KR20050014211A - microarc oxidation - Google Patents

microarc oxidation

Info

Publication number
KR20050014211A
KR20050014211A KR1020030052725A KR20030052725A KR20050014211A KR 20050014211 A KR20050014211 A KR 20050014211A KR 1020030052725 A KR1020030052725 A KR 1020030052725A KR 20030052725 A KR20030052725 A KR 20030052725A KR 20050014211 A KR20050014211 A KR 20050014211A
Authority
KR
South Korea
Prior art keywords
impulse
range
oxidation process
controlled
aluminum alloy
Prior art date
Application number
KR1020030052725A
Other languages
Korean (ko)
Other versions
KR100573027B1 (en
Inventor
김나래
Original Assignee
김나래
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김나래 filed Critical 김나래
Priority to KR1020030052725A priority Critical patent/KR100573027B1/en
Publication of KR20050014211A publication Critical patent/KR20050014211A/en
Application granted granted Critical
Publication of KR100573027B1 publication Critical patent/KR100573027B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE: To provide an improved metal surface oxidation process capable of refining oxidation grains and maintaining structure densification so that an uniformly thick film having high density is formed by applying high frequency to the surface of metal in a microarc oxidation process. CONSTITUTION: A microarc oxidation process of aluminum alloy articles comprises a step of loading an aluminum alloy member in a bath containing a weak alkaline electrolyte comprising 0.05 to 10% of potassium hydroxide and sodium silicate; and a step of repeatedly performing operation under the conditions that a voltage is controlled to a range of -200 to 1,500 V, a current density is controlled to a range of 1 to 200 A/dm¬2, an impulse time is controlled to a range of 0.01 msec to 0.01 sec, and impulse intervals are controlled to a range of 0.01 msec to 0.01 sec, wherein carbide powder, nitride or metal oxide are added to the electrolytic bath, and wherein the impulse is converted in such a way that "+" impulses and "-" impulses are alternately used within a range of 1:1 to 9:9.

Description

알루미늄 합금으로 제조된 물품의 마이크로아크 산화 공정{microarc oxidation}Microarc oxidation of articles made of aluminum alloys

본 발명은 알루미늄 합금으로 제조된 물품의 마이크로아크 산화(microarc oxidation) 공정에 관한 것으로, 특히 금속표면에 산화피막을 형성하는 양극산화공정이 약알카리의 전해질을 넣은 전해조 내에 알루미늄 합금으로 된 전극부재를 로딩한 상태에서 높은 주파수(-200~1000V의 전압과 100~10000Hz 주파수) 특성을 이용한 전기 화학적인 산화 공정을 통해서 산화입자를 미세화 하여 조직의 치밀성을 유지하고, 빠른 작업으로 내마모성 및 내부식성을 높일 수 있도록 한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microarc oxidation process of an article made of an aluminum alloy. In particular, the anodization process for forming an oxide film on a metal surface includes an electrode member made of an aluminum alloy in an electrolytic cell containing a weak alkali electrolyte. Electrochemical oxidation process using high frequency (-200 ~ 1000V voltage and 100 ~ 10000Hz frequency) characteristics in the loaded state makes oxide particles fine and maintains compactness of tissue, and improves wear resistance and corrosion resistance by fast operation. I would have to.

본 발명은 자동차 산업(자동차 엔진 케이스, 피스톤, 외부 마감부품) 뿐만 아니라, 건설산업(창문들, 천장, 상업용 텐트), 항공기 산업(항공기 외부 표면재, 엔진부품, 터빈), 기계장치와 정유산업(펌프 부품, 케이스 부품)에서 물품의 부식방지를 위하여 유용한 마이크로아크 산화공정에 관한 것이다.The present invention relates to the automotive industry (automotive engine casings, pistons, exterior finishing parts), as well as the construction industry (windows, ceilings, commercial tents), aircraft industry (aircraft exterior surface materials, engine parts, turbines), machinery and oil refining industries ( Microarc oxidation process useful for corrosion protection of articles in pump parts, case parts).

일반적으로 알루미늄, 티타늄, 이들의 합금, 및 진공관(다이오드)의 특성을 나타내는 모든 금속들은 우수한 강도/중량 특성으로 인해 항공학, 자동차 및 기계공학 (특히, 높은 기계적 하중 및 변형을 갖는 이동 부품들에 있어서) 등에 다양하게 이용되고 있다.In general, all metals exhibiting the properties of aluminum, titanium, alloys thereof, and vacuum tubes (diodes) are due to their excellent strength / weight properties, which are particularly important in aeronautics, automotive and mechanical engineering (particularly in moving parts with high mechanical loads and deformations). It is used variously).

상기 재료들은 기계적 특성들(표면경도, 마찰 계수, 내마모성 등)을 높이기 위한 방법으로 그 표면을 코팅 처리하게 되었다.The materials have been coated on the surface in such a way as to increase the mechanical properties (surface hardness, coefficient of friction, wear resistance, etc.).

표면 코팅은 산성 매질 및/또는 알칼리성 매질에서의 내부식성, 고온을 순간적으로 견딜 수 있는 능력, 또는 유전 특성의 획득과 같은 상호 보완적 필요 조건들을 충족시킬 수 있어야 한다.Surface coatings must be able to meet complementary requirements such as corrosion resistance in acidic and / or alkaline media, the ability to withstand high temperatures instantaneously, or attain dielectric properties.

특히 알루미늄은 대단히 활성이기 때문에 공기 중에서 표면이 자연산화 된다. 따라서 알루미늄이나 알루미늄 합금 제품의 경우에는 제품의 표면을 인위적으로 양극 산화시키는 양극산화처리 공정(anodic oxidation process)을 통해 보호성 산화막을 형성하게 된다.Aluminum, in particular, is so active that its surface is naturally oxidized in air. Therefore, in the case of aluminum or aluminum alloy products, a protective oxide film is formed through an anodizing process that artificially anodizes the surface of the product.

알루미늄 양극산화피막은 소정의 두께가 되면 무수한 작은 구멍이 생성된 유공층이 형성된다. 이와 같은 유공층에 의해 활성화 된 양극산화피막을 개공 상태로 방치하게 되면 양극산화피막이 공기중의 가스등과 반응을 일으켜 양극산화피막의 내식성이 떨어지므로 안정된 양극산화피막을 얻기 위하여 봉공 처리하게 된다.When the aluminum anodized film has a predetermined thickness, a porous layer is formed in which numerous small holes are formed. When the anodized film activated by such a porous layer is left in a pore state, the anodized film reacts with a gas in the air, and thus the corrosion resistance of the anodized film is reduced, so that it is sealed to obtain a stable anodized film.

따라서 종래에는 전해 코팅 공정에 있어 마손 또는 부식으로부터의 보호를 위하여 양극산화(anodizing) 방식이 이용되었고, 이러한 양극 산화 공정은 알루미늄 소재의 제품에 보호성 산화막을 형성하기 위하여 이용된다. 그러나, 이러한 방법으로 제조된 코팅재들은 두께에 있어서 제한적이며, 단지 중간 정도의 경도 (최대 약 500 Hv)를 갖는다.Therefore, in the conventional electrolytic coating process, anodizing method is used for protection from wear and tear, and this anodizing process is used to form a protective oxide film on an aluminum material. However, coatings made in this way are limited in thickness and have only moderate hardness (up to about 500 Hv).

또한, 아노다이징(Anodizing)에서는 56%정도의 강산성 전해액을 사용함으로써 별도의 폐수 처리시설이 요구되었으며, 알루미늄 합금재의 전처리(탈지)및 후처리(잔류약품제거)를 하여야 하며, 이로 인한 작업장의 면적이 넓어야 되고 전해액의 온도를 0℃정도로 유지해야 코팅이 잘되므로 냉각설비가 필요하고, 저압의 전류로 가공하므로서 장시간 작업을 하여 전류 소비량이 많아지게 되는 단점이 있다.In addition, in anodizing, a separate wastewater treatment facility was required by using about 56% of strong acidic electrolyte solution. It needs to be wide and keeps the temperature of electrolyte at about 0 ℃, so the coating is good, so cooling equipment is needed.

그리고 보다 격렬한 운용 조건들을 견디기 위한 고성능 코팅 또는 특별히 표면 경도를 강화시키기 위해서는 하드아노다이징 방식이 이용되었다.And hard anodizing has been used to achieve high performance coatings or especially surface hardness to withstand more intense operating conditions.

종래의 하드아노다이징 방식은 강산(60%의 황산 전해액)의 전해액에 낮은 온도(-3 ~ 3℃)의 환경에서 작업하는 어려움이 있고, 탈지, 산세, 화학연마, 본공 처리등과 같은 전처리와 잔류약품제거를 위한 후처리의 여러 공정을 필요로 하는 단점이 있다.The conventional hard anodizing method has a difficulty in working in a low temperature (-3 to 3 ° C) environment in an electrolyte of strong acid (60% sulfuric acid electrolyte), and pretreatment such as degreasing, pickling, chemical polishing, and main treatment and residual There is a disadvantage that requires several processes of post-treatment for chemical removal.

또한 코팅을 입히는 시간도 약 80μ을 얻으려면 약 8시간이 소요되었을 뿐만 아니라, 이렇게 얻은 피막의 특성도 내식성이나 경도에서 문제점이 발생하였다.In addition, it took about 8 hours to obtain a coating time of about 80 μ, and the characteristics of the film thus obtained also had problems in corrosion resistance and hardness.

이와 같은 단점을 보완하기 위해 특허공개 제2003-11316호에서는 마이크로 아크 산화처리(M.A.O, Micro Arc Oxidation)를 이용한 전기적 산화 공정이 제안되었다.In order to compensate for such drawbacks, Korean Patent Laid-Open Publication No. 2003-11316 proposes an electrical oxidation process using micro arc oxidation (M.A.O).

상기 M.A.O 방식은 약 알카리의 전해액에 60Hz(약 20ms)의 전기를 싸이리스트로 정류시 20mSec의 주파수 전압을 이용하여 양/음 펄스를 주는 방식이다. 이 방법은 내마모성을 높여주고 기공의 양을 줄여주어 내식성을 높일 수 있다는 장점이 있는 반면에 많은 전력소모와 거친 표면 조도를 가지는 등의 단점이 있다.The M.A.O method is a method of giving a positive / negative pulse using a frequency voltage of 20 mSec when rectifying 60 Hz (about 20 ms) of electricity into a weak alkaline electrolyte. This method has the advantage of increasing the wear resistance and reducing the amount of pores to increase the corrosion resistance, while having a lot of power consumption and rough surface roughness.

본 발명은 상술한 바와 같은 종래의 문제점을 해소하고 하는 것으로, 본 발명의 목적은 마이크로 아크 산화처리(M.A.O) 방식에 있어 금속 표면에 높은 고주파를 주어 밀도가 크며 균일한 두꺼운 막을 이루도록 산화 입자를 미세화하고 및 조직의 치밀성을 유지할 수 있도록 개선된 금속 표면 산화 공정을 제공함에 있는 것이다.The present invention solves the conventional problems as described above, and an object of the present invention is to provide a high frequency to the metal surface in the micro arc oxidation treatment (MAO) method to refine the oxide particles to form a thick and uniform thick film And an improved metal surface oxidation process to maintain the compactness of the tissue.

또한, 본 발명은 코팅 특성을 높이기 위해 "+"입자와 "-"입자 임펄스의 비율을 점진적으로 변화시키는 방법으로 코팅층은 조밀하게 하면서 기공의 양은 크게 감소시킬 수 있도록 하는데 또 다른 목적이 있는 것이다.In addition, the present invention has a further object to allow the coating layer to be dense and greatly reduce the amount of pores by gradually changing the ratio of "+" particles and "-" particle impulses to improve coating properties.

상기한 목적에 따라 본 발명의 산화공정은 약알카리의 전해질을 넣은 조(漕, bath) 내부에 알루미늄 합금으로 된 부재를 로딩(loading)하고, 높은 전압(-200~1000V)과 주파수(100~10000Hz)에 의한 전기 펄스를 발생시키되, 임펄스시간은 0.05mSec ~ 0.001Sec이고, 임펄스 사이의 간격은 0.05mSec ~ 0.002Sec 휴지시간을 반복하여 운전하는 마이크로아크 산화 공정에 그 특징이 있다.According to the above object, the oxidation process of the present invention loads a member made of an aluminum alloy into a bath containing a weak alkali electrolyte, and has a high voltage (-200 to 1000 V) and a frequency (100 to). 10000 Hz) is generated, the impulse time is 0.05mSec ~ 0.001Sec, the interval between the impulse is characterized by the microarc oxidation process to operate repeatedly 0.05mSec ~ 0.002Sec pause time.

또한, 본 발명은 "+"입자와 "-"입자 임펄스의 비율을 점진적으로 변화시키면서 금속 표면의 산화 입자를 미세화하고, 내마모성 및 내부식성을 크게 높이도록 되는 것을 특징으로 하고 있다.In addition, the present invention is characterized in that the oxide particles on the metal surface are made fine while gradually changing the ratio of the "+" particles and the "-" particle impulses, and greatly increase the wear resistance and corrosion resistance.

또한, 본 발명의 양극산화공정에 이용되는 약알카리 전해질은 0.05~10%의 수산화 칼륨과 같은 알칼리 금속의 수용액과 알칼리 금속의 규산화 나트륨염이 이용된다.In addition, in the weak alkali electrolyte used in the anodizing process of the present invention, an aqueous solution of an alkali metal such as 0.05-10% potassium hydroxide and a sodium silicate salt of an alkali metal are used.

그리고 상기 전해조에는 카바이트 가루 및 질화물 또는 금속산화물이 첨가된다.Carbide powder and nitride or metal oxide are added to the electrolytic cell.

이와 같이 구성된 본 발명은 코팅해야 할 물체의 표면에 표면전하를 형성할 때 전해질로부터 나오는 음이온의 양이 최대이고 전해질 조(漕,bath)에 로딩할 수 있는 알루미늄 부재의 적정용량을 선택함으로써 최대효과를 얻을 수 있도록 펄스와 펄스 사이의 휴지시간을 선택한다.The present invention configured as described above has the greatest effect by selecting the appropriate capacity of the aluminum member which is the maximum amount of anion from the electrolyte and can be loaded into the electrolyte bath when the surface charge is formed on the surface of the object to be coated. Select the pause between pulses to get.

또한, 전해질로부터 발생하는 최대 이온수는 펄스 사이의 휴지시간은 0.05mSec ~ 0.002Sec 범위에서 얻어지며, 전류밀도는 2~200 A/dm² 가 되도록 조정하여 부재를 전해질 조에 담글 때 얻어진다.In addition, the maximum number of ions generated from the electrolyte is obtained when the pause time between pulses is in the range of 0.05 mSec to 0.002 Sec, and the current density is adjusted to be 2 to 200 A / dm² to immerse the member in the electrolyte bath.

전해질은 약알카리 전해질을 사용한다. 전해질은 합금의 종류와 제품의 모양 및 제품의 용도에 영향을 받긴 하지만 통합농도가 0.05~10%인 약알칼리 전해질이 사용되며 약전해질을 구성하는 용매는 수산화칼륨과 규산화 나트륨염을 사용한다.The electrolyte uses a weak alkaline electrolyte. Although electrolytes are affected by the type of alloy, the shape of the product and the use of the product, a weak alkaline electrolyte with an integrated concentration of 0.05 to 10% is used, and the solvents of the weak electrolyte are potassium hydroxide and sodium silicate salt.

전해질 내에 전류흐름의 공정은 특히 펄스운전(pulsed operation)에서는 관성 공정이다. 펄스운전이 중지된 시점에는 전극층 이전의 이온은 그 자체의 운동량에 의해 얼마동안 계속해서 움직여 전극층 표면에서 전하를 형성하고, 전하값은 전하가 형성되는 시간(즉, 휴지시간)에 영향을 받는다.The process of current flow in the electrolyte is an inertial process, especially in pulsed operation. When the pulse operation is stopped, ions before the electrode layer continue to move for some time by their own momentum to form charge on the surface of the electrode layer, and the charge value is influenced by the time (ie, the rest time) at which the charge is formed.

휴지시간이 짧으면 전하가 완전히 형성될 시간이 없고, 휴지시간을 연장시키면 전해질내에 부품 표면으로부터 전하가 흘러내리는(flowing down) 결과를 초래하며 전력의 소비를 증가시키기 때문이다.This is because a short dwell time leaves no time for charge to be fully formed, and prolonging the dwell time results in a flow of charge down from the component surface in the electrolyte and increases power consumption.

부품표면에 공급되는 실제 전류 밀도는 전력 원으로부터 설정된 전류 값을 초과하며, 따라서 똑같은 두께(같은 특성을 갖는)의 코팅을 얻기 위해서 -200~1000V 펄스 발생기(a pulse thyristor converter)를 사용하여 면적이 2~200 A/dm²인 합금의 평판을 이용한다.The actual current density supplied to the component surface exceeds the current value set from the power source, so the area can be reduced using a -200 to 1000 V pulse generator to obtain coatings of equal thickness (having the same characteristics). Use an alloy plate of 2 to 200 A / dm².

로딩의 최대 한계는 설비기술 능력에 따른다(변압기 동력, 조 크기, 동력 장치의 운전 신뢰도, 전류공급 부품 등).The maximum limit of loading depends on the plant technical capabilities (transformer power, jaw size, operating reliability of the power unit, current supply components, etc.).

[실시예 1]Example 1

약알카리 전해질을 넣은 조(漕, bath) 내부에 알루미늄 합금으로 된 부재를 침수하고 로딩한다. 이때, 알루미늄부재가 침수되는 전해질은 수산화칼륨과 규산화나트륨염 0.05~5% 의 수용액으로 제조된다.The aluminum alloy member is submerged and loaded into a bath containing a weak alkali electrolyte. At this time, the electrolyte in which the aluminum member is immersed is prepared in an aqueous solution of 0.05-5% of potassium hydroxide and sodium silicate salt.

전압은 -200~1000V,Voltage is -200 ~ 1000V,

전류밀도는 2~200 A/dm² ,Current density is 2 ~ 200 A / dm²

임펄스시간은 0.05mSec ~ 0.001Sec,Impulse time is 0.05mSec ~ 0.001Sec,

임펄스 사이의 간격은 0.05mSec ~ 0.002Sec범위내에서 산화피막을 형성하도록 반복한다.The interval between the impulses is repeated to form an oxide film in the range of 0.05mSec to 0.002Sec.

상기 조건에 있어 바람직하기로는 전해조의 임펄스는 0.8mSec 동안 발생시키고, 임펄스 사이의 휴지시간은 1.2mSec로 되게 세팅하며, 초기에는 하나의 전극에 1분동안 "+"임펄스만 주고 "-"임펄스는 제공하지 않은 휴지 상태 즉, 1:0 의 상태를 유지한다.Under the above conditions, the impulse of the electrolytic cell is preferably generated for 0.8 mSec, and the rest time between the impulses is set to 1.2 mSec. Initially, only "+" impulse is given to one electrode for 1 minute and the "-" impulse is It maintains the idle state (1: 0 state) which is not provided.

이 후 "+"임펄스와 "-"임펄스를 점진적으로 변화 즉, 1:1 ~ 9:9중 최적의 비율을 찾아 "+"임펄스와 "-"임펄스를 변환시키는 조건으로 운전한다.Thereafter, the "+" impulse and the "-" impulse are gradually changed, that is, the optimum ratio of 1: 1 to 9: 9 is found and operated under the condition of converting the "+" impulse and the "-" impulse.

이처럼 본 발명은 환경 친화적인 운전 공정을 유지하면서 알루니늄이나 마그네슘 표면을 물리적-기계적으로 향상된 코팅의 형성을 위하여 전기, 화학적으로 산화시킬 수 있는 공정을 제공함으로써 산화 입자를 미세화하여 조직의 치밀성을 유지하고, 빠른 작업으로 내마모성 및 내부식성을 높일 수 있게된다.As such, the present invention provides a process that can electrically and chemically oxidize the aluminum or magnesium surface to form a physically-mechanically enhanced coating while maintaining an environmentally friendly operation process, thereby miniaturizing the oxidized particles so that the density of the tissue can be improved. It is possible to increase wear resistance and corrosion resistance by maintaining and fast operation.

이상에서 설명한 바와 같이 본 발명에 의하면, 본 발명은 산화피막을 형성함에 있어 전해조에는 약알카리 전해액을 사용하므로서 폐수처리시설이 필요없고, 전처리(탈지)를 하지 않아도 산화피막 형성 작업이 잘되며 후처리 공정도 불필요하여 자동제어가 가능하는 장점이 있게된다.As described above, according to the present invention, the present invention does not require a waste water treatment facility by using a weak alkali electrolyte in the electrolytic cell in forming the oxide film, and the oxide film forming work is well performed after the pretreatment (degreasing) and the post-treatment is performed. There is no need for a process, and there is an advantage that automatic control is possible.

또한, 본 발명는 높은 고주파를 이용한 전기 분해가 진행되는 동안 "+"임펄스와 "-"임펄스 값을 일정 비율로 제어하여 산화 입자를 미세화 및 조직의 치밀성을 유지할 수 있어 빠른 작업으로 내마모성과 내부식을 높일 수 있는 것이다.In addition, the present invention can control the "+" impulse and "-" impulse value at a constant rate during the electrolysis using a high frequency to maintain the compactness of the oxide particles and maintain the compactness of the tissue, and thus the wear and corrosion resistance in a fast operation It can be increased.

Claims (3)

0.05~10%의 수산화 칼륨과 규산화 나트륨염으로 되는 약알카리의 전해질을 넣은 조(漕, bath) 내부에 알루미늄 합금으로 된 부재를 로딩하고,A member made of aluminum alloy was loaded into a bath containing a weak alkaline electrolyte consisting of 0.05-10% potassium hydroxide and sodium silicate salt. 전압은 -200~1500V,Voltage is -200 ~ 1500V, 전류밀도는 1~200 A/dm² ,Current density is 1 ~ 200 A / dm² 임펄스시간은 0.01mSec ~ 0.01Sec,Impulse time is 0.01mSec ~ 0.01Sec, 임펄스 사이의 간격은 0.01mSec ~ 0.01Sec,The interval between impulses is 0.01mSec ~ 0.01Sec, 범위내에서 반복 운전하는 것을 특징으로 하는 알루미늄 합금으로 제조된 물품의 마이크로 아크 산화공정.Microarc oxidation process of an article made of an aluminum alloy, characterized by repeated operation within the range. 제1항에 있어서, 상기한 전해조에 카바이트 가루 및 질화물 또는 금속산화물이 첨가되는 것을 특징으로 하는 알루미늄 합금으로 제조된 물품의 마이크로 아크 산화공정.2. The microarc oxidation process of an article made of an aluminum alloy according to claim 1, wherein the electrolytic bath is added with carbide powder and nitride or metal oxide. 제1항에 있어서, 상기 임펄스는 "+"임펄스와 "-"임펄스를 1:1 ~ 9:9 까지의 범위내에서 변환 사용하는 것을 특징으로 하는 알루미늄 합금으로 제조된 물품의 마이크로 아크 산화공정.The process of claim 1, wherein the impulse converts and uses "+" impulse and "-" impulse within a range of 1: 1 to 9: 9.
KR1020030052725A 2003-07-30 2003-07-30 microarc oxidation KR100573027B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030052725A KR100573027B1 (en) 2003-07-30 2003-07-30 microarc oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030052725A KR100573027B1 (en) 2003-07-30 2003-07-30 microarc oxidation

Publications (2)

Publication Number Publication Date
KR20050014211A true KR20050014211A (en) 2005-02-07
KR100573027B1 KR100573027B1 (en) 2006-04-25

Family

ID=37225377

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030052725A KR100573027B1 (en) 2003-07-30 2003-07-30 microarc oxidation

Country Status (1)

Country Link
KR (1) KR100573027B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767708B1 (en) * 2006-08-01 2007-10-17 (주)대영 Tension cylinder of tensioning steel wire for public works
KR100853996B1 (en) * 2007-01-05 2008-08-25 (주) 유원컴텍 Method for Treating the Surface on Magnesium and Its Alloys
CN103526252A (en) * 2013-10-31 2014-01-22 哈尔滨工业大学 Method for composite ceramic treatment of rotor spinning cup
CN111560639A (en) * 2019-02-13 2020-08-21 日本爱发科泰克能株式会社 Method for regenerating oxide film of aluminum member
CN113789565A (en) * 2021-09-05 2021-12-14 白林森 Preparation method of high-stability aluminum alloy material
CN115558886A (en) * 2022-09-13 2023-01-03 首钢集团有限公司 Corrosion-resistant high-carbon steel protective film layer and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323205B1 (en) * 2011-10-28 2013-11-04 주식회사 옵트론텍 Method of high silicon aluminum alloy, black oxide coating
KR102153162B1 (en) * 2017-12-26 2020-09-07 주식회사 포스코 Method for treating surface of aluminum alloy plated steel sheet and aluminum alloy plated steel sheet using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767708B1 (en) * 2006-08-01 2007-10-17 (주)대영 Tension cylinder of tensioning steel wire for public works
WO2008016203A1 (en) * 2006-08-01 2008-02-07 Dae Young Co., Ltd. Tension cylinder for tension steel wire for use in public works
KR100853996B1 (en) * 2007-01-05 2008-08-25 (주) 유원컴텍 Method for Treating the Surface on Magnesium and Its Alloys
CN103526252A (en) * 2013-10-31 2014-01-22 哈尔滨工业大学 Method for composite ceramic treatment of rotor spinning cup
CN111560639A (en) * 2019-02-13 2020-08-21 日本爱发科泰克能株式会社 Method for regenerating oxide film of aluminum member
KR20200099076A (en) * 2019-02-13 2020-08-21 아루박 테크노 가부시키가이샤 Method of regenerating oxide coating of aluminum-made part
CN113789565A (en) * 2021-09-05 2021-12-14 白林森 Preparation method of high-stability aluminum alloy material
CN113789565B (en) * 2021-09-05 2023-12-22 浙江泰龙科技有限公司 Preparation method of high-stability aluminum alloy material
CN115558886A (en) * 2022-09-13 2023-01-03 首钢集团有限公司 Corrosion-resistant high-carbon steel protective film layer and preparation method thereof
CN115558886B (en) * 2022-09-13 2024-06-11 首钢集团有限公司 Corrosion-resistant high-carbon steel protective film and preparation method thereof

Also Published As

Publication number Publication date
KR100573027B1 (en) 2006-04-25

Similar Documents

Publication Publication Date Title
Matykina et al. Recent advances in energy efficient PEO processing of aluminium alloys
Blawert et al. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments
US5616229A (en) Process for coating metals
Ivanou et al. Plasma anodized ZE41 magnesium alloy sealed with hybrid epoxy-silane coating
US4148204A (en) Process of mechanically shaping metal articles
US4101386A (en) Methods of coating and surface finishing articles made of metals and their alloys
CN108560037B (en) A kind of Boron Containing Low Carbon Steel oxidation film layer and preparation method thereof
Dehnavi Surface modification of aluminum alloys by plasma electrolytic oxidation
CN100537851C (en) Magnesium, aluminium alloy electrolytic solution for differential arc oxidization surface treatment in aluminates system
CN108977865B (en) Preparation method of 5XXX aluminum and aluminum alloy surface high-corrosion-resistance single-compact micro-arc oxidation film layer
KR100573027B1 (en) microarc oxidation
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
WO2017070780A1 (en) Electrolytic process and apparatus for the surface treatment of non-ferrous metals
Yerokhin et al. Anodising of light alloys
KR101213976B1 (en) The method for fabricating corrosion-resistance ceramics film on the Mg-alloys substrate and materials comprising corrosion-resistance ceramics film prepared therefrom
RU90440U1 (en) COMPOSITION ALUMINUM-OXIDE COATING FOR PROTECTING STEEL FROM CORROSION AND WEAR
WO2021215962A1 (en) Method for applying a coating to items made from valve metal and alloy thereof
WO1998040541A1 (en) Process and apparatus for coating metals
CN107345309B (en) A kind of silumin plasma electrolytic oxidation ceramic coating preparation method
RU2260078C1 (en) Method of making protective coats on surfaces of articles made from magnesium and magnesium-based alloys
Yinning et al. Formation of a composite anodic oxidation film containing Al2O3 particles on the AZ31 magnesium alloy
KR20130046835A (en) Method of high silicon aluminum alloy, black oxide coating
EP0867530B1 (en) Process and apparatus for coating metals
KR100260764B1 (en) Process for microarc oxidation of large size articles made of aluminum alloys
KR101323205B1 (en) Method of high silicon aluminum alloy, black oxide coating

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100413

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee