JPS59150948A - Parts used in combustion engine - Google Patents

Parts used in combustion engine

Info

Publication number
JPS59150948A
JPS59150948A JP58022064A JP2206483A JPS59150948A JP S59150948 A JPS59150948 A JP S59150948A JP 58022064 A JP58022064 A JP 58022064A JP 2206483 A JP2206483 A JP 2206483A JP S59150948 A JPS59150948 A JP S59150948A
Authority
JP
Japan
Prior art keywords
exhaust
parts
catalyst
combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58022064A
Other languages
Japanese (ja)
Inventor
Haratsugu Koyama
原嗣 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58022064A priority Critical patent/JPS59150948A/en
Publication of JPS59150948A publication Critical patent/JPS59150948A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B51/00Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines
    • F02B51/02Other methods of operating engines involving pretreating of, or adding substances to, combustion air, fuel, or fuel-air mixture of the engines involving catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To purify exhaust gas and to improve combustion characteristics of an internal combustion engine, by forming a catalytic layer over the surface of parts such as a piston head, valves, etc. used in the combustion system of the engine and parts such as exhaust ports, etc. used in the exhaust system by way of flame spraying of the powder of a heat-resisting ceramics carrying thereon a catalytic metal. CONSTITUTION:At first, an undercoating layer 3 of Mo, Ni-Cr, Ni-Al, etc. is applied, by way of flame spraying, over the surface of the base material 1 of parts such as a piston head, valves, a cylinder liner, a cylinder head, a glow plug, etc. used in the combustion system and parts such as exhaust ports, an exhaust manifold, an O2-sensor, an exhaust pipe, a muffler, etc. used in the exhaust system of an internal combustion engine. Then, a layer 2-2 of a catalytic metal is applied over the surface of the powder 2-1 of a heat-resisting ceramices such as Al2O3, ZrO2 or the like that is flame-sprayed over the surface of said undercoating layer 3.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は燃焼機関用部品、特に表面を触媒化したそうし
た部品に係る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to components for combustion engines, and particularly to such components having catalyzed surfaces.

(2)従来技術と問題点 内燃機関の燃焼改善、排気ガス浄化を目的として、触媒
の使用が広く検討、実、施されている。その一つとして
、燃焼系部品1例えばピスト、ンヘッド、バルブ、シリ
ンダライナ(上部)、シリンダヘッド、ディーゼルチャ
ンバー、グロープラク。
(2) Prior Art and Problems The use of catalysts has been widely studied, implemented, and implemented for the purpose of improving combustion in internal combustion engines and purifying exhaust gas. One example is combustion system parts such as pistons, heads, valves, cylinder liners (upper part), cylinder heads, diesel chambers, and glow plaques.

あるいは排気系部品、例えばエキゾーストボート。Or exhaust system parts, such as exhaust boats.

エキゾーストマニホールド、02センサ、エキゾースト
パイプ、エキゾーストパイプ、などの表面を触媒化する
ものがある。
There are products that catalyze the surfaces of exhaust manifolds, 02 sensors, exhaust pipes, exhaust pipes, etc.

そして、従来の表面触媒化技術としては、イ)部品表面
に触媒金属を直接コートするもの二口)部品表面を触媒
担体化し、それに触媒を担持するもの: があるが、(イ)の方法では二部品の表面に直接触媒金
属を担持するので、使用中に高温の排気ガスにさらされ
ると部品表面が酸化や腐食して担持した触媒金属を覆っ
てしまったり、燃焼生成物で触媒金属が覆われたり、触
媒金属と反応したりして触媒効果が早期に失なわれてし
まう〇一方、(ロ)の方法では、部品表面の酸化、腐食
の問題は担体層の存在によりほぼ解消されるが、燃焼生
成物の影響は低減されるものの、触媒金属が表面に集中
しているので燃焼生成物との反応などを充分に解消でき
るものとは言えない0 次に、触媒金属の担持方法としては、 i)触媒金属塩を塗布、焼成する方法:h)触媒金属を
スパッタリング、めっきなどで担持する方法; が行なわれているが1両手法ともに、担持の際に部品全
体を炉や槽に入れて処理する必要があり、一般的に部品
のうち触媒化したい部位は少ないので非常に効率が悪く
、高コストや低生産性につながる。又、触媒化部品以外
の部品“に触媒化工程の悪影響、例えば、前処理による
腐食、焼成による歪や変質が生じることが多い。
Conventional surface catalytic technologies include (1) directly coating the surface of the part with a catalytic metal; and (2) converting the surface of the part into a catalyst carrier and supporting the catalyst on it. However, method (a) Since the catalyst metal is supported directly on the surface of the two parts, if it is exposed to high-temperature exhaust gas during use, the part surface may oxidize or corrode and cover the supported catalyst metal, or combustion products may cover the catalyst metal. On the other hand, in method (b), the problems of oxidation and corrosion on the surface of parts are almost eliminated by the presence of the carrier layer. However, although the influence of combustion products is reduced, since the catalyst metal is concentrated on the surface, it cannot be said that reactions with combustion products can be sufficiently eliminated.Next, as a method for supporting catalyst metal, The following methods are used: i) A method of coating and firing a catalytic metal salt; h) A method of supporting a catalytic metal by sputtering, plating, etc.; however, in both methods, the entire part is placed in a furnace or tank during the supporting process. Generally, there are only a few parts of the part that need to be catalyzed, which is extremely inefficient, leading to high costs and low productivity. In addition, the catalytic process often causes adverse effects on parts other than the catalyzed parts, such as corrosion due to pretreatment and distortion and deterioration due to firing.

(3)発明の目的 本発明は、以上の如き従来技術の現状に鑑み、燃焼機関
用燃焼、排気系部品の表面を触媒化するに当り、そうし
た部品の触媒耐久性全向上せしめるとともに、生産性、
コストヲ改善することを目的とする。
(3) Purpose of the Invention In view of the current state of the prior art as described above, the present invention aims to completely improve the durability of the catalyst in combustion engine combustion and exhaust system parts and improve productivity when catalyzing the surfaces of combustion engine and exhaust system parts. ,
The purpose is to improve costs.

(4)  発明の目的 そして、上記目的を達成する本発明は、燃焼機関用燃焼
、排気系部品の表面の触媒1ヒ必要部分に、触媒金属を
担持した耐熱セラミック粉末を溶射して触媒層を形成す
ることを特徴とする。
(4) Object of the Invention The present invention achieves the above object by thermally spraying a heat-resistant ceramic powder supporting a catalytic metal to form a catalytic layer on the surface of combustion and exhaust system parts for a combustion engine where a catalyst is required. It is characterized by forming.

本発明の適用対象である燃焼機関の燃焼系部品としては
ピストンヘッド、バルブ、シリンダヘッド(上部)、シ
リンダヘッド、ディーゼルチャンドアグロープラグなど
、排気系部品としてはエキゾーストボート、エキゾース
トスニホールド、0□センサ、エキゾーストハイプ、エ
キゾーストマフラなどがあり、これらの材質は一般に鋼
、鋳鉄。
Combustion system parts of combustion engines to which the present invention is applied include piston heads, valves, cylinder heads (upper part), cylinder heads, diesel chand glow plugs, etc. Exhaust system parts include exhaust boats, exhaust snifolds, 0□ There are sensors, exhaust pipes, exhaust mufflers, etc., and these materials are generally steel or cast iron.

アルミ合金、セラミックなどであるが特に限定されるも
のではない。
Examples include aluminum alloy, ceramic, etc., but are not particularly limited.

本発明に用いる溶射材料は、第1図に示す如く、耐熱セ
ラミック粉末2−1の表面に触媒金属2−2を担持した
ものである。耐熱セラミック粉末としては、A’203
 s Al2O3・MgO、ZrO2(安定化剤として
のY2O3、CaO、MgOなどを含む)などが使用で
き、その粒度は通常の溶射用粉末の粒度と同一でよく、
通常100メツシコ以下のものを用いる。触媒金属とし
ては、一般に触媒として使用されているものを使用でき
る。例えば、白金。
The thermal spray material used in the present invention, as shown in FIG. 1, is one in which a catalyst metal 2-2 is supported on the surface of a heat-resistant ceramic powder 2-1. As a heat-resistant ceramic powder, A'203
s Al2O3・MgO, ZrO2 (including Y2O3, CaO, MgO, etc. as stabilizers), etc. can be used, and the particle size may be the same as that of ordinary thermal spray powder,
Usually less than 100 meth is used. As the catalytic metal, those commonly used as catalysts can be used. For example, platinum.

パラジウム、ロジウムなどの単味または合金その他があ
る。触媒金属の担持量は耐熱セラミック粉末の重量の0
.5〜5%が適轟である。このような溶射材料を、第2
図の如く、燃焼機関の部品の触媒化を欲する部分1に溶
射して触媒層2を形成する。触媒層は1層厚20〜30
0μm、気孔率0.5〜20係、細孔径0.01〜10
μmの程度にすることが適轟であり、好ましい。
There are single substances such as palladium and rhodium, alloys, and others. The amount of catalyst metal supported is 0 of the weight of the heat-resistant ceramic powder.
.. 5-5% is suitable. This kind of thermal spray material is applied to the second
As shown in the figure, a catalyst layer 2 is formed by thermal spraying on a portion 1 of a combustion engine component where catalyticization is desired. Each catalyst layer has a thickness of 20 to 30 mm
0 μm, porosity 0.5-20, pore diameter 0.01-10
It is appropriate and preferable to make the thickness on the order of μm.

本発明の燃焼機関用部品を製造するに当っては、溶射前
の部品表面を洗浄(脱脂)、ブラスティングなど通常の
前処理工程を経た後、触媒金属をコーティングした耐熱
セラミック粉末を溶射する。
In manufacturing the combustion engine parts of the present invention, the surfaces of the parts are subjected to normal pretreatment steps such as cleaning (degreasing) and blasting before thermal spraying, and then heat-resistant ceramic powder coated with catalytic metal is thermally sprayed.

好ましくはプラズマ溶射法、ガス粉末式溶射法で溶射す
ゐ。又、耐熱セラミック粉末に触媒金属を溶射する方法
としては、例えば、イ)触媒金属(合金)の塩化物溶液
に耐熱セラミック粉末を入れ、攪拌、浸漬後、乾燥、焼
成する二口)耐熱セラミック粉末にγ−アルミナをコー
ティングし、更にイ)で触媒金属をコーティングする;
またはハ)電気めっき法によりコーティングする0尚、
以上は部品基材1に直接に触媒金属上コーティングした
耐熱セラミック粉末を溶射したが、第3図に示す如く、
部品基材1上に先ずアンダーコー)#3’を形成(溶射
)後に、触媒金属をコーティングした耐熱セラミック粉
末を溶射してもよい。これは、基材1と触媒溶射層2と
の密着性が悪い場合とか、それらの間の熱膨張率の差が
大きい場合、基材1の耐熱、耐食性が弱い場合などに有
利である。アンダーコー)1のi科としては、モリブデ
ン、 Ni −Cr 、 Ni −AI 、 Ni −
Cr−Aj2゜Ni −Cr −Aj? −Y 、 C
o−Cr −Ae−Yなどがよく使用される。
Thermal spraying is preferably done by plasma spraying or gas powder spraying. In addition, methods for thermally spraying catalyst metal onto heat-resistant ceramic powder include, for example, (1) adding heat-resistant ceramic powder to a chloride solution of catalyst metal (alloy), stirring, dipping, drying, and firing; and (2) heat-resistant ceramic powder. Coating with γ-alumina and further coating with a catalyst metal with a);
or c) coating by electroplating method,
In the above, the heat-resistant ceramic powder coated on the catalyst metal was directly sprayed onto the component base material 1, but as shown in Fig. 3,
After first forming (spraying) undercoat #3' on the component base material 1, heat-resistant ceramic powder coated with a catalyst metal may be thermally sprayed. This is advantageous when the adhesion between the base material 1 and the catalyst sprayed layer 2 is poor, when the difference in coefficient of thermal expansion between them is large, or when the base material 1 has poor heat resistance and corrosion resistance. The i family of Underco) 1 includes molybdenum, Ni-Cr, Ni-AI, Ni-
Cr-Aj2゜Ni-Cr-Aj? -Y, C
o-Cr-Ae-Y etc. are often used.

(5)発明の実施例 実施例1 厚さ0.3−の5US310Sステンレススチール板を
長軸中8馴、短軸巾3關、刻み巾0.8 rrmのメタ
ルクスに7IOヱシたものを用い、これをトリクレン蒸
気浴にて脱脂し、両面に60番の焼成アルミナt 5 
kg / crtiの圧力でプラストした。次にこの基
材の上に8ONi−20Cr合金粉末t(粘匿10μm
〜150μ雇)をプラズマ溶射法により約30μmの厚
さに溶射した。更にこの上から2チの白金をコーティン
グしたアルミナ粉末(10〜80μ)=1=プラズマ溶
射法により約50μ訃の厚さに溶射した。
(5) Embodiments of the Invention Example 1 A 5US310S stainless steel plate with a thickness of 0.3 mm was used with 7 IO holes in a metal box with a long axis width of 8 mm, a short axis width of 3 mm, and a notch width of 0.8 rrm. This was degreased in a triclene steam bath and coated with No. 60 calcined alumina T5 on both sides.
Plasted at a pressure of kg/crti. Next, on this base material, 8ONi-20Cr alloy powder t (viscosity 10 μm
~150μm) was sprayed to a thickness of about 30μm by plasma spraying. Furthermore, 2 layers of platinum-coated alumina powder (10 to 80 .mu.m) = 1 was sprayed by plasma spraying to a thickness of about 50 .mu.m.

次いでこれを径30M、厚さ50mmに巻き成形した。Next, this was wound and formed into a diameter of 30M and a thickness of 50mm.

なお、アルミナ粉末への白金コーティングはジニトロジ
アミン白金[、P t (NH8)2 (No□)2〕
溶液にアルミナ粉末を浸漬し、乾燥した後500℃の温
度で30分焼成するという工程で行なった。
The platinum coating on alumina powder is dinitrodiamine platinum [, P t (NH8)2 (No□)2]
The process involved immersing alumina powder in a solution, drying it, and then firing it at a temperature of 500°C for 30 minutes.

参考例1 プラス)tでは実施例1と同様の方法で行ない、メタル
ラスの単位表面積当り実施例1と同量の白金をスパッタ
リングによりコーティングし、実施例1と同様に巻き成
形した○ 参考例2 白金をコーティングしないアルミナ粉末全溶射する以外
は実施例1と同様の巻き成形品を得た。
Reference Example 1 Plus) T was carried out in the same manner as in Example 1, and the same amount of platinum as in Example 1 was coated per unit surface area of the metal lath by sputtering, and rolled and formed in the same manner as in Example 1.○ Reference Example 2 Platinum A rolled product was obtained in the same manner as in Example 1, except that the alumina powder was not coated and the entire surface was thermally sprayed.

この後、実施例1でアルミナ粉末へコーティングしたと
同様な方法で実施例1と同量の白金を巻き成形品に担持
した。
Thereafter, the same amount of platinum as in Example 1 was supported on the wound molded product in the same manner as in Example 1 in which the alumina powder was coated.

担持後、断面のpt担持深さftEPMAにて測定した
結果、約10μmの深さであった。
After the support, the pt support depth of the cross section was measured using ftEPMA, and the depth was approximately 10 μm.

実施例2 実施例1及び参考例1,2で作成した触媒巻き成形品を
用いて、ミニリアクターにより触媒油性の評価を行なっ
た。
Example 2 Using the catalyst-wrapped molded products prepared in Example 1 and Reference Examples 1 and 2, the catalyst oiliness was evaluated in a mini reactor.

評価条件は次の通りである。The evaluation conditions are as follows.

入ガス量:ioz/分 (S、V、値17000Hr−
’)入ガス組成: C3HB  200 ppmC3H
6g 00 ppm C01qb CO210チ 0□   2チ H2010係 N2Ba1ance 大ガス温度:150〜450℃(連続変化ンこの結果を
表1に示す(新品)。
Gas input amount: ioz/min (S, V, value 17000Hr-
') Input gas composition: C3HB 200 ppmC3H
6g 00 ppm C01qb CO210chi0□2chiH2010N2Ba1ance Large gas temperature: 150-450°C (continuous change) The results are shown in Table 1 (new).

次にこの触媒’11988ccのガソリン機関の排気管
内に装着し、900 Hr運転した(燃料:オクタン価
93の無鉛ガソリン)。運転中の触媒入口温度は400
〜670℃、空燃比は13.5〜20.5であった。運
転終了後、触媒を取り出して前述のミニリアクタ評価を
行なった結果を表1に示す。
Next, this catalyst was installed in the exhaust pipe of a 11988 cc gasoline engine and operated for 900 hours (fuel: unleaded gasoline with an octane number of 93). The catalyst inlet temperature during operation is 400
The temperature was ~670°C, and the air-fuel ratio was 13.5-20.5. After the operation was completed, the catalyst was taken out and the mini-reactor evaluation described above was performed. Table 1 shows the results.

以下余白 参考例1の触媒は運転後のX線マイクロアナライザーに
よる表面観察では燃焼成虫物と基材表面の酸化、腐食に
より白金が見当らなかった。
In the surface observation of the catalyst of Reference Example 1 using an X-ray microanalyzer after operation, no platinum was found due to combustion adult particles and oxidation and corrosion of the substrate surface.

参考例2の触媒では、触媒表面より約20μmの深さま
でイオウ、リンなどの侵入が見られた。
In the catalyst of Reference Example 2, intrusion of sulfur, phosphorus, etc. was observed to a depth of about 20 μm from the catalyst surface.

(実施例1も同様) 実施例3 実施例1と同じミニ9アクタ−を用い、今度はガス回路
全閉じて、ノルマルセタン(n−C,6H34)を注入
し、触媒床温度を20〜1000℃まで上昇させた場合
の燃焼温度(理論CO□発生量の80係−を発生する温
度)を求めた。この結果を@2表に示す。
(Similar to Example 1) Example 3 Using the same Mini 9 Actor as in Example 1, this time the gas circuit was completely closed, normal cetane (n-C, 6H34) was injected, and the catalyst bed temperature was adjusted to 20 to 1000. The combustion temperature (temperature at which 80 times the theoretical CO□ generation amount is generated) when raised to ℃ was determined. The results are shown in Table @2.

以上の説明から明らかな通り、本発明により、従来より
触媒の耐久性が高くかつ生産性も高いガソリンエンジン
やディーゼルエンジン等の燃焼または排気系触媒化部品
が提供され、排気浄化や燃焼性の向上に寄与することが
できる。
As is clear from the above explanation, the present invention provides combustion or exhaust system catalytic parts for gasoline engines, diesel engines, etc., which have higher catalyst durability and higher productivity than conventional ones, and improve exhaust purification and combustibility. can contribute to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用する溶射粉末の模式断面図、第2
図は本発明の触媒化部品の部分の模式断面図、第3図は
本発明の別の触媒化部品の部分の模式断面図である。 1・・・・・・部品基材、2・・・・・・触媒層、2−
1・・・・・・耐熱セラミック粉末、2−2・・・・・
・触媒金属、3・・・・・・アンダーコート層。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 宮 木    朗 弁理士 西 舘 和 之 弁理士 古 賀 哲 次 弁理士 山 口 昭 之
Figure 1 is a schematic cross-sectional view of the thermal spray powder used in the present invention;
The figure is a schematic sectional view of a portion of a catalyzed component of the present invention, and FIG. 3 is a schematic sectional view of a portion of another catalyzed component of the present invention. 1... Part base material, 2... Catalyst layer, 2-
1...Heat-resistant ceramic powder, 2-2...
- Catalyst metal, 3...undercoat layer. Patent applicant Toyota Motor Corporation Patent agent Akira Miyagi Patent attorney Kazuyuki Nishidate Patent attorney Tetsuji Koga Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼機関用燃焼系または排気系部品の所要部分に、
触媒金属を担持した耐熱セラミック粉末を溶射して成る
触媒層を有することを特徴とする燃焼機関用部品。
1. In the necessary parts of the combustion system or exhaust system parts for combustion engines,
A combustion engine component characterized by having a catalyst layer formed by thermally spraying heat-resistant ceramic powder supporting a catalyst metal.
JP58022064A 1983-02-15 1983-02-15 Parts used in combustion engine Pending JPS59150948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58022064A JPS59150948A (en) 1983-02-15 1983-02-15 Parts used in combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58022064A JPS59150948A (en) 1983-02-15 1983-02-15 Parts used in combustion engine

Publications (1)

Publication Number Publication Date
JPS59150948A true JPS59150948A (en) 1984-08-29

Family

ID=12072466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58022064A Pending JPS59150948A (en) 1983-02-15 1983-02-15 Parts used in combustion engine

Country Status (1)

Country Link
JP (1) JPS59150948A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142246A (en) * 1987-11-26 1989-06-05 Adiabatics Inc Combustion-chamber component of internal combustion engine on which heat-insulating coating is executed
US4972811A (en) * 1987-02-28 1990-11-27 Robert Bosch Gmbh Ignition device with lowered ignition temperature
FR2764342A1 (en) * 1996-03-22 1998-12-11 Sumitomo Metal Mining Co Combustion method in internal combustion engine using gasoline, methanol, LPG
WO2001034950A1 (en) * 1999-11-10 2001-05-17 Engelhard Corporation METHOD AND APPARATUS TO PROVIDE REDUCTANT FOR NO¿x?
DE10029810A1 (en) * 2000-06-16 2001-12-20 Mahle Gmbh Piston for diesel engine; has steel base with combustion mould and has thermal sprayed NiCrAl, CoCrAl or FeCrAl alloy coating, which is thicker at mould edge
WO2014198896A1 (en) * 2013-06-14 2014-12-18 Ks Kolbenschmidt Gmbh Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134562A (en) * 1981-02-13 1982-08-19 Hitachi Heating Appliance Co Ltd Self-cleanable coating layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134562A (en) * 1981-02-13 1982-08-19 Hitachi Heating Appliance Co Ltd Self-cleanable coating layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972811A (en) * 1987-02-28 1990-11-27 Robert Bosch Gmbh Ignition device with lowered ignition temperature
JPH01142246A (en) * 1987-11-26 1989-06-05 Adiabatics Inc Combustion-chamber component of internal combustion engine on which heat-insulating coating is executed
FR2764342A1 (en) * 1996-03-22 1998-12-11 Sumitomo Metal Mining Co Combustion method in internal combustion engine using gasoline, methanol, LPG
WO2001034950A1 (en) * 1999-11-10 2001-05-17 Engelhard Corporation METHOD AND APPARATUS TO PROVIDE REDUCTANT FOR NO¿x?
DE10029810A1 (en) * 2000-06-16 2001-12-20 Mahle Gmbh Piston for diesel engine; has steel base with combustion mould and has thermal sprayed NiCrAl, CoCrAl or FeCrAl alloy coating, which is thicker at mould edge
US6877473B2 (en) 2000-06-16 2005-04-12 Mahle Gmbh Diesel engine piston
WO2014198896A1 (en) * 2013-06-14 2014-12-18 Ks Kolbenschmidt Gmbh Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer
CN105431624A (en) * 2013-06-14 2016-03-23 Ks科尔本施密特有限公司 Method for producing an oxidation protection layer for a piston for use in internal combustion engines and piston having an oxidation protection layer

Similar Documents

Publication Publication Date Title
SU1011035A3 (en) Molded carrier of catalyst for purifying exhaust gases of internal combustion engine and method for its use
JPH02211255A (en) Lamination-layer supporting body for bed of contact combustion reactor
US20010049936A1 (en) System for reduction of harmful exhaust emissions from diesel engines
JP4548968B2 (en) Ceramic support and ceramic catalyst body
US7846865B2 (en) Catalyst for purifying exhaust gas
JPH03295184A (en) Resistance adjustment type heater and catalyst converter
JP2018534427A (en) Fabrication method using insulated engine parts and ceramic coating
JP2008200675A (en) Thermal spray process for adhering catalyst material to metallic substrate
JPH04277481A (en) Heater of resistance adjustment type
US4196099A (en) Catalyst comprising a metal substrate
US3640755A (en) Coatings for automotive exhaust gas reactors
JP2007521946A (en) Coated metal substrate
US5234882A (en) Catalyst and preparation thereof
JPS59150948A (en) Parts used in combustion engine
Su et al. Structured glass catalytic coating on wire mesh for particulate matter (PM) removal by modified sol-gel processing
US4299192A (en) Catalytic combustion
US7527048B2 (en) Catalytic combustion surfaces and method for creating catalytic combustion surfaces
JPH04366584A (en) Resistance regulating type heater and heater unit
JPS6155313A (en) Combustion chamber wall structure of internal-combustion engine
JPH04265155A (en) Catalyst for purification of exhaust gas
JPS6344944A (en) Preparation of catalyst carrier for purifying exhaust gas
JPS62237944A (en) Metal carrier catalyst
JP2531641B2 (en) Contact combustion catalyst
JPH07179862A (en) Preventing method for deposition of thermal decomposition product of hydrocarbon fluid and article with coated metal surface
JPH10192715A (en) Structure for carrying exhaust gas purifying catalyst and catalytic structure with the catalyst deposited on the structure