JPS6155313A - Combustion chamber wall structure of internal-combustion engine - Google Patents
Combustion chamber wall structure of internal-combustion engineInfo
- Publication number
- JPS6155313A JPS6155313A JP59178039A JP17803984A JPS6155313A JP S6155313 A JPS6155313 A JP S6155313A JP 59178039 A JP59178039 A JP 59178039A JP 17803984 A JP17803984 A JP 17803984A JP S6155313 A JPS6155313 A JP S6155313A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- coating layer
- combustion chamber
- catalyst
- zro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/16—Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
- F02B19/165—The shape or construction of the pre-combustion chambers is specially adapted to be formed, at least in part, of ceramic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Chemically Coating (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、内燃機関の燃焼室をh1成するピストン、
シリングヘッド、吸排気弁等の一部に酸化触媒の触媒床
となるセラミクス被覆層を形成した燃焼室壁面構造に関
する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) This invention relates to a piston forming a combustion chamber of an internal combustion engine;
This invention relates to a combustion chamber wall structure in which a ceramic coating layer serving as a catalyst bed of an oxidation catalyst is formed on a part of a shilling head, an intake/exhaust valve, etc.
(従来の技術)
ディーゼル機関の排気対策として、燃焼過程で発生する
煤や未燃燃料を燃焼室内で浄化する。ようにしたものが
提案されている(例えば、特開昭59−41624号、
実開昭58−186126号公報等参照)。(Prior art) As a measure against exhaust emissions from diesel engines, soot and unburned fuel generated during the combustion process are purified within the combustion chamber. Some proposals have been made (for example, Japanese Patent Application Laid-Open No. 59-41624,
(See Utility Model Application Publication No. 58-186126, etc.).
これは、第2図に示したように、機関燃焼室1を構成す
るピストン2のクラウン部や、シリングへ・ノド3の底
面及びびり室4の壁面等に酸化触媒の被覆層5を形成し
たもので、燃焼時に生じた不完全燃焼物が触媒被覆層5
との接触により酸化するようになっている。As shown in Fig. 2, an oxidation catalyst coating layer 5 is formed on the crown part of the piston 2 constituting the engine combustion chamber 1, the bottom surface of the sill and throat 3, and the wall surface of the hollow chamber 4. The incompletely combusted products generated during combustion are deposited on the catalyst coating layer 5.
It is designed to oxidize upon contact with.
触媒被覆層5は、金m部分への熱伝達により反応温度及
び転化効率が低下しないように、第3図のように金属製
部品(ピストン2)の表面に形成された断熱触媒床(担
体)としてのセラミクス、例えばZrO2、Al20i
、CaO2等の溶射被覆層6の表面に真空蒸着あるいは
高周波スパッタリングにより被着されている。The catalyst coating layer 5 is an adiabatic catalyst bed (carrier) formed on the surface of the metal part (piston 2) as shown in FIG. 3 to prevent the reaction temperature and conversion efficiency from decreasing due to heat transfer to the gold part. Ceramics such as ZrO2, Al20i
, CaO2 or the like is deposited on the surface of the thermally sprayed coating layer 6 by vacuum deposition or high frequency sputtering.
(発明が解決しようとする問題点)
しかしながら、このようにして形成された従来の燃焼室
壁面構造によると、触媒材料をセラミクス被覆層6の表
層部分に十分に分散させることが困難であることに原因
して煤等の反応物と接触する表面積が早期に減少し、触
媒としての初期性能を長期間にわたって維持できないと
いう耐久性上の問題点が生じた。特に、ディーゼル機関
では低速〜中速高負荷運転時に多量の煤を発生するため
、触媒被覆層5が劣化するとその表面に付着した煤が十
分に酸化しきれなくなって触媒反応面に煤の層が形成さ
れ、この結果酸素供給が不十分になってさらに転化効率
が悪化する。(Problems to be Solved by the Invention) However, with the conventional combustion chamber wall structure formed in this manner, it is difficult to sufficiently disperse the catalyst material in the surface layer portion of the ceramic coating layer 6. As a result, the surface area that comes into contact with reactants such as soot decreases early, resulting in a durability problem in that the initial performance as a catalyst cannot be maintained over a long period of time. In particular, diesel engines generate a large amount of soot when operating at low to medium speeds and high loads, so when the catalyst coating layer 5 deteriorates, the soot attached to its surface cannot be sufficiently oxidized, and a layer of soot forms on the catalytic reaction surface. formation, resulting in insufficient oxygen supply and further deterioration of conversion efficiency.
この発明はこのような従来の問題点を解消することを目
的としてなされたものである。This invention was made with the aim of solving such conventional problems.
(問題、αを解決するための手段)
この発明では、機関燃焼室を構成する金属壁面に断熱触
媒床となるセラミクスの被a層を設け、かつ前記被覆層
の少なくとも表層部を、ZrO2粉末を溶射被覆したZ
rO2層と、このZrO2層にアルミナを含有する溶液
を含浸させ乾燥後過熱分解して形成したアルミナ被着部
とで構成するとともに、分解温度300“C以下の貴金
玩化合物、好ましくは硝酸酸性ノニトロノアミノ白金、
硝酸酸性硝酸パラジウムまたは硝酸酸性硝酸ロジウムか
らなる群より選択した1以上の金属化合物の溶液を前記
被覆層に含浸させ乾燥後過熱分解して触媒被着部を形成
した。(Means for solving the problem α) In the present invention, a ceramic coating layer serving as a heat insulating catalyst bed is provided on the metal wall surface constituting the engine combustion chamber, and at least the surface layer of the coating layer is coated with ZrO2 powder. Spray coated Z
It consists of an rO2 layer and an alumina-adhered part formed by impregnating this ZrO2 layer with an alumina-containing solution, drying it, and then decomposing it under heat. nonitronoaminoplatinum,
A solution of one or more metal compounds selected from the group consisting of nitric acid-acidic palladium nitrate or nitric acid-acidic rhodium nitrate was impregnated into the coating layer, dried, and then thermally decomposed to form a catalyst-attached portion.
(作用)
上記構成によれば、触媒金属材料がZr○2JVI及び
アルミナ被着部からなる多孔質mmによく分散している
ため看しく大きな表面積を有し、従って長期間にわたっ
て高い活性を維持する。(Function) According to the above structure, since the catalytic metal material is well dispersed in the porous mm consisting of Zr○2JVI and the alumina adhered portion, it has a surprisingly large surface area, and therefore maintains high activity for a long period of time. .
また、触媒被着部を構成する上記金属化合物溶液はいず
れも300℃以下の低温で分解する。このため、加工が
容易であることに加えて、加工対象であるアルミ合金等
からなる機関構成部品が加熱分解過程で熱的損傷を受け
るおそれがない。Further, all of the above metal compound solutions constituting the catalyst-adhered portion decompose at a low temperature of 300° C. or lower. Therefore, in addition to being easy to process, there is no risk that the engine components made of aluminum alloy or the like to be machined will be thermally damaged during the thermal decomposition process.
以下、この発明の実施例について説明する。Examples of the present invention will be described below.
(実施例)
mi図にこの発明を渦流室式ディーゼル機関に適用した
実施例を示す。(Example) Fig. mi shows an example in which the present invention is applied to a swirl chamber type diesel engine.
図において、10はシリング、11は主燃焼室、12は
アルミ合金製のピストン、13はシリングヘッド、14
は渦流室、15は主燃焼室11と渦流室14とを連通す
る噴孔、16はインジェクタ、17はグロープラグであ
る。18はZrO2溶射層及び触媒被着部を有する被m
屑で、図示したようにピストン12、シリングへラド1
3、渦流室14等の、機関燃焼室を構成する各壁面上に
形成することができる。In the figure, 10 is a shilling, 11 is a main combustion chamber, 12 is an aluminum alloy piston, 13 is a shilling head, 14
1 is a swirl chamber, 15 is a nozzle hole that communicates the main combustion chamber 11 and the swirl chamber 14, 16 is an injector, and 17 is a glow plug. 18 is a coating having a ZrO2 sprayed layer and a catalyst deposited part.
With scraps, piston 12, Schilling Rad 1 as shown.
3. It can be formed on each wall surface of the engine combustion chamber, such as the swirl chamber 14.
この断熱触媒床となる被覆層18の形成過程を説明する
と、例えばまずピストンクラウン部12、への被覆対象
面を洗浄脱脂したのちサンドブラストにより適度な表面
オ■度を付与する。これは被覆材料との結合力をより強
化するのに有効な処理である。To explain the process of forming the coating layer 18 which becomes the heat insulating catalyst bed, for example, first, the surface to be coated on the piston crown portion 12 is cleaned and degreased, and then an appropriate surface hardness is imparted by sandblasting. This is an effective treatment for further strengthening the bonding force with the coating material.
次に、好ましくは上記被覆対象面にNiとAlの混合粉
末を溶射してNi−Al層を、さらにその上からZrO
2粉末を溶射してZrO2層を形成する。Next, preferably, a mixed powder of Ni and Al is sprayed onto the surface to be coated to form a Ni-Al layer, and then ZrO is further applied on top of the Ni-Al layer.
2 powder to form a ZrO2 layer.
推奨厚はNi−Al、I[30〜200ttm、 Zr
○2層40〜600IIMlである。Recommended thickness is Ni-Al, I[30~200ttm, Zr
○Two layers: 40 to 600 II Ml.
NiとAlの混合物からなる溶射被覆はアルミ合金等の
金属とセラミクス材料、待にZrO2の双方 ゛に
対してよく馴染み、それぞれの結合強度を高める作用が
あるので、燃焼室壁を構成する金属面上でのZr○2N
の耐久性向上に寄与する。被覆対象がアルミ合金の場合
、NiとAlの混合比率(重量比)はN195%、Al
5%程度が適当である。Thermal spray coating made of a mixture of Ni and Al is compatible with both metals such as aluminum alloys, ceramic materials, and especially ZrO2, and has the effect of increasing the bonding strength of each, so it can be used on metal surfaces that make up the combustion chamber walls. Zr○2N above
Contributes to improved durability. When the object to be coated is an aluminum alloy, the mixing ratio (weight ratio) of Ni and Al is 195% N and 195% Al.
Approximately 5% is appropriate.
なお、上記被覆層を構成する各層の厚さを太きくするほ
ど断熱効果が大きくなり、従ってその表面から被着する
触媒の転化効率をより高めることができる等の利2貞を
生じるが、この場合各層の厚さをある程度以上にすると
各層表裂の温度差及び内部応力の増加により耐久性が損
なわれる恐れがあるので、Ni−Al層とZrO2層と
の開にNi、Al、Zrozの混合粉末の溶射)rj(
)〃さ30〜200節)を設けるのがより望ましい。因
みに、この被覆層18は、断熱性を確保するためには少
なくとも100p程度の厚さを付与するのが望ましく、
剥離防止の面からは最大でも1m10程度が適当である
。Note that as the thickness of each layer constituting the above-mentioned coating layer becomes thicker, the heat insulation effect increases, and therefore, there are benefits such as the ability to further increase the conversion efficiency of the catalyst deposited from the surface. In this case, if the thickness of each layer exceeds a certain level, durability may be impaired due to the temperature difference between the surface cracks of each layer and the increase in internal stress. thermal spraying of powder)rj(
) It is more desirable to provide 30 to 200 knots). Incidentally, it is desirable that this coating layer 18 has a thickness of at least about 100p in order to ensure heat insulation properties.
From the perspective of preventing peeling, a maximum thickness of about 1 m10 is appropriate.
次に、上記被lI層ないしZ ro Jjijに活性ア
ルミナを被着する。これは、硝酸アルミニウム水溶液ま
たはベーマイトアルミナゾルまたは活性アルミナ混合ベ
ーマイトアルミナゾルのいずれか1種または2種以上の
材料を含6!:させ、乾燥後加熱分解する。Next, activated alumina is deposited on the II layer or Z ro Jjij. This includes one or more of aluminum nitrate aqueous solution, boehmite alumina sol, or activated alumina mixed boehmite alumina sol6! : After drying, decompose by heating.
そして、このセラミクス被覆JV118に硝酸酸性ジニ
トロノアミノ白金、硝酸酸性硝酸パラジウム、または硝
酸酸性硝酸ロジウムの水溶液を含浸させ、乾燥後加熱分
解して触媒被着部を形成する。111記金属化合物の水
溶液は多孔質の被覆に4に浸透するため触媒被着部の表
面積は極めて大きくなる。ただし、乾燥過程で水分が蒸
発するにしたがって溶質である金属化合物が被覆層の表
面側に移動するため、触媒の分布密度としては燃焼ガス
と接触しやすい表層部はど大になる。Then, this ceramic coated JV118 is impregnated with an aqueous solution of dinitronoaminoplatinum acidified with nitric acid, palladium nitrate acidified with nitric acid, or rhodium nitrate acidified with nitric acid, dried and then thermally decomposed to form a catalyst-attached portion. Since the aqueous solution of the metal compound No. 111 penetrates into the porous coating, the surface area of the catalyst-attached portion becomes extremely large. However, as the water evaporates during the drying process, the metal compound, which is the solute, moves to the surface of the coating layer, so the distribution density of the catalyst is greater in the surface layer, which is more likely to come into contact with the combustion gas.
このようにしてピストンクラウン部12A等に形成した
被1層18及び触媒は、燃焼時に噴孔15を介して渦流
室14から主燃焼室11へと噴出する燃焼ガス中の煤粒
子や未燃燃料に接触してこれらを酸化する。このとき、
上述したように触媒の表面積が極めて大きく、被覆層1
8の深層部にまで触媒が付着しているので効率のよい酸
化作用が得られ、その排気浄化効果は長期間にわたって
持続する。The layer 18 and the catalyst thus formed on the piston crown portion 12A etc. are used to remove soot particles and unburned fuel in the combustion gas that is ejected from the vortex chamber 14 to the main combustion chamber 11 through the nozzle hole 15 during combustion. oxidizes these on contact with. At this time,
As mentioned above, the surface area of the catalyst is extremely large, and the coating layer 1
Since the catalyst is adhered to the deep layer of the exhaust gas, an efficient oxidation effect can be obtained, and the exhaust purification effect lasts for a long period of time.
次に、この発明を適用したときのスモーク低減率につい
ての試験を行ったので、その内容と結果に関して述べる
。Next, a test was conducted to determine the smoke reduction rate when this invention was applied, and the contents and results will be described.
試験は4気In2000ccの副室(渦流室)式ディー
ゼル機関を使用して行い、原則としてそのピストンクラ
ウン部にのみ触媒付き被覆層を形成して、出力5 fi
1kg/ 2400 rpIllの運転条件で発生した
スモークの量を測定し、試験結果としては触媒付き被8
(層を持たない同型機関の発生スモーク量からの減少量
を百分率で表示した。The test was conducted using a 4-air In 2000cc pre-chamber (vortex chamber) type diesel engine, and as a general rule, a coating layer with catalyst was formed only on the piston crown, and the output was 5 fi.
The amount of smoke generated under the operating conditions of 1 kg/2400 rpIll was measured, and the test results showed that the
(The amount of smoke generated is expressed as a percentage compared to the amount of smoke generated by the same type of engine without layers.
また、試験に使用した触媒付きピストン等の仕様は以下
の通りであるが、これらはすべて8!1関に組み込む前
にバーナー火炎吹付は法 (触媒付き被覆層にガスバー
ナーの火炎と冷気とを1分間のサイクルで交互に吹き付
ける )による100時間の耐久処理を施した。In addition, the specifications of the catalytic pistons used in the test are as follows, but before installing them into the 8!1 section, burner flame spraying was carried out. A 100-hour durability treatment was carried out with spraying (spraying alternately with a 1-minute cycle).
ピストンA(実施例1)
クラウン部表面をクロロホルム及びアセトンで脱脂し、
サンドブラストを施した後、N i:A l”95:5
(重量比、以下同様)の混合粉末、N i:A l:Z
r○2=33:2:65の混合粉末、及びZrO2粉末
を順次プラズマ溶射し゛C触媒床となる被覆層を形成し
た。各部の溶射厚は、Ni Al層50ρ、Ni
Al Zroz層50ttm1ZrC)zJVi40
0umである。Piston A (Example 1) Degrease the crown surface with chloroform and acetone,
After sandblasting, Ni:Al”95:5
(weight ratio, same below) mixed powder, N i:A l:Z
A mixed powder of r○2=33:2:65 and ZrO2 powder were sequentially plasma sprayed to form a coating layer that would become a C catalyst bed. The spraying thickness of each part is Ni Al layer 50ρ, Ni
Al Zroz layer 50ttm1ZrC)zJVi40
It is 0um.
アルミナ被着部は、アルミナとして3重量%を含むベー
マイトアルミナゾルを数回に分けて含浸及び乾燥させた
のち290℃で2時間加熱し、最終的に0 、3 gr
のアルミナを被着させたものである。The alumina-adhered area was impregnated with boehmite alumina sol containing 3% by weight as alumina in several parts, dried, heated at 290°C for 2 hours, and finally 0.3 gr
It is coated with alumina.
触媒としては、白金として0.02gr/ccを含む硝
酸酸性ジニトロジアミノ白金水溶液5ccを上記被覆層
に0 、5 ccずつ10回に分けて含浸及び乾燥させ
た後、電気炉にて250℃で1時間加熱 −して白
金0 、1 grを被着させた。As a catalyst, the coating layer was impregnated with 5 cc of an aqueous dinitrodiaminoplatinum solution containing 0.02 gr/cc of platinum in 10 doses of 0 and 5 cc each, and dried, and then impregnated with 5 cc of dinitrodiaminoplatinum aqueous solution containing 0.02 gr/cc of platinum in an electric furnace at 250°C. After heating for a period of time, 0.1 gr of platinum was deposited.
ピストンB(実施例2)
硝酸酸性ジニトロジアミノ白金に替えて硝酸酸性硝酸パ
ラジウム水溶液を触媒被着部の形成に採用した点を除き
実施例1と同様である。Piston B (Example 2) Piston B is the same as Example 1 except that a nitric acidic palladium nitrate aqueous solution was used to form the catalyst adhering portion instead of the nitric acidic dinitrodiaminoplatinum.
ピストンC(実施例3)
硝酸酸性ノニトロノアミノ白金に替えて硝酸酸性硝酸ロ
ジウム水溶液を触媒被着部の形成に採用した点を除き実
施例1と同様である。Piston C (Example 3) This is the same as Example 1 except that a nitric acidic rhodium nitrate aqueous solution was used to form the catalyst adhering portion instead of the nitric acidic nonitronoaminoplatinum.
ピストンD(実施例4)
ベーマイトアルミナゾルに替えて硝酸アルミニウム水溶
液をアルミナ被着部の形成に採用した点を除き実施例1
と同様である。Piston D (Example 4) Example 1 except that an aluminum nitrate aqueous solution was used to form the alumina adhered portion instead of the boehmite alumina sol.
It is similar to
ピストンE(実施例5)
実施例1と同様のベーマイトアルミナゾルに平均粒径I
Innの活性アルミナ粉末を3重511%混入し、これ
を水で2倍に希釈してアルミナ3重量%を含むアルミナ
スラリーとしたものをアルミナ被着部の形成に採用した
点を除き実施例1と同様である。Piston E (Example 5) Boehmite alumina sol similar to Example 1 with average particle size I
Example 1 except that an alumina slurry containing 3% by weight of alumina by mixing 511% of active alumina powder of Inn and diluting this twice with water was used to form the alumina adhered part. It is similar to
ピストンF(実施例6)
硝酸酸性ノニトロノアミノ白金水溶″fL5CCに替え
て、同水溶液と硝酸酸性硝酸ノ(ラジウム水溶波谷2゜
5ccの混合液を触媒被着部の形成に採用した点を除き
実施例1と同様である。Piston F (Example 6) Example except that instead of nitric acid acidic nonitronoamino platinum aqueous solution "fL5CC", a mixed solution of the same aqueous solution and nitric acid acidic nitric acid (radium aqueous solution wave valley 2.5 cc) was used to form the catalyst adhesion part. It is the same as 1.
シリングヘッド(実施例7/表外)
シリングヘッドの燃焼室壁部分に実施例1と同様にして
被m層を形成し、気筒当たり白金0 、1 grを被着
させた。Schilling head (Example 7/Outside table) A coating layer was formed on the combustion chamber wall portion of the shilling head in the same manner as in Example 1, and 0.1 gr of platinum was deposited per cylinder.
パルプセット(実施例8/表外)
耐熱合金製吸気弁並びに排気弁の燃焼室側表面に実施例
1と同様にして白金を被着させた。硝酸酸性ジニトロジ
アミノ白金水溶液は、バルブセ・ント当たり1 cc(
白金0,02gr)をイ史用。Pulp Set (Example 8/Outside Table) Platinum was deposited on the combustion chamber side surfaces of the heat-resistant alloy intake valve and exhaust valve in the same manner as in Example 1. Nitric acidic dinitrodiaminoplatinum aqueous solution was added at 1 cc (1 cc) per valve cent.
0.02 gr of platinum) for historical use.
ピストンG(比較例1)
アルミナ被着部を設けない点を除外実施例1と同様であ
る。Piston G (Comparative Example 1) Same as Example 1 except that no alumina deposited portion was provided.
ピストンH(比較例2)
触媒被着部を、0 、1 grの白金を真空蒸着により
被着して形成した点を除外実施例1と同様である6ピス
トンI(比較例3)
硝酸酸性ジニトロジアミノ白金水溶液に替えて塩化白金
酸水溶液を触媒被着部の形成に採用した点を除き実施例
1と同様である。Piston H (Comparative Example 2) Six pistons I (Comparative Example 3) Same as Example 1, except that the catalyst coating part was formed by depositing 0 and 1 gr of platinum by vacuum evaporation.6 Piston I (Comparative Example 3). This example is the same as Example 1 except that a chloroplatinic acid aqueous solution was used to form the catalyst-attached portion instead of the diaminoplatinum aqueous solution.
ピストンJ(比較例4)
硝酸酸性硝酸パラジウム水溶液に替えて塩酸酸性塩化パ
ラノウム水溶液を触媒被着部の形成に採用した点を除き
実施例2と同様である。Piston J (Comparative Example 4) This is the same as Example 2 except that a hydrochloric acid-acidic paranoum chloride aqueous solution was used to form the catalyst-attached portion instead of the nitric acid-acidic palladium nitrate aqueous solution.
ピストンK(比較例5)
硝酸酸性硝酸ロノツム水溶液に替えて塩酸酸性塩化ロノ
ウム水溶液を触媒被着部の形成に採用した。σを除き実
施例3と同様である。Piston K (Comparative Example 5) Instead of the nitric acid-acidic ronium chloride aqueous solution, a hydrochloric acid-acidic ronium chloride aqueous solution was used to form the catalyst-attached portion. It is the same as Example 3 except for σ.
試験結果を第1表に示す。表に示したように、この発明
によるスモーク低減率はピストンクラウン部に適用した
のみで、かつ耐久処理後の状態で最大71%に達した。The test results are shown in Table 1. As shown in the table, the smoke reduction rate according to the present invention reached a maximum of 71% when applied only to the piston crown and after durability treatment.
なお、表外であるがピストンと同様にバーナー火炎吹f
′tけ法による100時間の耐久処理を施した実施例7
.8のシリングヘッド、パルプセットをピストンAと組
み合わせて同一運転条件で試験を行った結果、スモーク
低減率は79%という極めて優れた成績が得られた。Although it is not listed above, the burner flame blower f
Example 7 subjected to 100 hours of durability treatment using the 't coating method.
.. As a result of testing under the same operating conditions using a No. 8 shilling head and pulp set in combination with Piston A, an extremely excellent smoke reduction rate of 79% was obtained.
これは、既述したようにこの発明による触媒被着部の有
効表面積が極めて大きく、また劣化を起こしにくいから
である。This is because, as mentioned above, the effective surface area of the catalyst-coated portion according to the present invention is extremely large and is less susceptible to deterioration.
触媒被着部の表面積は具体的には第2表に示した通りで
ある。この表面積の測定は耐久路]!l!済みのピスト
ンA 、F 、Gの被覆層を剥がして、それぞれの被覆
層につきCO吸着法により行った。Specifically, the surface area of the catalyst-attached portion is as shown in Table 2. This surface area measurement is a durable road]! l! The coating layers of the completed pistons A, F, and G were peeled off, and the CO adsorption method was applied to each coating layer.
アルミナ被着部を形成したピストンAと同被着部を持た
ないeストンFとの比較から、アルミナ被着部が触媒の
分散と表面積の増加に大きく貢献していることが裏付け
られる。また、ピストンGは真空蒸着により触媒を被着
させたものであり、蒸着では充分な表面積が得られない
ことが明らかである。A comparison between piston A, which has an alumina deposited part, and e-ston F, which does not have the same deposited part, confirms that the alumina deposited part greatly contributes to the dispersion of the catalyst and the increase in surface area. Further, the piston G has a catalyst deposited thereon by vacuum deposition, and it is clear that a sufficient surface area cannot be obtained by deposition.
なお、第1表のピストンIについてはアルミナ被着部を
有するにもかかわらずスモーク低減率の成績が芳しくな
いが、これは被覆層に含浸させた塩化白金酸の分解温度
が極めて高いために触媒被着部の形成が不充分であるこ
とを示しており、この、αはピストンJ、Kについても
同様である。因みに、試験に供した貴金属化合物の分解
温度を第3表に示す。Regarding piston I in Table 1, the smoke reduction rate is not good despite having an alumina-coated part, but this is because the decomposition temperature of the chloroplatinic acid impregnated into the coating layer is extremely high. This indicates that the formation of the adhered portion is insufficient, and the same is true for the pistons J and K. Incidentally, Table 3 shows the decomposition temperatures of the noble metal compounds used in the test.
〈第1 表〉
〈第2表〉
<13表〉
(発明の効果)
以上を要するに、この発明によれば、Zro2Nを基本
とする触媒床に含浸法で形成したアルミナの被着部に、
比較的低温で分解する触媒材料の化合物溶液を含浸させ
、これを乾燥及び加熱分解して良好な分散性を確保した
有効表面積の大きい触媒被着部を設けたので、触媒の活
性及び耐久性を着しく高めることができ、従って内燃機
関の燃焼過程で生じる煤等のイf害生成物及び未燃燃料
成分を長期間にわたって確実に低減できるという効果が
得られる。<Table 1><Table2><Table13> (Effects of the invention) In summary, according to the present invention, the alumina adhered portion formed by the impregnation method on the catalyst bed based on Zro2N,
The catalyst is impregnated with a compound solution of a catalyst material that decomposes at a relatively low temperature, then dried and thermally decomposed to ensure good dispersibility.The catalyst has a large effective surface area, which improves the activity and durability of the catalyst. Therefore, it is possible to achieve the effect that harmful products such as soot and unburned fuel components generated during the combustion process of an internal combustion engine can be reliably reduced over a long period of time.
また、この発明の触媒被着部を形成するt金属化合物、
具体的には硝酸酸性ジニトロノアミノ白金、硝酸酸性硝
酸バラジッム、または硝酸酸性硝酸ロジウムはいずれも
300℃以下という比較的低い温度で分解可能であり、
従って加工性及び生産性がよく、加えてアルミ合金等か
らなる被覆対象部品に熱的悪影響を及ぼすおそれがない
ので、信頼性の高い触媒付き燃焼室壁面摺造とすること
ができる。Further, a t-metal compound forming the catalyst adhesion part of the present invention,
Specifically, nitric acidic dinitronoaminoplatinum, nitric acidic nitrate baradium, or nitric acidic rhodium nitrate can all be decomposed at a relatively low temperature of 300°C or less,
Therefore, workability and productivity are good, and there is no risk of adverse thermal effects on parts to be coated made of aluminum alloy, etc., so that a highly reliable catalyzed combustion chamber wall surface sliding structure can be obtained.
第1図はこの発明の適用箇所の一例を示すための実施例
の縦断面図、第2図は従来例のm断面図、第3図はその
要部拡大図である。
11・・・主燃焼室、12・・・ピストン、13・・・
シリンダへ・ンド、14・・・渦流室、18・・・セラ
ミクスの被覆層。FIG. 1 is a vertical cross-sectional view of an embodiment to show an example of an application of the present invention, FIG. 2 is a m-cross-sectional view of a conventional example, and FIG. 3 is an enlarged view of the main part thereof. 11... Main combustion chamber, 12... Piston, 13...
To the cylinder, 14... Vortex chamber, 18... Ceramics coating layer.
Claims (1)
セラミクスの被覆層を設け、かつ前記被覆層の少なくと
も表層部を、ZrO_2粉末を溶射被覆したZrO_2
層と、このZrO_2層にアルミナを含有する溶液を含
浸させ乾燥後過熱分解して形成したアルミナ被着部とで
構成するとともに、分解温度300℃以下の貴金属化合
物の溶液を前記被覆層に含浸させ乾燥後過熱分解して触
媒被着部を形成したことを特徴とする内燃機関の燃焼室
壁面構造。 2、被覆層は、金属壁面側にNiとAlの混合粉末を溶
射被覆して形成したNi−Al層を含むことを特徴とす
る特許請求の範囲第1項に記載の内燃期間の燃焼室壁面
構造。 3、ZrO_2層とNi−Al層との間に、NiとAl
とZrO_2の混合粉末を溶射被覆して形成した中間層
を設けたことを特徴とする特許請求の範囲第2項に記載
の内燃機関の燃焼室壁面構造。[Scope of Claims] 1. A ceramic coating layer serving as a heat insulating catalyst bed is provided on the metal wall surface constituting the engine combustion chamber, and at least the surface layer of the coating layer is coated with ZrO_2 powder by thermal spraying.
and an alumina-adhered part formed by impregnating this ZrO_2 layer with a solution containing alumina, drying and decomposing it by heating, and impregnating the coating layer with a solution of a noble metal compound having a decomposition temperature of 300°C or less. A combustion chamber wall structure for an internal combustion engine, characterized in that a catalyst-adhered portion is formed by overheating and decomposition after drying. 2. The combustion chamber wall surface during the internal combustion period according to claim 1, wherein the coating layer includes a Ni-Al layer formed by thermally spraying a mixed powder of Ni and Al on the metal wall surface side. structure. 3. Between the ZrO_2 layer and the Ni-Al layer, Ni and Al
The combustion chamber wall structure for an internal combustion engine according to claim 2, further comprising an intermediate layer formed by thermal spray coating of a mixed powder of ZrO_2 and ZrO_2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59178039A JPS6155313A (en) | 1984-08-27 | 1984-08-27 | Combustion chamber wall structure of internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59178039A JPS6155313A (en) | 1984-08-27 | 1984-08-27 | Combustion chamber wall structure of internal-combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6155313A true JPS6155313A (en) | 1986-03-19 |
Family
ID=16041517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59178039A Pending JPS6155313A (en) | 1984-08-27 | 1984-08-27 | Combustion chamber wall structure of internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6155313A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752535A (en) * | 1985-02-01 | 1988-06-21 | Norsk Hydro A.S | Aluminium-based article having a protective ceramic coating, and a method of producing it |
US20140374660A1 (en) * | 2013-06-25 | 2014-12-25 | Massachusetts Institute Of Technology | Engine Chemical Reactor With Catalyst |
US9835702B2 (en) | 2011-05-10 | 2017-12-05 | Toshiba Medical Systems Corporation | Magnetic resonance imaging apparatus, magnetic field adjustment implement for magnetic resonance imaging apparatus, magnetic resonance imaging method, and method of adjusting magnetic field for magnetic resonance imaging apparatus |
JP2021143641A (en) * | 2020-03-13 | 2021-09-24 | 三菱自動車工業株式会社 | piston |
-
1984
- 1984-08-27 JP JP59178039A patent/JPS6155313A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752535A (en) * | 1985-02-01 | 1988-06-21 | Norsk Hydro A.S | Aluminium-based article having a protective ceramic coating, and a method of producing it |
US9835702B2 (en) | 2011-05-10 | 2017-12-05 | Toshiba Medical Systems Corporation | Magnetic resonance imaging apparatus, magnetic field adjustment implement for magnetic resonance imaging apparatus, magnetic resonance imaging method, and method of adjusting magnetic field for magnetic resonance imaging apparatus |
US20140374660A1 (en) * | 2013-06-25 | 2014-12-25 | Massachusetts Institute Of Technology | Engine Chemical Reactor With Catalyst |
JP2021143641A (en) * | 2020-03-13 | 2021-09-24 | 三菱自動車工業株式会社 | piston |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5987882A (en) | System for reduction of harmful exhaust emissions from diesel engines | |
US6256984B1 (en) | System for reduction of harmful exhaust emissions from diesel engines | |
US6422008B2 (en) | System for reduction of harmful exhaust emissions from diesel engines | |
US5814285A (en) | Poisoning-preventive layer-possessing support, poisoning-resistant catalyst, exhaust gas converter device, and poisoning-preventive gasoline composition | |
JPH01130732A (en) | Catalyst and its production | |
JPH0617643B2 (en) | Waste gas purifier for diesel engine | |
JP2002361083A (en) | Exhaust gas cleaning catalyst for internal combustion engine, method of producing the same and claening apparatus | |
US5985220A (en) | Metal foil having reduced permanent thermal expansion for use in a catalyst assembly, and a method of making the same | |
JPS6155313A (en) | Combustion chamber wall structure of internal-combustion engine | |
JPS6271536A (en) | Catalyst for cleaning up exhaust gas of engine | |
JPS6271538A (en) | Catalyst for cleaning up exhaust gas of engine | |
JPS6155314A (en) | Combustion chamber wall structure of internal-combustion engine | |
JPS6158915A (en) | Wall surface structure of internal-combustion chamber of internal combustion engine | |
JPS5966618A (en) | Parts of combustion chamber with catalyst | |
JP2003080081A (en) | Catalyst for cleaning exhaust gas | |
JPS6149119A (en) | Wall surface structure of combustion chamber in internal-combustion engine | |
KR100236480B1 (en) | Zeolite including-catalytic body for exhaust gas of a vehicle | |
JPH0768173A (en) | Combustion catalyst and production thereof | |
JPS61178514A (en) | Ceramic precombustion chamber diesel engine | |
JPS6197031A (en) | Parts of combustion chamber provided with catalyst | |
JP2531641B2 (en) | Contact combustion catalyst | |
KR100205168B1 (en) | Apparatus for after-treatment of emission gases from diesel engine | |
JPS62125855A (en) | Exhaust gas purifying catalyst | |
JPH039771B2 (en) | ||
JPS60237117A (en) | Catalyzing method of diesel engine parts |