JPH04366584A - Resistance regulating type heater and heater unit - Google Patents
Resistance regulating type heater and heater unitInfo
- Publication number
- JPH04366584A JPH04366584A JP3167645A JP16764591A JPH04366584A JP H04366584 A JPH04366584 A JP H04366584A JP 3167645 A JP3167645 A JP 3167645A JP 16764591 A JP16764591 A JP 16764591A JP H04366584 A JPH04366584 A JP H04366584A
- Authority
- JP
- Japan
- Prior art keywords
- heater
- resistance
- slit
- honeycomb structure
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001105 regulatory effect Effects 0.000 title 1
- 230000007246 mechanism Effects 0.000 claims description 32
- 238000005524 ceramic coating Methods 0.000 claims description 29
- 125000006850 spacer group Chemical group 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 239000000919 ceramic Substances 0.000 claims description 17
- 230000005611 electricity Effects 0.000 claims description 9
- 238000004534 enameling Methods 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000005192 partition Methods 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- -1 A-20 Chemical compound 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 210000003298 dental enamel Anatomy 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 101150002418 cpi-2 gene Proteins 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910003158 γ-Al2O3 Inorganic materials 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000982035 Sparattosyce Species 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910008947 W—Co Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000271 synthetic detergent Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2013—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Resistance Heating (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、自動車排ガスの浄化等
に好適に用いることができる抵抗調節型ヒーター及びヒ
ーターユニットに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance-adjustable heater and a heater unit that can be suitably used for purifying automobile exhaust gas.
【0002】0002
【従来の技術】最近になり、自動車等の内燃機関から排
出される排気ガス中の窒素酸化物(NOX )、一酸化
炭素(CO)、炭化水素(HC)を浄化するための触媒
、触媒担体等として、従来公知の多孔質セラミックハニ
カム構造体のほかに、金属ハニカム構造体が注目を集め
るようになってきた。一方、排ガス規制の強化に伴ない
、コールドスタート時のエミッションを低減するヒータ
ー等の開発も切望されている。[Prior Art] Recently, catalysts and catalyst carriers have been developed for purifying nitrogen oxides (NOX), carbon monoxide (CO), and hydrocarbons (HC) in exhaust gas emitted from internal combustion engines such as automobiles. In addition to the conventionally known porous ceramic honeycomb structures, metal honeycomb structures have started to attract attention. On the other hand, as exhaust gas regulations become stricter, there is a strong need for the development of heaters that reduce emissions during cold starts.
【0003】このようなハニカム構造体として、例えば
実開昭63−67609号公報に記載の技術が知られて
いる。この実開昭63−67609号公報には、セラミ
ック製主モノリス触媒の上流側に近接させてメタル担体
にアルミナをコートした電気通電可能なメタルモノリス
触媒を配設した触媒コンバーターが開示されている。[0003] As such a honeycomb structure, the technique described in, for example, Japanese Utility Model Application Publication No. 63-67609 is known. This Japanese Utility Model Publication No. 63-67609 discloses a catalytic converter in which an electrically conductive metal monolith catalyst having a metal carrier coated with alumina is disposed close to the upstream side of a ceramic main monolith catalyst.
【0004】0004
【発明が解決しようとする課題】しかしながら、実開昭
63−67609号公報記載の触媒コンバーターにおい
ては、主モノリス触媒の上流側に近接させて配設したプ
レヒーターとしてのメタルモノリス触媒は、単にフォイ
ルタイプのメタルハニカム構造体の内周から外周へ通電
し発熱させるものであって、その抵抗が調節されておら
ず(即ち、材質、寸法、リブ厚が規定されるのみで、所
望の抵抗が調節されていない)、昇温特性が不十分であ
るという問題があった。However, in the catalytic converter described in Japanese Utility Model Application Publication No. 63-67609, the metal monolith catalyst as a preheater disposed close to the upstream side of the main monolith catalyst is simply a foil. This type of metal honeycomb structure generates heat by passing electricity from the inner periphery to the outer periphery, and the resistance is not adjusted (in other words, the desired resistance is adjusted only by specifying the material, dimensions, and rib thickness). However, there was a problem that the temperature increase characteristics were insufficient.
【0005】そこで、本出願人は、先に、ハニカム構造
体に通電のための少なくとも2つの電極を設けるととも
に、該電極間に抵抗調節機構を有するヒーターを提案し
た(特願平2−96866号)。このヒーターは、その
スリットの外周部にジルコニア系の耐熱性無機接着剤を
充填し、スリット間を絶縁している。このヒーターによ
れば、所望の発熱性を制御でき、かつ自動車排ガスのコ
ールドスタート時のエミッション低減に有用である。本
出願人はまた、ハニカム構造体の外周に設けたスリット
にアルミナ質等のセラミックからなる絶縁部材(スペー
サー)をセットして絶縁部を形成したヒーター、また、
ハニカムヒーターの外周部をセラミック質のマット、ク
ロス等の絶縁物質を介在させ金属質バンドで被覆するこ
とによりハニカムヒーターを保持する方法などを提案し
た(特願平3−15880号)。さらに特願平3−15
880号には、バンドやリング自体を、例えばAl2
O3 やZrO2 を溶射してセラミックコーティング
し、バンド及びリング表面に絶縁保護膜を形成する方法
も開示されている。上記したいずれの方法もヒーターの
抵抗調節機構を絶縁して保護する手法を示すものである
が、自動車の苛酷な運転条件下(特に、振動と熱衝撃)
においては、破壊される恐れがあり、実用上問題がある
。[0005] Therefore, the applicant of the present invention previously proposed a heater in which a honeycomb structure is provided with at least two electrodes for energizing, and a resistance adjustment mechanism is provided between the electrodes (Japanese Patent Application No. 96866/1999). ). In this heater, the outer periphery of the slits is filled with a zirconia-based heat-resistant inorganic adhesive to insulate the slits. According to this heater, the desired heat generation property can be controlled, and it is useful for reducing emissions of automobile exhaust gas at the time of cold start. The present applicant has also proposed a heater in which an insulating member (spacer) made of ceramic such as alumina is set in a slit provided on the outer periphery of a honeycomb structure, and an insulating part is formed.
A method of holding a honeycomb heater by covering the outer periphery of the honeycomb heater with a metallic band with an insulating material such as a ceramic mat or cloth interposed therebetween was proposed (Japanese Patent Application No. 15880/1999). Furthermore, the patent application Hei 3-15
In No. 880, the band or ring itself is made of Al2, for example.
A method of forming an insulating protective film on the band and ring surfaces by thermally spraying O3 or ZrO2 to form a ceramic coating is also disclosed. All of the above-mentioned methods are methods for insulating and protecting the resistance adjustment mechanism of the heater;
In this case, there is a risk of destruction, which poses a practical problem.
【0006】[0006]
【課題を解決するための手段】本発明は上記の問題を解
決し、苛酷な運転条件下においても短絡を防止しその抵
抗調節機能を充分に発現させることができる抵抗調節型
ヒーター及びヒーターユニットを提供することを目的と
するものである。即ち、本発明によれば、多数の貫通孔
を有するハニカム構造体に通電のための少なくとも2つ
の電極を設けるとともに、該電極間に抵抗調節機構を設
けてなる抵抗調節型ヒーターであって、該抵抗調節機構
を形成する少なくとも一部分に絶縁性を有するセラミッ
クコーティングを施したことを特徴とする抵抗調節型ヒ
ーター、および、多数の貫通孔を有するハニカム構造体
に通電のための少なくとも2つの電極を設けるとともに
、該電極間に抵抗調節機構たるスリットを設けてなる抵
抗調節型ヒーターであって、該スリットの外周部に絶縁
性セラミックコーティングされた金属質のスペーサーを
挿入したことを特徴とする抵抗調節型ヒーター、が提供
される。[Means for Solving the Problems] The present invention solves the above problems and provides a resistance-adjustable heater and a heater unit that can prevent short circuits and fully exhibit its resistance-adjusting function even under severe operating conditions. The purpose is to provide That is, according to the present invention, there is provided a resistance adjustment type heater in which a honeycomb structure having a large number of through holes is provided with at least two electrodes for supplying electricity, and a resistance adjustment mechanism is provided between the electrodes. A resistance adjustment type heater characterized in that at least a portion forming a resistance adjustment mechanism is coated with an insulating ceramic coating, and a honeycomb structure having a large number of through holes is provided with at least two electrodes for supplying electricity. Also, a resistance-adjustable heater comprising a slit serving as a resistance-adjusting mechanism between the electrodes, the resistance-adjustable heater comprising a metallic spacer coated with an insulating ceramic inserted into the outer periphery of the slit. A heater is provided.
【0007】また、本発明によれば、多数の貫通孔を有
するハニカム構造体に通電のための少なくとも2つの電
極を設けるとともに、該電極間に抵抗調節機構を設けて
なる抵抗調節型ヒーターを金属質からなる缶体に保持し
てなるヒーターユニットであって、該抵抗調節機構を形
成する少なくとも一部分にあるいは該抵抗調節機構を形
成する少なくとも一部分と該缶体に絶縁性を有するセラ
ミックコーティングを施したことを特徴とするヒーター
ユニット、および、多数の貫通孔を有するハニカム構造
体に通電のための少なくとも2つの電極を設けるととも
に、該電極間に抵抗調節機構たるスリットを設けてなる
抵抗調節型ヒーターを金属質からなる缶体に保持してな
るヒーターユニットであって、該スリットの外周部に絶
縁性セラミックコーティングされた金属質のスペーサー
を挿入するとともに、該缶体に絶縁性を有するセラミッ
クコーティングを施したことを特徴とするヒーターユニ
ット、が提供される。本発明の抵抗調節型ヒーター、ヒ
ーターユニットとしては、さらに抵抗調節型ヒーターの
外周部に絶縁性を有するセラミックコーティングを施す
ことが好ましく、また、セラミックコーティングはほう
ろう加工(ほうろうがけ)により施されることが好まし
い。さらに、抵抗調節機構はスリットとすることが好ま
しい。Further, according to the present invention, a resistance adjustment type heater is provided in which a honeycomb structure having a large number of through holes is provided with at least two electrodes for supplying electricity, and a resistance adjustment mechanism is provided between the electrodes. A heater unit held in a can body made of aluminum, wherein at least a portion forming the resistance adjustment mechanism or at least a portion forming the resistance adjustment mechanism and the can body are coated with an insulating ceramic coating. and a resistance-adjustable heater comprising at least two electrodes for supplying electricity to a honeycomb structure having a large number of through-holes, and a slit serving as a resistance-adjusting mechanism between the electrodes. A heater unit held in a metallic can body, in which a metallic spacer coated with an insulating ceramic is inserted into the outer periphery of the slit, and the can body is coated with an insulating ceramic coating. A heating unit is provided, which is characterized by: In the resistance-adjustable heater and heater unit of the present invention, it is preferable that an insulating ceramic coating is further applied to the outer periphery of the resistance-adjustable heater, and the ceramic coating may be applied by enameling. is preferred. Furthermore, it is preferable that the resistance adjustment mechanism is a slit.
【0008】[0008]
【作用】本発明は、スリット等の抵抗調節機構を有する
ヒーターにおいて、苛酷な運転条件下においても短絡を
防止しその抵抗調節機能を充分に発現させるために、抵
抗調節機構を形成する少なくとも一部分に絶縁性を有す
るセラミックコーティングを施すか、及び/または、抵
抗調節機構たるスリットの外周部に絶縁性セラミックコ
ーティングされた金属質のスペーサーを挿入してなる抵
抗調節型ヒーターである。また、これらの抵抗調節型ヒ
ーターを金属質からなる缶体に保持してなるヒーターユ
ニットの場合には、さらに缶体に絶縁性を有するセラミ
ックコーティングを施すものである。本発明の抵抗調節
型ヒーター、ヒーターユニットは、上記のような構成で
あるため、自動車の苛酷な運転条件下においてもスリッ
ト等の抵抗調節機構の絶縁性を確実に保持することがで
きる。[Function] In order to prevent a short circuit even under severe operating conditions in a heater having a resistance adjustment mechanism such as a slit, and to fully exhibit its resistance adjustment function, the present invention provides at least a portion forming the resistance adjustment mechanism. This is a resistance adjustment type heater which is coated with an insulating ceramic coating and/or has a metal spacer coated with an insulating ceramic inserted into the outer periphery of a slit serving as a resistance adjustment mechanism. In the case of a heater unit in which these resistance-adjustable heaters are held in a metal can, the can is further coated with an insulating ceramic coating. Since the resistance-adjustable heater and heater unit of the present invention have the above-described configuration, the insulation of the resistance-adjustable mechanism such as the slit can be reliably maintained even under severe driving conditions of an automobile.
【0009】次に、本発明において、スリット等抵抗調
節機構の抵抗調節機能を充分に発現させるための絶縁性
を有するセラミックコーティングについて説明する。本
発明では、抵抗調節機構を形成する部分に絶縁性を有す
るセラミックコーティングを施す。ここで抵抗調節機構
がスリットの場合、運転中にハニカム構造体のセルが変
形し、スリットを隔てたリブ(隔壁)が接触する危険が
あるため、スリット部にセラミックコーティングするこ
とが必要である。この場合、図2に示すように、スリッ
ト部10全域にコーティング12を施しても良いが、簡
易に使用するためには、外周部分11から10mm程度
コーティングして絶縁するだけでもよい。また、スリッ
ト部10全体を封止するようにセラミックコーティング
12を施すと、そこからのガスの吹き抜けが防止でき、
好ましい。[0009] Next, in the present invention, a ceramic coating having an insulating property for fully expressing the resistance adjustment function of the resistance adjustment mechanism such as a slit will be explained. In the present invention, an insulating ceramic coating is applied to the portion forming the resistance adjustment mechanism. If the resistance adjustment mechanism is a slit, there is a risk that the cells of the honeycomb structure will deform during operation and the ribs (partition walls) separating the slits may come into contact with each other, so it is necessary to apply ceramic coating to the slit portions. In this case, as shown in FIG. 2, the coating 12 may be applied to the entire slit portion 10, but for simple use, it is sufficient to coat about 10 mm from the outer peripheral portion 11 for insulation. Furthermore, by applying the ceramic coating 12 to seal the entire slit portion 10, gas can be prevented from blowing through there.
preferable.
【0010】また、本発明では、さらにハニカム構造体
の外周部、例えば、上側面、下側面または外側面に、セ
ラミックコーティングを施すことが好ましい。即ち、ヒ
ーターが缶体、あるいはヒーターを缶体に保持する保持
部材と接触する可能性のある個所、部分にはセラミック
コーティングすることが、短絡防止の点で好ましい。さ
らに、本発明においては、図3のように、絶縁性の確保
およびヒーターの変形防止の観点から、抵抗調節機構た
るスリット部10にスペーサー13を挿入することが好
ましい。スペーサーの材質としては、通常アルミナ質等
のセラミック質からなるスペーサーが考えられるが、セ
ラミック質の場合、固くて脆いため破損し易いという欠
点がある。一方、金属質の部材にセラミックコーティン
グしたスペーサーはそのもの自体が金属の性質を示すた
めに破損の恐れがなく、好ましい。またこの場合、金属
質の部材はヒーター本体の材質と同程度の熱膨張を示す
ものであることが望ましい。Further, in the present invention, it is preferable that a ceramic coating is further applied to the outer peripheral portion of the honeycomb structure, for example, the upper surface, lower surface, or outer surface. That is, from the viewpoint of preventing short circuits, it is preferable to apply a ceramic coating to areas or portions where the heater may come into contact with the can body or the holding member that holds the heater in the can body. Further, in the present invention, as shown in FIG. 3, from the viewpoint of ensuring insulation and preventing deformation of the heater, it is preferable to insert a spacer 13 into the slit portion 10 serving as the resistance adjustment mechanism. As a material for the spacer, a spacer made of ceramic such as alumina is usually considered, but ceramic is hard and brittle and has the disadvantage of being easily damaged. On the other hand, a spacer made of a metallic member coated with a ceramic is preferable because it exhibits the properties of metal and is free from damage. Further, in this case, it is desirable that the metallic member exhibits the same degree of thermal expansion as the material of the heater body.
【0011】ここで、スペーサーの構造としては特に限
定されないが、図4〜図6に示す通り、ヒーターの外周
から10mm程度挿入する構造(図4)、スリット全体
に挿入する構造(図5)、ヒーターの外側面を一体的に
保持する構造(図6)等、各種の構造が考えられる。上
記のうち、図4のスペーサーは簡易性から好ましく、図
5のスペーサーはスリット部のガス吹き抜け防止の点か
ら好ましく、図6のスペーサーはハニカム構造体の振動
による変形を防止できる点から好ましい。[0011] Here, the structure of the spacer is not particularly limited, but as shown in Figs. 4 to 6, a structure in which it is inserted about 10 mm from the outer periphery of the heater (Fig. 4), a structure in which it is inserted in the entire slit (Fig. 5), Various structures are possible, such as a structure that integrally holds the outer surface of the heater (FIG. 6). Among the above, the spacer shown in FIG. 4 is preferable because of its simplicity, the spacer shown in FIG. 5 is preferable from the viewpoint of preventing gas from blowing through the slit portion, and the spacer shown in FIG. 6 is preferable from the viewpoint of preventing deformation of the honeycomb structure due to vibration.
【0012】なお、本発明においては、スリット部にセ
ラミックコーティングし、さらにスリット部にスペーサ
ーを挿入することが好ましいが、どちらか一方の絶縁処
理であっても十分に機能を発現するものである。本発明
におけるセラミックコーティングとしては、例えば溶射
、化学気相蒸着法(CVD)、物理気相蒸着法(PVD
)、ほうろう加工、ディップ法等を挙げることができる
が、簡易で耐熱性、耐熱衝撃性に優れることからほうろ
う加工が好ましい。[0012] In the present invention, it is preferable to apply a ceramic coating to the slit portion and further insert a spacer into the slit portion, but even if either one of them is insulated, the function can be fully expressed. Examples of the ceramic coating in the present invention include thermal spraying, chemical vapor deposition (CVD), and physical vapor deposition (PVD).
), enameling, dipping, etc., but enameling is preferred because it is simple and has excellent heat resistance and thermal shock resistance.
【0013】ほうろう加工は、例えば次のように実施さ
れる。所望の耐熱フリットに、耐火性物質としてアルミ
ナ、クロミヤ、溶融シリカ、粘土、その他と必要に応じ
て酸、アルカリ等の解膠剤を添加し、泥漿状スリップを
得る。一方、金属質からなる基材はその表面をサンドブ
ラスト等によって面出しし、さらに酸や合成洗剤等によ
って洗浄した後、これに上記の泥漿状スリップをスプレ
ー掛け、浸し掛け、ハケ塗り等により施釉する。次いで
、施釉後、乾燥工程を経て、焼成炉にて通常大気中60
0〜1150℃の温度で焼成することにより、金属質基
材上へのほうろう加工が施される。ここで代表的な釉薬
種としては、例えばN.B.S.(米国のビューロー・
オブ・スタンダード)のA−19、A−20、A−55
m、A−19H、A−417、A−520、M37〜M
41、M13、M43等が挙げられる。M13等は施釉
後1350℃程度のH2 雰囲気で焼成する。[0013] Enameling is carried out, for example, as follows. A refractory material such as alumina, chromia, fused silica, clay, etc. and, if necessary, a deflocculant such as acid or alkali are added to the desired heat-resistant frit to obtain a slip-like slip. On the other hand, the surface of a base material made of metal is leveled by sandblasting, etc., and then washed with acid or synthetic detergent, etc., and then glazed with the above-mentioned slurry slip by spraying, dipping, brushing, etc. . Next, after glazing, it goes through a drying process and is heated in a firing furnace for 60 minutes in normal atmosphere.
By firing at a temperature of 0 to 1150°C, enameling is performed on the metallic base material. Typical glaze types include, for example, N. B. S. (U.S. Bureau
of standard) A-19, A-20, A-55
m, A-19H, A-417, A-520, M37~M
41, M13, M43, etc. M13 etc. are fired in an H2 atmosphere at about 1350°C after glazing.
【0014】耐熱フリットの材料選定に当っては、熱膨
張を基材と比較的合致するように(例えば、基材の熱膨
張の50%から100%までの範囲)選定することが好
ましく、さらに施釉部の耐熱性は400℃以上、好まし
くは600℃以上とする。フリットに添加する耐火性物
質の量は、5〜50%が好ましい。耐火性物質の量が5
%未満では耐熱性が劣り、50%を超えると施釉性が劣
る。上記のようにして得られるセラミックコーティング
の膜厚は5〜500μmの範囲が好ましい。膜厚が5μ
m未満では所望の絶縁性と耐久性が得られず、膜厚が5
00μmを超えるとチッピング等が起きはじめ、膜の付
着性に問題が生じる。次に、本発明のヒーターユニット
では、セラミックコーティングは缶体にも施す。即ち、
上記したように種々のセラミックコーティングが施され
た抵抗調節型ヒーター(ハニカムヒーター)が缶体に保
持され、ヒーターユニットとして用いられることになる
が、ハニカムヒーターが缶体と接触する可能性のある缶
体部分あるいは部材にはセラミックコーティング処理を
施すことがさらに好ましい。すなわち本発明では、通常
ハニカムヒーターの外周部をセラミック質のマット、ク
ロス等の絶縁物質を介在させ、金属質のバンドやリング
等を用いて缶体内に保持される。従って、これらの金属
質のバンドやリングなどの部材、及び缶体の内側そのも
のにセラミックコーティング処理を実施することが好ま
しい。このようなヒーターユニットは、主モノリス触媒
の上流側あるいは下流側等に配設して触媒コンバーター
を形成することもでき、またハニカムヒーター上に触媒
を担持し、それ自体触媒コンバーターとして作用するこ
ともできる。[0014] When selecting a material for the heat-resistant frit, it is preferable to select the material so that its thermal expansion relatively matches that of the base material (for example, in the range of 50% to 100% of the thermal expansion of the base material); The heat resistance of the glazed portion is 400°C or higher, preferably 600°C or higher. The amount of refractory material added to the frit is preferably 5-50%. The amount of refractory material is 5
If it is less than 50%, the heat resistance will be poor, and if it exceeds 50%, the glazing property will be poor. The thickness of the ceramic coating obtained as described above is preferably in the range of 5 to 500 μm. Film thickness is 5μ
If the film thickness is less than 5 m, the desired insulation properties and durability cannot be obtained, and the film thickness is less than 5 m.
If it exceeds 00 μm, chipping and the like will begin to occur, causing problems in film adhesion. Next, in the heater unit of the present invention, the ceramic coating is also applied to the can body. That is,
As mentioned above, a resistance-adjustable heater (honeycomb heater) with various ceramic coatings is held in the can body and used as a heater unit, but the honeycomb heater may come into contact with the can body. It is further preferred that the body part or member is subjected to a ceramic coating treatment. That is, in the present invention, the outer periphery of the honeycomb heater is usually held in a can body by interposing an insulating material such as a ceramic mat or cloth, and using a metal band or ring. Therefore, it is preferable to perform a ceramic coating treatment on these metal members such as bands and rings, and on the inside of the can body itself. Such a heater unit can be arranged upstream or downstream of the main monolithic catalyst to form a catalytic converter, or it can have the catalyst supported on a honeycomb heater and act as a catalytic converter itself. can.
【0015】本発明の基体であるハニカム構造体の構成
材料としては、通電により発熱する材料からなるもので
あれば制限はなく、金属質でもセラミック質でもよいが
、金属質が機械的強度が高いため好ましい。金属質の場
合、例えばステンレス鋼やFe−Cr−Al、Fe−C
r、Fe−Al、Fe−Ni、W−Co、Ni−Cr等
の組成を有する材料からなるものが挙げられる。上記の
うち、Fe−Cr−Al、Fe−Cr、Fe−Alが耐
熱性、耐酸化性、耐食性に優れ、かつ安価で好ましい。
ハニカム構造体は、多孔質であっても非多孔質であって
もよいが、触媒を担持する場合には、多孔質のハニカム
構造体が触媒層との密着性が強く熱膨張差による触媒の
剥離が生ずることが殆どないことから好ましい。[0015] The constituent material of the honeycomb structure, which is the base of the present invention, is not limited as long as it is made of a material that generates heat when energized, and may be metal or ceramic, but metal has high mechanical strength. Therefore, it is preferable. In the case of metals, for example, stainless steel, Fe-Cr-Al, Fe-C
Examples include those made of materials having compositions such as r, Fe-Al, Fe-Ni, W-Co, and Ni-Cr. Among the above, Fe-Cr-Al, Fe-Cr, and Fe-Al are preferable because they have excellent heat resistance, oxidation resistance, and corrosion resistance, and are inexpensive. The honeycomb structure may be porous or non-porous, but when supporting a catalyst, a porous honeycomb structure has strong adhesion to the catalyst layer and the catalyst is absorbed due to the difference in thermal expansion. This is preferable because peeling hardly occurs.
【0016】次に、本発明のハニカム構造体のうち金属
質ハニカム構造体の製造方法の例を説明する。まず、所
望の組成となるように、例えばFe粉末、Al粉末、C
r粉末、又はこれらの合金粉末などにより金属粉末原料
を調製する。次いで、このように調製された金属粉末原
料と、メチルセルロース、ポリビニルアルコール等の有
機バインダー、水を混合した後、この混合物を所望のハ
ニカム形状に押出成形する。Next, an example of a method for manufacturing a metallic honeycomb structure among the honeycomb structures of the present invention will be explained. First, to obtain the desired composition, for example, Fe powder, Al powder, C
A metal powder raw material is prepared using R powder or an alloy powder thereof. Next, the metal powder raw material prepared in this way is mixed with an organic binder such as methyl cellulose or polyvinyl alcohol, and water, and then this mixture is extruded into a desired honeycomb shape.
【0017】次に、押出成形されたハニカム成形体を、
非酸化雰囲気下1000〜1450℃で焼成する。ここ
で、水素を含む非酸化雰囲気下において焼成を行なうと
、有機バインダーがFe等を触媒にして分解除去し、良
好な焼結体(ハニカム構造体)が得られ好ましい。Next, the extruded honeycomb molded body is
Calcinate at 1000-1450°C in a non-oxidizing atmosphere. Here, it is preferable to perform the firing in a non-oxidizing atmosphere containing hydrogen because the organic binder is decomposed and removed using Fe or the like as a catalyst, and a good sintered body (honeycomb structure) can be obtained.
【0018】焼成温度が1000℃未満の場合、成形体
が焼結せず、焼成温度が1450℃を超えると得られる
焼結体が変形するため、好ましくない。なお、望ましく
は、得られたハニカム構造体の隔壁及び気孔の表面を耐
熱性金属酸化物で被覆する。[0018] If the firing temperature is less than 1000°C, the molded body will not be sintered, and if the firing temperature exceeds 1450°C, the obtained sintered body will be deformed, which is not preferable. Note that preferably, the surfaces of the partition walls and pores of the obtained honeycomb structure are coated with a heat-resistant metal oxide.
【0019】次に、得られたハニカム構造体について、
後述する電極間に、各種の態様により抵抗調節機構を設
ける。ハニカム構造体に設ける抵抗調節機構としては、
例えば■スリットを種々の方向、位置、長さで設けるこ
と、■貫通軸方向の隔壁長さを変化させること、■ハニ
カム構造体の隔壁の厚さ(壁厚)を変化させるか、また
は貫通孔のセル密度を変化させること、および■ハニカ
ム構造体の隔壁にスリットを設けること、等が好ましい
ものとして挙げられる。このうち、発熱部分を簡易に調
節できる方法として、■のスリットの形成が特に好まし
い。Next, regarding the obtained honeycomb structure,
A resistance adjustment mechanism is provided between the electrodes in various ways, which will be described later. The resistance adjustment mechanism provided in the honeycomb structure is as follows:
For example, ■ Providing slits in various directions, positions, and lengths; ■ Changing the length of the partition walls in the through-axis direction; ■ Changing the thickness of the partition walls (wall thickness) of the honeycomb structure; or Preferable examples include changing the cell density of the honeycomb structure, and (2) providing slits in the partition walls of the honeycomb structure. Among these, the formation of slits (3) is particularly preferred as a method for easily adjusting the heat generating portion.
【0020】上記のようにして得られた金属質ハニカム
構造体は、通常その外周部の隔壁または内部に、ろう付
け、溶接などの手段によって電極を設けることにより、
ハニカム型のヒーターが作製される。なお、ここでいう
電極とは、当該ヒーターに電圧をかけるための端子の総
称を意味し、ヒーター外周部と缶体を直接接合したもの
や、アース等の端子を含む。[0020] The metallic honeycomb structure obtained as described above is usually provided with electrodes on the partition wall or inside the outer circumference by means of brazing, welding, etc.
A honeycomb type heater is produced. Note that the term "electrode" as used herein is a general term for terminals for applying voltage to the heater, and includes terminals such as those in which the outer circumference of the heater and the can body are directly connected, and terminals such as ground terminals.
【0021】この金属質ハニカム構造体はヒーターとし
て用いる場合、全体としてその抵抗値が0.001Ω〜
0.5Ωの範囲となるように形成することが好ましい。
また、上記の金属質ハニカム構造体の表面にさらに触媒
を担持させることにより、排気ガスの浄化反応(酸化反
応熱等)による温度上昇が期待できるため、好ましい。[0021] When this metallic honeycomb structure is used as a heater, its overall resistance value is 0.001Ω~
It is preferable to form it so that it may be in the range of 0.5Ω. Further, by further supporting a catalyst on the surface of the above-described metallic honeycomb structure, it is possible to expect a temperature increase due to the exhaust gas purification reaction (oxidation reaction heat, etc.), which is preferable.
【0022】金属質ハニカム構造体の表面に担持する触
媒は、大きな表面積を有する担体に触媒活性物質を担持
させたものである。ここで、大きな表面積を有する担体
としては、例えばγ−Al2 O3 系、TiO2 系
、SiO2 −Al2 O3 系などやペロブスカイト
系のものが代表的なものとして挙げられる。触媒活性物
質としては、例えばPt、Pd、Rh等の貴金属、Cu
、Ni、Cr、Co等の卑金属などを挙げることができ
る。上記のうち、γ−Al2 O3 系に貴金属を10
〜100g/ft3 担持したものが好ましい。The catalyst supported on the surface of the metallic honeycomb structure has a catalytically active substance supported on a carrier having a large surface area. Here, typical examples of carriers having a large surface area include γ-Al2O3-based, TiO2-based, SiO2-Al2O3-based, and perovskite-based carriers. Examples of catalytically active substances include noble metals such as Pt, Pd, and Rh, and Cu.
, Ni, Cr, Co, and other base metals. Among the above, 10% of noble metals are added to the γ-Al2O3 system.
It is preferable to carry up to 100 g/ft3.
【0023】本発明におけるハニカム構造体のハニカム
形状としては特に限定はされないが、具体的には、例え
ば6〜1500セル/インチ2 (cpi2 )(0.
9〜233セル/cm2 )の範囲のセル密度を有する
ように形成することが好ましい。又、隔壁の厚さは50
〜2000μmの範囲が好ましい。The honeycomb shape of the honeycomb structure in the present invention is not particularly limited, but specifically, for example, 6 to 1500 cells/inch2 (cpi2) (0.
Preferably, the cell density is in the range of 9 to 233 cells/cm2. Also, the thickness of the partition wall is 50
A range of ~2000 μm is preferred.
【0024】また、上記したようにハニカム構造体は多
孔質であっても非多孔質でもよくその気孔率は制限され
ないが、0〜50%、好ましくは25%未満の範囲とす
ることが強度特性、耐酸化性、耐食性の面から望ましい
。また、触媒を担持する場合には、触媒層との密着性の
点から5%以上の気孔率を有することが好ましい。
尚、本発明においてハニカム構造体とは、隔壁により仕
切られた多数の貫通孔を有する一体構造をいい、例えば
貫通孔の断面形状(セル形状)は円形、多角形、コルゲ
ート形等の各種の任意な形状が使用できる。Further, as mentioned above, the honeycomb structure may be porous or non-porous, and its porosity is not limited, but it should be in the range of 0 to 50%, preferably less than 25%, in order to improve its strength properties. , desirable in terms of oxidation resistance and corrosion resistance. Further, when supporting a catalyst, it is preferable to have a porosity of 5% or more from the viewpoint of adhesion with the catalyst layer. In the present invention, the honeycomb structure refers to an integral structure having a large number of through holes partitioned by partition walls, and the cross-sectional shape (cell shape) of the through holes may be any arbitrary shape such as circular, polygonal, corrugated, etc. shapes can be used.
【0025】[0025]
【実施例】以下、本発明を実施例に基づいて更に詳しく
説明するが、本発明はこれらの実施例に限られるもので
はない。
(実施例1)純Fe粉末、純Cr粉末、Fe−50wt
%Al合金粉末、Fe−20wt%B粉末、Fe−75
wt%Si粉末をFe−20Cr−5Al−1Si−0
.05B(重量%)の組成になるよう原料を配合し、こ
れに有機バインダー(メチルセルロース)と酸化防止剤
(オレイン酸)、水を添加して坏土を調整し、四角セル
よりなるハニカムを押出成形し、乾燥後H2 雰囲気下
1350℃で焼成し、リブ厚4mil 、貫通孔数40
0cpi2のハニカム構造体を得た。EXAMPLES The present invention will be explained in more detail below based on Examples, but the present invention is not limited to these Examples. (Example 1) Pure Fe powder, pure Cr powder, Fe-50wt
%Al alloy powder, Fe-20wt%B powder, Fe-75
wt%Si powder Fe-20Cr-5Al-1Si-0
.. The raw materials are blended to have a composition of 05B (wt%), an organic binder (methylcellulose), an antioxidant (oleic acid), and water are added to adjust the clay, and a honeycomb consisting of square cells is extruded. After drying, it was fired at 1350°C under H2 atmosphere, and the rib thickness was 4 mil and the number of through holes was 40.
A honeycomb structure of 0 cpi2 was obtained.
【0026】上記方法により得られた外径90mmφ、
長さ40mmのハニカム構造体に対して、図7に示すよ
うに、その外側面20上に2ヶ所電極21をセットした
。
又、図に示すように、70mmの長さのスリット22を
貫通孔の軸方向に6ヶ所設け(両端のスリット長さは5
0mm)、かつスリット22間のセル数が7個(約10
mm)となるように形成した。次に、日本フリット(株
)製耐熱ホーロー用スリップS−6163Sを用い、ハ
ニカム構造体の外側面20及びスリット22の外周部2
3から10mmの位置まで浸し掛けにより施釉した。S
−6163SはSiO2 −BaOを主成分とするベー
スフリットに酸化クロム30%と粘土5%を添加したス
リップである。ベースフリットの軟化温度は720℃、
線熱膨張係数は8.2×10/−6℃である。施釉後1
50℃で16時間乾燥し、次いで大気中1100℃で5
分間熱処理して膜厚100μm のホーロー加工された
ハニカムヒーター24を得た。[0026] Outer diameter 90 mmφ obtained by the above method,
As shown in FIG. 7, electrodes 21 were set at two locations on the outer surface 20 of a honeycomb structure having a length of 40 mm. In addition, as shown in the figure, slits 22 with a length of 70 mm are provided at six locations in the axial direction of the through hole (the slit length at both ends is 5 mm).
0 mm), and the number of cells between the slits 22 is 7 (approximately 10
mm). Next, using a heat-resistant enamel slip S-6163S manufactured by Nippon Frit Co., Ltd., the outer surface 20 of the honeycomb structure and the outer peripheral portion 2 of the slit 22
Glaze was applied by dipping from 3 to 10 mm. S
-6163S is a slip made by adding 30% chromium oxide and 5% clay to a base frit mainly composed of SiO2 -BaO. The softening temperature of the base frit is 720℃,
The coefficient of linear thermal expansion is 8.2×10/-6°C. After glazing 1
Dry at 50°C for 16 hours, then dry at 1100°C in air for 5 hours.
A heat treatment was performed for a minute to obtain an enameled honeycomb heater 24 having a film thickness of 100 μm.
【0027】ハニカムヒーター24のスリット外周部2
3には、さらに耐熱性のZrO2 質からなる無機接着
剤を充填し、図1に示すような缶体30にヒーター24
をセットし、ヒーターユニットを得た。また、ヒーター
24と接触する可能性のあるリング31の面32にも同
様にホーローがけした。(ホーロー膜厚100μm )
又、缶体30とハニカムヒーター24との間にはセラミ
ック質のマット33(住友3M製インタラム(商標)マ
ット)を配設した。[0027] Slit outer peripheral part 2 of honeycomb heater 24
3 is further filled with an inorganic adhesive made of heat-resistant ZrO2, and the heater 24 is attached to the can body 30 as shown in FIG.
I set it up and got a heater unit. Furthermore, the surface 32 of the ring 31 that may come into contact with the heater 24 was also enameled in the same manner. (Enamel film thickness 100μm)
Further, a ceramic mat 33 (Interum (trademark) mat manufactured by Sumitomo 3M) was disposed between the can body 30 and the honeycomb heater 24.
【0028】(実施例2)ハニカム構造体の外側面20
及びスリット22の外周部23にホーロー加工を施さな
かった以外は実施例1と同様の方法でハニカムヒーター
24を得た。一方、このハニカムヒーター24のスリッ
ト22の外周部23から10mm挿入するための図4に
示すT字型のスペーサー13にS−6163をホーロー
がけした。これをハニカムヒーター24のスリット22
に挿入し、実施例1と同様に図1に示す缶体30にセッ
トし、ヒーターユニットを得た。尚、スペーサーとして
は板厚0.8mmのフェライト系の耐熱ステンレス鋼(
100℃熱膨張10×10−6/℃)を用いた。(Example 2) Outer surface 20 of honeycomb structure
A honeycomb heater 24 was obtained in the same manner as in Example 1, except that the outer peripheral portion 23 of the slit 22 was not enamel-processed. On the other hand, S-6163 was enameled onto a T-shaped spacer 13 shown in FIG. 4 to be inserted 10 mm from the outer circumference 23 of the slit 22 of the honeycomb heater 24. This is the slit 22 of the honeycomb heater 24.
and set it in the can body 30 shown in FIG. 1 in the same manner as in Example 1 to obtain a heater unit. The spacer is made of ferritic heat-resistant stainless steel with a plate thickness of 0.8 mm (
100° C. thermal expansion 10×10 −6 /° C.) was used.
【0029】(実施例3)実施例2のヒーターユニット
において、さらに図1に示すように、缶体30の内側部
分34にホーローがけをした。(Example 3) In the heater unit of Example 2, the inner portion 34 of the can body 30 was further enameled as shown in FIG.
【0030】(比較例1)スリット22の外周部23に
耐熱性接着剤のみを充填し、またリング31の配設およ
びホーロー掛けを行なわなかった以外は実施例1と同様
にヒーターユニットを得た。(Comparative Example 1) A heater unit was obtained in the same manner as in Example 1, except that only a heat-resistant adhesive was filled in the outer circumferential portion 23 of the slit 22, and the ring 31 was not provided and the enamel was not enameled. .
【0031】(比較例2)スリット22のスペーサー1
3としてAl2 O3 質で、厚み1.0mmのものを
用い、またリング31の配設およびホーロー掛けを行な
わなかった以外は実施例2と同様にヒーターユニットを
得た。(Comparative Example 2) Spacer 1 of slit 22
A heater unit was obtained in the same manner as in Example 2 except that a heater unit made of Al2O3 and having a thickness of 1.0 mm was used as Example 3, and the ring 31 was not provided and the enameling was not performed.
【0032】[加振バーナー耐久試験]実車耐久を模擬
した加振バーナー耐久試験により、上記実施例および比
較例のヒーターユニット及びハニカムニーターの耐久性
を調べた。即ち、プロパンバーナーの燃焼排ガス(吸入
空気量1m3/min,プロパン21l/min )を
用い、ヒーター温度が100℃から980℃まで5分間
昇温し、さらに980℃から100℃まで5分間で降温
するサイクルを100サイクル繰り返した。この時、ヒ
ーターユニットには加振機を用い強制的に20G、20
0Hzの振動が与えられた。試験後のヒーターの絶縁状
況を下表に示す。[Vibrating Burner Durability Test] The durability of the heater units and honeycomb kneaders of the above Examples and Comparative Examples was investigated by a vibrating burner durability test that simulated the durability of an actual vehicle. That is, using combustion exhaust gas from a propane burner (intake air amount 1 m3/min, propane 21 l/min), the heater temperature is raised from 100°C to 980°C in 5 minutes, and then lowered from 980°C to 100°C in 5 minutes. The cycle was repeated for 100 cycles. At this time, the heater unit was forced to 20G and 20G using a vibrator.
A vibration of 0 Hz was applied. The insulation status of the heater after the test is shown in the table below.
【0033】[0033]
【0034】加振バーナーの耐久試験の結果、実施例の
ヒーターユニットおよびヒーターは、耐久後に抵抗調節
機構が維持され、しかもヒーターと缶体との絶縁も維持
でき、ヒーター機構を損なわず、しかもヒーター自体の
変形も防止できたのに対し、比較例のものは、いずれも
抵抗調節機能を失い、ヒーターとして使用できなくなっ
た。As a result of the durability test of the vibrating burner, it was found that the heater unit and heater of the example maintained the resistance adjustment mechanism after the durability test, was able to maintain the insulation between the heater and the can body, and did not damage the heater mechanism. While it was possible to prevent deformation of the heater itself, all of the comparative examples lost their resistance adjustment function and could no longer be used as heaters.
【0035】[0035]
【発明の効果】以上説明したように、本発明の抵抗調節
型ヒーター及びヒーターユニットによれば、自動車の苛
酷な運転条件下においても短絡を防止し、スリット等の
抵抗調節機構の絶縁性を確実に保持することができると
いう利点を有する。As explained above, according to the resistance-adjustable heater and heater unit of the present invention, short circuits can be prevented even under severe driving conditions of automobiles, and the insulation of resistance-adjustment mechanisms such as slits can be ensured. It has the advantage of being able to hold
【図1】本発明のハニカムヒーターの一例を示す部分断
面説明図である。FIG. 1 is a partial cross-sectional explanatory diagram showing an example of a honeycomb heater of the present invention.
【図2】ハニカムヒーターのスリットにセラミックコー
ティングを施した例を示す部分説明図である。FIG. 2 is a partial explanatory diagram showing an example in which a ceramic coating is applied to the slits of a honeycomb heater.
【図3】ハニカムヒーターのスリットにスペーサーを挿
入した例を示す部分説明図である。FIG. 3 is a partial explanatory diagram showing an example in which a spacer is inserted into a slit of a honeycomb heater.
【図4】スペーサーの一例を示す部分説明図である。FIG. 4 is a partial explanatory diagram showing an example of a spacer.
【図5】スペーサーの他の例を示す部分説明図である。FIG. 5 is a partial explanatory diagram showing another example of a spacer.
【図6】スペーサーのさらに他の例を示す部分説明図で
ある。FIG. 6 is a partial explanatory diagram showing still another example of a spacer.
【図7】ハニカムヒーターの一例を示す斜視図である。FIG. 7 is a perspective view showing an example of a honeycomb heater.
10 スリット部、11 外周部分、12 コー
ティング、13 スペーサー、20 外側面、21
電極、22 スリット、23 外周部、24
ハニカムヒーター、30 缶体、31 リング、
32 面、33 マット、34 内側部分。10 slit portion, 11 outer peripheral portion, 12 coating, 13 spacer, 20 outer surface, 21
Electrode, 22 Slit, 23 Outer periphery, 24
Honeycomb heater, 30 can body, 31 ring,
32 faces, 33 mats, 34 inner parts.
Claims (14)
に通電のための少なくとも2つの電極を設けるとともに
、該電極間に抵抗調節機構を設けてなる抵抗調節型ヒー
ターであって、該抵抗調節機構を形成する少なくとも一
部分に絶縁性を有するセラミックコーティングを施した
ことを特徴とする抵抗調節型ヒーター。1. A resistance-adjustable heater comprising a honeycomb structure having a large number of through holes, at least two electrodes for supplying electricity, and a resistance adjustment mechanism between the electrodes, the resistance adjustment mechanism comprising: A resistance-adjustable heater characterized in that at least a portion of the heater is coated with an insulating ceramic coating.
1記載の抵抗調節型ヒーター。2. The resistance-adjustable heater according to claim 1, wherein the honeycomb structure is made of metal.
を有するセラミックコーティングを施した請求項1また
は2記載の抵抗調節型ヒーター。3. The resistance-adjustable heater according to claim 1, wherein an insulating ceramic coating is applied to the outer peripheral surface of the resistance-adjustable heater.
1、2または3記載の抵抗調節型ヒーター。4. The resistance adjustment type heater according to claim 1, wherein the resistance adjustment mechanism is a slit.
コーティングされた金属質のスペーサーを挿入した請求
項4記載の抵抗調節型ヒーター。5. The resistance-adjustable heater according to claim 4, wherein a metallic spacer coated with an insulating ceramic is inserted into the outer periphery of the slit.
工により施された請求項1〜5のいずれかに記載の抵抗
調節型ヒーター。6. The resistance-adjustable heater according to claim 1, wherein the ceramic coating is applied by enameling.
に通電のための少なくとも2つの電極を設けるとともに
、該電極間に抵抗調節機構たるスリットを設けてなる抵
抗調節型ヒーターであって、該スリットの外周部に絶縁
性セラミックコーティングされた金属質のスペーサーを
挿入したことを特徴とする抵抗調節型ヒーター。7. A resistance-adjustable heater comprising at least two electrodes for supplying electricity to a honeycomb structure having a large number of through holes, and a slit serving as a resistance adjustment mechanism between the electrodes, wherein the slit A resistance-adjustable heater characterized by having a metallic spacer coated with an insulating ceramic inserted into the outer periphery of the heater.
に通電のための少なくとも2つの電極を設けるとともに
、該電極間に抵抗調節機構を設けてなる抵抗調節型ヒー
ターを金属質からなる缶体に保持してなるヒーターユニ
ットであって、該抵抗調節機構を形成する少なくとも一
部分に、あるいは該抵抗調節機構を形成する少なくとも
一部分と該缶体に、絶縁性を有するセラミックコーティ
ングを施したことを特徴とするヒーターユニット。8. A resistance-adjustable heater in which a honeycomb structure having a large number of through-holes is provided with at least two electrodes for supplying electricity, and a resistance-adjustable mechanism is provided between the electrodes is mounted in a metallic can body. The heater unit is characterized in that at least a portion forming the resistance adjustment mechanism, or at least a portion forming the resistance adjustment mechanism and the can body are coated with an insulating ceramic coating. heating unit.
8記載のヒーターユニット。9. The heater unit according to claim 8, wherein the honeycomb structure is made of metal.
性を有するセラミックコーティングを施した請求項8ま
たは9記載のヒーターユニット。10. The heater unit according to claim 8, wherein an insulating ceramic coating is applied to the outer peripheral surface of the resistance-adjustable heater.
項8、9または10記載のヒーターユニット。11. The heater unit according to claim 8, 9 or 10, wherein the resistance adjustment mechanism is a slit.
クコーティングされた金属質のスペーサーを挿入した請
求項11記載のヒーターユニット。12. The heater unit according to claim 11, wherein a metallic spacer coated with an insulating ceramic is inserted into the outer periphery of the slit.
加工により施された請求項8〜12のいずれかに記載の
ヒーターユニット。13. The heater unit according to claim 8, wherein the ceramic coating is applied by enameling.
体に通電のための少なくとも2つの電極を設けるととも
に、該電極間に抵抗調節機構たるスリットを設けてなる
抵抗調節型ヒーターを金属質からなる缶体に保持してな
るヒーターユニットであって、該スリットの外周部に絶
縁性セラミックコーティングされた金属質のスペーサー
を挿入するとともに、該缶体に絶縁性を有するセラミッ
クコーティングを施したことを特徴とするヒーターユニ
ット。14. A resistance-adjustable heater comprising a honeycomb structure having a large number of through holes, at least two electrodes for supplying electricity, and a slit serving as a resistance adjustment mechanism between the electrodes, in a metal can. A heater unit held in a body, characterized in that a metallic spacer coated with an insulating ceramic is inserted into the outer periphery of the slit, and the can body is coated with an insulating ceramic coating. heating unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3167645A JP3009507B2 (en) | 1991-06-12 | 1991-06-12 | Resistance adjustment type heater and heater unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3167645A JP3009507B2 (en) | 1991-06-12 | 1991-06-12 | Resistance adjustment type heater and heater unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04366584A true JPH04366584A (en) | 1992-12-18 |
JP3009507B2 JP3009507B2 (en) | 2000-02-14 |
Family
ID=15853609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3167645A Expired - Fee Related JP3009507B2 (en) | 1991-06-12 | 1991-06-12 | Resistance adjustment type heater and heater unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3009507B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0701046A2 (en) | 1993-03-22 | 1996-03-13 | Ngk Insulators, Ltd. | Supporting arrangement for an electrically heatable metallic moneylomb |
EP0903480A2 (en) | 1997-09-18 | 1999-03-24 | Ngk Insulators, Ltd. | Heater unit |
JP2012072041A (en) * | 2010-09-30 | 2012-04-12 | Tokyo Yogyo Co Ltd | Conductive honeycomb structure |
JP2012072042A (en) * | 2010-09-30 | 2012-04-12 | Tokyo Yogyo Co Ltd | Method for manufacturing conductive silicon carbide honeycomb structure |
JP2021079382A (en) * | 2019-11-22 | 2021-05-27 | フォルシア・システム・デシャプモン | Exhaust gas heater having metal foam heating element |
WO2021224106A1 (en) * | 2020-05-06 | 2021-11-11 | Audi Ag | Method for producing a heating element for a vehicle catalytic converter of a motor vehicle, method for producing a vehicle catalytic converter and production apparatus |
DE102022113769A1 (en) | 2022-05-31 | 2023-11-30 | Faurecia Emissions Control Technologies, Germany Gmbh | Electric exhaust heater |
-
1991
- 1991-06-12 JP JP3167645A patent/JP3009507B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0701046A2 (en) | 1993-03-22 | 1996-03-13 | Ngk Insulators, Ltd. | Supporting arrangement for an electrically heatable metallic moneylomb |
EP0903480A2 (en) | 1997-09-18 | 1999-03-24 | Ngk Insulators, Ltd. | Heater unit |
US6166358A (en) * | 1997-09-18 | 2000-12-26 | Ngk Insulators, Ltd. | Honeycomb heater in a metallic casing |
JP2012072041A (en) * | 2010-09-30 | 2012-04-12 | Tokyo Yogyo Co Ltd | Conductive honeycomb structure |
JP2012072042A (en) * | 2010-09-30 | 2012-04-12 | Tokyo Yogyo Co Ltd | Method for manufacturing conductive silicon carbide honeycomb structure |
JP2021079382A (en) * | 2019-11-22 | 2021-05-27 | フォルシア・システム・デシャプモン | Exhaust gas heater having metal foam heating element |
US11713701B2 (en) | 2019-11-22 | 2023-08-01 | Faurecia Systemes D'echappement | Exhaust gas heating device, having a metal foam heating element |
WO2021224106A1 (en) * | 2020-05-06 | 2021-11-11 | Audi Ag | Method for producing a heating element for a vehicle catalytic converter of a motor vehicle, method for producing a vehicle catalytic converter and production apparatus |
DE102022113769A1 (en) | 2022-05-31 | 2023-11-30 | Faurecia Emissions Control Technologies, Germany Gmbh | Electric exhaust heater |
Also Published As
Publication number | Publication date |
---|---|
JP3009507B2 (en) | 2000-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3035035B2 (en) | Heater unit | |
JP2931362B2 (en) | Resistance control type heater and catalytic converter | |
JP2919987B2 (en) | Resistance adjustment type heater | |
US5288975A (en) | Resistance adjusting type heater | |
JP3040510B2 (en) | Honeycomb heater | |
JPH04280086A (en) | Honeycomb monolithic heater | |
JP2818473B2 (en) | Catalytic converter for automotive exhaust gas purification and automotive exhaust gas purification method | |
JP2915586B2 (en) | Resistance adjustment type heater | |
US5234668A (en) | Catalytic converter for use in automotive exhaust emissions control | |
JPH04224220A (en) | Honeycomb heater and catalytic converter | |
US5229079A (en) | Catalytic converter for use in automotive exhaust emission control | |
US5229080A (en) | Resistance adjusting type heater and catalytic converter | |
US5399841A (en) | Honeycomb heater | |
US20220412243A1 (en) | Electrically heating converter and production method for electrically heating converter | |
JPH04366584A (en) | Resistance regulating type heater and heater unit | |
JPH0531359A (en) | Adsorbing material and catalyst converter for decontaminating exhaust gas from automobile | |
JP3034913B2 (en) | How to operate the catalytic converter | |
EP0465183B1 (en) | Catalytic converter with resistance heater | |
JPH04241716A (en) | Electrode part structure of honeycomb heater | |
JP2898337B2 (en) | Honeycomb heater and catalytic converter | |
JP2818477B2 (en) | Catalytic converter for automotive exhaust gas purification | |
JP2863330B2 (en) | Resistance adjustment type heater | |
JPH03193141A (en) | Preparation of self-heating type catalyst | |
JP2821006B2 (en) | Resistance control type heater and catalytic converter | |
JPH02198632A (en) | Catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19990622 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991116 |
|
LAPS | Cancellation because of no payment of annual fees |