KR101981672B1 - Manufacturing method for corrosion-resistant hydraulic cylinder - Google Patents
Manufacturing method for corrosion-resistant hydraulic cylinder Download PDFInfo
- Publication number
- KR101981672B1 KR101981672B1 KR1020190026119A KR20190026119A KR101981672B1 KR 101981672 B1 KR101981672 B1 KR 101981672B1 KR 1020190026119 A KR1020190026119 A KR 1020190026119A KR 20190026119 A KR20190026119 A KR 20190026119A KR 101981672 B1 KR101981672 B1 KR 101981672B1
- Authority
- KR
- South Korea
- Prior art keywords
- piston rod
- ceramic
- coating
- spraying
- corrosion
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/16—Polishing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/129—Flame spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J10/00—Engine or like cylinders; Features of hollow, e.g. cylindrical, bodies in general
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
본 발명은 유압실린더의 제조방법에 관한 것으로, 보다 상세하게는 피스톤로드 코팅층에서의 포어발생을 최소화시킴으로써 피스톤로드가 해수 등의 작업환경에 대해 내부식성을 갖도록 하는 부식방지 유압실린더의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a hydraulic cylinder, and more particularly, to a method of manufacturing a corrosion-resistant hydraulic cylinder that minimizes pore generation in a piston rod coating layer so that the piston rod has corrosion resistance against working environments such as seawater. will be.
유압실린더는 유압펌프에서 발생된 유압의 힘을 이용하여 실린더튜브로부터 피스톤로드를 왕복시킴으로써 기계적 왕복운동을 발생시키는 중요한 기계요소의 일종이다.The hydraulic cylinder is a kind of important mechanical element that generates a mechanical reciprocating motion by reciprocating the piston rod from the cylinder tube using the hydraulic force generated from the hydraulic pump.
이 중에서, 피스톤로드는 실린더의 로드커버에 마련된 통로를 따라 기밀성을 유지하면서 왕복운동을 하는 부재이다. 따라서, 피스톤로드의 외주면은 그 표면에 이물질이 부착되거나 흠집 등의 손상이 발생하여서는 안되며, 버핑(buffing) 연마공정을 필수적으로 행하게 된다.Among them, the piston rod is a member that reciprocates while maintaining airtightness along the passage provided in the rod cover of the cylinder. Therefore, the outer circumferential surface of the piston rod should not adhere to the surface of the piston rod or cause damage such as scratches, and the buffing polishing process is essentially performed.
또한, 전술한 피스톤로드의 외주면이 해수 등의 환경에 직접적으로 노출되는경우 내부식성이 떨어짐에 따라 진동 및 충격에 의해 쉽게 파손 및 손상되는 문제점이 발생될 수 있다.In addition, when the outer circumferential surface of the piston rod is directly exposed to the environment such as seawater, there is a possibility that the corrosion resistance is reduced and the piston rod is easily damaged or damaged by vibration and impact.
이를 감안하여, 등록특허 제10-0288499호에서는 해수 등의 작업환경에 대해 내부식성을 갖도록 유압실린더의 피스톤로드 외주연을 세라믹층 및 크롬층으로서 코팅처리하는 해수용 유압실린더의 제조방법을 제안하고 있다. 그러나, 세라믹 및 크롬층의 포어를 통해 해수가 피스톤로드 소재에 직접적으로 접촉하여 부식이 발생될 가능성이 존재하여 왔으며, 부식의 성장으로 인해 세라믹 및 크롬층의 코팅이 박리되는 문제점이 발생하였다.In view of this, Japanese Patent Registration No. 10-0288499 proposes a manufacturing method of a hydraulic cylinder for seawater in which the outer periphery of the piston rod of the hydraulic cylinder is coated as a ceramic layer and a chrome layer so as to have corrosion resistance against working environment such as seawater have. However, there is a possibility that corrosion occurs due to direct contact of the seawater to the piston rod material through the pores of the ceramic and the chromium layer, and the coating of the ceramic and the chromium layer is peeled due to the growth of corrosion.
본 발명의 목적은 피스톤로드 코팅층에서의 포어발생을 최소화시킴으로써 피스톤로드가 해수 등의 작업환경에 대해 내부식성을 갖도록 하는 부식방지 유압실린더의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a corrosion-resistant hydraulic cylinder that minimizes pore generation in a piston rod coating layer so that the piston rod has corrosion resistance against a working environment such as seawater.
본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the present invention will be described hereinafter and will be understood by the embodiments of the present invention. Further, objects and advantages of the present invention can be realized by the means and the combination shown in the claims.
본 발명의 일측면에 따르면, 부식방지 유압실린더의 제조방법으로서,According to an aspect of the present invention, there is provided a method of manufacturing a corrosion-
피스톤로드의 표면을 버핑 연마를 이용하여 가공하는 기계적 연마 단계;A mechanical polishing step of machining the surface of the piston rod using buffing polishing;
상기 기계적 연마 단계 후에 수행되며 상기 피스톤로드의 표면에 세라믹코팅을 수행하는 세라믹코팅 단계; 및A ceramic coating step performed after the mechanical polishing step and performing a ceramic coating on a surface of the piston rod; And
상기 세라믹 코팅 단계 후에 수행되며 상기 피스톤로드의 세라믹코팅 표면을 전해연마하는 전해연마 단계를 포함하며,And an electrolytic polishing step performed after the ceramic coating step and electrolytically polishing the ceramic coated surface of the piston rod,
상기 세라믹코팅 단계는,Wherein the ceramic coating step comprises:
상기 피스톤로드의 표면에 WC계 합금 분말을 가스식용사하여 결합층을 1차로 코팅하는 결합층 코팅 단계와,A bonding layer coating step of spraying a WC alloy powder in a gas phase on the surface of the piston rod to primarily coat the bonding layer,
상기 결합층코팅 후 2차로 산화아연, 산화티탄 및 이산화티타늄 분말을 플라즈마 용사하여 세라믹층을 2차로 코팅하는 세라믹층 코팅 단계를 포함하는 것을 특징으로 한다.And a ceramic layer coating step of coating the ceramic layer with the second layer by plasma spraying of zinc oxide, titanium oxide and titanium dioxide powder secondarily after coating the bonding layer.
또한, 상기 가스식용사는 화염용사, 폭발용사 및 초고속용사 중 어느 하나로 수행되는 것을 특징으로 한다.In addition, the gas edible yarn is characterized in that it is carried out by any one of a flame spraying, an explosive spraying, and a super high-speed spraying.
또한, 상기 가스식용사는 초고속용사로 수행되는 것을 특징으로 한다.Further, the gas-edible yarn is characterized in that it is carried out by ultra-high-speed spraying.
또한, 상기 WC계 합금 분말은 WC-CrC-Ni, WC-Co-Cr 및 WC-Co 중 어느 하나인 것을 특징으로 한다.Further, the WC-based alloy powder is characterized by being one of WC-CrC-Ni, WC-Co-Cr and WC-Co.
또한, 상기 WC계 합금 분말의 입자크기는 15 ~ 45㎛ 범위인 것을 특징으로 한다.In addition, the WC-based alloy powder has a particle size ranging from 15 to 45 mu m.
또한, 상기 세라믹층 코팅 단계 이후에, 상기 세라믹층의 표면에 실링제를 도포하여 실링처리를 수행하는 실링처리 단계를 더 포함하는 것을 특징으로 한다.The method may further include a sealing treatment step of applying a sealing agent to the surface of the ceramic layer and performing a sealing treatment after the ceramic layer coating step.
또한, 상기 전해연마는 30 ~ 60V 사이의 인가 전압에서 1 ~ 9분동안 수행되는 것을 특징으로 한다.The electrolytic polishing is performed for 1 to 9 minutes at an applied voltage between 30 and 60V.
본 발명에 의하면, 피스톤로드 코팅층에서의 포어발생을 최소화시킴으로써 피스톤로드가 해수 등의 작업환경에 대해 내부식성을 갖도록 할 수 있으므로 유압실린더, 특히 피스톤로드의 사용수명을 대폭적으로 증가시킬 수 있는 효과가 있다.According to the present invention, by minimizing pore generation in the piston rod coating layer, the piston rod can have corrosion resistance against the working environment such as seawater, and thus the life of the hydraulic cylinder, particularly, the piston rod can be significantly increased have.
도 1은 본 발명에 따른 부식방지 유압실린더의 제조방법을 개략적으로 나타낸 공정도이고,
도 2는 실링 처리후 포어율을 나타내는 도면이며,
도 3 및 도 4는 전해연마후 피스톤로드의 세라믹코팅 표면을 도시하는 도면이다.FIG. 1 is a process diagram schematically showing a method of manufacturing a corrosion-resistant hydraulic cylinder according to the present invention,
2 is a view showing the pore ratio after the sealing treatment,
Figs. 3 and 4 are diagrams showing the ceramic coated surface of the piston rod after electrolytic polishing. Fig.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.
이하 첨부된 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail.
도 1은 본 발명에 따른 부식방지 유압실린더의 제조방법을 개략적으로 나타낸 공정도이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram schematically showing a manufacturing method of a corrosion-resistant hydraulic cylinder according to the present invention. FIG.
도 1을 참조하면, 본 발명에 따른 부식방지 유압실린더의 제조방법은 크게 기계적 연마 단계(S100)와, 세라믹코팅 단계(S200)와, 전해연마 단계(S300)로 이루어진다.Referring to FIG. 1, a method of manufacturing a corrosion-resistant hydraulic cylinder according to the present invention comprises a mechanical polishing step S100, a ceramic coating step S200, and an electrolytic polishing step S300.
기계적 연마 단계(S100)에서는 피스톤로드의 표면을 버핑 연마를 이용하여 가공한다. 구체적으로는, 버핑 연마는 피스톤로드의 표면을 회전하는 버핑 휠로 수행가능하다. 일례로, 도면에 도시되어 있지는 않지만, 버핑 휠의 외주면에는 연마층이 배치되어 있으며, 상기 연마층은 분말 상태의 산화아연 또는 다른 연마재와, 분말 상태의 부직포 필라멘트와, 액상의 송진과, 액상의 접착제를 부피비로 40% : 30% : 10% : 20%로 혼합한 혼합물로 제조가능하다.In the mechanical polishing step (S100), the surface of the piston rod is processed using buffing polishing. Specifically, buffing polishing can be performed with a buffing wheel that rotates the surface of the piston rod. For example, although not shown in the drawing, an abrasive layer is disposed on the outer circumferential surface of the buffing wheel, and the abrasive layer is formed of zinc oxide or other abrasive powder in powder form, nonwoven filaments in a powder state, The adhesive can be prepared in a mixture of 40%: 30%: 10%: 20% by volume.
세라믹코팅 단계(S200)에서는 상기 기계적 연마 단계(S100) 후에 수행되며 상기 피스톤로드의 표면에 세라믹코팅을 수행한다. 상기 세라믹코팅 단계(S200)는 본 발명의 특징을 부여하는 주요한 공정이다.The ceramic coating step (S200) is performed after the mechanical polishing step (S100), and ceramic coating is performed on the surface of the piston rod. The ceramic coating step (S200) is a main process that imparts the features of the present invention.
상기 세라믹코팅 단계(S200)는 3단계로 이루어지는데, 결합층 코팅 단계(S210)와, 세라믹층 코팅 단계(S212)와, 실링처리 단계(S214)를 포함하여 이루어진다.The ceramic coating step S200 is performed in three steps including a bonding layer coating step S210, a ceramic layer coating step S212, and a sealing processing step S214.
결합층 코팅 단계(S210)에서는 상기 피스톤로드의 표면에 WC계 합금 분말을 가스식용사하여 결합층을 1차로 코팅한다.In the bonding layer coating step (S210), the bonding layer is primarily coated by gas-spraying the WC-based alloy powder on the surface of the piston rod.
상기 가스식용사는 화염용사, 폭발용사 및 초고속용사 중 어느 하나로 수행될 수 있다. 바람직하게는, 상기 가스식용사는 초고속용사로 수행될 수 있다.The gas edible yarn can be carried out by any one of a flame spraying, an explosion spraying, and a super high-speed spraying. Preferably, the gas-edible yarn can be carried out with a super-high-speed spray.
상기 WC계 합금 분말은 WC-CrC-Ni, WC-Co-Cr 및 WC-Co 중 어느 하나일 수 있으며, 상기 WC계 합금 분말의 입자크기는 40㎛ 이하이 것이 바람직하다.The WC-based alloy powder may be any one of WC-CrC-Ni, WC-Co-Cr and WC-Co, and the WC-based alloy powder preferably has a particle size of 40 탆 or less.
세라믹층 코팅 단계(S212)에서는 상기 결합층코팅 후 2차로 산화아연, 산화티탄 및 이산화티타늄 분말을 플라즈마 용사하여 세라믹층을 2차로 코팅한다. In the step of coating the ceramic layer (S212), zinc oxide, titanium oxide and titanium dioxide powder are secondarily sprayed by plasma after the bonding layer coating, and then the ceramic layer is coated with the second layer.
실링처리 단계(S214)는 상기 세라믹층 코팅 단계(S212) 이후에 수행되며, 상기 세라믹층의 표면에 실링제를 도포하여 실링처리를 수행한다.The sealing treatment step S214 is performed after the ceramic layer coating step S212, and a sealing agent is applied to the surface of the ceramic layer to perform a sealing treatment.
상기 실링처리 단계(S214)는 피스톤로드의 표면에 세라믹코팅을 수행한 후 코팅 표면에 남아있는 포어를 충진시키도록 하는 공정으로서 내부식성을 갖도록 하는 데에 매우 중요한 공정이다.The sealing treatment step (S214) is a process which is important for ensuring corrosion resistance as a process of filling the pores remaining on the coating surface after performing the ceramic coating on the surface of the piston rod.
전해연마 단계(S300)에서는 상기 세라믹 코팅 단계(S200) 후에 수행되며 상기 피스톤로드의 세라믹코팅 표면을 전해연마한다. 표면을 전해연마 처리하는 경우, 표면에 형성되었던 변형층이 일부 제거되고 평탄해짐으로써 표면 광택의 효과를 제공할 수 있다.In the electrolytic polishing step S300, the ceramic coating surface of the piston rod is electrolytically polished after the ceramic coating step S200. When the surface is subjected to electrolytic polishing, the effect of surface gloss can be provided by partially removing and flattening the strained layer formed on the surface.
세라믹 코팅Ceramic coating
유압실린더는 피스톤로드, 피스톤, 실린더헤드, 실린더 쉘 등 여러 부품으로 이루어지며, 각각의 부품간의 연계에 의하여 유압에너지를 이용하여 실린더가 동작을 한다. 특히, 피스톤로드의 표면 손상은 소재의 부식과 씰에 대한 손상을 야기시키며, 이는 유압실린더 작동 시효율의 감소를 초래할 수 있다.The hydraulic cylinder consists of piston rod, piston, cylinder head, cylinder shell, and various parts. The cylinder operates by using hydraulic energy by connecting each part. In particular, surface damage to the piston rod causes corrosion of the material and damage to the seal, which can lead to a reduction in the hydraulic cylinder operating aging rate.
부식에 대한 근본적인 원인은 피스톤로드 세라믹코팅의 포어를 통해 해수가 피스톤로드 소재에 직접적으로 접촉하여 부식이 발생되었고,부식의 성장으로 인해 세라믹코팅이 박리되는 문제점이 발생하였다.The fundamental cause of corrosion was corrosion of the seawater due to direct contact with the piston rod material through the pores of the piston rod ceramic coating, and the ceramic coating peeled due to corrosion growth.
이를 해결하기 위하여, 본 발명에서는 피스톤로드의 표면에 세라믹코팅을 수행하고, 그 후에 코팅 표면에 남아있는 포어를 충진시키도록 실링처리를 추가로 수행함으로써 유압실린더 피스톤로드가 내부식성을 갖도록 한다.To solve this problem, in the present invention, a ceramic coating is applied to the surface of the piston rod, and then a sealing treatment is further performed so as to fill the pores remaining on the coating surface, so that the hydraulic cylinder piston rod has corrosion resistance.
세라믹코팅은 결합층 코팅과, 세라믹층 코팅과, 실링처리의 3단계로 이루어지고 있다. 세라믹 코팅은 크롬도금 또는 니켈도금에 비해 내부식성, 내스크래치성, 내마모성, 내충격성 및 내구성이 뛰어나다.The ceramic coating consists of three layers: a bonding layer coating, a ceramic layer coating and a sealing treatment. Compared to chrome plating or nickel plating, the ceramic coating has excellent corrosion resistance, scratch resistance, abrasion resistance, impact resistance and durability.
결합층 코팅은 피스톤로드의 표면에 WC계 합금 분말을 가스식용사, 바람직하게는 초고속용사하여 수행된다. 여기서, 상기 WC계 합금 분말은 WC-CrC-Ni, WC-Co-Cr 및 WC-Co 중 어느 하나일 수 있다. 하기의 [표 1]은 WC계 합금 분말의 화학적 조성이다.The bonding layer coating is carried out by gas-phase spraying, preferably ultra-high-speed spraying, the WC-based alloy powder onto the surface of the piston rod. Here, the WC-based alloy powder may be any one of WC-CrC-Ni, WC-Co-Cr and WC-Co. The following Table 1 shows the chemical composition of the WC-based alloy powder.
[표 1][Table 1]
용사는 그 사용 목적과 특성에 따라 가스식 용사와 전기식 용사로 나뉜다. 가스식 용사는 화염용사,폭발용사,초고속용사로 구분할 수 있고, 전기식 용사는 아크용사, 플라즈마용사, 선폭용사 레이저용사로 구분될 수 있다.The warrior is divided into a gas-type spray gun and an electric spray gun depending on the purpose and characteristics of use. Gas type spray can be divided into flame spray, explosion spray, and high speed spray, and electric spray can be divided into arc spray, plasma spray, and line width spray laser spray.
결합층 코팅에 있어서, 본 발명에서는 코팅 피막의 접합력을 향상시키기 위해서 초고속용사(HVOF : high velocity oxygen fuel)를 적용하고 있다. 대표적인 방법으로는 JP-5000용사법이 있으며, 로켓 연소실로부터 연소압력이 13bar의 고압 상태로 속도 2100 m/s이상으로 토출되는 극초음속의 제트흐름 가열 및 가속 에너지를 이용한다.이때 최대의 충돌 운동에너지에 의해 용사재료를 연화(soften) 및 가속시킴으로써 극히 치밀한 고밀도의 피막을 형성시키는 용사방법이다. 따라서, 피스톤로드에 응용할 경우, 피스톤로드 모재의 산화를 막으면서 접착력이 매우 우수한 코팅피막을 얻을 수 있다. 이와 같이, 결합층의 코팅에 초고속용사법을 적용함으로써 1차로 포어의 발생률을 현저히 낮출 수 있다.In the bonding layer coating, in the present invention, high velocity oxygen fuel (HVOF) is applied in order to improve the bonding strength of the coating film. JP-5000 is a typical spraying method, and uses a hypersonic jet flow heating and acceleration energy from a rocket combustion chamber, which is discharged at a high pressure of 13 bar at a speed of 2100 m / s or higher. At this time, Thereby softening and accelerating the sprayed material to form an extremely dense high-density film. Therefore, when applied to a piston rod, it is possible to obtain a coating film having an excellent adhesive force while preventing oxidation of the piston rod base material. As described above, by applying the super fast spraying method to the coating of the bonding layer, the generation rate of pores can be significantly reduced.
[표 2]에서는 플라즈마용사와 초고속용사의 특성을 비교하였으며, 플라즈마용사의 경우에는 포어율이 1 ~ 3%이고, 초고속용사의 경우에는 1% 이하로 포어율에서 초고속용사가 현저히 낮음을 볼 수 있다.Table 2 compares the characteristics of plasma spraying and super-high-speed spraying. In the case of plasma spraying, the pore rate is 1 to 3%, and in the case of super-high-speed spraying, have.
[표 2][Table 2]
또한, 기존에는 세라믹코팅 재료로서 산화알루미늄과 산화티탄의 평범한 세라믹 분말재료를 사용하여 코팅하였다. 기존 산화알루미늄 계열의 코팅 재질 입자는 굵기 때문에, 플라즈마용사시 코팅의 적층은 잘 형성되는 반면에 상대적으로 포어의 발생빈도가 높고 포어의 크기가 클 우려가 있었다.In addition, conventionally, a ceramic ceramic material such as aluminum oxide and titanium oxide is coated as a ceramic coating material. Since the existing aluminum oxide-based coating material particles are thick, the deposition of the coating is well formed during plasma spraying, while the frequency of pores is relatively high and the pore size is relatively large.
이를 보완하기 위하여, 입자가 가늘고 포어 발생을 최소화할 수 있는 재료를 검토하였다. 플라즈마용사에 사용되는 분말의 입자크기는 용사작업에 있어서 매우 중요한 인자이다. 예를 들면, 입자의 크기가 클 경우, 용융 열에너지가 많이 필요하고 용유에 필요한 시간이 많이 요구되므로 입자의 크기에 따라 화염의 세기와 가스 유량 등이 조절되어야 한다.In order to compensate for this, materials that are thin and have minimal pore generation were examined. The particle size of the powder used for plasma spraying is a very important factor in the spraying operation. For example, when the particle size is large, a large amount of melting heat energy is required, and the time required for the molten oil is required. Therefore, the intensity of the flame and the gas flow rate must be controlled according to the particle size.
일반적으로 용사에 사용되는 분말은 사용하는 모재와 열팽창계수 및 열전도 등이 서로 유사하여 모재와 용사층 간의 열팽창 차이에 의해서 발생하는 열응력이 최소화 되도록 선택하여야 한다.In general, the powder used for thermal spraying should be selected so that the thermal stress caused by the thermal expansion difference between the base material and the sprayed layer is minimized because the thermal expansion coefficient and the thermal conductivity are similar to the base material used.
본 발명에서는 세라믹 코팅 재료로서 산화아연 및 이산화티타늄 분말을 사용하고 있다.In the present invention, zinc oxide and titanium dioxide powder are used as a ceramic coating material.
산화아연은 금속 내부로 침입하는 산소를 차단시키는 부동태층의 역할을 함으로써 녹이 잘 슬지 않도록 하는 역할을 한다.Zinc oxide acts as a passive layer that blocks oxygen entering the metal, thereby preventing rusting.
이산화티타늄은 물리화학적으로 매우 안정적이고 은폐력이 높아서 백색안료로 많이 된다. 또한 굴절율이 높아서 고굴절율의 세라믹스에도 많이 이용되고 있다. 그리고 광촉매적 특성과 초친수성의 특성을 갖는다. 이산화티타늄은 공기정화 작용, 항균작용, 유해물질 분해작용, 오염방지 기능, 변색 방지기능의 역할을 수행한다. 이러한 이산화티타늄은 코팅층이 피스톤로드의 둘레에 확실하게 피복되도록 하는 역할을 한다.Titanium dioxide is physically and chemically very stable and has high hiding power, so it is often used as a white pigment. And is also widely used for ceramics having high refractive index because of high refractive index. And has characteristics of photocatalytic property and superhydrophilic property. Titanium dioxide plays a role of air purification, antibacterial action, harmful substance decomposition, pollution prevention function, and discoloration prevention function. This titanium dioxide serves to ensure that the coating layer is surely covered around the piston rod.
여기서, 산화아연과 이산화티타늄을 혼합하여서 사용할 경우, 이들의 혼합 비율은, 산화아연 95 ∼ 98%에 이산화티타늄 2 ∼ 5%가 혼합되는 것이 바람직하다.Here, when zinc oxide and titanium dioxide are mixed and used, it is preferable that the mixing ratio thereof is such that 95 to 98% of zinc oxide and 2 to 5% of titanium dioxide are mixed.
산화아연의 혼합비율이 95 ∼ 98%보다 적을 경우, 고온 등의 환경에서 산화아연의 피복이 파괴되는 경우가 종종 발생되었으며, 이에 따라 피스톤로드의 녹방지 효과가 급격이 저하될 수 있다.When the mixing ratio of zinc oxide is less than 95 to 98%, the coating of zinc oxide often breaks down in an environment of high temperature and the like, so that the rust prevention effect of the piston rod may be deteriorated.
플라즈마 용사는 플라즈마를 고온 및 고속으로 분사하여 코팅재료를 순간적으로 용융시켜 용사재료를 밀착시켜 피막을 형성시키는 코팅 방법이다. 입자 크기가 작을경우 입자 크기가 클 경우보다 미세하게 용사되어 포어율이 낮아지고 내부식성이 강화되는 장점이 있다. 따라서, 분말의 크기는 40㎛이하로 하고, 바람직하게는 평균 37.49㎛로 하였다.Plasma spraying is a coating method in which plasma is sprayed at high temperature and high speed to momentarily melt a coating material to closely contact a spraying material to form a coating. When the particle size is small, it has a merit that the pore ratio is lowered and the corrosion resistance is strengthened by spraying more finely than when the particle size is large. Therefore, the size of the powder was set to be 40 mu m or less, preferably 37.49 mu m on average.
또한, 본 발명에서는 피스톤로드의 표면에 세라믹코팅을 수행한 후 코팅 표면에 남아있는 포어를 충진시키도록 실링처리를 수행하고 있다.Further, in the present invention, a ceramic coating is performed on the surface of the piston rod, and a sealing treatment is performed to fill the pores remaining on the coating surface.
실링제는 세라믹코팅에 적합한 AP, EP-100이라는 제품을 사용하였으며, 세라믹코팅 후 1차 실링처리를 수행하였으며, 제품의 최종 규격으로 연마 및 폴리싱 공정 후 2차 씰링 처리를 추가하여 2차 실링 처리를 하였다. 실링 처리 수행 전 코팅 포어율이 2.88%이었으나, 실링 처리를 수행 후 1.04%로 현저히 낮아진 것을 도 2에서와 같이 확인할 수 있었다.The sealing agent used AP, EP-100, which is suitable for ceramic coating, and after the ceramic coating, the first sealing treatment was performed, and as the final standard of the product, the secondary sealing treatment was added after polishing and polishing, Respectively. The coating pore ratio before the sealing treatment was 2.88%, but it was confirmed to be 1.04% after the sealing treatment as shown in FIG.
바람직하게, 실링제의 도포는 100 ∼ 200 ℃에서 수행될 수 있다.Preferably, the application of the sealing agent can be carried out at 100 to 200 ° C.
전해연마Electrolytic polishing
전해연마는 공지된 바와 같이 전기-화학 반응을 이용한 양극 용해 과정으로 (+)극에 공작물을 연결하고,(-)극에 공구를 연결하여 양극 표면에서의 금속 용출을 이용해 표면 평활도,광택도,내식성 등을 향상시키는 연마법이다. 전해연마는 표면에 잔류하는 불순물과 변형층, 즉 부식의 원인이 되는 물질을 제거하여 부식에 탁월한 저항성을 나타낸다고 알려져 있다.Electrolytic polishing is performed by connecting a workpiece to the (+) electrode by the anodic dissolution process using an electrochemical reaction and connecting a tool to the (-) electrode and using the metal elution on the surface of the anode, Corrosion resistance and so on. Electrolytic polishing is known to exhibit excellent resistance to corrosion by removing impurities and deformation layers on the surface, that is, substances causing corrosion.
본 발명에서는 인산 또는 인산 및 황산 전해액을 사용하였다. 인산 전해액을 사용할 경우 인산 172ml+물 28ml용액으로 60℃, 30V, 0.512A/cm²조건에서 시간의 변화(3분,6분,9분)에 따른 표면변화를 관찰하였고 인산+황산 전해액을 사용할 경우 인산 152ml+황산48ml으로 60℃,30V,0.512A/cm²의 조건하에 시간별(9분,18분)로 표면변화를 관찰하였다.In the present invention, phosphoric acid or a phosphoric acid and a sulfuric acid electrolytic solution were used. When phosphoric acid electrolytes were used, surface changes were observed under the conditions of 60 ° C, 30V, 0.512A / cm 2 with time (3 min, 6 min, 9 min) with 172 ml of phosphoric acid + 28 ml of water. 152 ml + sulfuric acid (48 ml) was observed under the conditions of 60 ° C, 30 V, and 0.512 A / cm 2 over time (9 minutes, 18 minutes).
그 결과, 도 3에서 인산 전해액내 시간에 따른 표면 광택 효과를 확인하였으며, 도 4의 인산+황산 전해액에서는 18분까지 표면개선을 확인할 수 없었으나, 전압을 증가시켰을때 표면 광택의 효과를 확인하였다. 이는 전압증가에 따라 동일 전해액내에서 전해연마의 선택적 용해가 더욱 활발히 진행됨으로써 광택 효과가 나타난 것으로 판단된다.As a result, in FIG. 3, the surface gloss effect was confirmed with time in the phosphoric acid electrolyte. In the phosphoric acid + sulfuric acid electrolyte of FIG. 4, the surface improvement was not confirmed until 18 minutes, . It is considered that the selective effect of electrolytic polishing is more actively promoted in the same electrolytic solution as the voltage is increased, so that the polishing effect is exhibited.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.
Claims (7)
상기 기계적 연마 단계 후에 수행되며 상기 피스톤로드의 표면에 세라믹코팅을 수행하는 세라믹코팅 단계; 및
상기 세라믹 코팅 단계 후에 수행되며 상기 피스톤로드의 세라믹코팅 표면을 전해연마하는 전해연마 단계를 포함하며,
상기 세라믹코팅 단계는,
상기 피스톤로드의 표면에 WC계 합금 분말을 가스식용사하여 결합층을 1차로 코팅하는 결합층 코팅 단계와,
상기 결합층코팅 후 2차로 산화아연, 산화티탄 및 이산화티타늄 분말을 플라즈마 용사하여 세라믹층을 2차로 코팅하는 세라믹층 코팅 단계를 포함하는 것을 특징으로 하는 부식방지 유압실린더의 제조방법.A mechanical polishing step of machining the surface of the piston rod using buffing polishing;
A ceramic coating step performed after the mechanical polishing step and performing a ceramic coating on a surface of the piston rod; And
And an electrolytic polishing step performed after the ceramic coating step and electrolytically polishing the ceramic coated surface of the piston rod,
Wherein the ceramic coating step comprises:
A bonding layer coating step of spraying a WC alloy powder in a gas phase on the surface of the piston rod to primarily coat the bonding layer,
And a ceramic layer coating step of secondarily coating the ceramic layer by plasma spraying of zinc oxide, titanium oxide, and titanium dioxide powder in a second order after coating the bonding layer.
상기 가스식용사는 화염용사, 폭발용사 및 초고속용사 중 어느 하나로 수행되는 것을 특징으로 하는 부식방지 유압실린더의 제조방법.The method according to claim 1,
Wherein the gas-edible yarn is carried out by any one of a flame spraying, an explosive spraying, and an ultrahigh-speed spraying.
상기 가스식용사는 초고속용사로 수행되는 것을 특징으로 하는 부식방지 유압실린더의 제조방법.The method according to claim 1,
Wherein the gas-edible yarn is carried out by ultra-high-speed spraying.
상기 WC계 합금 분말은 WC-CrC-Ni, WC-Co-Cr 및 WC-Co 중 어느 하나인 것을 특징으로 하는 부식방지 유압실린더의 제조방법.The method according to claim 1,
Wherein the WC-based alloy powder is one of WC-CrC-Ni, WC-Co-Cr, and WC-Co.
상기 WC계 합금 분말의 입자크기는 15 ~ 45㎛ 범위인 것을 특징으로 하는 부식방지 유압실린더의 제조방법.5. The method of claim 4,
Wherein the WC-based alloy powder has a particle size in the range of 15 to 45 mu m.
상기 세라믹층 코팅 단계 이후에, 상기 세라믹층의 표면에 실링제를 도포하여 실링처리를 수행하는 실링처리 단계를 더 포함하는 것을 특징으로 하는 부식방지 유압실린더의 제조방법.The method according to claim 1,
Further comprising a sealing treatment step of applying a sealing agent to the surface of the ceramic layer and performing a sealing treatment after the ceramic layer coating step.
상기 전해연마는 30 ~ 60V 사이의 인가 전압에서 1 ~ 9분동안 수행되는 것을 특징으로 하는 부식방지 유압실린더의 제조방법.The method according to claim 1,
Wherein the electrolytic polishing is performed for 1 to 9 minutes at an applied voltage between 30 and 60V.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190026119A KR101981672B1 (en) | 2019-03-07 | 2019-03-07 | Manufacturing method for corrosion-resistant hydraulic cylinder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190026119A KR101981672B1 (en) | 2019-03-07 | 2019-03-07 | Manufacturing method for corrosion-resistant hydraulic cylinder |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101981672B1 true KR101981672B1 (en) | 2019-05-23 |
Family
ID=66681202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190026119A KR101981672B1 (en) | 2019-03-07 | 2019-03-07 | Manufacturing method for corrosion-resistant hydraulic cylinder |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101981672B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112680688A (en) * | 2020-12-04 | 2021-04-20 | 中国科学院力学研究所 | Plasma spraying type insulating layer processing and manufacturing device for coaxial thermocouple transient heat flow sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100288499B1 (en) | 1999-03-23 | 2001-04-16 | 마찌다 가쯔히꼬 | manufacturing method for hydraulic cylinder of sea water and method detecting of absolute position |
KR20060044092A (en) | 2004-11-11 | 2006-05-16 | 두산인프라코어 주식회사 | Hydraulic cylinder and method for producing cylinder rod in hydraulic cylinder |
KR101065059B1 (en) | 2008-12-03 | 2011-09-15 | 동양기전 주식회사 | Buffing machine for grinding hydraulic cylinder |
KR20110135818A (en) * | 2010-06-11 | 2011-12-19 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | Cylinder surface treatment for monochlorosilane |
-
2019
- 2019-03-07 KR KR1020190026119A patent/KR101981672B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100288499B1 (en) | 1999-03-23 | 2001-04-16 | 마찌다 가쯔히꼬 | manufacturing method for hydraulic cylinder of sea water and method detecting of absolute position |
KR20060044092A (en) | 2004-11-11 | 2006-05-16 | 두산인프라코어 주식회사 | Hydraulic cylinder and method for producing cylinder rod in hydraulic cylinder |
KR101065059B1 (en) | 2008-12-03 | 2011-09-15 | 동양기전 주식회사 | Buffing machine for grinding hydraulic cylinder |
KR20110135818A (en) * | 2010-06-11 | 2011-12-19 | 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 | Cylinder surface treatment for monochlorosilane |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112680688A (en) * | 2020-12-04 | 2021-04-20 | 中国科学院力学研究所 | Plasma spraying type insulating layer processing and manufacturing device for coaxial thermocouple transient heat flow sensor |
CN112680688B (en) * | 2020-12-04 | 2021-10-19 | 中国科学院力学研究所 | Plasma spraying type insulating layer processing and manufacturing device for coaxial thermocouple transient heat flow sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8053072B2 (en) | Method of reducing porosity in thermal spray coated and sintered articles | |
US4564555A (en) | Coated part, coating therefor and method of forming same | |
CA2296155E (en) | A coating for the working surface of the cylinders of combustion engines and a method of applying such a coating | |
EP1646736B1 (en) | Coating | |
CA2474367A1 (en) | Electrolytic jet plasma process and apparatus for cleaning, case hardening, coating and anodizing | |
EP3008317A1 (en) | Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer | |
US20160356242A1 (en) | TiO2 APPLICATION AS BONDCOAT FOR CYLINDER BORE THERMAL SPRAY | |
CN108359927A (en) | A kind of NiCr/Al2O3The preparation method of composite coating | |
CN110144579A (en) | A kind of Zinc Based Comples Coatings and its preparation method and application with quick repair ability | |
US5260099A (en) | Method of making a gas turbine blade having a duplex coating | |
Krishna et al. | Strategies for corrosion protection of non-ferrous metals and alloys through surface engineering | |
CN106148876A (en) | A kind of novel aluminum alloy die-casting die surface peening coating and preparation method thereof | |
KR101981672B1 (en) | Manufacturing method for corrosion-resistant hydraulic cylinder | |
Khor et al. | Pulsed laser processing of plasma sprayed thermal barrier coatings | |
US4592958A (en) | Coated part, coating therefor and method of forming same | |
GB2058741A (en) | Plasma sprayed coatings | |
US4699839A (en) | Coated part, coating therefor and method of forming same | |
Barbezat et al. | Advantages for automotive industry of plasma spray coating of Ai–Si cast alloy cylinder bores | |
CN110318050A (en) | A kind of aluminium base/anode oxide film composite coating and its preparation method and application | |
KR101658254B1 (en) | Method for galvanic deposition of hard chrome layers | |
RU90440U1 (en) | COMPOSITION ALUMINUM-OXIDE COATING FOR PROTECTING STEEL FROM CORROSION AND WEAR | |
KR20050014211A (en) | microarc oxidation | |
CN110144539A (en) | A kind of preparation method of the anti-cavitation pitting coating of wet cylinder liner outer wall | |
Meyers et al. | Chromium Elimination in Surface Engineering | |
JPH03277780A (en) | Method for coating surface of aluminum substrate having ceramic coating film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GRNT | Written decision to grant |