EP3008317A1 - Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer - Google Patents

Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer

Info

Publication number
EP3008317A1
EP3008317A1 EP14732527.8A EP14732527A EP3008317A1 EP 3008317 A1 EP3008317 A1 EP 3008317A1 EP 14732527 A EP14732527 A EP 14732527A EP 3008317 A1 EP3008317 A1 EP 3008317A1
Authority
EP
European Patent Office
Prior art keywords
piston
oxidation
protection layer
aluminum
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14732527.8A
Other languages
German (de)
French (fr)
Inventor
Herbert MÖDING
Thomas Steffens
Leander Schramm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KS Kolbenschmidt GmbH
Original Assignee
KS Kolbenschmidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KS Kolbenschmidt GmbH filed Critical KS Kolbenschmidt GmbH
Publication of EP3008317A1 publication Critical patent/EP3008317A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • F02F3/14Pistons  having surface coverings on piston heads within combustion chambers

Definitions

  • the invention relates to a method for producing an oxidation protection layer for at least the region of the piston crown of a steel piston for internal combustion engines and a piston with an oxidation protective layer, according to the features of the respective preamble of the independent claims.
  • a forged piston is known for example from DE 103 1 1 150 A1.
  • the piston is described from a first blank having at least one flat end face made of oxidation-resistant steel and a second cylindrical blank having at least one flat face made of hot forme steel.
  • the two blanks are formed by forging to a piston blank.
  • the finished piston thus exists in the region of the piston head to the first piston ring groove of the oxidation-resistant steel.
  • the prior art discloses the use of oxidation resistant steels for the combustion chamber region of pistons.
  • the object of the invention is to ensure the protection of the combustion chamber area of steel pistons from oxidation processes or at least significantly improve. This object is achieved by a method and a piston with the features of the independent claims.
  • the oxidation protection layer according to the invention achieves the avoidance of oxidation processes in engine operation and improved thermal shock resistance.
  • the result is a quasi-monolithic piston.
  • An oxidation protection layer is produced, for example, by physical deposition of the coating materials from the gas phase (Physical Vapor Deposition - PVD). generated.
  • the coating materials are transferred by physical processes in the gas phase from which they are then deposited later on the substrate.
  • the coating material is usually evaporated in solid form and optionally by supplying heat, the supply is carried out in the CVD technique in the gas phase.
  • the chemical vapor deposition can be used (Chemical Vapor Deposition - CVD).
  • the coating materials are converted into the vapor phase with the aid of chemical processes, from which they are then deposited on the substrate.
  • the coating of the combustion chamber region as a substrate can be achieved, for example, with prior bonding layer-free gas or plasma nitriding. In this case, layer thicknesses of 3-20 pm are sought, preferably, layer thicknesses of 5 pm are desired.
  • coating materials Al-Cr-Ti nitrides aluminum-chromium-titanium-nitrides
  • carbides which have a high thermal shock resistance
  • deposition of the coating materials from the gas or vapor phase on the piston surface homogeneous defined oxidation protective layers can be produced.
  • the deposition of the oxidation protection layer on the piston surface can also take place with the aid of pulsed laser deposition (PLD).
  • PLD pulsed laser deposition
  • high-energy and short-wave (UV) light is used to bring the starting material (solid target) in the gas phase and above it in the form of a layer on the piston surface to be coated (substrate).
  • Laser ablation also belongs to the class of physical vapor deposition (PVD) processes.
  • the application of oxidation protective coatings on the piston surfaces can alternatively also by the Plasmaimpax ® process.
  • This uses high-energy particles and a high-voltage pulse technique to dimensional modification and coating of surfaces.
  • the Plasmaimpax method enables a layer deposition via plasma sources in a vacuum from the gas phase. It is a hybrid technique of plasma activated low temperature CVD and ion implantation. To increase surface hardness, wear and corrosion resistance, this environmentally friendly technology enables ion implantation processes and ion-assisted coating processes. Even lower coating temperatures are sufficient to successfully apply layer deposition and surface modification.
  • diamond-like carbon (DLC) protective coatings can be applied and, on the other hand, surface modification by ion implantation to increase surface hardness.
  • the diamond-like carbon layers have a high chemical resistance (corrosion resistance).
  • the deposition of the oxidation protection layer on the piston surface can alternatively also be carried out by a plasma assisted chemical vapor deposition (PECVD or PACVD - Plasma Assisted (Enhanced) Physical Vapor Deposition) method.
  • PECVD plasma assisted chemical vapor deposition
  • PACVD - Plasma Assisted (Enhanced) Physical Vapor Deposition can be supplied to produce carbon layers acetylene (C 2 H 2 ) or silicon-containing layers HMDSO (hexa-methyl disiloxane), which is cracked in the plasma and thus provided for coating. Low processing temperatures are possible with the PACVD technology.
  • galvanic coatings with nickel, nickel-base alloys, chromium, chromium-base alloys, scale-resistant Fe-base alloys (iron-based alloys) or tungsten and molybdenum alloys are used to form an oxidation protection layer.
  • thicknesses of 5-100 ⁇ are deposited, preferably 5 - 20 ⁇ deposited on the substrate.
  • Electroplating processes belong to the methods of electrochemical deposition (ECD).
  • ECD electrochemical deposition
  • the ECD methods alternatively serve to create an oxidation protection layer on the surface of a piston for internal combustion engines.
  • Electrochemical metal deposition can reliably produce metal layers on the piston surface as an oxidation protection layer.
  • Galvanic methods are suitable for the formation of oxidation protection layers, due to relatively low expenditure on equipment.
  • plating methods can be used as a method for producing an oxidation protection layer on the surface of a piston for internal combustion engines.
  • a oxidation protective layer is applied by application of a layer by thermal spraying (plasma, HVOF, flame spraying processes), which is compressed as required (adhesion, gas tightness) by means of electron beam, TIG process, etc., and metallurgically bonded (material groups similar to those of US Pat galvanic coating) formed on the substrate.
  • plasma, HVOF, flame spraying processes which is compressed as required (adhesion, gas tightness) by means of electron beam, TIG process, etc.
  • metallurgically bonded material groups similar to those of US Pat galvanic coating
  • Methods of thermal spraying may alternatively be used to create an oxidation protection layer on the surface of a piston for internal combustion engines.
  • Thermal spraying is a universally applicable
  • Thermal spraying includes the following methods for producing an oxidation protection layer on the surface of a piston for internal combustion engines. Wire or bar flame spraying, powder flame spraying, plastic flame spraying, high velocity oxygen fuel (HVOF), detonation or flame shock spraying, plasma spraying, laser spraying, arc spraying, Cold gas spraying and Plasma Transfer Welding (PTA).
  • Wire or bar flame spraying powder flame spraying, plastic flame spraying, high velocity oxygen fuel (HVOF), detonation or flame shock spraying, plasma spraying, laser spraying, arc spraying, Cold gas spraying and Plasma Transfer Welding (PTA).
  • HVOF high velocity oxygen fuel
  • PTA Plasma Transfer Welding
  • Thermal spraying methods can be used with a variety of coating materials, so that in the short term the oxidation protection layer on the piston crown can be varied according to the respective requirements.
  • the spray additive In wire or rod flame spraying, the spray additive is melted continuously in the center of an acetylene-oxygen flame. With the help of a nebulizer gas, such as compressed air or nitrogen, the droplet-shaped spray particles are detached from the melting area and thrown onto the prepared piston surface.
  • a nebulizer gas such as compressed air or nitrogen
  • the pulverulent spray additive is melted or melted in an acetylene-oxygen flame and thrown onto the prepared piston surface with the aid of the expanding combustion gases.
  • an additional gas such as argon or nitrogen can also be used to accelerate the powder particles.
  • argon or nitrogen can also be used to accelerate the powder particles.
  • the variety of spray additives is very wide-ranging in powders with well over 100 materials.
  • the powders distinguish between self-fluxing and self-adhering powders.
  • Self-fluxing powders usually require additional thermal treatment. This "smelting" takes place predominantly with acetylene-oxygen burners. If a thermal aftertreatment takes place, it is a multi-stage process for the method for producing an oxidation protective layer on the surface of a piston for internal combustion engines.
  • the adhesion of the sprayed layer on the base material is considerably increased, the sprayed layer becomes gas- and liquid-tight.
  • the plastic flame spraying differs from the other flame spraying process in that the plastic additive does not come into direct contact with the acetylene-oxygen flame.
  • a powder delivery nozzle In the middle of the flame spray gun is a powder delivery nozzle. This is enclosed by two annular nozzle outlets, the inner ring being air or an inert gas and the outer ring being the thermal energy carrier, the acetylene-oxygen flame. The melting process of the plastic is thus not directly by the flame, but by the heated air and radiant heat.
  • metal powder, metal powder alloys, ceramic powder and plastic powder can be processed.
  • NiCrBSi coating nickel-chromium-boro-silicon coating
  • a coating of NiCrBSi alloy is very corrosion resistant.
  • the nickel content in the coatings is between 40-90%.
  • the chromium content in the coating is between 3-26% and gives the layers their hardness.
  • NiCrBSi coating is applied, for example, by powder flame spraying with subsequent melting / sintering.
  • steel and stainless steels are processed.
  • the components are, for example, stress annealed, coarsely blasted and immediately coated in order to avoid undercutting.
  • NiCrBSi powder is sprayed with a flame spray gun and then melted with an autogenous hand torch, inductive or in a vacuum oven at about 1000 C.
  • the NiCrBSi coating is visible during the melting process.
  • This "wet glow” is very plastic in the state at about 1000 ° C and is therefore designed so that the melt does not run down or drip from the component and thus the NiCrBSi coating would be faulty.
  • This high-tech NiCrBSi coating technology is the only one of the thermally sprayed spray coatings without additional sealing techniques gas-tight and is also best against shock load due to diffusion into the base material of all flame spray coatings suitable.
  • the hard metal coating With the additive WC / Ni, the hard metal coating (NiCrBSi coating) becomes significantly more corrosion resistant, whereby WC / Co has a higher temperature resistance.
  • PTFE or graphite can be added to the alloy. As a result, this hard metal coating achieves improved non-stick and sliding properties.
  • HVOF high-velocity flame spraying
  • continuous gas combustion takes place at high pressures within a combustion chamber, in the central axis of which the pulverulent spray additive is supplied.
  • the high pressure generated in the combustion chamber of the fuel gas-oxygen mixture and the mostly downstream expansion nozzle produce the desired high flow velocity in the gas jet.
  • the spray particles are accelerated to the high particle speeds, which lead to enormously dense spray coatings with excellent adhesive properties.
  • the spray additive process Due to the sufficient but moderate temperature introduction, the spray additive process causes only slight metallurgical changes in the spray additive material, e.g. minimal formation of mixed carbides. In this process, extremely thin layers with high dimensional accuracy can be produced.
  • Propane, propene, ethylene, acetylene and hydrogen can be used as combustion gases.
  • carbide materials may be applied to the surface of a piston for internal combustion engines by high speed flame spraying (HVOF) as a method of forming an oxidation protection layer.
  • HVOF high speed flame spraying
  • the layers forming on the piston surface are very dense. Due to the high hardness of the carbide layers, they provide excellent protection against wear and oxidation for the piston.
  • the following materials are used: chromium carbides (Cr 3 C 2 , Cr 3 C 2 / NiCr) or tungsten carbides (WC / Co, WC / Ni, WC / Co / Cr).
  • Detonation spray or flame shock spray is an intermittent spray process.
  • the so-called detonation gun consists of an outlet pipe, at the end of which there is a combustion chamber.
  • the supplied acetylene-oxygen spray powder mixture is detonated by a spark.
  • the shock wave generated in the tube accelerates the spray particles. These are heated in the flame front and spin at high particle velocity in a directional beam onto a prepared piston surface. After each detonation, a cleaning purge of the combustion chamber and the tube is carried out with nitrogen.
  • the pulverulent spray additive in or outside the spray gun is melted by a plasma jet and thrown onto the piston surface.
  • the plasma is generated by an arc burning in argon, helium, nitrogen, hydrogen or in the mixture of these gases.
  • the gases are dissociated and ionized, they reach high outflow velocities and emit their heat energy to the spray particles during recombination. This produces a plasma flame with a temperature of up to 20,000 ° C.
  • the arc is generated between the electrode and the nozzle. Due to the high temperatures in particular ceramic materials can be processed.
  • the arc is not transmissive, that is it burns within the spray gun between a centrally disposed electrode (cathode) and the anode forming water-cooled spray nozzle.
  • the process is applied in normal atmosphere (APS - Atmospheric Plasma Spraying), in the protective gas stream, that is in an inert atmosphere such as argon, under vacuum and under water.
  • a specially shaped nozzle attachment can also be used to generate high-speed plasma.
  • Ceramic coatings are mainly applied to the surface of the piston with the help of atmospheric plasma spraying (APS).
  • Spraying materials are used for coating piston surfaces, for example based on aluminum oxide (Al 2 O 3 ), chromium oxide (Cr 2 O 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ).
  • a powdered spray additive is introduced into the laser beam via a suitable powder nozzle.
  • a powdered spray additive is introduced into the laser beam via a suitable powder nozzle.
  • both the powder and a minimal part of the piston surface are melted and the supplied spray additive metallurgically connected to the base material, the piston surface.
  • a protective gas is used to protect the molten bath.
  • Arc spraying is a high-performance wire spraying process in which only electrically conductive materials can be sprayed.
  • Metallic materials are applied, for example, by arc spraying on the piston surface.
  • the conceivable range of materials includes most metals and very many mixtures, for example aluminum, copper (Cu / Al, Cu / Al / Fe), nickel (Ni / Al, Ni / Cr), molybdenum and zinc (Zn / Al).
  • the cold gas spraying process is similar to high speed flame spraying.
  • the kinetic energy ie the particle velocity, is increased here and the thermal energy is reduced.
  • This process has become known as CGDM (Cold Gas Dynamic Spray Method).
  • the oxidation protection layer may also be applied to the piston surface by the metal coating system Cold Metal Spray or Cold Spray System.
  • the spray additive material is accelerated with the aid of a gas jet heated to about 600 ° C. with appropriate pressure to particle velocities> 1 000 m / s and brought to the piston surface to be coated as a continuous spray jet.
  • Plasma deposition welding with powder under transferred arc.
  • the piston surface is melted.
  • a high-density plasma arc serves as a heat source and metal powder is used as a coating material.
  • the arc forms between a permanent electrode and the workpiece.
  • the plasma is generated in a plasma gas, for example argon, helium or argon-helium mixtures, between the central tungsten electrode (-) and the water-cooled anode block.
  • the powder is brought by means of a carrier gas to the burner, heated in the plasma jet and applied to the piston surface. Here it melts completely in the molten bath on the substrate.
  • the whole process takes place in the atmosphere of a protective gas, for example argon or argon-hydrogen mixture.
  • a protective gas for example argon or argon-hydrogen mixture.
  • the PTA process allows low mixing (5-10%), a small heat-affected zone, a high application rate (up to 20 kg / h), true metallurgical adhesion between the substrate and the layer - thus completely dense layers - and flexibility of the alloying elements.
  • the predominantly used hardfacing powders can be classified as nickel base, cobalt base and iron based alloys.
  • an oxidation protection layer is formed by laser deposition welding on the piston surface, the substrate.
  • the material to be applied is fed to the process as powder, wire or strip.
  • the surface of the material to be coated is melted. It can be applied almost any material, examples of self-fluxing alloys (NiCrBSi), nickel-based alloys such as NiWC (nickel-tungsten) or Deloro Steinte ®. With its components cobalt, chromium, molybdenum, tungsten and nickel, Steinte ® is extremely resistant to corrosion, wear and heat.
  • a larger dissolved chromium content in the alloy also increases the corrosion resistance and thus also the oxidation resistance of the piston surface.
  • layer thicknesses between 20 and 300 pm are applied.
  • the layers usually do not have to be reworked.
  • a substrate pretreatment, for example by abrasive blasting processes such as corundum blasting is not necessary.
  • DMD Direct Metal Deposition
  • LMD Laser Metal Deposition
  • the oxidation protection layer is produced by cold gas spraying on the substrate, in this process the material to be sprayed is supplied in powder form.
  • the layers are very dense and the particles are hardly oxidized during the coating.
  • any material can be applied, such as titanium and titanium alloys, but also nickel-base alloys, c-BN (cubic boron nitride, ⁇ -boron nitride) with NiCrAI (nickel-chromium-aluminum), NiCr (nickel-chromium), NiAl (nickel-aluminum) , CuAl (aluminum bronze) or MCrAIY powder.
  • Typical layer thicknesses are in the range of 20-300 pm.
  • CBN is the second hardest diamond after diamond. In contrast to diamonds, CBN does not release carbon to steel under the influence of temperature, which makes it particularly suitable for surface coating of steel pistons.
  • M metal, for example, nickel (Ni) or cobalt (Co)
  • NiCoCrAIY nickel
  • CoNiCrAIY Cobalt Nickel Chrome Aluminum Yttrium
  • CoNiCrAIY Cobalt Nickel Chrome Aluminum Yttrium
  • a layer in particular an oxidation protection layer in a further embodiment by thermal spraying (plasma, HVOF, arc, flame spraying processes) is carried out.
  • the coating material is supplied as powder, wires, suspensions or rods.
  • the coating composition can be carried out as a single-layer layer based on the coating material (monolayer layer).
  • a primer e.g., NiCr, NiAl
  • MCrAIY hot gas corrosion protection
  • TBC thermal barrier coating
  • Y-ZrO yttria-stabilized zirconia
  • Thermal barrier coatings reduce heat transfer and insulate the substrate.
  • the layer systems deposited on piston surfaces preferably consist of two components.
  • MCrAIY a metallic material
  • cover layer of a ceramic material for example yttrium-stabilized zirconium oxide (YSZ).
  • Ni-base alloys or MoSi 2 / SnAI mobdenum silicon dioxide / zinc aluminum
  • the layers can be compacted as required (adhesion, gas tightness) by means of electron beam, TIG process, diffusion annealing, induction annealing, laser, etc., and metallurgically bonded (material groups similar to the galvanic coating).
  • Steels with high Cr, Si and Al contents form very dense oxide layers which protect the material from further oxidation.
  • the typical layer thicknesses are here in the range of 20 - 300 pm.
  • the W IG process tungsten inert gas welding
  • Inert gas welding process as protective gas inert inert gases are used.
  • an arc burns between the workpiece and a non-consumable tungsten electrode, which melts the base material and the filler material.
  • Welding processes can be implemented with a manageable outlay on equipment in order to apply oxidation protection layers to piston crowns.
  • laser deposition welding methods or tungsten coating methods are suitable.
  • the diffusion annealing serves to eliminate or reduce concentration differences, for example, crystal segregations or structural heterogeneities in the piston or the piston surface. Based on the principle that high temperatures favor diffusion. Annealing takes place at temperatures between 1000 ° C and 1200 ° C. The homogenization of the piston surface increases its oxidation resistance.
  • Induction annealing or induction hardening brings especially complicated shaped workpieces, such as pistons or piston surfaces only in certain areas to the required hardening temperature (partial hardening), to then quench them.
  • Annealing process contribute in particular to the homogenization of the oxidation protection layer and are therefore combinable with other processes mentioned in this document, for example, diffusion annealing or induction annealing are particularly suitable for homogenization of the oxidation protective layer and are therefore individually applicable but also in combination with other methods for producing an oxidation protective layer ,
  • the use of coatings of aluminum or aluminum alloys preferably with the alloying elements silicon (eg AISi-12), copper and / or magnesium, provided by formation of iron aluminides and / or stable to form an oxidation protective layer
  • Iron-aluminum mixed oxides preferably of the spinel type, eg Hercynit FeO Al 2 0 or FeAl 2 n 4 or Pleonast MgAl 2 0 4
  • the order of the aluminum (or the aluminum alloy) on the piston head can be carried out by one of the methods described above, by a dip bath (Alfinbad) or by the application of an aluminum-containing paint or a suspension.
  • a dip bath Alfinbad
  • an aluminum-containing paint or a suspension Depending on the application method may be achieved by subsequent, targeted, brief heating of the piston head - preferably to temperatures greater than 660 ° C (AI melting point) - an improved layer formation and adhesion under certain circumstances.
  • This heating can be done for example by laser treatment, inductive heating, by a gas burner or the like, the access of oxygen or in the simplest case of atmospheric oxygen supports the formation of protective, stable mixed oxides.
  • the oxidation protection layer is produced by coatings of, in particular, pure aluminum or aluminum alloys.
  • Such an alloy may, for example, form iron aluminides and / or stable iron-aluminum mixed oxides (preferably of the spinel type).
  • the order of the aluminum or the aluminum alloy on the piston head can be carried out according to one of the methods described above or by a dip bath (Alfinbad) or by the application of an aluminum-containing paint or a suspension.
  • the Alfin method provided alternatively to the formation of an oxidation protection layer on the surface of a piston for internal combustion engines is a composite casting method for metal joining of steel or cast iron with aluminum or aluminum alloys.
  • This Al-Fin process is used for composite casting of aluminum (AI) and alloys with steel or cast iron.
  • the to be connected Piston components are first cleaned, preheated in a salt melt and immersed in liquid aluminum (830 to 880 ° C).
  • the formed intermetallic iron-aluminum layer is firmly connected to the base material and facilitates alloy formation and adhesion in the subsequent encapsulation with aluminum materials as oxidation protection layer.
  • the Al-Fin process allows a particularly good bond between iron and aluminum alloys.
  • the coatings of aluminum or at least one aluminum alloy are produced at least on the piston head of the piston by a previously described method, by a dip bath (Alfinbad), by the application of an aluminum-containing paint and / or a suspension.
  • the generation of a metallic bond between the substrate and the deposited layer can be effected by an additional thermal application in a second method step, for example by means of laser, TIG, electron beam or inductively.
  • a step of preparing the surface may be preceded.
  • the preparation of the piston surface can be done by cleaning and / or pretreatment. During cleaning, impurities are removed from the piston surface without influencing the absorbent material.
  • the pretreatment serves to optimize the efficiency of the processes for producing an oxidation protection layer on the piston surface.
  • processes may be used which treat the corresponding piston surface in such a way that their surface properties improve, for example with regard to the adhesion of the oxidation protection layer.
  • a material-altering pretreatment is also called activation.
  • the piston surface is roughened to allow the surface enlargement or the resulting undercuts a Mikroverklamm réelle the oxidation protection layer and to increase the mechanical adhesion.
  • the surface energy can be increased, this is also referred to as increasing the specific adhesion.
  • the preparation of the piston surface can be carried out by abrasive mechanical methods such as grinding, brushing or blasting. In these methods, a part of the piston surface can be removed. At least this removed part of the piston surface to be coated can be rebuilt by the oxidation protection layer to be produced according to a method mentioned in this document.
  • the preparation of the piston surface can also be done by chemical pretreatment methods such as etching or pickling.
  • preparation of the piston surface can also be done by physical methods such as flame, plasma, corona, or laser pretreatment.
  • impurities from the previous production steps such as coolants and / or lubricants (KSS), corrosion protection oils, flux, scale, graphite , Metallic soaps, sulfonates, mineral oils, inorganic soaps, metal oxides, metal salts, dust and / or shavings.
  • impurities from the previous production steps for example forming process
  • impurities from the previous production steps such as coolants and / or lubricants (KSS), corrosion protection oils, flux, scale, graphite , Metallic soaps, sulfonates, mineral oils, inorganic soaps, metal oxides, metal salts, dust and / or shavings.
  • an oxidation protection layer according to one of the methods mentioned in this document can be carried out on a piston blank, a region of the piston or on the entire surface of the piston for an internal combustion engine.
  • a piston blank Preferably, at least the piston head has an oxidation protection layer.
  • the requirements for the oxidation protection layer can be taken into account.
  • the oxidation protection layer When designing the oxidation protection layer as a multilayer system, at least two layers are applied to the piston surface. These at least two layers can have the same properties chemically and physically, but they can also have chemically and / or physically differing properties.
  • the methods for producing an oxidation protection layer can be used individually or in virtually any combination.
  • the combination of processes can result in multilayer oxidation protection layers.
  • These multi-layer oxidation protection layers may consist of identical substances or different substances.
  • a piston in particular a steel piston for an internal combustion engine, having a piston crown which is part of a combustion chamber, at least the piston crown has an oxidation protection layer.
  • the oxidative attack on the piston material in the region of the combustion bowl is reduced or even avoided. It is thus possible to manufacture the piston from other materials. By choosing a different material, the costs can be reduced.
  • the aforementioned coating materials and classes of substances can be selected according to the requirements of the oxidation protection layer. Also, combinations of the various coating materials and classes are possible to form a suitable oxidation protection layer on the surface of the piston crown.
  • FIG. 1 shows a steel piston which has a coating according to the invention in FIG. 1
  • Form has an oxidation protection layer.
  • top, bottom, left, right, front, back, etc. refer exclusively to the example representation and position of the device and other elements selected in the figure. These terms are not intended to be limiting, that is to say that different positions and / or mirror-symmetrical design or the like may change these references.
  • FIG. 1 shows a piston 1 made of steel.
  • the piston 1 has a piston head 2, which is part of a combustion chamber 3. Furthermore, the piston 1 has a top land 4 and a ring field 5. The ring field 5 is followed by a shaft 7 with a hub 6 at the bottom.
  • the piston 1 is provided in the region of the piston head 2 with an oxidation protection layer according to the invention.
  • oxidation protection layer is not limited to the design exemplified here of a piston for an internal combustion engine, but rather any piston plates can be provided with an oxidation protective layer according to the invention. LIST OF REFERENCE NUMBERS

Abstract

The invention relates to a piston (1), especially a steel piston for an internal combustion engine, comprising a piston head (2) which forms part of a combustion chamber (3), at least the piston head (2) having an oxidation protection layer. The invention further relates to a method for producing an oxidation protection layer.

Description

B E S C H R E I B U N G  DESCRIPTION
Verfahren zur Erzeugung einer Oxidationsschutzschicht für einen Kolben zum Einsatz in Brennkraftmaschinen und Kolben mit einer Oxidationsschutzschicht Method for producing an oxidation protection layer for a piston for use in internal combustion engines and pistons with an oxidation protection layer
Die Erfindung betrifft Verfahren zur Erzeugung einer Oxidationsschutzschicht für mindestens den Bereich des Kolbenbodens eines Stahlkolbens für Brennkraftmaschinen sowie einen Kolben mit einer Oxidationsschutzschicht, gemäß den Merkmalen des jeweiligen Oberbegriffes der unabhängigen Patentansprüche. The invention relates to a method for producing an oxidation protection layer for at least the region of the piston crown of a steel piston for internal combustion engines and a piston with an oxidation protective layer, according to the features of the respective preamble of the independent claims.
Ein geschmiedeter Kolben ist beispielsweise aus der DE 103 1 1 150 A1 bekannt. Dort wird der Kolben aus einem ersten Rohteil mit mindestens einer ebenen Stirnfläche aus oxidationsbeständigem Stahl und einem zweiten zylindrischen Rohteil mit mindestens einer ebenen Stirnfläche aus warmschmiedbarem Stahl beschrieben. Die beiden Rohteile werden durch Schmieden zu einem Kolbenrohling geformt. Der fertige Kolben besteht somit im Bereich des Kolbenkopfs bis zur ersten Kolbenringnut aus dem oxidationsbeständigen Stahl. A forged piston is known for example from DE 103 1 1 150 A1. There, the piston is described from a first blank having at least one flat end face made of oxidation-resistant steel and a second cylindrical blank having at least one flat face made of hot forme steel. The two blanks are formed by forging to a piston blank. The finished piston thus exists in the region of the piston head to the first piston ring groove of the oxidation-resistant steel.
Aus dem Stand der Technik ist die Verwendung von oxidationsbeständigen Stählen für den Brennraumbereich von Kolben bekannt. The prior art discloses the use of oxidation resistant steels for the combustion chamber region of pistons.
Aufgabe der Erfindung ist es, den Schutz des Brennraumbereichs von Stahlkolben vor Oxidationsvorgängen zu gewährleisten oder zumindest deutlich zu verbessern. Diese Aufgabe wird durch ein Verfahren und einen Kolben mit den Merkmalen der unabhängigen Patentansprüche gelöst. The object of the invention is to ensure the protection of the combustion chamber area of steel pistons from oxidation processes or at least significantly improve. This object is achieved by a method and a piston with the features of the independent claims.
Durch die erfindungsgemäße Oxidationsschutzschicht werden die Vermeidung von Oxidationsprozessen im Motorbetrieb und eine verbesserte Thermoschockbeständigkeit erreicht. Es entsteht ein quasimonolithischer Kolben. The oxidation protection layer according to the invention achieves the avoidance of oxidation processes in engine operation and improved thermal shock resistance. The result is a quasi-monolithic piston.
Eine Oxidationsschutzschicht wird beispielsweise durch physikalische Abscheidung der Beschichtungsstoffe aus der Gasphase (Physical Vapour Deposition - PVD) erzeugt. Hierbei werden die Beschichtungsstoffe durch physikalische Verfahren in die Gasphase überführt aus der sie dann später auf dem Substrat abgeschieden werden. Während bei einem Verfahren zur Abscheidung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen gemäß der PVD-Technik das Beschichtungsmaterial in der Regel in fester Form und gegebenenfalls durch Wärmezufuhr verdampft wird, erfolgt die Zufuhr bei der CVD- Technik in der Gasphase. An oxidation protection layer is produced, for example, by physical deposition of the coating materials from the gas phase (Physical Vapor Deposition - PVD). generated. Here, the coating materials are transferred by physical processes in the gas phase from which they are then deposited later on the substrate. While in a method for depositing an oxidation protection layer on the surface of a piston for internal combustion engines according to the PVD technique, the coating material is usually evaporated in solid form and optionally by supplying heat, the supply is carried out in the CVD technique in the gas phase.
Alternativ oder ergänzend kann als Verfahren zur Abscheidung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens die chemische Dampfphasenabscheidung zum Einsatz kommen (Chemical Vapour Deposition - CVD). Bei diesem Verfahren der Oberflächen-Beschichtungstechnik werden die Beschichtungsstoffe unter zu Hilfenahme von chemischen Verfahren in die Dampfphase überführt, aus der sie dann auf das Substrat abgeschieden werden. Die Beschichtung des Brennraumbereiches als Substrat, kann beispielsweise mit vorheriger verbindungsschichtfreier Gas- oder Plasmanitrierung erzielt werden. Hierbei werden Schichtstärken von 3-20 pm angestrebt, bevorzugt werden Schichtstärken von 5 pm angestrebt. Weiterhin können Schichtwerkstoffe Al-Cr-Ti- Nitride (Aluminium-Chrom-Titan-Nitride) bzw. Karbide die eine hohe Thermoschockbeständigkeit aufweisen zum Einsatz kommen. Durch Abscheidung der Beschichtungsstoffe aus der Gas- bzw. Dampfphase auf die Kolbenoberfläche können homogene definierte Oxidationsschutzschichten erzeugt werden. Alternatively or additionally, as a method for depositing an oxidation protective layer on the surface of a piston, the chemical vapor deposition can be used (Chemical Vapor Deposition - CVD). In this method of surface coating technology, the coating materials are converted into the vapor phase with the aid of chemical processes, from which they are then deposited on the substrate. The coating of the combustion chamber region as a substrate can be achieved, for example, with prior bonding layer-free gas or plasma nitriding. In this case, layer thicknesses of 3-20 pm are sought, preferably, layer thicknesses of 5 pm are desired. Furthermore, coating materials Al-Cr-Ti nitrides (aluminum-chromium-titanium-nitrides) or carbides which have a high thermal shock resistance can be used. By deposition of the coating materials from the gas or vapor phase on the piston surface homogeneous defined oxidation protective layers can be produced.
Die Abscheidung der Oxidationsschutzschicht auf der Kolbenoberfläche kann alternativ auch mit Hilfe der gepulsten Laserablation (PLD - Pulsed Laser Deposition) erfolgen. Bei diesem Verfahren wird hochenergetisches und kurzwelliges (UV) Licht eingesetzt, um das Ausgangsmaterial (Feststofftarget) in die Gasphase und darüber in Form einer Schicht auf die zu beschichtende Kolbenoberfläche (Substrat) zu bringen. Die Laserablation zählt auch zur Klasse der physikalischen Gasphasen- Beschichtungsverfahren (PVD-Verfahren). Alternatively, the deposition of the oxidation protection layer on the piston surface can also take place with the aid of pulsed laser deposition (PLD). In this method, high-energy and short-wave (UV) light is used to bring the starting material (solid target) in the gas phase and above it in the form of a layer on the piston surface to be coated (substrate). Laser ablation also belongs to the class of physical vapor deposition (PVD) processes.
Die Applikation von Oxidationsschutzschichten auf Kolbenoberflächen kann alternativ auch durch das Plasmaimpax®-Verfahren erfolgen. Dieses verwendet hochenergetische Teilchen und eine Hochspannungspulstechnik zur 3- dimensionalen Modifizierung u d Beschichtung von Oberflächen. Das Plasmaimpax- Verfahren ermöglicht eine Schichtabscheidung über Plasmaquellen im Vakuum aus der Gasphase. Es handelt sich dabei um eine Hybridtechnik aus Plasmaaktivierter Niedertemperatur-CVD und Ionenimplantation. Um die Oberflächenhärte sowie Verschleiß- und Korrosionsbeständigkeit zu steigern, können mit dieser umweltfreundlichen Technologie lonenimplantationsprozesse sowie ionenunterstützte Beschichtungsprozesse durchgeführt werden. Dabei sind bereits geringere Beschichtungstemperaturen ausreichend um Schichtabscheidung und Oberflächenmodifizierung erfolgreich anzuwenden. The application of oxidation protective coatings on the piston surfaces can alternatively also by the Plasmaimpax ® process. This uses high-energy particles and a high-voltage pulse technique to dimensional modification and coating of surfaces. The Plasmaimpax method enables a layer deposition via plasma sources in a vacuum from the gas phase. It is a hybrid technique of plasma activated low temperature CVD and ion implantation. To increase surface hardness, wear and corrosion resistance, this environmentally friendly technology enables ion implantation processes and ion-assisted coating processes. Even lower coating temperatures are sufficient to successfully apply layer deposition and surface modification.
Mit der Plasmaimpax-Technologie lassen sich Schutzschichten auf Basis von diamantähnlichem Kohlenstoff (DLC - Diamond Like Carbon) aufbringen und andererseits auch Oberflächenmodifizierungen durch Ionenimplantationen zur Steigerung der Oberflächenhärte durchführen. Die diamantähnlichen Kohlenstoffschichten weisen eine hohe chemische Beständigkeit (Korrosionsresistenz) auf. With the Plasmaimpax technology, diamond-like carbon (DLC) protective coatings can be applied and, on the other hand, surface modification by ion implantation to increase surface hardness. The diamond-like carbon layers have a high chemical resistance (corrosion resistance).
Die Abscheidung der Oxidationsschutzschicht auf der Kolbenoberfläche kann alternativ auch durch ein Verfahren der Plasma-unterstützten chemischen Gasphasenabscheidung (PECVD oder PACVD - Plasma Assisted (Enhanced) Physical Vapour Deposition) erfolgen. Beispielsweise kann zur Erzeugung von Kohlenstoff schichten Acetylen (C2H2) oder von siliziumhaltigen Schichten HMDSO (Hexa-Methyl-Disiloxan) zugeführt werden, das im Plasma gecrackt und damit zur Beschichtung zur Verfügung gestellt wird. Bei der PACVD-Technik sind tiefe Bearbeitungstemperaturen möglich. The deposition of the oxidation protection layer on the piston surface can alternatively also be carried out by a plasma assisted chemical vapor deposition (PECVD or PACVD - Plasma Assisted (Enhanced) Physical Vapor Deposition) method. For example, can be supplied to produce carbon layers acetylene (C 2 H 2 ) or silicon-containing layers HMDSO (hexa-methyl disiloxane), which is cracked in the plasma and thus provided for coating. Low processing temperatures are possible with the PACVD technology.
Im Sinne dieser Schrift werden die nachfolgend genannten Verfahren zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen unter physikalische Verfahren zur Abscheidung der Beschichtungsstoffe aus der Gasphase (Physical Vapour Deposition - PVD) zusammengefasst, die klassische PVD sowie die gepulste Laserablation (PLD - Pulsed Laser Deposition). Im Sinne dieser Schrift werden die nachfolgend genannten Verfahren zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen unter Verfahren zur chemischen Dampfphasenabscheidung (Chemical Vapour Deposition - CVD) zusammengefasst Plasmaimpax®- Verfahren und Plasma-unterstützte chemische Gasphasenabscheidung. For the purposes of this document, the following methods for producing an oxidation protection layer on the surface of a piston for internal combustion engines are summarized under physical processes for the deposition of the coating materials from the gas phase (Physical Vapor Deposition - PVD), the classical PVD and the pulsed laser ablation (PLD - Pulsed Laser deposition). (Chemical Vapor Deposition - CVD) For the purposes of this document, the process mentioned below for producing an oxidation protection layer on the surface of a piston for internal combustion engines by method for chemical vapor deposition are summarized Plasmaimpax ® - method and plasma-enhanced chemical vapor deposition.
Alternativ oder ergänzend kommen zur Ausbildung einer Oxidationsschutzschicht galvanische Beschichtungen mit Nickel, Nickelbasislegierungen, Chrom, Chrombasislegierungen, zunderbeständigen Fe-Basislegierungen (Eisen- Basislegierungen) oder Wolfram- und Molybdän-Legierungen zum Einsatz. Bei der galvanischen Beschichtung werden Schichtstärken von 5-100 μιη abgeschieden, bevorzugt werden 5 - 20 μιτι auf dem Substrat abgeschieden. Alternatively or additionally, galvanic coatings with nickel, nickel-base alloys, chromium, chromium-base alloys, scale-resistant Fe-base alloys (iron-based alloys) or tungsten and molybdenum alloys are used to form an oxidation protection layer. In the electroplating layer thicknesses of 5-100 μιη are deposited, preferably 5 - 20 μιτι deposited on the substrate.
Unter Verfahren der Galvanotechnik zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brenn kraftmaschinen wird die elektrochemische Abscheidung von metallischen Niederschlägen (Überzügen) auf Substrate (Gegenstände), es bildet sich eine galvanische Beschichtung auf dem Kolben bzw. der Kolbenoberfläche aus. Die Verfahren der Galvanotechnik gehören zu den Verfahren der Elektrochemischen Metallabscheidung (ECD - Electrochemical Deposition). Die ECD-Verfahren dienen alternativ zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen. Durch elektrochemische Metallabscheidung können prozesssicher Metallschichten auf der Kolbenoberfläche als Oxidationsschutzschicht erzeugt werden. Galvanische Verfahren eignen sich zur Ausbildung von Oxidationsschutzschichten, aufgrund relativ geringem apparativen Aufwand. Under electroplating process to produce an oxidation protective layer on the surface of a piston for internal combustion engines is the electrochemical deposition of metallic precipitates (coatings) on substrates (objects), it forms a galvanic coating on the piston or the piston surface. Electroplating processes belong to the methods of electrochemical deposition (ECD). The ECD methods alternatively serve to create an oxidation protection layer on the surface of a piston for internal combustion engines. Electrochemical metal deposition can reliably produce metal layers on the piston surface as an oxidation protection layer. Galvanic methods are suitable for the formation of oxidation protection layers, due to relatively low expenditure on equipment.
Alternativ oder ergänzend können Plattierverfahren als Verfahren zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen zur Anwendung kommen. Beim Plattieren werden durch plastisches Verformen unter Druck mindestens zwei Werkstoffe verbunden. Mindestens ein Werkstoff bildet die Oxidationsschutzschicht auf der Kolbenoberfläche aus. Alternativ oder ergänzend wird eine Oxidationsschutzschicht durch Auftrag einer Schicht durch thermisches Spritzen (Plasma-, HVOF-, Flammspritz-Prozesse), die nach Bedarf (Haftung, Gasdichtigkeit) mittels Elektronenstrahl, WIG -Verfahren etc. verdichtet und metallurgisch gebunden wird (Werkstoffgruppen ähnlich der galvanischen Beschichtung) auf dem Substrat ausgebildet. Stähle mit hohen Chrom-, Silizium- und Aluminiumgehalten (Cr-, Si- und AI-Gehalten) bilden sehr dichte Oxidschichten aus, die den Werkstoff vor weiterer Oxidation schützen. Alternatively or additionally, plating methods can be used as a method for producing an oxidation protection layer on the surface of a piston for internal combustion engines. During plating, at least two materials are joined by plastic deformation under pressure. At least one material forms the oxidation protection layer on the piston surface. Alternatively or additionally, an oxidation protective layer is applied by application of a layer by thermal spraying (plasma, HVOF, flame spraying processes), which is compressed as required (adhesion, gas tightness) by means of electron beam, TIG process, etc., and metallurgically bonded (material groups similar to those of US Pat galvanic coating) formed on the substrate. Steels with high chromium, silicon and aluminum contents (Cr, Si and Al contents) form very dense oxide layers that protect the material from further oxidation.
Verfahren zum thermischen Spritzen können alternativ zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen eingesetzt werden. Methods of thermal spraying may alternatively be used to create an oxidation protection layer on the surface of a piston for internal combustion engines.
Thermisches Spritzen ist ein universell einsetzbaresThermal spraying is a universally applicable
Oberflächenbeschichtungsverfahren, bei dem ein meist pulver- oder drahtformiger Beschichtungswerkstoff mit hoher thermischer und/oder kinetischer Energie auf eine Bauteiloberfläche aufgeschleudert wird und dort eine Schicht ausbildet. Mit einer Vielzahl von zur Verfügung stehenden Prozessvarianten kann ein breites Spektrum an Werkstoffen wie Metalle und Keramiken, aber auch Hochleistungspolymere zu technischen Beschichtungen verarbeitet werden. Die Schichtdicken reichen von ca. 30 m bis zu mehreren Millimetern. Surface coating method in which a usually powdered or wire-shaped coating material with high thermal and / or kinetic energy is spun on a component surface and forms a layer there. With a variety of available process variants, a wide range of materials such as metals and ceramics, but also high-performance polymers can be processed into technical coatings. The layer thicknesses range from approx. 30 m to several millimeters.
Thermisches Spritzen umfasst die nachfolgenden Verfahren zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen Draht- oder Stabflammspritzen, Pulverflammspritzen, Kunststoff-Flammspritzen, Hochgeschwindigkeits-Flammspritzen (HVOF - High Velocity Oxygen Fuel), Detonationsspritzen oder Flammschockspritzen, Plasmaspritzen, Laserspritzen, Lichtbogenspritzen, Kaltgasspritzen und Plasmaauftragsschweißen (PTA - Plasma Transfer Are). Thermal spraying includes the following methods for producing an oxidation protection layer on the surface of a piston for internal combustion engines. Wire or bar flame spraying, powder flame spraying, plastic flame spraying, high velocity oxygen fuel (HVOF), detonation or flame shock spraying, plasma spraying, laser spraying, arc spraying, Cold gas spraying and Plasma Transfer Welding (PTA).
Verfahren zum Thermischen Spritzen können mit verschiedensten Beschichtungsmaterialien eingesetzt werden, sodass kurzfristig die Oxidationsschutzschicht auf dem Kolbenboden variiert werden kann, entsprechend den jeweiligen Anforderungen. Beim Draht- oder Stabflammspritzen wird der Spritzzusatzwerkstoff im Zentrum einer Acetylen-Sauerstoff-Flamme kontinuierlich aufgeschmolzen. Mit Hilfe eines Zerstäubergases, beispielsweise Druckluft oder Stickstoff, werden aus dem Schmelzbereich die tröpfchenförmigen Spritzpartikel abgelöst und auf die vorbereitete Kolbenoberfläche geschleudert. Thermal spraying methods can be used with a variety of coating materials, so that in the short term the oxidation protection layer on the piston crown can be varied according to the respective requirements. In wire or rod flame spraying, the spray additive is melted continuously in the center of an acetylene-oxygen flame. With the help of a nebulizer gas, such as compressed air or nitrogen, the droplet-shaped spray particles are detached from the melting area and thrown onto the prepared piston surface.
Beim Pulverflammspritzen wird der pulverförmige Spritzzusatz in einer Acetylen- Sauerstoff-Flamme an- oder aufgeschmolzen und mit Hilfe der expandierenden Verbrennungsgase auf die vorbereitete Kolbenoberfläche geschleudert. In powder flame spraying, the pulverulent spray additive is melted or melted in an acetylene-oxygen flame and thrown onto the prepared piston surface with the aid of the expanding combustion gases.
Falls erforderlich, kann zur Beschleunigung der Pulverteilchen auch noch ein zusätzliches Gas beispielsweise Argon oder Stickstoff verwendet werden. Die Vielfalt der Spritzzusatzwerkstoffe ist bei den Pulvern mit weit über 100 Materialien sehr weit gefächert. If necessary, an additional gas such as argon or nitrogen can also be used to accelerate the powder particles. The variety of spray additives is very wide-ranging in powders with well over 100 materials.
Bei den Pulvern werden selbstfließende und selbsthaftende Pulver unterschieden. Selbstfließenden Pulver benötigen meist zusätzlich eine thermische Nachbehandlung. Dieses "Einschmelzen" erfolgt überwiegend mit Acetylen- Sauerstoff-Brennern. Sofern eine thermische Nachbehandlung erfolgt, handelt sich um ein mehrstufiges Verfahren zur Verfahren zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen. The powders distinguish between self-fluxing and self-adhering powders. Self-fluxing powders usually require additional thermal treatment. This "smelting" takes place predominantly with acetylene-oxygen burners. If a thermal aftertreatment takes place, it is a multi-stage process for the method for producing an oxidation protective layer on the surface of a piston for internal combustion engines.
Durch den thermischen Prozess wird die Haftung der Spritzschicht auf dem Grundwerkstoff erheblich gesteigert, die Spritzschicht wird gas- und flüssigkeitsdicht. Due to the thermal process, the adhesion of the sprayed layer on the base material is considerably increased, the sprayed layer becomes gas- and liquid-tight.
Das Kunststoff-Flammspritzen unterscheidet sich von den anderen Flammspritzverfahren dadurch, dass der Kunststoffzusatz nicht direkt mit der Acetylen-Sauerstoff-Flamme in Berührung kommt. In der Mitte der Flammspritzpistole ist eine Pulver-Förderdüse. Umschlossen wird diese durch zwei ringförmige Düsenaustritte, wobei der innere Ring für Luft oder ein inertes Gas und der äußere Ring für den thermischen Energieträger, der Acetylen-Sauerstoff- Flamme, ist. Der Aufschmelzprozess des Kunststoffs erfolgt somit nicht direkt durch die Flamme, sondern durch die erhitzte Luft und Strahlungswärme. The plastic flame spraying differs from the other flame spraying process in that the plastic additive does not come into direct contact with the acetylene-oxygen flame. In the middle of the flame spray gun is a powder delivery nozzle. This is enclosed by two annular nozzle outlets, the inner ring being air or an inert gas and the outer ring being the thermal energy carrier, the acetylene-oxygen flame. The melting process of the plastic is thus not directly by the flame, but by the heated air and radiant heat.
Durch Flammspritzen bzw. Pulverflammspritzen können beispielsweise Metallpulver, Metallpulverlegierungen, Keramische Pulver und Kunststoffpulver verarbeitet werden. By flame spraying or powder flame spraying, for example, metal powder, metal powder alloys, ceramic powder and plastic powder can be processed.
Die NiCrBSi-Beschichtung (Nickel-Chrom-Bor-Silizium-Beschichtung) ist eine durch Flammspritzen aufgebrachten Oberflächenveredelung zur Erhöhung der Oxidationsbeständigkeit der Kolbenoberfläche. Eine Beschichtung aus NiCrBSi- Legierung ist sehr korrosionsbeständig. The NiCrBSi coating (nickel-chromium-boro-silicon coating) is a flame-spraying surface refinement to increase the oxidation resistance of the piston surface. A coating of NiCrBSi alloy is very corrosion resistant.
Der Nickel-Anteil in den Beschichtungen beträgt zwischen 40-90 %. Der Chrom- Anteil in der Beschichtung beträgt zwischen 3-26 % und verleiht den Schichten ihre Härte. The nickel content in the coatings is between 40-90%. The chromium content in the coating is between 3-26% and gives the layers their hardness.
Die NiCrBSi-Beschichtung wird beispielsweise durch Pulverflammspritzen mit nachträglichem Einschmelzen/Einsintern aufgebracht. The NiCrBSi coating is applied, for example, by powder flame spraying with subsequent melting / sintering.
Als Grundwerkstoffe werden Stahl und Edelstähle bearbeitet. Die Bauteile werden beispielsweise spannungsarmgeglüht, grob gestrahlt und unmittelbar im Anschluss beschichtet um eine Unterkorrosion zu vermeiden. As base materials, steel and stainless steels are processed. The components are, for example, stress annealed, coarsely blasted and immediately coated in order to avoid undercutting.
Das NiCrBSi-Pulver wird mit einer Flammspritzpistole aufgespritzt und dann mit autogenem Handbrenner, induktiv oder in einem Vakuumofen bei ca. 1000 C eingeschmolzen. The NiCrBSi powder is sprayed with a flame spray gun and then melted with an autogenous hand torch, inductive or in a vacuum oven at about 1000 C.
Als "nasser Schein" ist die NiCrBSi-Beschichtung beim Einschmelzprozess sichtbar. Dieser "nasse Schein" ist im Zustand bei ca. 1000 °C sehr plastisch und wird daher so ausgeführt, dass die Schmelze nicht vom Bauteil herunterläuft oder tropft und somit die NiCrBSi-Beschichtung fehlerhaft würde. As a "wet glow", the NiCrBSi coating is visible during the melting process. This "wet glow" is very plastic in the state at about 1000 ° C and is therefore designed so that the melt does not run down or drip from the component and thus the NiCrBSi coating would be faulty.
Diese Hochbeschichtungstechnoiogie der NiCrBSi-Beschichtung ist als einzige der thermisch gespritzten Spritzschichten ohne zusätzliche Versiegelungstechniken gasdicht und ist auch am besten gegen Stoßbelastung aufgrund von Eindiffundierung in das Grundmaterial aller Flammspritzbeschichtungen geeignet. This high-tech NiCrBSi coating technology is the only one of the thermally sprayed spray coatings without additional sealing techniques gas-tight and is also best against shock load due to diffusion into the base material of all flame spray coatings suitable.
Mit dem Zusatz WC/Ni wird die Hartmetall-Beschichtung (NiCrBSi-Beschichtung) deutlich korrosionsbeständiger, wobei WC/Co eine höhere Temperaturbeständigkeit aufweist. With the additive WC / Ni, the hard metal coating (NiCrBSi coating) becomes significantly more corrosion resistant, whereby WC / Co has a higher temperature resistance.
Auch PTFE oder Graphit kann der Legierung zugemischt werden. Dadurch erreicht diese Hartmetallbeschichtung verbesserte Antihaft- und Gleiteigenschaften. Also PTFE or graphite can be added to the alloy. As a result, this hard metal coating achieves improved non-stick and sliding properties.
Beim Hochgeschwindigkeits-Flammspritzen (HVOF) erfolgt eine kontinuierliche Gasverbrennung mit hohen Drücken innerhalb einer Brennkammer, in deren zentraler Achse der pulverförmige Spritzzusatz zugeführt wird. Der in der Brennkammer erzeugte hohe Druck des Brenngas-Sauerstoff-Gemisches und der meist nachgeordneten Expansionsdüse erzeugen die gewünschte hohe Strömungsgeschwindigkeit im Gasstrahl. Dadurch werden die Spritzpartikel auf die hohen Partikelgeschwindigkeiten beschleunigt, die zu enorm dichten Spritzschichten mit ausgezeichneten Hafteigenschaften führen. Durch die ausreichende, aber moderate Temperatureinbringung wird durch den Spritzprozess der Spritzzusatzwerkstoff nur gering metallurgisch verändert, z.B. minimale Bildung von Mischkarbiden. Bei diesem Verfahren können extrem dünne Schichten mit hoher Maßgenauigkeit erzeugt werden. In high-velocity flame spraying (HVOF), continuous gas combustion takes place at high pressures within a combustion chamber, in the central axis of which the pulverulent spray additive is supplied. The high pressure generated in the combustion chamber of the fuel gas-oxygen mixture and the mostly downstream expansion nozzle produce the desired high flow velocity in the gas jet. As a result, the spray particles are accelerated to the high particle speeds, which lead to enormously dense spray coatings with excellent adhesive properties. Due to the sufficient but moderate temperature introduction, the spray additive process causes only slight metallurgical changes in the spray additive material, e.g. minimal formation of mixed carbides. In this process, extremely thin layers with high dimensional accuracy can be produced.
Als Brenngase können Propan, Propen, Ethylen, Acetylen und Wasserstoff verwendet werden. Propane, propene, ethylene, acetylene and hydrogen can be used as combustion gases.
Karbidische Werkstoffe können beispielsweise mit dem Hochgeschwindigkeitsflammspritzen (HVOF) als Verfahren zur Erzeugung einer Oxidationsschutzschicht auf die Oberfläche eines Kolbens für Brennkraftmaschinen aufgebracht werden. Die sich auf der Kolbenoberfläche ausbildenden Schichten sind sehr dicht. Durch die hohe Härte der Karbidschichten stellen sie einen exzellenten Verschleiß- und Oxidationsschutz für den Kolben dar. Zum Einsatz kommen beispielsweise folgende Werkstoffe Chromkarbide (Cr3C2, Cr3C2/NiCr) oder Wolframkarbide (WC/Co, WC/Ni, WC/Co/Cr). Detonationsspritzen oder Flammschockspritzen ist ein intermittierendes Spritzverfahren. Die sogenannte Detonationskanone besteht aus einem Austrittsrohr, an dessen Ende sich eine Brennkammer befindet. In dieser wird das zugeführte Acetylen-Sauerstoff-Spritzpulvergemisch durch einen Zündfunken zur Detonation gebracht. Die im Rohr entstehende Schockwelle beschleunigt die Spritzteilchen. Diese werden in der Flammenfront aufgeheizt und schleudern mit hoher Partikelgeschwindigkeit in einem gerichteten Strahl auf eine vorbereitete Kolbenoberfläche. Nach jeder Detonation erfolgt ein Reinigungsspülen der Brennkammer und des Rohres mit Stickstoff. For example, carbide materials may be applied to the surface of a piston for internal combustion engines by high speed flame spraying (HVOF) as a method of forming an oxidation protection layer. The layers forming on the piston surface are very dense. Due to the high hardness of the carbide layers, they provide excellent protection against wear and oxidation for the piston. For example, the following materials are used: chromium carbides (Cr 3 C 2 , Cr 3 C 2 / NiCr) or tungsten carbides (WC / Co, WC / Ni, WC / Co / Cr). Detonation spray or flame shock spray is an intermittent spray process. The so-called detonation gun consists of an outlet pipe, at the end of which there is a combustion chamber. In this, the supplied acetylene-oxygen spray powder mixture is detonated by a spark. The shock wave generated in the tube accelerates the spray particles. These are heated in the flame front and spin at high particle velocity in a directional beam onto a prepared piston surface. After each detonation, a cleaning purge of the combustion chamber and the tube is carried out with nitrogen.
Beim Plasmaspritzen wird der pulverförmige Spritzzusatz in oder außerhalb der Spritzpistole durch einen Plasmastrahl geschmolzen und auf die Kolbenoberfläche geschleudert. Das Plasma wird durch einen Lichtbogen erzeugt, der gebündelt in Argon, Helium, Stickstoff, Wasserstoff oder in der Mischung dieser Gase brennt. Die Gase werden dabei dissoziiert und ionisiert, sie erreichen hohe Ausströmgeschwindigkeiten und geben bei der Rekombination ihre Wärmeenergie an die Spritzpartikel ab. Dabei entsteht eine Plasmaflamme mit einer Temperatur bis zu 20000 °C. Der Lichtbogen wird zwischen der Elektrode und der Düse erzeugt. Durch die hohen Temperaturen können insbesondere auch keramische Materialien verarbeitet werden. In the case of plasma spraying, the pulverulent spray additive in or outside the spray gun is melted by a plasma jet and thrown onto the piston surface. The plasma is generated by an arc burning in argon, helium, nitrogen, hydrogen or in the mixture of these gases. The gases are dissociated and ionized, they reach high outflow velocities and emit their heat energy to the spray particles during recombination. This produces a plasma flame with a temperature of up to 20,000 ° C. The arc is generated between the electrode and the nozzle. Due to the high temperatures in particular ceramic materials can be processed.
Der Lichtbogen ist nicht übertragend, das heißt er brennt innerhalb der Spritzpistole zwischen einer zentrisch angeordneten Elektrode (Kathode) und der die Anode bildenden wassergekühlten Spritzdüse. Das Verfahren wird in normaler Atmosphäre (APS - Atmosphärischem Plasmaspritzen), im Schutzgasstrom, das heißt in inerter Atmosphäre beispielsweise Argon, im Vakuum und unter Wasser angewendet. Durch einen speziell geformten Düsenaufsatz lässt sich auch ein Hochgeschwindigkeitsplasma erzeugen. The arc is not transmissive, that is it burns within the spray gun between a centrally disposed electrode (cathode) and the anode forming water-cooled spray nozzle. The process is applied in normal atmosphere (APS - Atmospheric Plasma Spraying), in the protective gas stream, that is in an inert atmosphere such as argon, under vacuum and under water. A specially shaped nozzle attachment can also be used to generate high-speed plasma.
Keramikbeschichtungen werden vorwiegend mit Hilfe von atmosphärischem Plasmaspritzen (APS) auf die Kolbenoberfläche appliziert. Eingesetzt werden Spritzwerkstoffe zur Beschichtung von Kolbenoberflächen beispielsweise auf der Basis von Aluminiumoxid (Al203), Chromoxid (Cr203), Titanoxid (Ti02) und Zirkonoxid (Zr02). Ceramic coatings are mainly applied to the surface of the piston with the help of atmospheric plasma spraying (APS). Spraying materials are used for coating piston surfaces, for example based on aluminum oxide (Al 2 O 3 ), chromium oxide (Cr 2 O 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ).
Beim Laserspritzverfahren wird ein pulverförmiger Spritzzusatz über eine geeignete Pulverdüse in den Laserstrahl eingebracht. Mit Hilfe der Laserstrahlung werden sowohl das Pulver wie auch ein minimaler Teil der Kolbenoberfläche (Mikro-Bereich) aufgeschmolzen und der zugeführte Spritzzusatz metallurgisch mit dem Grundwerkstoff, der Kolbenoberfläche verbunden. Zum Schutz des Schmelzbades dient ein Schutzgas. In the laser spraying process, a powdered spray additive is introduced into the laser beam via a suitable powder nozzle. With the help of laser radiation, both the powder and a minimal part of the piston surface (micro-area) are melted and the supplied spray additive metallurgically connected to the base material, the piston surface. To protect the molten bath is a protective gas.
Beim Lichtbogenspritzverfahren werden zwei drahtförmige Spritzzusätze gleicher oder unterschiedlicher Art in einem Lichtbogen abgeschmolzen und mittels Zerstäubergas, beispielsweise Druckluft, auf die vorbereitete Kolbenoberfläche geschleudert. Das Lichtbogenspritzen ist ein leistungsstarkes Drahtspritzverfahren, bei dem aber nur elektrisch leitende Materialien verspritzt werden können. In the arc spraying process, two wire-shaped spray additives of the same or different types are melted in an arc and spun onto the prepared piston surface by means of atomizing gas, for example compressed air. Arc spraying is a high-performance wire spraying process in which only electrically conductive materials can be sprayed.
Bei der Verwendung von Stickstoff oder Argon als Zerstäubergas wird eine Oxidation der Materialien weitgehend unterbunden. When using nitrogen or argon as a sputtering gas oxidation of the materials is largely prevented.
Metallische Werkstoffe werden beispielsweise durch Lichtbogenspritzen auf die Kolbenoberfläche appliziert. Die denkbare Werkstoffpalette umfasst die meisten Metalle und sehr viele Mischungen, beispielsweise Aluminium, Kupfer (Cu/Al, Cu/Al/Fe), Nickel (Ni/Al, Ni/Cr), Molybdän und Zink (Zn/Al). Metallic materials are applied, for example, by arc spraying on the piston surface. The conceivable range of materials includes most metals and very many mixtures, for example aluminum, copper (Cu / Al, Cu / Al / Fe), nickel (Ni / Al, Ni / Cr), molybdenum and zinc (Zn / Al).
Das Kaltgasspritzverfahren ähnelt dem Hochgeschwindigkeits-Flammspritzen. Die kinetische Energie, das heißt die Partikelgeschwindigkeit, wird hier erhöht und die thermische Energie verringert. Somit ist es möglich, fast oxidfreie Spritzschichten zu erzeugen. Dieses Verfahren ist unter dem Namen CGDM (Cold Gas Dynamic Spray Method) bekannt geworden. The cold gas spraying process is similar to high speed flame spraying. The kinetic energy, ie the particle velocity, is increased here and the thermal energy is reduced. Thus, it is possible to produce almost oxide-free sprayed coatings. This process has become known as CGDM (Cold Gas Dynamic Spray Method).
Die Oxidationsschutzschicht kann auch durch das Metallbeschichtungssystem Cold Metal Spray bzw. Cold Spray System auf die Kolbenoberfläche aufgebracht werden. Der Spritzzusatzwerkstoff wird mit Hilfe eines auf ca. 600 °C erhitzten Gasstrahls mit entsprechendem Druck auf Partikelgeschwindigkeiten > 1 .000 m/s beschleunigt und als kontinuierlicher Spritzstrahl auf die zu beschichtende Kolbenoberfläche gebracht. The oxidation protection layer may also be applied to the piston surface by the metal coating system Cold Metal Spray or Cold Spray System. The spray additive material is accelerated with the aid of a gas jet heated to about 600 ° C. with appropriate pressure to particle velocities> 1 000 m / s and brought to the piston surface to be coated as a continuous spray jet.
Untersuchungen haben gezeigt, dass mit diesem Verfahren erzeugte Schichten extreme Haftzugfestigkeiten aufweisen und außerordentlich dicht sind. Während bei den bisher üblichen Verfahren des Thermischen Spritzens das Pulver im Spritzprozess bis über seine Schmelztemperatur erwärmt werden muss, wird es beim Kaltgasspritzen nur auf wenige hundert Grad erwärmt. Die Oxidation des Spritzwerkstoffs und der Oxidgehalt der aufgespritzten Schicht sind damit erheblich geringer. Beschichtete Substrate zeigen keine Materialveränderungen durch die Wärmeeinwirkung. Studies have shown that layers produced by this process have extreme bond strengths and are extremely dense. While in the usual methods of thermal spraying, the powder must be heated in the injection process to above its melting temperature, it is heated in the cold gas spraying only to a few hundred degrees. The oxidation of the spray material and the oxide content of the sprayed layer are thus significantly lower. Coated substrates show no material changes due to the effect of heat.
Plasmaauftragsschweißen (PTA) mit Pulver unter übertragenem Lichtbogen. Beim PTA-Verfahren wird die Kolbenoberfläche angeschmolzen. Ein Plasmalichtbogen mit hoher Dichte dient als Wärmequelle und Metallpulver wird als Auftragsmaterial verwendet. Der Lichtbogen bildet sich zwischen einer Dauerelektrode und dem Werkstück. Im übertragenen Lichtbogen wird in einem Plasmagas beispielsweise Argon, Helium oder Argon-Helium-Gemische, zwischen der zentralen Wolframelektrode (-) und dem wassergekühlten Anodenblock das Plasma erzeugt. Das Pulver wird mittels eines Trägergases zum Brenner gebracht, im Plasmastrahl erhitzt und auf die Kolbenoberfläche aufgetragen. Hier schmilzt es vollständig im Schmelzbad auf dem Substrat. Plasma deposition welding (PTA) with powder under transferred arc. In the PTA process, the piston surface is melted. A high-density plasma arc serves as a heat source and metal powder is used as a coating material. The arc forms between a permanent electrode and the workpiece. In the transferred arc, the plasma is generated in a plasma gas, for example argon, helium or argon-helium mixtures, between the central tungsten electrode (-) and the water-cooled anode block. The powder is brought by means of a carrier gas to the burner, heated in the plasma jet and applied to the piston surface. Here it melts completely in the molten bath on the substrate.
Das ganze Verfahren findet in der Atmosphäre eines Schutzgases beispielsweise Argon oder Argon-Wasserstoff-Gemisch statt. The whole process takes place in the atmosphere of a protective gas, for example argon or argon-hydrogen mixture.
Das PTA-Verfahren ermöglicht eine niedrige Vermischung (5-10 %), eine kleine Wärmeeinflusszone, eine große Auftragsrate (bis zu 20 kg/h), eine echte metallurgische Haftung zwischen dem Substrat und der Schicht - somit völlig dichte Schichten - sowie die Flexibilität der Legierungselemente. The PTA process allows low mixing (5-10%), a small heat-affected zone, a high application rate (up to 20 kg / h), true metallurgical adhesion between the substrate and the layer - thus completely dense layers - and flexibility of the alloying elements.
Die vorrangig verwendeten Auftragsschweißpulver können als Nickelbasis-, Kobaltbasis- und Eisenbasislegierungen klassifiziert werden. Alternativ oder ergänzend wird eine Oxidationsschutzschicht durch Laserauftragsschweißen auf der Kolbenoberfläche, dem Substrat ausgebildet. Der aufzutragende Werkstoff wird dabei als Pulver, Draht oder Band dem Prozess zugeführt. Die Oberfläche des zu beschichteten Werkstoffes wird dabei angeschmolzen. Es kann nahezu jeder Werkstoff aufgetragen werden, Beispiele sind selbstfließende Legierungen (NiCrBSi), Nickelbasislegierungen wie z.B. NiWC (Nickel-Wolframcarbid) oder Deloro Steinte®. Mit seinen Bestandteilen Kobalt, Chrom, Molybdän, Wolfram und Nickel ist Steinte® äußerst korrosions-, verschleiß- und hitzebeständig. Ein größerer gelöster Chromanteil in der Legierung erhöht zudem die Korrosionsbeständigkeit und damit auch die Oxidationsbeständigkeit der Kolbenoberfläche. Dabei werden Schichtdicken zwischen 20 und 300 pm aufgetragen. Die Schichten müssen meist nicht nachgearbeitet werden. Eine Substratvorbehandlung beispielsweise durch abrasive Strahlverfahren wie Korundstrahlen ist nicht nötig. The predominantly used hardfacing powders can be classified as nickel base, cobalt base and iron based alloys. Alternatively or additionally, an oxidation protection layer is formed by laser deposition welding on the piston surface, the substrate. The material to be applied is fed to the process as powder, wire or strip. The surface of the material to be coated is melted. It can be applied almost any material, examples of self-fluxing alloys (NiCrBSi), nickel-based alloys such as NiWC (nickel-tungsten) or Deloro Steinte ®. With its components cobalt, chromium, molybdenum, tungsten and nickel, Steinte ® is extremely resistant to corrosion, wear and heat. A larger dissolved chromium content in the alloy also increases the corrosion resistance and thus also the oxidation resistance of the piston surface. In this case, layer thicknesses between 20 and 300 pm are applied. The layers usually do not have to be reworked. A substrate pretreatment, for example by abrasive blasting processes such as corundum blasting is not necessary.
Laserauftragschweißen mit Schweißzusatzwerkstoffen in Pulver- und Drahtform wird auch als Direct Metal Deposition (DMD) oder Laser Metal Deposition (LMD) bezeichnet. Laser deposition welding with filler materials in powder and wire form is also referred to as Direct Metal Deposition (DMD) or Laser Metal Deposition (LMD).
Alternativ oder ergänzend wird die Oxidationsschutzschicht durch Kaltgasspritzen auf dem Substrat erzeugt, bei diesem Prozess wird das zu verspritzende Material in Pulverform zugeführt. Die Schichten sind sehr dicht und die Partikel werden bei dem Beschichten kaum oxidiert. Es kann nahezu jeder Werkstoff aufgetragen werden wie z.B. Titan und Titanlegierungen aber auch Nickelbasislegierungen, c-BN (kubisches Bornitrid, ß-Bornitrid) mit NiCrAI (Nickel-Chrom-Aluminium), NiCr (Nickel-Chrom), NiAl (Nickel-Aluminium), CuAI (Aluminiumbronze) oder MCrAIY Pulver. Typische Schichtdicken liegen im Bereich von 20 - 300 pm. Bei der Beschichtung wird das Bauteil kaum erwärmt. CBN ist nach Diamant das zweithärteste bekannte Material. Im Gegensatz zum Diamanten gibt CBN unter Temperatureinwirkung keinen Kohlenstoff an Stahl ab, daher eignet es sich besonders zur Oberflächenbeschichtung von Stahlkolben. Superlegierungen vom Typ MCrAIY (Metall Chrom Aluminium Yttrium; M = Metall beispielsweise Nickel (Ni) oder Cobalt (Co)) sind Hochtemperaturlegierungen die durch selektive Oxidation Aluminium- Oxidschichten ausbilden und somit einen Oxidationsschutz auf der Kolbenoberfläche ausbilden. Nickel Cobalt Chrom Aluminium Yttrium (NiCoCrAIY) oder Cobalt Nickel Chrom Aluminium Yttrium (CoNiCrAIY) Werkstoffe bieten eine gute Beständigkeit gegen Oxidation. Alternatively or additionally, the oxidation protection layer is produced by cold gas spraying on the substrate, in this process the material to be sprayed is supplied in powder form. The layers are very dense and the particles are hardly oxidized during the coating. Almost any material can be applied, such as titanium and titanium alloys, but also nickel-base alloys, c-BN (cubic boron nitride, β-boron nitride) with NiCrAI (nickel-chromium-aluminum), NiCr (nickel-chromium), NiAl (nickel-aluminum) , CuAl (aluminum bronze) or MCrAIY powder. Typical layer thicknesses are in the range of 20-300 pm. During coating, the component is hardly heated. CBN is the second hardest diamond after diamond. In contrast to diamonds, CBN does not release carbon to steel under the influence of temperature, which makes it particularly suitable for surface coating of steel pistons. MCrAIY superalloys (metal chromium aluminum yttrium; M = metal, for example, nickel (Ni) or cobalt (Co)) are high-temperature alloys that undergo selective oxidation. Form oxide layers and thus form an oxidation protection on the piston surface. Nickel Cobalt Chrome Aluminum Yttrium (NiCoCrAIY) or Cobalt Nickel Chrome Aluminum Yttrium (CoNiCrAIY) materials provide good resistance to oxidation.
Ferner wird der Auftrag einer Schicht, insbesondere einer Oxidationsschutzschicht in einer weiteren Ausgestaltung durch thermisches Spritzen (Plasma-, HVOF-, Lichtbogen, Flammspritz-Prozesse) erfolgen. Hierbei wird das Beschichtungsmaterial als Pulver, Drähte, Suspensionen oder Stäbe zugeführt. Der Beschichtungsaufbau kann als einlagige Schicht bezogen auf den Beschichtungsstoff (Monolayerschicht) erfolgen. Der Einsatz von verschieden Beschichtungen bzw. die Kombination verschiedener Beschichtungsstoffe wie z.B. einem Haftvermittler (z.B. NiCr, NiAl), der gleichzeitig auch einen Heißgaskorrosionsschutz darstellt (MCrAIY), und eine TBC (Thermal Barrier Coatings) beispielsweise mit Yttrium stabilisiertes Zirkonoxid (Y-ZrO) kann zu einem mehrlagigen Beschichtungsaufbau führen. Furthermore, the application of a layer, in particular an oxidation protection layer in a further embodiment by thermal spraying (plasma, HVOF, arc, flame spraying processes) is carried out. Here, the coating material is supplied as powder, wires, suspensions or rods. The coating composition can be carried out as a single-layer layer based on the coating material (monolayer layer). The use of different coatings or the combination of different coating materials such. a primer (e.g., NiCr, NiAl) which also provides hot gas corrosion protection (MCrAIY) and a thermal barrier coating (TBC) such as yttria-stabilized zirconia (Y-ZrO) may result in a multilayer coating construction.
Wärmedämmschichten (TBC) setzen die Wärmeübertragung herab und isolieren das Substrat. Die auf Kolbenoberflächen abgeschiedenen Schichtsysteme bestehen bevorzugt aus zwei Komponenten. Einer Verbindungsschicht die als Oxidationsschranke fungiert und aus einem metallischen Werkstoff, beispielsweise MCrAIY besteht. Sowie einer Deckschicht aus einem keramischen Werkstoff, beispielsweise mit Yttrium stabilisiertes Zirkonoxid (YSZ). Thermal barrier coatings (TBCs) reduce heat transfer and insulate the substrate. The layer systems deposited on piston surfaces preferably consist of two components. A bonding layer that acts as an oxidation barrier and consists of a metallic material, such as MCrAIY. As well as a cover layer of a ceramic material, for example yttrium-stabilized zirconium oxide (YSZ).
Je nach Beschichtungsverfahren können auch Ni-Basislegierungen oder MoSi2/SnAI (Molybdän Siliziumdioxid / Zink Aluminium) aufgebracht werden. Die Schichten können nach Bedarf (Haftung, Gasdichtigkeit) mittels Elektronenstrahl, WIG- Verfahren, Diffusionsglühen, Induktionsglühen, Laser etc. verdichtet und metallurgisch gebunden werden (Werkstoffgruppen ähnlich der galvanischen Beschichtung). Stähle mit hohen Cr-, Si- und AI-Gehalten (Chrom-, Silizium- und Aluminium-Gehalten) bilden sehr dichte Oxidschichten aus, die den Werkstoff vor weiterer Oxidation schützen. Die typischen Schichtdicken liegen hier im Bereich von 20 - 300 pm. Das W IG -Verfahren (Wolfram-Inertgasschweißen) ist einDepending on the coating method, it is also possible to apply Ni-base alloys or MoSi 2 / SnAI (molybdenum silicon dioxide / zinc aluminum). The layers can be compacted as required (adhesion, gas tightness) by means of electron beam, TIG process, diffusion annealing, induction annealing, laser, etc., and metallurgically bonded (material groups similar to the galvanic coating). Steels with high Cr, Si and Al contents (chromium, silicon and aluminum contents) form very dense oxide layers which protect the material from further oxidation. The typical layer thicknesses are here in the range of 20 - 300 pm. The W IG process (tungsten inert gas welding) is a
Schutzgasschweißverfahren, als Schutzgas werden inerte Schutzgase verwendet. Während des Schweißvorgangs brennt ein Lichtbogen zwischen dem Werkstück und einer nichtabschmelzenden Wolframelektrode, der den Grundwerkstoff und den Zusatzwerkstoff aufschmilzt. Inert gas welding process, as protective gas inert inert gases are used. During the welding process, an arc burns between the workpiece and a non-consumable tungsten electrode, which melts the base material and the filler material.
Schweißverfahren sind mit einem überschaubaren apparativen Aufwand realisierbar, um Oxidationsschutzschichten auf Kolbenböden aufzubringen, so eignen sich beispielsweise Laserauftragsschweißverfahren oder Wolfram-Welding processes can be implemented with a manageable outlay on equipment in order to apply oxidation protection layers to piston crowns. For example, laser deposition welding methods or tungsten coating methods are suitable.
Inertgasschweißverfahren zur Erzeugung von Oxidationsschutzschichten aufgrund des geringen apparativen Aufwands. Inert gas welding process for the production of oxidation protection layers due to the low equipment cost.
Das Diffusionsglühen dient um Konzentrationsunterschiede beispielsweise Kristallseigerungen bzw. Gefügeheterogenitäten im Kolben bzw. der Kolbenoberfläche zu beseitigen oder verringern. Basierend auf dem Prinzip, dass hohe Temperaturen die Diffusion begünstigen. Das Glühen erfolgt bei Temperaturen zwischen 1000 °C und 1200 °C. Durch die Homogenisierung der Kolbenoberfläche wird ihre Oxidationsbeständigkeit gesteigert. The diffusion annealing serves to eliminate or reduce concentration differences, for example, crystal segregations or structural heterogeneities in the piston or the piston surface. Based on the principle that high temperatures favor diffusion. Annealing takes place at temperatures between 1000 ° C and 1200 ° C. The homogenization of the piston surface increases its oxidation resistance.
Induktionsglühen bzw. Induktionshärten bringt vor allem kompliziert geformte Werkstücke, beispielsweise Kolben oder Kolbenoberflächen lediglich in bestimmten Bereichen auf erforderliche Härtetemperatur (partielles Härten), um sie anschließend abzuschrecken. Induction annealing or induction hardening brings especially complicated shaped workpieces, such as pistons or piston surfaces only in certain areas to the required hardening temperature (partial hardening), to then quench them.
Glühverfahren tragen insbesondere zur Homogenisierung der Oxidationsschutzschicht bei und sind daher mit anderen in dieser Schrift genannten Verfahren kombinierbar, so eignen sich beispielsweise Diffusionsglüh- oder Induktionsglühverfahren besonders zur Homogenisierung der Oxidationsschutzschicht und sind daher einzeln einsetzbar jedoch auch in Kombination mit anderen Verfahren zur Erzeugung einer Oxidationsschutzschicht anwendbar. Annealing process contribute in particular to the homogenization of the oxidation protection layer and are therefore combinable with other processes mentioned in this document, for example, diffusion annealing or induction annealing are particularly suitable for homogenization of the oxidation protective layer and are therefore individually applicable but also in combination with other methods for producing an oxidation protective layer ,
Ebenso besteht die Möglichkeit die Schichten nach dem Spritzen zu imprägnieren bzw. zu versiegeln. Dabei wird ein Siegler aufgebacht, welcher dann in die Hohlräume in der Spritzschicht eindringt und schließt und somit eine Spaltkorrosion bzw. Unterkorrosion verhindert. It is also possible to impregnate or seal the layers after spraying. This is a Siegler aufacht, which then in the Cavities in the spray layer penetrates and closes and thus prevents crevice corrosion or undercutting.
Alternativ oder ergänzend ist zur Ausbildung einer Oxidationsschutzschicht die Verwendung von Überzügen aus Aluminium oder Aluminium-Legierungen, vorzugsweise mit den Legierungselementen Silizium (z.B. AISi-12), Kupfer und/oder Magnesium, vorgesehen, welche durch Bildung von Eisen-Aluminiden und/oder stabilen Eisen-Aluminium-Mischoxiden (vorzugsweise vom Spinell-Typ, z.B. Hercynit FeO Al20 bzw. FeAI2 n4 oder Pleonast MgAI204) oxidationsbeständige Schutzschichten mit Schichtdicken von 5 bis 200 pm ausbilden. Der Auftrag des Aluminiums (bzw. der Aluminium-Legierung) auf den Kolbenboden kann nach einem der oben beschriebenen Verfahren, durch ein Tauchbad (Alfinbad) oder durch das Aufbringen eines Aluminium-haltigen Lackes oder einer Suspension erfolgen. Je nach Auftragsverfahren kann unter Umständen durch ein anschließendes, gezieltes, kurzzeitiges Erwärmen des Kolbenbodens - vorzugsweise auf Temperaturen größer 660 °C (AI-Schmelzpunkt) - eine verbesserte Schichtausbildung und -haftung erzielt werden. Dieses Erwärmen kann z.B. durch Laserbehandlung, induktives Heizen, durch einen Gasbrenner oder ähnliches erfolgen, wobei der Zutritt von Sauerstoff oder im einfachsten Fall auch von Luftsauerstoff die Bildung der schützenden, stabilen Mischoxide unterstützt. Alternatively or additionally, the use of coatings of aluminum or aluminum alloys, preferably with the alloying elements silicon (eg AISi-12), copper and / or magnesium, provided by formation of iron aluminides and / or stable to form an oxidation protective layer Iron-aluminum mixed oxides (preferably of the spinel type, eg Hercynit FeO Al 2 0 or FeAl 2 n 4 or Pleonast MgAl 2 0 4 ) form oxidation-resistant protective layers with layer thicknesses of 5 to 200 μm. The order of the aluminum (or the aluminum alloy) on the piston head can be carried out by one of the methods described above, by a dip bath (Alfinbad) or by the application of an aluminum-containing paint or a suspension. Depending on the application method may be achieved by subsequent, targeted, brief heating of the piston head - preferably to temperatures greater than 660 ° C (AI melting point) - an improved layer formation and adhesion under certain circumstances. This heating can be done for example by laser treatment, inductive heating, by a gas burner or the like, the access of oxygen or in the simplest case of atmospheric oxygen supports the formation of protective, stable mixed oxides.
In besonders vorteilhafter Weise wird die Oxidationsschutzschicht durch Überzüge aus insbesondere reinem Aluminium oder aus Aluminium-Legierungen erzeugt wird. Eine solche Legierung kann zum Beispiel Eisen-Aluminide und/oder stabile Eisen- Aluminium-Mischoxide (vorzugsweise vom Spinell-Typ) ausbilden. Der Auftrag des Aluminiums oder der Aluminium-Legierung auf den Kolbenboden kann nach einem der oben beschriebenen Verfahren oder durch ein Tauchbad (Alfinbad) oder durch das Aufbringen eines Aluminium-haltigen Lackes oder einer Suspension erfolgen. In a particularly advantageous manner, the oxidation protection layer is produced by coatings of, in particular, pure aluminum or aluminum alloys. Such an alloy may, for example, form iron aluminides and / or stable iron-aluminum mixed oxides (preferably of the spinel type). The order of the aluminum or the aluminum alloy on the piston head can be carried out according to one of the methods described above or by a dip bath (Alfinbad) or by the application of an aluminum-containing paint or a suspension.
Das alternativ zur Ausbildung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen vorgesehene Alfin-Verfahren ist ein Verbund- Gussverfahren zur metallischen Verbindung von Stahl oder Gusseisen mit Aluminium oder Aluminiumlegierungen. Dieses Al-Fin-Verfahren dient zum Verbundguss von Aluminium (AI) und Legierungen mit Stahl oder Gusseisen. Die zu verbindenden Kolbenbauteile werden zunächst gereinigt, in einer Salzschmelze vorgewärmt und in flüssiges Aluminium (830 bis 880 °C) getaucht. Die dabei gebildete intermetallische Eisenaluminium-Schicht ist fest mit dem Grundwerkstoff verbunden und erleichtert Legierungsbildung und Haftung beim anschließenden Umgießen mit Aluminium- Werkstoffen als Oxidationsschutzschicht. Das Al-Fin-Verfahren ermöglicht eine besonders gute Verbindung zwischen Eisen- und Aluminiumlegierungen. The Alfin method provided alternatively to the formation of an oxidation protection layer on the surface of a piston for internal combustion engines is a composite casting method for metal joining of steel or cast iron with aluminum or aluminum alloys. This Al-Fin process is used for composite casting of aluminum (AI) and alloys with steel or cast iron. The to be connected Piston components are first cleaned, preheated in a salt melt and immersed in liquid aluminum (830 to 880 ° C). The formed intermetallic iron-aluminum layer is firmly connected to the base material and facilitates alloy formation and adhesion in the subsequent encapsulation with aluminum materials as oxidation protection layer. The Al-Fin process allows a particularly good bond between iron and aluminum alloys.
Die Überzüge aus Aluminium oder aus zumindest einer Aluminium-Legierung werden zumindest auf dem Kolbenboden des Kolbens durch ein zuvor beschriebenes Verfahren, durch ein Tauchbad (Alfinbad), durch das Aufbringen eines Aluminium- haltigen Lackes und/oder einer Suspension erzeugt. The coatings of aluminum or at least one aluminum alloy are produced at least on the piston head of the piston by a previously described method, by a dip bath (Alfinbad), by the application of an aluminum-containing paint and / or a suspension.
Die Erzeugung einer metallischen Bindung zwischen Substrat und abgeschiedener Schicht kann durch eine zusätzliche thermische Beaufschlagung in einem zweiten Verfahrensschritt beispielsweise mit Hilfe von Laser, WIG, Elektronenstrahl oder induktiv erfolgen. The generation of a metallic bond between the substrate and the deposited layer can be effected by an additional thermal application in a second method step, for example by means of laser, TIG, electron beam or inductively.
Bei der Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens kann ein Verfahrensschritt zur Vorbereitung der Oberfläche vorgelagert sein. Die Vorbereitung der Kolbenoberfläche kann durch Reinigung und/oder Vorbehandlung erfolgen. Bei der Reinigung werden Verunreinigungen ohne Beeinflussung des S u b stratwe rkstoff es von der Kolbenoberfläche entfernt. Die Vorbehandlung hingegen dient die Effizienz der Verfahren zur Erzeugung einer Oxidationsschutzschicht auf der Kolbenoberfläche zu optimieren. Zur Vorbehandlung können Verfahren zum Einsatz kommen, die die entsprechende Kolbenoberfläche so behandeln, dass sich ihre Oberflächeneigenschaften beispielsweise hinsichtlich der Haftung der Oxidationsschutzschicht verbessern. Eine materialverändernde Vorbehandlung wird auch als Aktivierung bezeichnet. Beispielsweise wird hierzu die Kolbenoberfläche aufgeraut, um die Oberflächenvergrößerung bzw. die entstehenden Hinterschneidungen eine Mikroverklammerung der Oxidationsschutzschicht zu ermöglichen und die mechanische Adhäsion zu erhöhen. Weiterhin kann die Oberflächenenergie erhöht werden, dies wird auch als Steigerung der spezifischen Adhäsion bezeichnet. Die Vorbereitung der Kolbenoberfläche kann durch abrasive mechanische Verfahren wie Schleifen, Bürsten oder Strahlverfahren erfolgen. Bei diesen Verfahren kann auch ein Teil der Kolbenoberfläche abgetragen werden. Zumindest dieser abgetragene Teil der zu beschichtenden Kolbenoberfläche kann durch die nach einem in dieser Schrift genannten Verfahren zu erzeugende Oxidationsschutzschicht wieder aufgebaut werden. When an oxidation protection layer is formed on the surface of a piston, a step of preparing the surface may be preceded. The preparation of the piston surface can be done by cleaning and / or pretreatment. During cleaning, impurities are removed from the piston surface without influencing the absorbent material. By contrast, the pretreatment serves to optimize the efficiency of the processes for producing an oxidation protection layer on the piston surface. For the pretreatment, processes may be used which treat the corresponding piston surface in such a way that their surface properties improve, for example with regard to the adhesion of the oxidation protection layer. A material-altering pretreatment is also called activation. For example, for this purpose, the piston surface is roughened to allow the surface enlargement or the resulting undercuts a Mikroverklammerung the oxidation protection layer and to increase the mechanical adhesion. Furthermore, the surface energy can be increased, this is also referred to as increasing the specific adhesion. The preparation of the piston surface can be carried out by abrasive mechanical methods such as grinding, brushing or blasting. In these methods, a part of the piston surface can be removed. At least this removed part of the piston surface to be coated can be rebuilt by the oxidation protection layer to be produced according to a method mentioned in this document.
Die Vorbereitung der Kolbenoberfläche kann auch durch chemische Vorbehandlungsverfahren wie beispielsweise Ätzen oder Beizen erfolgen. The preparation of the piston surface can also be done by chemical pretreatment methods such as etching or pickling.
Weiterhin kann die Vorbereitung der Kolbenoberfläche auch durch physikalische Verfahren wie beispielsweise Abflammen, Plasma-, Corona-, oder Laservorbehandlungsverfahren erfolgen. Furthermore, the preparation of the piston surface can also be done by physical methods such as flame, plasma, corona, or laser pretreatment.
Bei der Vorbereitung der Kolbenoberfläche zur Anwendung mindestens eines in dieser Schrift genannten Verfahren zur Erzeugung einer Oxidationsschutzschicht durch Reinigung müssen beispielsweise Verunreinigungen aus den vorherigen Produktionsschritten (beispielsweise Umform verfahren) wie Kühl- und/oder Schmierstoffe (KSS), Korrosionsschutzöle, Flussmittel, Zunder, Graphit, Metallseifen, Sulfonate, Mineralöle, anorganische Seifen, Metalloxide, Metallsalze, Staub und/oder Späne entfernt werden. In the preparation of the piston surface for applying at least one method mentioned in this document for generating an oxidation protective layer by cleaning, for example, impurities from the previous production steps (for example forming process) such as coolants and / or lubricants (KSS), corrosion protection oils, flux, scale, graphite , Metallic soaps, sulfonates, mineral oils, inorganic soaps, metal oxides, metal salts, dust and / or shavings.
Die Erzeugung einer Oxidationsschutzschicht nach einem der in dieser Schrift genannten Verfahren kann auf einem Kolbenrohling, einem Bereich des Kolbens oder auf der gesamten Oberfläche des Kolbens für eine Brennkraftmaschine erfolgen. Bevorzugt weist mindestens der Kolbenboden eine Oxidationsschutzschicht auf. The production of an oxidation protection layer according to one of the methods mentioned in this document can be carried out on a piston blank, a region of the piston or on the entire surface of the piston for an internal combustion engine. Preferably, at least the piston head has an oxidation protection layer.
Alle in dieser Schrift genannten Verfahren zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen können einzeln oder in nahezu beliebiger Kombination zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen zum Einsatz kommen. Durch die Kombination von Verfahren zur Erzeugung einer Oxidationsschutzschicht auf der Oberfläche eines Kolbens für Brennkraftmaschinen können Mehrschichtsysteme auf der Oberfläche eines Kolbens abgeschieden bzw. aufgebaut werden. All of the methods mentioned in this document for producing an oxidation protection layer on the surface of a piston for internal combustion engines can be used individually or in virtually any combination for producing an oxidation protection layer on the surface of a piston for internal combustion engines. By combining methods for producing an oxidation protection layer on the surface of a piston for internal combustion engines For example, multilayer systems can be deposited on the surface of a piston.
Durch die Ausbildung der Oxidationsschutzschicht als Mehrschichtsystem auf der Kolbenoberfläche kann den Anforderungen an die Oxidationsschutzschicht Rechnung getragen werden. By forming the oxidation protection layer as a multilayer system on the piston surface, the requirements for the oxidation protection layer can be taken into account.
Bei der Ausführung der Oxidationsschutzschicht auf der Kolbenoberfläche als Mehrschichtsystem können günstige Materialien als Basis für den Kolben zu Einsatz kommen. In carrying out the oxidation protection layer on the piston surface as a multilayer system, favorable materials can be used as the basis for the piston.
Bei der Gestaltung der Oxidationsschutzschicht als Mehrschichtsystem werden mindestens zwei Schichten auf die Kolbenoberfläche aufgebracht. Diese mindestens zwei Schichten können chemisch und physikalisch die gleichen Eigenschaften aufweisen, sie können jedoch auch chemisch und/oder physikalisch voneinander abweichende Eigenschaften aufweisen. When designing the oxidation protection layer as a multilayer system, at least two layers are applied to the piston surface. These at least two layers can have the same properties chemically and physically, but they can also have chemically and / or physically differing properties.
Die Verfahren zur Erzeugung einer Oxidationsschutzschicht sind einzeln oder in nahezu beliebiger Kombination einsetzbar. Bei der Kombination von Verfahren können mehrlagige Oxidationsschutzschichten entstehen. Diese mehrlagigen Oxidationsschutzschichten können aus identischen Substanzen oder unterschiedlichen Substanzen bestehen. The methods for producing an oxidation protection layer can be used individually or in virtually any combination. The combination of processes can result in multilayer oxidation protection layers. These multi-layer oxidation protection layers may consist of identical substances or different substances.
Erfindungsgemäß ist vorgesehen, dass bei einem Kolben, insbesondere Stahlkolben für eine Brennkraftmaschine, aufweisend einen Kolbenboden der Teil eines Brennraumes ist, mindestens der Kolbenboden eine Oxidationsschutzschicht aufweist. According to the invention, in the case of a piston, in particular a steel piston for an internal combustion engine, having a piston crown which is part of a combustion chamber, at least the piston crown has an oxidation protection layer.
Durch das Aufbringen einer Oxidationsschutzschicht auf den Kolbenboden wird der Oxidative Angriff auf das Kolbenmaterial im Bereich der Verbrennungsmulde verringert oder sogar vermieden. Es ist somit möglich den Kolben aus anderen Materialien zu fertigen. Durch eine andere Materialwahl können die Kosten gesenkt werden. Die zuvor genannten Beschichtungsstoffe und -Stoffklassen können entsprechend den Anforderungen an die Oxidationsschutzschicht ausgewählt werden. Auch sind Kombinationen aus den verschiedenen Besch ichtungsstoffen und -stoffklassen möglich um eine geeignete Oxidationsschutzschicht auf der Oberfläche des Kolbenbodens auszubilden. By applying an oxidation protective layer on the piston crown, the oxidative attack on the piston material in the region of the combustion bowl is reduced or even avoided. It is thus possible to manufacture the piston from other materials. By choosing a different material, the costs can be reduced. The aforementioned coating materials and classes of substances can be selected according to the requirements of the oxidation protection layer. Also, combinations of the various coating materials and classes are possible to form a suitable oxidation protection layer on the surface of the piston crown.
Die Erfindung wird anhand der nachfolgend beschriebenen Figur weiter verdeutlicht. The invention will be further clarified with reference to the figure described below.
Figur 1 zeigt einen Stahlkolben, der eine erfindungsgemäße Beschichtung in FIG. 1 shows a steel piston which has a coating according to the invention in FIG
Form einer Oxidationsschutzschicht aufweist.  Form has an oxidation protection layer.
In der nachfolgenden Figurenbeschreibung beziehen sich Begriffe wie oben, unten, links, rechts, vorne, hinten usw. ausschließlich auf die in der Figur gewählte beispielhafte Darstellung und Position der Einrichtung und anderer Elemente. Diese Begriffe sind nicht einschränkend zu verstehen, das heißt durch verschiedene Positionen und/oder spiegelsymmetrische Auslegung oder dergleichen können sich diese Bezüge ändern. In the following description of the figures, terms such as top, bottom, left, right, front, back, etc. refer exclusively to the example representation and position of the device and other elements selected in the figure. These terms are not intended to be limiting, that is to say that different positions and / or mirror-symmetrical design or the like may change these references.
In der Figur 1 ist ein aus Stahl gefertigter Kolben 1 gezeigt. Der Kolben 1 weist einen Kolbenboden 2 auf, welcher Teil eines Brennraumes 3 ist. Weiterhin verfügt der Kolben 1 über einen Feuersteg 4 und ein Ringfeld 5. An das Ringfeld 5 schließt sich nach unten ein Schaft 7 mit einer Nabe 6 an. Der Kolben 1 ist im Bereich des Kolbenbodens 2 mit einer erfindungsgemäßen Oxidationsschutzschicht versehen. FIG. 1 shows a piston 1 made of steel. The piston 1 has a piston head 2, which is part of a combustion chamber 3. Furthermore, the piston 1 has a top land 4 and a ring field 5. The ring field 5 is followed by a shaft 7 with a hub 6 at the bottom. The piston 1 is provided in the region of the piston head 2 with an oxidation protection layer according to the invention.
Der Einsatz der erfindungsgemäßen Oxidationsschutzschicht ist nicht auf die hier beispielhaft dargestellte Bauform eines Kolbens für eine Brennkraftmaschine beschränk, vielmehr können jegliche Kolbenböden mit einer erfindungsgemäßen Oxidationsschutzschicht versehen werden. BezugszeichenlisteThe use of the oxidation protection layer according to the invention is not limited to the design exemplified here of a piston for an internal combustion engine, but rather any piston plates can be provided with an oxidation protective layer according to the invention. LIST OF REFERENCE NUMBERS
1 Kolben1 piston
2 Kolbenboden2 piston bottom
3 Brennraum3 combustion chamber
4 Feuersteg4 lancet
5 Ringfeld5 ring field
6 Nabe6 hub
7 Schaft 7 shaft

Claims

P A T E N T A N S P R Ü C H E PATENT APPLICATIONS
1 . Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, dadurch gekennzeichnet, dass eine Oxidationsschutzschicht durch ein physikalisches Verfahren zur Abscheidung der Beschichtungsstoffe aus der Gasphase (Physical Vapour Deposition - PVD) zumindest auf einem Kolbenboden (2) des Kolbens (1 ) erzeugt wird. 1 . Method for producing a piston (1), in particular a steel piston for an internal combustion engine, characterized in that an oxidation protection layer by a physical process for the deposition of the coating materials from the gas phase (Physical Vapor Deposition - PVD) at least on a piston head (2) of the piston ( 1) is generated.
2. Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, dadurch gekennzeichnet, dass eine Oxidationsschutzschicht durch ein Verfahren zur chemischen Dampfphasenabscheidung (Chemical Vapour Deposition - CVD) zumindest auf einem Kolbenboden (2) des Kolbens (1 ) erzeugt wird. 2. A method for producing a piston (1), in particular a steel piston for an internal combustion engine, characterized in that an oxidation protective layer by a method for chemical vapor deposition (CVD) at least on a piston head (2) of the piston (1) generated becomes.
3. Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, dadurch gekennzeichnet, dass eine Oxidationsschutzschicht zumindest auf einem Kolbenboden (2) des Kolbens (1 ) durch ein Verfahren der Elektrochemischen Metallabscheidung (ECD - Electrochemical Deposition) erzeugt wird. 3. A method for producing a piston (1), in particular a steel piston for an internal combustion engine, characterized in that an oxidation protective layer at least on a piston head (2) of the piston (1) by a method of electrochemical metal deposition (ECD - Electrochemical Deposition) is generated ,
4. Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, dadurch gekennzeichnet, dass eine Oxidationsschutzschicht durch ein thermisches Spritzverfahren zumindest auf einem Kolbenboden (2) des Kolbens (1 ) erzeugt wird. 4. A method for producing a piston (1), in particular a steel piston for an internal combustion engine, characterized in that an oxidation protective layer by a thermal spraying process at least on a piston head (2) of the piston (1) is generated.
5. Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, dadurch gekennzeichnet, dass eine Oxidationsschutzschicht durch ein Laserauftragschweiß- oder Wolfram- Inertgasschweißverfahren zumindest auf einem Kolbenboden (2) des Kolbens (1 ) erzeugt wird. 5. A method for producing a piston (1), in particular a steel piston for an internal combustion engine, characterized in that an oxidation protection layer by a Laserauftragschweiß- or tungsten Inertgasschweißverfahren at least on a piston head (2) of the piston (1) is generated.
6. Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, dadurch gekennzeichnet, dass eine Oxidationsschutzschicht durch ein Diffusionsglüh- oder Induktionsglühverfahren zumindest auf dem Kolbenboden (2) des Kolbens (1 ) erzeugt wird. 6. A method for producing a piston (1), in particular a steel piston for an internal combustion engine, characterized in that an oxidation protective layer by a Diffusionsglüh- or Induktionsglühverfahren at least on the piston head (2) of the piston (1) is generated.
7. Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, dadurch gekennzeichnet, dass eine Oxidationsschutzschicht durch Überzüge aus Aluminium oder aus zumindest einer Aluminium-Legierung auf einem Bereich des Kolbens (1 ) erzeugt wird. 7. A method for producing a piston (1), in particular a steel piston for an internal combustion engine, characterized in that an oxidation protective layer is produced by coatings of aluminum or of at least one aluminum alloy on a region of the piston (1).
8. Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, nach Anspruch 7, dadurch gekennzeichnet, dass die Aluminium-Legierung Eisen-Aluminide und/oder stabile Eisen-Aluminium-Mischoxide, diese vorzugsweise vom Spinell-Typ, ausbildet. 8. A method for producing a piston (1), in particular a steel piston for an internal combustion engine, according to claim 7, characterized in that the aluminum alloy iron aluminides and / or stable iron-aluminum mixed oxides, these preferably of the spinel type, formed.
9. Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Überzüge aus Aluminium oder aus zumindest einer Aluminium-Legierung zumindest auf dem Kolbenboden (2) des Kolbens (1 ) durch ein Verfahren gemäß der Ansprüche 1 bis 6, durch ein Tauchbad (Alfinbad), durch das Aufbringen eines Aluminium-haltigen Lackes und/oder einer Suspension erzeugt werden. 9. A method for producing a piston (1), in particular a steel piston for an internal combustion engine, according to claim 7 or 8, characterized in that the coatings of aluminum or at least one aluminum alloy at least on the piston head (2) of the piston (1 ) are produced by a method according to claims 1 to 6, by a dip bath (Alfinbad), by the application of an aluminum-containing paint and / or a suspension.
10. Verfahren zur Herstellung eines Kolben (1 ), insbesondere eines Stahlkolbens für eine Brennkraftmaschine, dadurch gekennzeichnet, dass eine Oxidationsschutzschicht durch die Kombination von mindestens zwei Verfahren gemäß den Ansprüchen 1 bis 9 erzeugt wird. 10. A method for producing a piston (1), in particular a steel piston for an internal combustion engine, characterized in that an oxidation protective layer is produced by the combination of at least two methods according to claims 1 to 9.
1 1 . Kolben (1 ), insbesondere Stahlkolben für eine Brennkraftmaschine, aufweisend eine Oxidationsschutzschicht zumindest im Bereich des Kolbenbodens (2) dadurch gekennzeichnet, dass die Oxidationsschutzschicht nach zumindest einem Verfahren gemäß der Ansprüche 1 bis 10 erzeugt ist. 1 1. Piston (1), in particular steel piston for an internal combustion engine, comprising an oxidation protective layer at least in the region of the piston head (2), characterized in that the oxidation protection layer is produced according to at least one method according to claims 1 to 10.
12. Kolben (1 ) nach Anspruch 1 1 , dadurch gekennzeichnet, dass die12. Piston (1) according to claim 1 1, characterized in that the
Oxidationsschutzschicht aus der Substanzklasse der Nitride oder Karbide gebildet ist. Oxidation protection layer is formed from the substance class of nitrides or carbides.
13. Kolben (1 ) nach Anspruch 1 1 oder 12, dadurch gekennzeichnet, dass die13. Piston (1) according to claim 1 1 or 12, characterized in that the
Oxidationsschutzschicht aus Nickel, Nickelbasislegierungen, Chrom, Chrombasislegierungen, zunderbeständigen Eisen-Basislegierungen oder Wolfram- und Molybdän-Legierungen gebildet ist. Oxidation protection layer of nickel, nickel-based alloys, chromium, chromium-based alloys, scale-resistant iron-based alloys or tungsten and molybdenum alloys is formed.
14. Kolben (1 ) nach Anspruch 1 1 , 12 oder 13, dadurch gekennzeichnet, dass die14. Piston (1) according to claim 1 1, 12 or 13, characterized in that the
Oxidationsschutzschicht aus einer NiCrBSi-Beschichtung (Nickel-Chrom-Bor- Silizium-Beschichtung) besteht. Oxidation protection layer consists of a NiCrBSi coating (nickel-chromium-boron-silicon coating).
15. Kolben (1 ) nach Anspruch 1 1 , 12, 13 oder 14, dadurch gekennzeichnet, dass die Oxidationsschutzschicht aus Oxiden, insbesondere Aluminiumoxid (AI2O3), Chromoxid (Cr2O3), Titanoxid (TiO2) oder Zirkonoxid (ZrO2) besteht. 15. Piston (1) according to claim 1 1, 12, 13 or 14, characterized in that the oxidation protective layer of oxides, in particular aluminum oxide (Al 2 O 3 ), chromium oxide (Cr 2 O 3 ), titanium oxide (TiO 2 ) or zirconium oxide (ZrO 2 ) consists.
16. Kolben (1 ) nach Anspruch 1 1 , 12, 13, 14 oder 15, dadurch gekennzeichnet, dass die Oxidationsschutzschicht aus einer Nickelbasislegierungen insbesondere NiWC (Nickel-Wolframcarbid), NiCrAI (Nickel-Chrom-Aluminium), NiCr (Nickel- Chrom), NiAl (Nickel-Aluminium) oder Steinte® mit seinen Bestandteilen Kobalt, Chrom, Molybdän, Wolfram und Nickel besteht. 16. piston (1) according to claim 1 1, 12, 13, 14 or 15, characterized in that the oxidation protection layer of a nickel-based alloys, in particular NiWC (nickel-tungsten carbide), NiCrAI (nickel-chromium-aluminum), NiCr (nickel-chromium ) NiAl (nickel-aluminum) or Steinte ® with its components cobalt, chromium, molybdenum, tungsten and nickel.
17. Kolben (1 ) nach Anspruch 1 1 , 12, 13, 14, 15 oder 16, dadurch gekennzeichnet, dass die Oxidationsschutzschicht aus CBN oder MCrAIY gebildet ist. 17. piston (1) according to claim 1 1, 12, 13, 14, 15 or 16, characterized in that the oxidation protection layer of CBN or MCrAIY is formed.
18. Kolben (1 ) nach Anspruch 1 1 , 12, 13, 14, 15, 16 oder 1 7, dadurch gekennzeichnet, dass die Oxidationsschutzschicht aus zwei Schichten gebildet ist, aus einer Wärmedämmschicht (TBC), insbesondere gebildet aus MCrAIY sowie einer Deckschicht aus einem keramischen Werkstoff, insbesondere aus mit Yttrium stabilisiertes Zirkonoxid (YSZ). 18. piston (1) according to claim 1 1, 12, 13, 14, 15, 16 or 1 7, characterized in that the oxidation protection layer is formed of two layers of a thermal barrier coating (TBC), in particular formed from MCrAIY and a cover layer of a ceramic material, in particular of yttrium-stabilized zirconium oxide (YSZ).
19. Kolben (1 ) nach Anspruch 1 1 , 12, 13, 14, 15, 16, 17 oder 18, dadurch gekennzeichnet, dass die Oxidationsschutzschicht aus einer MoSi2/SnAI (Molybdän Siliziumdioxid / Zink Aluminium) Schicht besteht. 19 piston (1) according to claim 1 1, 12, 13, 14, 15, 16, 17 or 18, characterized in that the oxidation protection layer consists of a MoSi 2 / SnAI (molybdenum silica / zinc aluminum) layer.
20. Kolben (1 ) nach Anspruch 1 1 , 12, 13, 14, 15, 16, 17, 18 oder 19, dadurch gekennzeichnet, dass die Oxidationsschutzschicht gebildet ist von Überzügen aus Aluminium oder zumindest einer Aluminium-Legierung, vorzugsweise mit den Legierungselementen Silizium (z.B. AISi-12), Kupfer und/oder Magnesium, welche durch Bildung von Eisen-Aluminiden und/oder stabilen Eisen-Aluminium-Mischoxiden (vorzugsweise vom Spinell-Typ, z.B. Hercynit FeO AI2O3 bzw. FeAI204 oder Pleonast MgAI2O4) oxidationsbeständige Schutzschichten ausbilden. 20. piston (1) according to claim 1 1, 12, 13, 14, 15, 16, 17, 18 or 19, characterized in that the oxidation protective layer is formed of coatings of aluminum or at least one aluminum alloy, preferably with the alloying elements Silicon (eg AISi- 12 ), copper and / or magnesium, which by forming iron aluminides and / or stable iron-aluminum mixed oxides (preferably of the spinel type, eg Hercynit FeO AI 2 O 3 or FeAI 2 0 4 or pleonast MgAl 2 O 4 ) form oxidation-resistant protective layers.
21 . Kolben (1 ) nach einem der Ansprüche 1 1 bis 20, dadurch gekennzeichnet, dass die Oxidationsschutzschicht bevorzugt eine Stärke zwischen 3 pm und 300 μητι aufweist. 21. Piston (1) according to any one of claims 1 1 to 20, characterized in that the oxidation protective layer preferably has a thickness between 3 pm and 300 μητι.
22. Kolben (1 ), nach einem der Ansprüche 1 1 bis 21 , dadurch gekennzeichnet, dass der Kolben (1 ) eine mehrlagige Oxidationsschutzschicht aus mindestens zwei Oxidationsschutzschichten gemäß den Ansprüchen 1 1 bis 21 aufweist. 22 piston (1) according to one of claims 1 1 to 21, characterized in that the piston (1) has a multi-layer oxidation protection layer of at least two oxidation protective layers according to claims 1 1 to 21.
EP14732527.8A 2013-06-14 2014-06-13 Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer Withdrawn EP3008317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013211079 2013-06-14
PCT/EP2014/062382 WO2014198896A1 (en) 2013-06-14 2014-06-13 Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer

Publications (1)

Publication Number Publication Date
EP3008317A1 true EP3008317A1 (en) 2016-04-20

Family

ID=50982896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14732527.8A Withdrawn EP3008317A1 (en) 2013-06-14 2014-06-13 Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer

Country Status (6)

Country Link
US (1) US20160138516A1 (en)
EP (1) EP3008317A1 (en)
CN (1) CN105431624B (en)
DE (1) DE102014211366A1 (en)
MX (1) MX2015016390A (en)
WO (1) WO2014198896A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015213168A1 (en) * 2015-07-14 2017-01-19 Robert Bosch Gmbh Process for producing a structured oxide layer and a substrate produced thereby
DE102015213896A1 (en) * 2015-07-23 2017-01-26 Volkswagen Aktiengesellschaft Process for coating a metallic tool and component
EP3414356B1 (en) * 2016-02-12 2021-04-21 Oerlikon Surface Solutions AG, Pfäffikon Tribological system of an internal combustion engine with a coating
US10273902B2 (en) * 2016-02-22 2019-04-30 Tenneco Inc. Insulation layer on steel pistons without gallery
DE102016207893A1 (en) * 2016-05-09 2017-11-09 Siemens Aktiengesellschaft Construction platform for additive manufacturing and processes
CN106435673A (en) * 2016-12-22 2017-02-22 日照金港活塞有限公司 Preparation technology of thermal insulation coating on internal combustion engine forging steel piston top
US10690247B2 (en) 2017-01-10 2020-06-23 Tenneco Inc. Galleryless short compression insulated steel piston
DE102017202620B4 (en) 2017-02-17 2021-02-04 Volkswagen Aktiengesellschaft Cylinder for an internal combustion engine, tribological system and internal combustion engine with one
DE102017002078A1 (en) 2017-03-04 2018-09-06 Man Truck & Bus Ag Internal combustion engine and method for producing a crankcase and / or a cylinder liner for an internal combustion engine
RU180719U1 (en) * 2017-05-02 2018-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Device for induction-thermal oxidation of small titanium products
US11149681B2 (en) * 2018-01-19 2021-10-19 Cummins Inc. Piston with insulating air gap formed by additive manufacturing
DE102018103319A1 (en) * 2018-02-14 2019-08-14 Iwis Motorsysteme Gmbh & Co. Kg metal component
US11168643B2 (en) 2018-02-21 2021-11-09 Tenneco Inc. Coating to reduce coking deposits on steel pistons
RU2689485C1 (en) * 2018-12-28 2019-05-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Method of forming oxide coatings on articles from stainless chromium-nickel steels
DE102020100640A1 (en) 2020-01-14 2021-07-15 Stahlzentrum Freiberg e.V. Process for improving the corrosion resistance of fastening and / or reinforcement components made of high-alloy steels and fastening and / or reinforcement components made of high-alloy steels
CN111118435B (en) * 2020-02-27 2021-10-01 广东省科学院新材料研究所 Aluminum alloy and method for improving fretting wear resistance thereof
CN111850557B (en) * 2020-07-23 2021-10-08 潍柴动力股份有限公司 Piston manufacturing method and piston
US20230338915A1 (en) * 2020-09-21 2023-10-26 Dsm Ip Assets B.V. Ceramic coating on metal parts to reduce deposit of metallic transition metals in hydrogenation reactions
RU2763130C1 (en) * 2021-03-16 2021-12-27 Ирина Александровна Сологубова Method for applying a protective coating on steel
CN113250848B (en) * 2021-06-29 2022-08-23 潍柴动力股份有限公司 Piston and method for manufacturing same
CN113957429A (en) * 2021-09-09 2022-01-21 成都银河动力有限公司 Preparation and strengthening method of aluminum alloy for piston
DE102022108997A1 (en) 2022-04-13 2023-10-19 Ks Kolbenschmidt Gmbh PISTON BLANK, PISTON AND METHOD
CN116988061B (en) * 2023-09-27 2023-12-19 太原科技大学 Nickel-based superalloy and surface modification method thereof
CN117344260B (en) * 2023-12-04 2024-03-22 北矿新材科技有限公司 Ultrahigh-temperature ceramic abradable seal coating material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003038C1 (en) * 1990-02-02 1990-08-09 Mtu Muenchen Gmbh

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2063904A (en) * 1934-10-17 1936-12-15 Block David Julian Aluminum-coated piston
US3082752A (en) * 1961-04-04 1963-03-26 Reynolds Metals Co Lined engine members and methods of making the same or the like
JPS59150948A (en) * 1983-02-15 1984-08-29 Toyota Motor Corp Parts used in combustion engine
DE3713577C2 (en) * 1986-12-03 1995-06-01 Universale Bau Gmbh Groundwater exploration process in the manufacture of a well
GB8818214D0 (en) * 1988-07-30 1988-09-01 T & N Technology Ltd Pistons
DE19542944C2 (en) * 1995-11-17 1998-01-22 Daimler Benz Ag Internal combustion engine and method for applying a thermal barrier coating
US5771873A (en) * 1997-04-21 1998-06-30 Ford Global Technologies, Inc. Carbonaceous deposit-resistant coating for engine components
US6029346A (en) * 1998-04-30 2000-02-29 Chellappa; Venkatesh Method of fabricating carbon--carbon engine component
DE10029810A1 (en) * 2000-06-16 2001-12-20 Mahle Gmbh Piston for diesel engine; has steel base with combustion mould and has thermal sprayed NiCrAl, CoCrAl or FeCrAl alloy coating, which is thicker at mould edge
DE10311150A1 (en) 2003-03-14 2004-09-23 Mahle Gmbh Method of manufacturing a forged piston for an internal combustion engine
DE10315232A1 (en) * 2003-04-03 2004-10-28 Federal-Mogul Nürnberg GmbH Pistons for an internal combustion engine and method for producing a piston
JP2006112422A (en) * 2004-09-14 2006-04-27 Nissan Motor Co Ltd Member for internal combustion engine and production method thereof
US7802553B2 (en) * 2005-10-18 2010-09-28 Gm Global Technology Operations, Inc. Method to improve combustion stability in a controlled auto-ignition combustion engine
US7458358B2 (en) * 2006-05-10 2008-12-02 Federal Mogul World Wide, Inc. Thermal oxidation protective surface for steel pistons
CN201068822Y (en) * 2007-08-17 2008-06-04 石家庄金刚内燃机零部件集团有限公司 Novel piston with ceramic film protection layer
US20110200838A1 (en) * 2010-02-18 2011-08-18 Clover Industries, Inc. Laser clad metal matrix composite compositions and methods
US20130025561A1 (en) * 2011-07-28 2013-01-31 Dieter Gabriel Bowl rim and root protection for aluminum pistons
CN103016196A (en) * 2012-12-27 2013-04-03 石家庄金刚凯源动力科技有限公司 Piston applicable to heavy oil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003038C1 (en) * 1990-02-02 1990-08-09 Mtu Muenchen Gmbh

Also Published As

Publication number Publication date
US20160138516A1 (en) 2016-05-19
CN105431624B (en) 2022-03-18
CN105431624A (en) 2016-03-23
DE102014211366A1 (en) 2014-12-18
WO2014198896A1 (en) 2014-12-18
MX2015016390A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
WO2014198896A1 (en) Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer
Davis Handbook of thermal spray technology
CA2208398C (en) Method of depositing a thermally sprayed coating that is graded between being machinable and being wear resistant
Fauchais et al. Thermal spray fundamentals: from powder to part
EP2746613B1 (en) Brake disc for a vehicle
US10975719B2 (en) Process and printed article
CN1970823A (en) Thermal spray material, sprayed coating, thermal spray method and coated component
WO2013057080A1 (en) Piston
JP2017521548A (en) Titanium carbide overlay and manufacturing method thereof
US20060014032A1 (en) Thermal spray coating process and thermal spray coating materials
CN112281105B (en) Metal ceramic composite coating and preparation method and application thereof
EP2565290B1 (en) Ballistic protection system
KR20180080717A (en) Method and apparatus for thermal spray coating of vehicle parts with solid lubricant
EP2860285B1 (en) Method for increasing heat resistance of metallic articles
DE3715327C2 (en)
Tucker Jr Introduction to thermal spray technology
CN112226723B (en) Preparation method of aluminum-containing alloy coating in atmospheric atmosphere
JP6447859B2 (en) Thermal spray coating member and method for producing thermal spray coating
Giacomantonio et al. Heat treatment of thermally sprayed Ni-based wear and corrosion coatings
Henao et al. Principles and applications of thermal spray coatings
DE102013112809A1 (en) A method for producing a sprayed cylinder surface of a cylinder crankcase of an internal combustion engine and such a cylinder crankcase
US20220331914A1 (en) Methods of coating components with cold spray and brazing coated components
Boulos et al. Wire Arc Spraying
Harju Properties of high velocity Arc sprayed coatings
Khanlari Design of experiment of a novel cermet coating sprayed with the HVAF technology

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180518

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: F02F0003120000

Ipc: C23C0004080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02F 3/14 20060101ALI20220823BHEP

Ipc: F02F 3/12 20060101ALI20220823BHEP

Ipc: C23C 2/02 20060101ALI20220823BHEP

Ipc: C23C 16/40 20060101ALI20220823BHEP

Ipc: C23C 14/16 20060101ALI20220823BHEP

Ipc: C23C 14/08 20060101ALI20220823BHEP

Ipc: C23C 8/18 20060101ALI20220823BHEP

Ipc: C23C 8/14 20060101ALI20220823BHEP

Ipc: C23C 4/08 20160101AFI20220823BHEP

INTG Intention to grant announced

Effective date: 20220919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230131