층은, 다른 영역보다 상대적으로 산소의 농도가 높은 일부 영역을 포함하는, 유기 발광 표시 장치.
  7. 제1항 또는 제5항에 있어서,
    상기 무기층은 무기 산화물을 포함하는, 유기 발광 표시 장치.
  8. 제1항 또는 제5항에 있어서,
    상기 제2 배리어층의 두께는 10Å 내지 100Å인, 유기 발광 표시 장치.
  9. 제1항에 있어서,
    상기 제1 배리어층의 두께는 100Å 내지 3000Å인, 유기 발광 표시 장치.
  10. 제1항에 있어서,
    상기 박막 봉지층은,
    상기 무기층, 상기 무기층 위의 상기 유기층, 및 상기 유기층 위의 무기층을 포함하는, 유기 발광 표시 장치.
KR1020180111595A 2018-09-18 2018-09-18 유기 발광 표시 장치 및 그 제조 방법 KR102006877B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180111595A KR102006877B1 (ko) 2018-09-18 2018-09-18 유기 발광 표시 장치 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180111595A KR102006877B1 (ko) 2018-09-18 2018-09-18 유기 발광 표시 장치 및 그 제조 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120080802A Division KR101903056B1 (ko) 2012-07-24 2012-07-24 유기 발광 표시 장치 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20180109050A KR20180109050A (ko) 2018-10-05
KR102006877B1 true KR102006877B1 (ko) 2019-08-05

Family

ID=63878156

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180111595A KR102006877B1 (ko) 2018-09-18 2018-09-18 유기 발광 표시 장치 및 그 제조 방법

Country Status (1)

Country Link
KR (1) KR102006877B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102580878B1 (ko) * 2020-12-10 2023-09-19 성균관대학교산학협력단 유기 단분자 박막을 이용하는 유무기 다층 박막봉지 및 이의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101117726B1 (ko) * 2009-12-15 2012-03-07 삼성모바일디스플레이주식회사 플렉서블 디스플레이용 기판, 이를 제조하는 방법, 및 이 기판제조방법을 이용한 유기 발광 디스플레이 장치의 제조 방법

Also Published As

Publication number Publication date
KR20180109050A (ko) 2018-10-05

Similar Documents

Publication Publication Date Title
KR101903056B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
KR101137392B1 (ko) 유기 발광 표시 장치
US8415874B2 (en) Organic light-emitting device and method of manufacturing the same
US8946691B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
US8119258B2 (en) White organic light emitting device (OLED)
US8735876B2 (en) Organic light emitting diode display
US9299950B2 (en) Organic light emitting display apparatus
KR102142620B1 (ko) 유기발광 표시장치
KR20080051572A (ko) 유기 전계 발광 소자 및 그 제조 방법
KR100964231B1 (ko) 유기 발광 소자 및 유기 발광 표시 장치
US9024303B2 (en) Organic light emitting display and manufacturing method thereof
EP2214222A1 (en) Organic el element
KR101893356B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
TWI673860B (zh) 製造有機發光顯示設備之方法
KR102006877B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
KR102373437B1 (ko) 유기발광표시장치 및 그 제조방법
KR20150044721A (ko) 유기 발광 장치 및 이의 제조 방법
KR20150044723A (ko) 유기 발광 장치 및 이의 제조 방법
US8183771B2 (en) Organic light emitting diode and method of fabricating the same
JP6220208B2 (ja) 有機エレクトロルミネッセンス表示装置及びその製造方法
KR102393378B1 (ko) 유기 발광 장치 및 이의 제조 방법
KR101680705B1 (ko) 유기전계 발광소자 및 그 제조방법
KR102288225B1 (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치
KR20160082895A (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치
KR20160082880A (ko) 유기 발광 소자와 그 제조 방법 및 그를 이용한 유기 발광 디스플레이 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant