KR101983025B1 - Manufacturing method of Poly(phenylene sulfide) melt-blown nonwoven fabric - Google Patents

Manufacturing method of Poly(phenylene sulfide) melt-blown nonwoven fabric Download PDF

Info

Publication number
KR101983025B1
KR101983025B1 KR1020180143228A KR20180143228A KR101983025B1 KR 101983025 B1 KR101983025 B1 KR 101983025B1 KR 1020180143228 A KR1020180143228 A KR 1020180143228A KR 20180143228 A KR20180143228 A KR 20180143228A KR 101983025 B1 KR101983025 B1 KR 101983025B1
Authority
KR
South Korea
Prior art keywords
fibers
meltblown
nonwoven fabric
melt
heat resistance
Prior art date
Application number
KR1020180143228A
Other languages
Korean (ko)
Inventor
백민정
권은희
조연준
이경주
Original Assignee
(주)웰크론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)웰크론 filed Critical (주)웰크론
Priority to KR1020180143228A priority Critical patent/KR101983025B1/en
Application granted granted Critical
Publication of KR101983025B1 publication Critical patent/KR101983025B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • D04H1/565Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres by melt-blowing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics

Abstract

The present invention relates to a technique for manufacturing an ultrafine melt-blown non-woven fabric, which produces non-woven fabric by the melting temperature at spinning to produce an ultrafine poly(phenylene sulfide) (PPS) melt-blown non-woven fabric, and has excellent physical properties and improved radioactivity by analyzing the same. The non-woven fabric produced according to the present invention has excellent heat resistance, excellent chemical resistance, and high physical properties. In addition, products for various purposes such as high-precision filters requiring heat resistance and automotive interior materials requiring heat resistance and sound absorption due to excellent physical properties such as heat resistance and chemical resistance, heat resistance can be developed.

Description

폴리페닐렌설파이드 멜트블라운 부직포의 제조방법{Manufacturing method of Poly(phenylene sulfide) melt-blown nonwoven fabric}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for producing a polyphenylene sulfide meltblown nonwoven fabric,

본 발명은 결정성, 열가소성 수지이며 내약품성 및 절연성을 갖는 엔진니어링 플라스틱인 폴리페닐렌설파이드(Poly(phenylene sulfide) (PPS))을 이용하여 내열성과 내화학성이 우수한 초극세 멜트블로운 부직포를 제조하는 방법에 관한 것이다. The present invention relates to a process for producing an ultrafine meltblown nonwoven fabric having excellent heat resistance and chemical resistance by using polyphenylene sulfide (PPS), which is a crystalline, thermoplastic resin and an engineering plastic having chemical resistance and insulation properties ≪ / RTI >

본 발명에 의하면 우수한 방사성/연속방사성을 유지하면서 균일한 기공크기가 요구되는 산업용 필터 및 자동차 내장재로 적용이 가능한 부직포를 제조할 수 있다. According to the present invention, it is possible to produce a nonwoven fabric which can be applied to industrial filters and automobile interior materials which require uniform pore size while maintaining excellent radioactive / continuous radioactivity.

일반적으로 PPS는 우수한 내약품성으로 인해 용해되지 않아, 용융을 통해 섬유로 제조되고 있는데, 보통 습식공정에 의한 wet-laid 부직포 또는 staple 섬유의 니들공정, 열접착 등 건식 부직포 제조 공정에 의해 제조되고 있다. Generally, PPS does not dissolve due to its excellent chemical resistance and is produced by melt-making into fibers, usually by wet-laid nonwoven fabric by wet process or needle fabrication process of staple fiber, thermal nonwoven fabric manufacturing process such as thermal bonding .

이렇게 제조된 PPS 부직포는 난연, 내열성 및 내화학성이 뛰어나 고내열성이 요구되는 산업용 필터, 자동차 내장재 등에 적용되고 있으며, 현재 PSS 부직포의 수요가 증가하고 있다. The PPS nonwoven fabric thus produced is applied to industrial filters and automobile interior materials which are excellent in flame retardancy, heat resistance and chemical resistance and are required to have high heat resistance, and the demand of PSS nonwoven fabric is increasing.

산업용 필터 중 고정밀여과가 필요한 제품의 경우 PP 또는 PET 멜트블로운 부직포를 여재로 사용하고 있다. 그 이유는 필터의 여과효율은 높이고, 차압은 낮출 수 있기 때문이다. 그런데, 단섬유로 제조된 건식 PPS 부직포의 경우 멜트블로운 부직포와 달리 균일한 기공크기를 갖지 않아 필터 적용에 많은 어려움이 있다. 이를 해결하기 위해 국내외에서 PPS를 이용하여 멜트블로운 부직포, 스펀본드 부직포를 제조하려는 시도를 하고 있으나, 기술적 난이도가 높아 개발이 지연되고 있는 실정이다.For industrial filters that require high precision filtration, PP or PET meltblown nonwoven fabric is used as filter media. This is because the filtration efficiency of the filter can be increased and the differential pressure can be lowered. However, dry PPS nonwoven fabrics made of short fibers do not have a uniform pore size unlike melt blown nonwoven fabrics, which makes it difficult to apply filters. In order to solve this problem, attempts have been made to manufacture meltblown nonwoven fabrics and spunbond nonwoven fabrics using PPS at home and abroad, but the development is delayed due to high technical difficulty.

한편, 초극세 방사형 멜트블로운 부직포의 제조에 있어서, 부직포 방사 시 멜트블로운 기기의 노즐 막힘 현상, 원료 leak 현상, 중량편차가 발생하여 원료 로스율이 높고 조업성이 낮아 고물성이 요구되어지는 제품에 적용에는 어려운 점이 있는데, 이러한 점을 감안하여 고려해야할 중요한 요소는 원료고분자의 선정(종류, 물성 등), 용융온도, 점도, 방사구금의 설계 등이다. On the other hand, in the production of ultrafine radial type meltblown nonwoven fabric, melt clogging of meltblown devices, leakage of raw materials, and weight deviation occur when spinning the nonwoven fabric, resulting in a product having a high raw material loss rate and low workability, The most important factors to consider in this regard are the selection of the raw polymer (type, physical properties, etc.), the melting temperature, the viscosity, and the design of the spinneret.

본 발명은 상기의 점을 감안하여 안출된 것으로 본 발명의 목적은 우수한 방사성을 유지하면서 멜트블로운 부직포만의 기공특성을 갖는 PPS 멜트블로운 부직포를 제조하는 방법을 제안하는데 있다.The present invention has been made in view of the above points, and an object of the present invention is to propose a method of producing a PPS meltblown nonwoven fabric having pore characteristics of a meltblown nonwoven fabric while maintaining excellent spinnability.

본 발명자들은 상기의 점을 오랜 기간동안 연구한 끝에, 폴리페닐렌설파이드(Poly(phenylene sulfide) (PPS))수지를 일정한 크기로 펠렛(pellet)화하고, 용융지수와, 용융온도 등을 제어하여 공지의 방법인 멜트블로운 공법을 이용하여 초극세 부직포를 방사하게되면 내열성 및 내화학성 등 물성이 높고 부직포 방사성이 좋아 조업성과 생산성이 우수하며, 산업용 필터 중 내열성을 요구하는 고정밀 필터로 적용이 가능하며, 자동차 내장재로는 내열성과 흡음성이 요구되는 engine block insulator, engine partition, heat shield 등의 제품 전개가 가능함을 알게되어 본 발명에 이르게 되었다. The inventors of the present invention have studied the above points for a long period of time and found that by pelletizing a poly (phenylene sulfide) (PPS) resin into a predetermined size and controlling the melt index and the melting temperature If the microblown process is spun by using the known meltblown method, it has high properties such as heat resistance and chemical resistance, high nonwoven fabric spinnability, excellent productivity and productivity, and can be applied to high precision filters requiring heat resistance among industrial filters , It is possible to develop products such as an engine block insulator, an engine partition, and a heat shield which require heat resistance and sound absorption as automobile interior materials.

구체적으로 본 발명은 용융지수(Melt Index) 200 ~ 500인 폴리페닐렌설파이드(PPS) 고분자를 pellet chip size 2~5mm로 제어하여 pelletizing 후 마스터칩을 생산하는 단계; 상기 공정에 따라 제조된 마스터칩을 적용하여 80 ~ 100℃에서 건조시켜 수분율을 200ppm미만으로 하는 단계; 상기 건조된 마스터칩을 용융온도 320℃에서 용융하여 멜트블라운 시키는 단계; 상기 냉각고화된 섬유가 DCD 길이 13.5cm에 있는 컬렉터에 수집되어 웹으로 형성되는 단계를 포함함을 특징으로 한다.Specifically, the present invention provides a method for producing a master chip, comprising: producing a master chip by pelletizing a polyphenylene sulfide (PPS) polymer having a melt index (Melt Index) of 200 to 500 at a pellet chip size of 2 to 5 mm; Applying the master chip prepared according to the above process and drying at 80 to 100 캜 to make the water content less than 200 ppm; Melting and drying the dried master chip at a melting temperature of 320 캜; Characterized in that the cooled and solidified fibers are collected in a collector having a DCD length of 13.5 cm and formed into a web.

즉, 본 발명은 PPS고분자의 부직포 형성후의 물성 및 기공을 확보하기 위해 또한 방사성 향상을 위해 저점도의 PPS를 선정하여 수분율을 200ppm미만으로 제어하였으며, 320℃에서 용융하여 멜트블라운 시키는 공정을 선택하였다. That is, in order to secure the physical properties and pores of the PPS polymer after the formation of the nonwoven fabric, the PPS having a low viscosity was selected to improve the radioactivity, and the water content was controlled to be less than 200 ppm and the process of melt- Respectively.

이렇게 하여 제조된 초극세 PPS 멜트블로운 부직포는 평균중량이 기본중량 100gsm에 편차 ±15%, 평균인장강도는 10N/inch 이상, 평균 기공크기는 8μm 이하, 평균 섬유직경은 2~3μm의 물성을 확보하게 되어, 산업용 필터 및 자동차 내장재로 적용이 가능하다. The ultrafine PPS meltblown nonwoven fabric thus manufactured has an average weight of 100 gsm and a deviation of ± 15%, an average tensile strength of 10 N / inch or more, an average pore size of 8 μm or less, and an average fiber diameter of 2 to 3 μm So that it can be applied to industrial filters and automobile interior materials.

이상 설명한 본 발명에 의하면 제조된 초극세 PPS 멜트블로운 부직포는 내열성 및 내화학성이 우수하여 산업용 필터 중 내열성을 요구하는 고정밀 필터로 적용이 가능하여, 자동차 내장재로는 내열성과 흡음성이 요구되는 engine block insulator, engine partition, heat shield 등의 제품 전개가 가능하다.According to the present invention, the ultrafine PPS meltblown nonwoven fabric manufactured according to the present invention is excellent in heat resistance and chemical resistance, and can be applied as a high-precision filter requiring heat resistance among industrial filters. As an automobile interior material, an engine block insulator , engine partition, and heat shield.

도 1은 본 발명방법을 설명하기 위한 장치의 개략도이다. 1 is a schematic diagram of an apparatus for explaining the method of the present invention.

방사용 원료의 준비 및 컴파운딩Preparation and compounding of raw materials

본 발명은 멜트블로운 방사에 의해 섬유상 웹으로 제조될 수 있는 Poly(phenylene sulfide) (PPS) 고분자를 이용한다. 즉, 발명의 첫 단계는 방사시 흐름성이 용이한 용융지수가 낮은(200 ~ 500) PPS 원료를 선정하고, 선정한 PPS 원료의 산화를 방지하기 위해 건조기에 건조하는 단계이다. The present invention utilizes a poly (phenylene sulfide) (PPS) polymer that can be made into a fibrous web by meltblown radiation. That is, the first step of the present invention is to select a PPS raw material having a low melt index (200 to 500) which is easy to flow during spinning and to dry the PPS raw material in a drier to prevent oxidation of the PPS raw material.

멜트블로운 방사시 원료의 용융단계에서 균일한 feeding을 결정짓는 중요한 요소는 원료의 용융지수(MI)이다. 용융지수가 높을 경우 멜트블로운 방사시 압출기에서 원료를 밀어내지 못하고, 스크류에 원료가 달라붙는 현상이 발생하여 방사가 어렵기 때문에 원료를 선정할 때 용융지수가 낮고 편차가 적은 원료를 선정해야한다. 원료의 용융지수가 편차가 클 경우에 상기에 언급하였듯이 원료 pellet의 표면만 용융되어 압출기 스크류에 달라붙는 문제점이 발생된다. 원료 pellet size는 작고, 균일할수록 압출기에서 용융이 빠르게 되고, 흐름성, 방사성이 우수하다. 본 발명에서는 구형의 2 ~ 5mm 정도의 균일하고, size가 작은 원료를 선정하여 방사시 균일한 feeding이 가능하였다. 또한, 원료 선정 후 원료 내 잔류 수분으로 인해 압출시 기포가 발생되므로, 원료를 건조하여 잔류 수분을 제거해야 균일한 압출이 가능하다. The melt index (MI) of the raw material is an important factor that determines uniform feeding during meltblowing of the raw material during meltblown spinning. When the melt index is high, it is difficult to extrude the raw material in the extruder during meltblown spinning, and the raw material adheres to the screw, which makes it difficult to spin. Therefore, it is necessary to select a material having a low melt index and a small deviation when selecting the raw material . When the melt index of the raw material is large, only the surface of the raw pellet melts and sticks to the extruder screw as mentioned above. The smaller the pellet size of the raw material, the faster the melting in the extruder, the better the flow and radioactivity. In the present invention, it was possible to uniformly feed a raw material having a uniform and small size of about 2 to 5 mm in a spherical shape by spinning. In addition, bubbles are generated at the time of extrusion due to the residual moisture in the raw material after the selection of the raw material, so that it is possible to perform uniform extrusion by removing the residual moisture by drying the raw material.

한편, 초극세 멜트블로운 방사는 방사조건의 조정에 따라 1인치당 35홀 및 50홀, 100홀 등의 미세노즐을 통해 1마이크로 수준의 나노급 미세섬유의 제조가 가능하다. 이와 같이 하여 생산되는 부직포의 구성 필라멘트 섬유는 직경이 1 ~ 10μm 정도가 되어 내열성이 우수한 부직포가 제조된다.       On the other hand, ultrafine meltblown spinning can produce nanosized nanofibers of 1 micron level through fine nozzles such as 35 holes, 50 holes, and 100 holes per inch by adjusting spinning conditions. The constituent filament fibers of the nonwoven fabric thus produced have a diameter of about 1 to 10 mu m, and a nonwoven fabric having excellent heat resistance is produced.

멜트블로운 방사 및 냉각경화에 의한 웹형성Web formation by meltblown spinning and cooling hardening

본 발명은 도 1에 개략적으로 도시된 바와 같이, 상기 원료가 호퍼에 주입 후 압출기를 통해 용융 압축된 용융고분자 수지를 미터링 펌프에 의해 노즐의 분배판으로 분배되어 노즐부터 토출된 원료(3)를 고온고압의 공기로 용융고분자를 연신, 극세화 한 후 냉각하면서 컬렉터(4)가 설치된 컨베이어 벨트(conveyor belt)에 극세화된 섬유를 적층 후 와인더(5)에 권취하는 설비를 이용한다. 이때, 멜트블로운되어 형성된 부직포는 용융온도, 토출 에어온도, 토출 에어 압력, 냉각 에어온도, 노즐로부터 컨베이어 벨트의 거리(DCD) 등에 영향을 받지만, 본 발명에서 가장 영향이 큰 조건은 노즐로부터 컨베이어 벨트의 거리(DCD)와 용융온도이다. 즉, 이외 모든 조건이 동일할 경우 용융 압축 후 미터링 펌프 및 노즐 분배판 내부에 용융되어 있는 폴리머(1)의 온도이며, 원료는 적정 온도에서 용융된 수지의 점도가 개선되며, 노즐의 분배판에 균일하게 수지가 분배되어 방사성이 개선된다. 또한 본 발명자들의 연구결과, 노즐로부터 컨베이어 벨트의 거리(DCD)도 생산된 부직포의 중량편차에 많은 영향을 미치는 것으로 확인되었다.1, the molten polymer resin, which has been injected into the hopper and melted and compressed through an extruder, is distributed to a distribution plate of a nozzle by a metering pump, and the raw material 3 discharged from the nozzle And a device for winding up the superfine fibers on the conveyor belt provided with the collector 4 and then winding it on the winder 5 is used while drawing the molten polymer with the high temperature and high pressure air, In this case, the meltblown nonwoven fabric is affected by the melt temperature, the discharge air temperature, the discharge air pressure, the cooling air temperature, the distance (DCD) of the conveyor belt from the nozzle, Belt distance (DCD) and melt temperature. That is, when all other conditions are the same, the temperature of the polymer (1) melted in the metering pump and the nozzle distribution plate after melt compression, the viscosity of the molten resin is improved at a proper temperature of the raw material, The resin is uniformly distributed and the radioactivity improves. As a result of the study by the present inventors, it has been confirmed that the distance (DCD) of the conveyor belt from the nozzle greatly affects the weight deviation of the produced nonwoven fabric.

본 발명은 또한 상기 멜트블로운된 섬유가 컬렉터(4)에 도달하기 전에 냉기류 공급장치(2)에 의해 경화되는 단계를 포함한다. 이에 의해 섬유는 냉각 경화되어 형태안정성이 향상된다. 여기서, 저온의 기류가 방사섬유에 접촉되기는 하지만, 멜트블로운 섬유가 고속으로 하부에 낙하하기 때문에 여기서의 경화는 완전경화는 아니다. 대략 섬유의 10 ~ 20% 정도는 용융된 그래로로 경화된 섬유와 함께 하방의 컬렉터에 수집되어 복합섬유 전체는 섬유상 웹으로 진화하게 된다. 냉각기류의 온도는 토출속도 등에 따라 다르지만 대략 5 ~ 25℃가 된다.The present invention also includes a step wherein the meltblown fibers are cured by the cold air supply device (2) before reaching the collector (4). Thereby, the fibers are cooled and cured to improve the morphological stability. Here, although the low-temperature air current is brought into contact with the spinning fiber, the meltblown fiber is not completely cured because the meltblown fiber falls down to the bottom at a high speed. Approximately 10% to 20% of the fibers are collected in the downward collector together with the melted brown cured fiber, and the entire composite fiber evolves into a fibrous web. The temperature of the cooling air stream varies depending on the discharge speed and the like, but is about 5 to 25 占 폚.

실험예 1Experimental Example 1

초극세 멜트블로운 부직포의 원료는 Poly(phenylene sulfide) (Celanese社의 Fortron)을 사용하였으며, Pellet size는 2 ~ 5mm인 원료를 선정하였다. 선정한 PPS 원료는 건조 온도 90℃, 건조 시간 8시간 후 수분율을 200ppm 이하로 조정하였다. 토출 에어 압력을 4 ~ 6psi, 35hole/inch노즐을 적용하여 아래의 조건으로 방사하였다.Poly (phenylene sulfide) (Celanese Fortron) was used as the raw material of the ultrafine meltblown nonwoven fabric, and raw materials having a pellet size of 2 to 5 mm were selected. The selected PPS raw materials were adjusted to a water content of 200 ppm or less after drying temperature of 90 ° C and drying time of 8 hours. The ejection air pressure was radiated under the following conditions using a 4 to 6 psi, 35 hole / inch nozzle.

용융온도 300℃ Melting temperature 300 ℃

DCD: 9cmDCD: 9cm

냉각에어온도 10℃Cooling air temperature 10 ° C

제조된 부직포 기본중량: 100g/m2 The basis weight of the manufactured nonwoven fabric: 100 g / m 2

실험예 2 ~ 16Experimental Examples 2 to 16

주원료는 실험예 1과 동일하며 방사조건은 아래표와 같이 하여 방사하였다.The raw materials were the same as in Experimental Example 1, and the spinning conditions were as follows.

이상의 실험예에 의해 제조한 PPS 부직포의 물성을 아래 표에 정리하였다. The physical properties of the PPS nonwoven fabric produced by the above Experimental Examples are summarized in the following table.

Figure 112018115414100-pat00001
Figure 112018115414100-pat00001

Figure 112018115414100-pat00002
Figure 112018115414100-pat00002

- Poly(phenylene sulfide) (PPS): 용융지수(Melt Index) 200~500 (Celanese社의 Fortron) - Poly (phenylene sulfide) (PPS): Melt Index 200-500 (Celanese Fortron)

(1) 부직포 중량은 KS K 0514 방법으로 측정하였다.  (1) The nonwoven fabric weight was measured by the KS K 0514 method.

(2) 부직포 강도는 KS K 0521 방법으로 측정하였다. (2) The nonwoven fabric strength was measured by the KS K 0521 method.

(3) 신장율은 Cut-stip법(인장시험기;Instron 4467, Instron USA)으로 늘어난 길이를 각각 3 회씩 측정하였다. (3) Elongation ratios were measured three times each by the cut-stip method (tensile tester; Instron 4467, Instron USA).

(4) 공기투과도는 7cm*7cm의 부직포를 공기투과도 측정기(FX-3300, 측정 면적 38cm2, 측정압력 125Pa)를 이용하여 각각 3회씩 측정하였다(4) Air permeability was measured three times each using a nonwoven fabric of 7 cm * 7 cm using an air permeability measuring instrument (FX-3300, measuring area 38 cm 2 , measuring pressure 125 Pa)

(5) 섬유직경은 KS K 0463 방법으로 측정하였다. (5) Fiber diameter was measured by KS K 0463 method.

(6) 기공크기는 3cm*3cm의 부직포를 PMI (Porometer(CFP-1200AE)) 기기로 Galwick을 사용하여 Dry up-Wet up 순서로 기공 크기를 측정하였다. (6) The pore size was measured in a dry up-wet up sequence using a nonwoven fabric of 3 cm * 3 cm with a PMI (Porometer (CFP-1200AE)) apparatus using a Galwick apparatus.

(7) 연속방사성은 부직포 생산 시 노즐교체 없이 Full drum 100%에서 노즐교체 횟수를 뺀 수치로 측정하였다.   (7) Continuous spinnability was measured at 100% of full drum minus the number of nozzles replacement without nozzle replacement in the production of nonwoven fabric.

위의 실험예 1, 2, 3, 4에서와 같이 PPS 방사 용융온도가 300℃~317℃일 경우 원료가 부분적으로 용융되어 shot, drop 현상이 발생하여 방사가 불가하였다. 이를 개선하기 위해 용융온도를 318℃ 이상으로 높힌 결과 방사성 및 제품성이 높아졌지만, 흐름성이 좋지 않아 연속방사성에 어려움이 있었다. 따라서 원료의 흐름성을 높이기 위해 330℃까지 용융온도를 높여 방사시험을 진행한 결과 용융 온도가 330℃(실험예 9)일 경우에 고온으로 인한 기기오작동이 발생하고, 원료의 고분자가 분해되어 drop 현상이 부분적으로 발생하였다.As shown in Experimental Examples 1, 2, 3 and 4 above, when the PPS spinning melt temperature is 300 ° C to 317 ° C, the raw material partially melts and shot and drop phenomenon occurs and the spinning is impossible. In order to improve this, the melting temperature was raised to 318 ° C or more, and the radioactivity and productability were improved. However, the flowability was poor and the continuous radioactivity was difficult. Therefore, in order to increase the flowability of the raw material, the spinning test was conducted by raising the melting temperature up to 330 ° C. As a result, when the melting temperature was 330 ° C (Experiment 9), a malfunction occurred due to high temperature, The phenomenon partially occurred.

이 실험예를 통해서 방사성, 제품성 및 연속 방사성이 우수한 320℃(실험예 7)를 방사 용융온도로 결정하였으나, 평균 인장강도, 기공크기, 섬유직경을 개선하기 위해 실험예 10, 11, 12, 13, 14, 15, 16를 추가 진행하였다.        In order to improve the average tensile strength, the pore size and the fiber diameter in Experimental Example 10, 11, 12, and 12, the spinning melt temperature was determined to be 320 deg. C (Experimental Example 7) 13, 14, 15, and 16, respectively.

실험예 10, 11, 12, 13, 14, 15, 16에서는 방사 용융온도를 320℃로 고정하고, DCD 길이를 10~30cm 사이로 조절하여 방사하였다. 방사결과 DCD 길이가 10, 12, 13.5cm일 때 중량편차가 가장 낮아 물성이 균일한 부직포가 방사되었으나, DCD 길이가 10, 12cm(실험예 10, 11)의 경우 섬유직경이 목표직경에 비해 약 2배이상 높게 측정되었다. 섬유직경, 기공크기 및 연속방사성 확인을 위해 DCD 길이를 14~30cm(실험예 13, 14, 15, 16)로 조절하여 방사시험을 진행하였다. 그 결과 DCD 길이가 14cm 이상으로 증가하게되면 중량 편차가 매우 높아지고, 방사성이 낮아지는 것을 확인하였다.        In Experimental Examples 10, 11, 12, 13, 14, 15, and 16, the spinning melt temperature was fixed at 320 ° C. and the DCD length was controlled to be between 10 and 30 cm. In case of DCD length of 10, 12, 13.5 cm, the weight deviation was the lowest, so that the uniform nonwoven fabric was emitted. However, in case of DCD length of 10 and 12 cm (Examples 10 and 11), the fiber diameter was about More than twice as high. In order to confirm the fiber diameter, pore size and continuous radioactivity, the DCD length was adjusted to 14-30 cm (Experimental Examples 13, 14, 15, 16) to conduct the radiation test. As a result, it was confirmed that when the DCD length is increased to 14 cm or more, the weight deviation becomes very high and the radioactivity becomes low.

따라서, 초극세 PPS 멜트블로운 부직포의 목표로 하는 물성(중량 100gsm 편차 ㅁ15%, 평균인장강도 10N/inch 이상, 평균 기공크기 8μm 이하, 평균 섬유직경 2~3μm)을 모두 충족하는 PPS 방사조건은 방사 용융온도 320℃, DCD 길이는 13.5cm에서 방사하는 것이 가장 적절한 것으로 판단된다.       Therefore, the PPS spinning conditions satisfying all of the desired physical properties (weight 100 gsm deviation 15%, average intrinsic strength 10 N / inch, average pore size 8 μm or less, average fiber diameter 2 to 3 μm) of the ultrafine PPS meltblown nonwoven fabric It is considered to be most appropriate to radiate at a spinning melt temperature of 320 ° C and a DCD length of 13.5 cm.

Claims (2)

(S1) 멜트블라운 가능한 용융지수(Melt Index) 200 ~ 500인 폴리페닐렌설파이드(PPS) 고분자를 2 ~ 5mm 펠렛으로 제조하는 단계;
(S2) 상기 펠렛을 80 ~ 100℃에서 건조시켜 수분율을 200ppm미만으로 하는 단계;
(S3) 상기 건조된 펠렛을 용융온도 320℃에서 용융하여 멜트블라운 시키는 단계;
(S4) 상기 멜트블라운된 섬유를 경화시키는 단계: 및
(S5) 상기 냉각고화된 섬유가 DCD 길이 13.5cm에 있는 컬렉터에 수집되어 웹으로 형성되는 단계를 포함하고,
초극세 멜트블로운 방사는 방사조건의 조정에 따라 1인치당 35홀, 50홀 또는 100홀의 미세노즐을 통해 1마이크로 수준의 나노급 미세섬유의 제조가 가능하도록 하여 생산되는 부직포의 구성 필라멘트 섬유는 직경이 1 ~ 10μm 가 되도록 하며,
원료가 호퍼에 주입된 후 압출기를 통해 용융 압축된 용융고분자 수지를 미터링 펌프에 의해 노즐의 분배판으로 분배시켜 노즐로 부터 토출된 원료를 고온고압의 공기로 용융고분자를 연신, 극세화 한 후 냉각하면서 컬렉터가 설치된 컨베이어 벨트(conveyor belt)에 극세화된 섬유를 적층 후 와인더에 권취하는 방식으로써,
용융 압출 후 상기 미터링 펌프를 통해 노즐 분배판 내부에 용융되어 있는 폴리머를 적정 온도에서 노즐의 분배판에 균일하게 분배시켜 방사시키고,
상기 멜트블로운된 섬유가 컬렉터에 도달하기 전에 냉기류 공급장치에 의해 경화시키는 단계를 포함하여, 저온의 기류가 방사섬유에 접촉되도록 하되, 멜트블로운 섬유가 고속으로 하부에 낙하되도록 하여 완전경화되지 않고 섬유의 10 ~ 20% 는 용융된 상태로 경화된 섬유와 함께 하방의 컬렉터에 수집되어 복합섬유 전체가 섬유상 웹으로 진화되도록 하는 것을 특징으로 하는 폴리페닐렌설파이드 멜트블라운 부직포의 제조방법.
(S1) preparing 2 to 5 mm pellets of a polyphenylene sulfide (PPS) polymer having a melt index (Melt Index) of 200 to 500;
(S2) drying the pellet at 80 to 100 DEG C to make the water content less than 200 ppm;
(S3) melting and melting the dried pellets at a melting temperature of 320 ° C;
(S4) curing the meltblown fiber; and
(S5) said cooled, solidified fibers are collected in a collector having a DCD length of 13.5 cm and formed into a web,
The ultrafine meltblown yarn is produced by making fine nano-sized fine fibers of 1 micro-level through fine nozzles of 35 holes, 50 holes or 100 holes per inch by adjusting the spinning conditions. 1 to 10 mu m,
After the raw material is injected into the hopper, the molten polymer resin melted and compressed through the extruder is distributed to the distribution plate of the nozzle by the metering pump, and the molten polymer discharged from the nozzle is extruded and miniaturized by high temperature and high pressure air, While winding the superfine fibers on a conveyor belt equipped with a collector, and then winding the fibers on the winder,
After the melt extrusion, the polymer melted inside the nozzle distribution plate is uniformly distributed to the distribution plate of the nozzle at the proper temperature through the metering pump,
Curing the meltblown fibers by a cold air supply device before reaching the collector so that a low temperature stream is brought into contact with the spinning fibers such that the meltblown fibers fall down to the bottom at a high speed, And 10 to 20% of the fibers are collected in a downward collector together with the fibers cured in a molten state, so that the entire composite fibers are evolved into a fibrous web.
1항에 있어서, 상기 멜트블라운된 섬유를 경화시키는 단계는 5 ~ 25℃에서 진행됨을 특징으로 하는 폴리페닐렌설파이드 멜트블라운 부직포의 제조방법.


The method according to claim 1, wherein the step of curing the melted blended fiber is performed at 5 to 25 ° C.


KR1020180143228A 2018-11-20 2018-11-20 Manufacturing method of Poly(phenylene sulfide) melt-blown nonwoven fabric KR101983025B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180143228A KR101983025B1 (en) 2018-11-20 2018-11-20 Manufacturing method of Poly(phenylene sulfide) melt-blown nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180143228A KR101983025B1 (en) 2018-11-20 2018-11-20 Manufacturing method of Poly(phenylene sulfide) melt-blown nonwoven fabric

Publications (1)

Publication Number Publication Date
KR101983025B1 true KR101983025B1 (en) 2019-05-28

Family

ID=66656710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180143228A KR101983025B1 (en) 2018-11-20 2018-11-20 Manufacturing method of Poly(phenylene sulfide) melt-blown nonwoven fabric

Country Status (1)

Country Link
KR (1) KR101983025B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210053043A (en) 2019-11-01 2021-05-11 주식회사 청수테크노필 Filter media and manufacture method thereof
KR20220056713A (en) 2020-10-28 2022-05-06 주식회사 청수테크노필 Filter media and manufacture method thereof
KR20220156461A (en) 2021-05-18 2022-11-25 주식회사 글로원 Meltblown non-woven fabric filter manufacturing apparatus with antibacterial and antiviral function using superheated steam

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302549A (en) * 1987-11-12 1996-11-19 Asahi Chem Ind Co Ltd Polyphenylene sulfide nonwoven fabric, its production and filter using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302549A (en) * 1987-11-12 1996-11-19 Asahi Chem Ind Co Ltd Polyphenylene sulfide nonwoven fabric, its production and filter using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210053043A (en) 2019-11-01 2021-05-11 주식회사 청수테크노필 Filter media and manufacture method thereof
KR20220056713A (en) 2020-10-28 2022-05-06 주식회사 청수테크노필 Filter media and manufacture method thereof
KR20220156461A (en) 2021-05-18 2022-11-25 주식회사 글로원 Meltblown non-woven fabric filter manufacturing apparatus with antibacterial and antiviral function using superheated steam

Similar Documents

Publication Publication Date Title
KR101983025B1 (en) Manufacturing method of Poly(phenylene sulfide) melt-blown nonwoven fabric
KR102502382B1 (en) Polyamide nanofiber nonwoven fabric
KR101164947B1 (en) Nano-Fiber Web for Self-sealing and Method for Manufacturing the Same, and Composite Material Using the Same and Method for Manufacturing the Same
JP5009100B2 (en) Extra fine fiber nonwoven fabric, method for producing the same, and apparatus for producing the same
KR100780346B1 (en) An electro-centrifugal spinning apparatus and a method for mass production of nano-fibers using the same
CN111732790B (en) Melt-blown polypropylene composite material and preparation method and application thereof
CN103205902B (en) Production method of polyester filament spunbonded needle-punched felt base
JP6011526B2 (en) Mixed fiber nonwoven fabric and filter medium using the same
CN106995983A (en) A kind of production method of double component molten spraying super-fine-fiber net
JPWO2013089213A1 (en) Mixed fiber nonwoven fabric, laminated sheet and filter, and method for producing mixed fiber nonwoven fabric
CN103710880A (en) Anti-oxidant polyphenylene sulfide spun-bonded spunlace non-woven filter material and production method thereof
KR20110107077A (en) Spinning nozzle pack for electrospinning and electrospinning device having the same
KR20210029191A (en) Adjustable nanofiber nonwoven product
KR101491994B1 (en) Porous support, method for manufacturing the same and membrane for gas or liquid filter comprising the same
CN102162145B (en) Method for preparing reclaimed polyester bottle chip spun fine denier moisture absorption and sweat release FDY polyester filament fibers
CN110523142B (en) Bark-imitated polypropylene/polycarbonate nanofiber melt-blown air filter material and preparation method thereof
JP2020196974A (en) Spinneret for producing melt-blown nonwoven fabric and production apparatus and production method of melt-blown nonwoven fabric
KR100712592B1 (en) Apparatus for electrospinning from polymer melts
KR101206761B1 (en) Manufacturing method of anti-virus non-woven fabric
KR101282784B1 (en) Supplying equipment of staple fiber using perpendicular air current
CN114517355A (en) Degradable non-woven fabric and preparation method and application thereof
CN112219102B (en) Method for evaluating properties of polypropylene resin, method for producing polypropylene nonwoven fabric, and polypropylene nonwoven fabric
KR20110077891A (en) Nozzle block for electrospining and electrospinning device comprising the same
KR20100078811A (en) Electrospinning device
CN108796822A (en) A kind of melt-blown polyphenylene sulfide nonwoven cloth filter material and preparation method thereof for reducing tar content

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant