KR101978472B1 - A combination electrode for redox flow battery and manufacturing method thereof - Google Patents

A combination electrode for redox flow battery and manufacturing method thereof Download PDF

Info

Publication number
KR101978472B1
KR101978472B1 KR1020170177883A KR20170177883A KR101978472B1 KR 101978472 B1 KR101978472 B1 KR 101978472B1 KR 1020170177883 A KR1020170177883 A KR 1020170177883A KR 20170177883 A KR20170177883 A KR 20170177883A KR 101978472 B1 KR101978472 B1 KR 101978472B1
Authority
KR
South Korea
Prior art keywords
bipolar plate
electrode
flow path
present
electrolyte
Prior art date
Application number
KR1020170177883A
Other languages
Korean (ko)
Inventor
김부기
김기현
박상현
최담담
조범희
최강영
Original Assignee
스탠다드에너지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스탠다드에너지(주) filed Critical 스탠다드에너지(주)
Priority to KR1020170177883A priority Critical patent/KR101978472B1/en
Priority to PCT/KR2017/015334 priority patent/WO2019124596A1/en
Application granted granted Critical
Publication of KR101978472B1 publication Critical patent/KR101978472B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

A composite electrode according to the present invention can simplify a manufacturing process and reduce manufacturing cost by inserting the electrode into a bipolar plate included in a battery cell, increase the lamination stability by reducing the volume of the cell, and prevent corrosion of the electrode by eliminating contact between the electrode and an electrolyte. In addition, the bipolar plate is fixed and heated under specific conditions to produce a crack due to expansion of the bipolar plate, thereby stably and rapidly manufacturing the composite electrode. By integrating the bipolar plate and the electrode, the contact resistance is reduced and the output is increased.

Description

레독스 흐름전지용 복합 전극 및 이의 제조방법{A combination electrode for redox flow battery and manufacturing method thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a composite electrode for a redox flow cell and a manufacturing method thereof,

본 발명은 레독스 흐름전지용 복합 전극 및 이의 제조방법에 관한 것으로, 상세하게는 전지셀 삽입되는 바이폴라 플레이트(bipolar plate)의 내부에 일측면이 만입되어 형성되는 삽입홈을 구비하고, 상기 삽입홈에 전극이 일정 영역을 삽입하여 형성되는 바이폴라 플레이트-전극 일체형 복합 전극 및 이의 제조방법에 관한 것이다.The present invention relates to a composite electrode for a redox flow cell and a method of manufacturing the same. More particularly, the present invention relates to a composite electrode for a redox flow battery, which comprises a bipolar plate to which a battery cell is inserted, Electrode integrated type composite electrode in which electrodes are formed by inserting a certain region and a manufacturing method thereof.

최근 지구 온난화의 주요 원인인 온실가스 배출을 억제하기 위한 방법으로 태양광에너지나 풍력에너지 같은 재생에너지가 각광을 받고 있으며 이들의 실용화 보급을 위해 많은 연구가 진행되고 있다. 그러나 재생에너지는 입지환경이나 자연조건에 의해 크게 영향을 받는다. 더욱이, 재생에너지는 출력 변동이 심하기 때문에 에너지를 연속적으로 고르게 공급할 수 없다는 단점이 있다. 따라서 재생에너지를 가정용이나 상업용으로 사용하기 위해서는 출력이 높을 때 에너지를 저장하고 출력이 낮을 때 저장된 에너지를 사용할 수 있는 시스템을 도입하여 사용하고 있다.Recently, renewable energy such as solar energy or wind energy is attracting attention as a method to suppress greenhouse gas emission, which is a major cause of global warming. However, renewable energy is heavily influenced by location conditions and natural conditions. Moreover, since the output fluctuation is significant, the energy can not be continuously supplied uniformly. Therefore, in order to use the renewable energy for home or commercial use, a system that stores energy when the output is high and stored energy when the output is low is introduced and used.

이러한 에너지 저장 시스템으로는 대용량 이차전지가 사용되는데, 일례로, 대규모 태양광발전 및 풍력발전 단지에는 대용량 이차전지 저장시스템이 도입되어져 있다. 상기 대용량의 전력저장을 위한 이차전지로는 납축전지, 황화나트륨(NaS) 전지 그리고 레독스 흐름전지(RFB, redox flow battery) 등이 있다.As such an energy storage system, a large-capacity secondary battery is used. For example, a large-capacity secondary battery storage system is introduced into a large-scale solar power generation and wind power generation complex. The secondary battery for the large-capacity power storage includes a lead storage battery, a sodium sulfide (NaS) battery, and a redox flow battery (RFB).

레독스 흐름전지는 상온에서 작동 가능하며 용량과 출력을 각기 독립적으로 설계할 수 있는 특징이 있기 때문에 최근 대용량 이차전지로 많은 연구가 진행되고 있다.Redox flow cells are capable of operating at room temperature and are capable of independently designing their capacity and output, and therefore many studies have been made with large capacity secondary batteries.

레독스 흐름전지는 연료전지와 유사하게 분리막(멤브레인), 전극 및 분리판(Bipolar plate)이 직렬(Series)로 배치되어 스택(Stack)을 구성함으로써, 전기 에너지의 충방전이 가능한 이차전지(Secondary battery)의 기능을 가진다. 레독스 흐름전지는 분리막의 양측에 양극 및 음극 전해액 저장탱크에서 공급된 양극 전해액(Electrolyte)과 음극 전해액이 순환하면서 이온 교환이 이루어지고 이 과정에서 전자의 이동이 발생하여 충방전이 이루어진다. 이와 같은 레독스 흐름전지는 기존 이차전지에 비해 수명이 길고 kW 내지 MW급 중대형 시스템으로 제작할 수 있기 때문에 ESS(Energy storage system)에 가장 적합한 것으로 알려져 있다.The redox flow battery is a secondary battery which can charge and discharge electric energy by forming a stack by arranging a membrane, an electrode and a bipolar plate in a series similar to a fuel cell, battery. In the redox flow battery, the anode electrolyte and the cathode electrolyte supplied from the anode and cathode electrolyte storage tanks are circulated on both sides of the separator, and the ion exchange is performed. In this process, electrons move to charge and discharge. Such a redox flow battery is known to be the most suitable for an ESS (Energy storage system) because it can be manufactured as a medium to large-sized system of kW to MW class, as compared with a conventional secondary battery.

레독스 흐름전지는 이온교환막(분리막)의 양측에 다공성 전극(양극 및 음극)과 바이폴라 플레이트(bipolar plate), 그리고 프레임이 적층되어 구성되며, 이 중 바이폴라 플레이트는 스택의 각 셀을 분리하는 판으로서, 전지의 내부 저항을 최소화하기 위해 도전성이 요구되고, 인접하는 셀로 전해액이 새지 않고 확실히 차단할 수 있는 수밀성이 요구된다. The redox flow cell consists of porous electrodes (positive electrode and negative electrode), bipolar plate, and frame laminated on both sides of an ion exchange membrane (separator), and the bipolar plate is a plate separating each cell of the stack , Conductivity is required in order to minimize the internal resistance of the battery, and water tightness is required so that the electrolytic solution does not leak to the adjacent cells and can be surely blocked.

기존의 레독스 흐름전지는 스택을 적층할 때 바이폴라 플레이트를 지지해줄 수 있는 프레임과 전극 등의 다양한 재료를 사용하기 때문에 스택 전체의 부피 및 적층 공정시간이 증가하게 된다. 여기에 다수의 바이폴라 플레이트와 프레임, 전극을 적층하여야 하기 때문에 고가의 재료가 다량으로 사용되어 가격 상승 및 접합을 유지하여야 하는 단점이 있다. 또한 바이폴라 플레이트는 두께 방향 전도성 뿐만 아니라 면 방향(in-plane) 전도성이 우수해야 전지의 성능을 향상 시킬 수 있다.Conventional redox flow cells use various materials such as frames and electrodes that can support the bipolar plate when stacking the stack, which increases the volume of the whole stack and the stacking process time. Since a large number of bipolar plates, frames, and electrodes are required to be stacked thereon, a large amount of expensive materials are used, which is disadvantageous in that the cost is increased and the bonding is maintained. In addition, the bipolar plate should have good in-plane conductivity as well as thickness direction conductivity, which can improve the performance of the battery.

대한민국 공개특허 10-2017-0115848호 (2017년 10월 18일)Korean Patent Publication No. 10-2017-0115848 (Oct. 18, 2017)

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 전지셀에 포함되는 바이폴라 플레이트 내부에 전극을 삽입함으로써 제조 공정을 단순화하고 공정비용을 절감할 수 있으며, 셀의 부피를 줄여 적층 안정성을 높이고, 전극과 전해액의 접촉을 없애 전극의 부식을 방지할 수 있는 레독스 흐름전지용 복합 전극의 제공을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been conceived to solve the problems described above, and it is an object of the present invention to simplify the manufacturing process and reduce the process cost by inserting electrodes into the bipolar plate included in the battery cell, And a composite electrode for a redox flow cell, which can prevent contact between an electrode and an electrolyte and prevent corrosion of the electrode.

본 발명의 다른 목적은 상기 복합 전극의 제조방법을 제공하는 것으로, 바이폴라 플레이트를 고정한 상태에서 특정 조건으로 가열하여 바이폴라 플레이트의 팽창에 따른 균열을 발생시켜 빠르고 안정적으로 복합 전극을 제조할 수 있는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing the composite electrode, wherein the bipolar plate is heated under specific conditions in a fixed state to generate cracks due to the expansion of the bipolar plate, so that a composite electrode can be manufactured quickly and stably .

본 발명은 레독스 흐름전지용 복합전극 및 이의 제조방법에 관한 것이다.The present invention relates to a composite electrode for a redox flow battery and a method of manufacturing the same.

본 발명의 일 양태는 탄소소재를 포함하며, 내부에 일측면이 만입되어 형성되는 삽입홈을 가지는 바이폴라 플레이트; 및 상기 바이폴라 플레이트의 삽입홈에 삽입되되, 일정 부분이 바이폴라 플레이트로부터 노출되도록 삽입되는 전극;을 포함하는 것을 특징으로 하는 레독스 흐름전지용 복합 전극에 관한 것이다.According to an aspect of the present invention, there is provided a bipolar plate including a carbon material, the bipolar plate having an insertion groove formed by recessing one side of the bipolar plate; And an electrode inserted in the insertion groove of the bipolar plate, the electrode being inserted to expose a certain portion from the bipolar plate.

본 발명에서 상기 상기 바이폴라 플레이트는 탄소소재 70 내지 95 중량% 및 고분자 수지 5 내지 30 중량%를 포함하며, 이때 상기 탄소소재는 탄소섬유, 카본블랙, 그래핀, 흑연, 카본페이퍼, 아세틸렌블랙, 활성탄소, 풀러렌, 카본나노튜브, 카본나노와이어, 카본나노혼 및 카본나노링에서 선택되는 어느 하나 또는 복수를, 상기 고분자 수지는 폴리올레핀, 폴리아미드, 폴리스티렌, 폴리비닐클로라이드, 폴리우레탄, 폴리에스테르, 폴리아크릴, 에폭시, 페놀, 요소, 멜라민 및 불포화 폴리에스테르에서 선택되는 어느 하나 또는 복수를 포함하는 것을 특징으로 한다.In the present invention, the bipolar plate includes 70 to 95% by weight of a carbon material and 5 to 30% by weight of a polymer resin. The carbon material may be carbon fiber, carbon black, graphene, graphite, carbon paper, acetylene black, Wherein the polymer resin is selected from the group consisting of polyolefin, polyamide, polystyrene, polyvinyl chloride, polyurethane, polyester, poly Acryl, epoxy, phenol, urea, melamine, and unsaturated polyester.

본 발명의 다른 양태는,In another aspect of the present invention,

A) 탄소소재를 포함하는 조성물로 바이폴라 플레이트를 제조하는 조성물 제조 단계;A) preparing a composition for producing a bipolar plate from a composition comprising a carbonaceous material;

B) 상기 바이폴라 플레이트의 적층 방향으로 상기 바이폴라 플레이트를 관통하도록 전해액유로를 형성하는 전해액유로 형성단계;B) forming an electrolytic solution flow path through the bipolar plate in a direction of stacking the bipolar plate;

C) 상기 바이폴라 플레이트의 양측 단부를 위치 변위가 제한된 고정부재로 압박하되, 상기 전해액 유로를 고정부재가 덮도록 압박하는 압박단계;C) a pressing step of pressing both side ends of the bipolar plate with a fixing member whose positional displacement is limited, and pressing the electrolyte flow path so as to cover the fixing member;

D) 상기 바이폴라 플레이트의 중심부를 가열하여 상기 바이폴라 플레이트의 균열에 의한 삽입홈을 형성하는 삽입홈 형성단계; 및D) forming an insertion groove by heating a central portion of the bipolar plate to form an insertion groove by cracking of the bipolar plate; And

E) 상기 삽입홈에 전극을 삽입하되 일정 부분이 노출되도록 삽입하는 전극 삽입단계;E) inserting an electrode into the insertion groove so as to expose a predetermined portion;

를 포함하는 레독스 흐름전지용 복합 전극의 제조방법에 관한 것이다.And more particularly, to a method for producing a composite electrode for a redox flow battery.

본 발명에서 상기 조성물은 탄소소재 70 내지 95 중량% 및 고분자 수지 5 내지 30 중량%를 포함하는 것이며, 이때 상기 고분자 수지가 열가소성 수지인 경우, 상기 C) 단계는 상기 열가소성 수지의 경화 이후에 진행하며, 상기 고분자 수지가 열경화성 수지인 경우, 상기 D) 단계는 상기 열경화성 수지의 경화도가 B-stage 또는 B-stage 내에 진행하는 것을 특징으로 한다.In the present invention, the composition comprises 70 to 95% by weight of a carbon material and 5 to 30% by weight of a polymer resin, wherein when the polymer resin is a thermoplastic resin, the step C) proceeds after curing of the thermoplastic resin , And when the polymer resin is a thermosetting resin, the step (D) is characterized in that the curing degree of the thermosetting resin proceeds in the B-stage or the B-stage.

본 발명에서 상기 D) 단계의 가열 온도는 500 내지 1500℃, 가열 시간은 1 내지 15초인 것을 특징으로 한다.In the present invention, the heating temperature in step D) is 500 to 1500 ° C. and the heating time is 1 to 15 seconds.

본 발명에 따른 복합 전극은 전지셀에 포함되는 바이폴라 플레이트 내부에 전극을 삽입함으로써 제조 공정을 단순화하고 공정비용을 절감할 수 있으며, 셀의 부피를 줄여 적층 안정성을 높이고, 전극과 전해액의 접촉을 없애 전극의 부식을 방지할 수 있는 장점을 가진다. The composite electrode according to the present invention can simplify the manufacturing process and reduce the manufacturing cost by inserting the electrode into the bipolar plate included in the battery cell. It is possible to reduce the volume of the cell to improve the stability of the lamination and to eliminate contact between the electrode and the electrolyte It has an advantage that corrosion of the electrode can be prevented.

또한 바이폴라 플레이트를 고정한 상태에서 특정 조건으로 가열하여 제조함으로써 바이폴라 플레이트의 팽창에 따른 균열을 발생시켜 빠르고 안정적으로 복합 전극을 제조할 수 있으며, 바이폴라 플레이트와 전극을 일체형을 구성함으로써 접촉저항을 감소시키고 출력효율을 높일 수 있다.In addition, the bipolar plate is fixed and heated under specific conditions to produce a crack due to the expansion of the bipolar plate. Thus, the composite electrode can be manufactured quickly and stably. By forming the bipolar plate and the electrode as one body, The efficiency can be increased.

도 1은 본 발명의 복합전극의 사시도를 도시한 것이다.
도 2는 본 발명의 복합전극의 단면을 도시한 것이다.
도 3 내지 7은 본 발명에 따른 복합전극의 제조과정을 도시한 것이다.
도 8은 본 발명에 따라 제조된 복합전극을 포함하는 레독스 흐름전지의 셀을 포함하는 구성요소에 대한 예를 보여주는 개념도를 도시한 것이다.
1 is a perspective view of a composite electrode of the present invention.
2 shows a cross section of the composite electrode of the present invention.
FIGS. 3 to 7 illustrate a manufacturing process of a composite electrode according to the present invention.
8 is a conceptual diagram showing an example of a component including a cell of a redox flow cell including a composite electrode manufactured according to the present invention.

이하, 구체예들을 참조하여 본 발명에 따른 레독스 흐름전지용 복합 전극 및를 상이의 제조방법을 상세히 설명한다. 다음에 소개되는 구체예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다.Hereinafter, a composite electrode for a redox flow battery according to the present invention and a method for manufacturing the same will be described in detail with reference to specific examples. The following specific embodiments are provided by way of example so that those skilled in the art can fully understand the spirit of the present invention.

따라서 본 발명은 이하 제시되는 구체예들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 구체예들은 본 발명의 사상을 명확히 하기 위해 기재된 것일 뿐, 본 발명이 이에 제한되는 것은 아니다. Therefore, the present invention is not limited to the embodiments shown below, but may be embodied in other forms. The embodiments shown below are only for clarifying the spirit of the present invention, and the present invention is not limited thereto.

이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Here, unless otherwise defined, technical terms and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. In the following description, the gist of the present invention is unnecessarily blurred And a description of the known function and configuration will be omitted.

또한 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.In addition, the following drawings are provided by way of example so that those skilled in the art can fully understand the spirit of the present invention. Therefore, the present invention is not limited to the following drawings, but may be embodied in other forms, and the drawings presented below may be exaggerated in order to clarify the spirit of the present invention. Also, throughout the specification, like reference numerals designate like elements.

또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.Also, the singular forms as used in the specification and the appended claims are intended to include the plural forms as well, unless the context clearly indicates otherwise.

또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are intended to distinguish the constituent elements from other constituent elements, and the terms do not limit the nature, order or order of the constituent elements. When a component is described as being "connected", "coupled", or "connected" to another component, the component may be directly connected to or connected to the other component, It should be understood that an element may be "connected," "coupled," or "connected."

본 발명에서 용어 ‘전지셀(battery cell)’은 전해액을 통해 충방전이 일어나는 최소 단위로, 이온 교환이 일어나는 분리막, 분리판 등을 포함하여 구성된다.The term 'battery cell' in the present invention is a minimum unit in which charging and discharging occurs through an electrolytic solution, and includes a separator, separator, etc., in which ion exchange occurs.

본 발명에서 용어 ‘스택’은 전지셀이 복수 개 적층되거나 구성된 것을 뜻한다.In the present invention, the term " stack " means that a plurality of battery cells are stacked or configured.

본 발명에서 용어 ‘바이폴라 플레이트(bipolar plate)’는 스택의 각 셀을 분리하는 판으로써 분리막과 양극, 음극 중 적어도 어느 하나 이상에 접촉하며, 전해액을 이송하는 유로를 포함하는 동시에 전지의 내부저항을 최소화하는 역할을 수행한다. The term " bipolar plate " in the present invention refers to a plate for separating each cell of a stack. The bipolar plate includes at least one of a separator, an anode, and a cathode. The bipolar plate includes a channel for transporting an electrolyte, And minimizes it.

본 발명에서 적층 방향은 도 8에 기재된 복합전극의 제조과정에서 각 구성의 중심을 관통하여 도시된 점선 방향을 의미한다. 이때 상기 적층 방향은 점선의 일단 방향 및 타단 방향을 모두 의미한다.The lamination direction in the present invention means the direction of the dotted line passing through the center of each constitution in the process of manufacturing the composite electrode shown in FIG. At this time, the stacking direction means both one end direction and the other end direction of the dotted line.

본 발명의 발명자는 레독스 흐름전지의 단점인 스택을 적층할 때 바이폴라 플레이트를 지지해줄 수 있는 프레임과 전극 등의 다양한 재료를 사용하기 때문에 스택 전체의 부피 및 적층 공정시간이 증가하게 되며, 다수의 바이폴라 플레이트와 프레임, 전극을 적층하여야 하기 때문에 접합을 유지하여야 하는 불안정성이 큰 문제점을 해결하기 위해 예의 연구를 거듭하던 중, 전지셀에 포함되는 바이폴라 플레이트 내부에 전극을 삽입함으로써 제조 공정을 단순화하고 공정비용을 절감할 수 있으며, 셀의 부피를 줄여 적층 안정성을 높이고, 전극과 전해액의 접촉을 없애 전극의 부식을 방지할 수 있으며, 빠르고 안정적으로 복합전극을 제조할 수 있는 방법을 발견하여 본 발명을 완성하게 되었다.The inventor of the present invention uses various materials such as a frame and an electrode that can support the bipolar plate when stacking the stack, which is a disadvantage of the redox flow battery, so that the volume of the entire stack and the time for the stacking process are increased, Since the bipolar plate, frame, and electrode must be stacked, it is necessary to simplify the manufacturing process by inserting the electrode inside the bipolar plate included in the battery cell, It is possible to reduce the cost, increase the lamination stability by reducing the volume of the cell, eliminate the contact between the electrode and the electrolyte, prevent the corrosion of the electrode, and find a method for manufacturing the composite electrode quickly and stably. It was completed.

본 발명에 따른 레독스 흐름전지용 복합전극(100)은 도 1 및 2와 같이, 내부에 일측면이 만입되어 형성되는 삽입홈(111)을 가지는 바이폴라 플레이트(110)와, 상기 바이폴라 플레이트의 삽입홈에 삽입되되, 일정 부분이 바이폴라 플레이트로부터 노출되도록 삽입되는 전극(120)을 포함하여 구비될 수 있다.1 and 2, the composite electrode 100 for a redox flow battery according to the present invention includes a bipolar plate 110 having an insertion groove 111 formed therein with one side indented therein, And an electrode 120 inserted into the bipolar plate such that a certain portion thereof is exposed from the bipolar plate.

제조방법을 중심으로 본 발명에 따른 상기 바이폴라 플레이트를 더욱 상세히 설명하면,The bipolar plate according to the present invention will be described in more detail,

A) 탄소소재를 포함하는 조성물로 바이폴라 플레이트를 제조하는 조성물 제조 단계;A) preparing a composition for producing a bipolar plate from a composition comprising a carbonaceous material;

B) 상기 바이폴라 플레이트의 적층 방향으로 상기 바이폴라 플레이트를 관통하도록 전해액유로를 형성하는 전해액유로 형성단계;B) forming an electrolytic solution flow path through the bipolar plate in a direction of stacking the bipolar plate;

C) 상기 바이폴라 플레이트의 양측 단부를 위치 변위가 제한된 고정부재로 압박하되, 상기 전해액 유로를 고정부재가 덮도록 압박하는 압박단계;C) a pressing step of pressing both side ends of the bipolar plate with a fixing member whose positional displacement is limited, and pressing the electrolyte flow path so as to cover the fixing member;

D) 상기 바이폴라 플레이트의 중심부를 가열하여 상기 바이폴라 플레이트의 균열에 의한 삽입홈을 형성하는 삽입홈 형성단계; 및D) forming an insertion groove by heating a central portion of the bipolar plate to form an insertion groove by cracking of the bipolar plate; And

E) 상기 삽입홈에 전극을 삽입하되 일정 부분이 노출되도록 삽입하는 전극 삽입단계;E) inserting an electrode into the insertion groove so as to expose a predetermined portion;

를 포함하여 진행할 수 있다.. ≪ / RTI >

본 발명에서 상기 탄소소재는 상기 바이폴라 플레이트의 주성분으로, 전지의 내부저항을 최소화하기 위한 도전성이 높으며, 고분자 수지와의 혼화성 및 분산성이 높을 것을 요구된다. In the present invention, the carbon material is a main component of the bipolar plate, and is required to have high conductivity for minimizing the internal resistance of the battery, high miscibility with the polymer resin, and high dispersibility.

본 발명에서 상기 탄소소재의 일예로는 탄소섬유, 카본블랙, 그래핀, 흑연, 카본페이퍼, 아세틸렌블랙, 활성탄소, 풀러렌, 카본나노튜브, 카본나노와이어, 카본나노혼 및 카본나노링 등을 들 수 있으며, 이들 중 어느 하나 또는 복수를 혼합하여 사용하여도 무방하고, 고분자 수지와의 혼화성 및 분산성을 고려하여 더욱 바람직하게는 탄소섬유 또는 흑연을 사용하는 것이 바람직하다.Examples of the carbon material in the present invention include carbon fibers, carbon black, graphene, graphite, carbon paper, acetylene black, activated carbon, fullerene, carbon nanotubes, carbon nanowires, carbon nanohorns, Any one or a plurality of these may be used in combination. It is more preferable to use carbon fiber or graphite in consideration of compatibility with a polymer resin and dispersibility.

상기 탄소소재는 입자 크기를 한정하지 않으나, 바람직하게는 10㎚ 내지 900㎛, 더 바람직하게는 1 내지 100㎛인 것이 좋다. 입자 크기가 10㎚ 미만인 경우 낮은 입자 당 부피로 인해 수지 내에서 응집되어 분산이 어려울 수 있으며, 900㎛를 초과하는 경우 분산의 균일도가 떨어질 수 있다.The carbon material does not limit the particle size, but is preferably 10 nm to 900 탆, more preferably 1 to 100 탆. If the particle size is less than 10 nm, it may be difficult to disperse in the resin because of the volume per particle, and if the particle size exceeds 900 μm, the uniformity of dispersion may be lowered.

본 발명에서 상기 탄소소재는 바이폴라 플레이트 조성물 100 중량% 중 70 내지 95 중량%를 포함하는 것이 바람직하다. 상기 범위 미만 첨가되는 경우 바이폴라 플레이트 내 고분자 수지가 과량으로 존재하여 전지저항이 상승하고 에너지 효율이 저하될 수 있으며, 95 중량% 초과 첨가하는 경우 바이폴라 플레이트의 기계적인 물성이 저하할 수 있다.In the present invention, it is preferable that the carbon material includes 70 to 95 wt% of 100 wt% of the bipolar plate composition. If the amount is less than the above range, the polymer resin in the bipolar plate may be present in an excessive amount, resulting in an increase in battery resistance and a decrease in energy efficiency. If the amount exceeds 95 wt%, the mechanical properties of the bipolar plate may deteriorate.

본 발명에서 상기 고분자 수지는 상기 탄소소재의 입자를 분산 및 고정하는 일종의 접착제로, 전해액이 직접 접촉하므로 높은 수준의 내산성이 요구되고, 탄소소재와의 혼화성 및 분산성이 높은 것이 바람직하다.In the present invention, the polymer resin is a kind of adhesive for dispersing and fixing the particles of the carbon material, and it is desirable that a high level of acid resistance is required because the electrolyte is in direct contact with the polymer, and the compatibility and dispersibility with the carbon material are high.

본 발명에서 상기 고분자 수지는 상기 특성을 만족한다면 그 종류를 한정하지 않으며, 바람직하게는 폴리에틸렌, 폴리프로필렌, 에틸렌비닐아세테이트 등의 폴리올레핀이나, 폴리아미드, 폴리스티렌, 폴리비닐클로라이드, 폴리우레탄, 폴리에스테르, 폴리아크릴 등의 열가소성 수지; 또는 에폭시, 페놀, 요소, 멜라민 및 불포화 폴리에스테르 등의 열경화성 수지를 들 수 있으며, 이들 중 하나 또는 복수를 혼합하여 사용하여도 무방하다.In the present invention, the polymer resin is not limited in its kind as long as it satisfies the above-mentioned characteristics, and is preferably a polyolefin such as polyethylene, polypropylene, ethylene vinyl acetate, or a polyolefin such as polyamide, polystyrene, polyvinyl chloride, polyurethane, Thermoplastic resins such as polyacryl; Or thermosetting resins such as epoxy, phenol, urea, melamine and unsaturated polyester. One or a mixture of these may be used.

본 발명에서 상기 고분자 수지는 전체 바이폴라 플레이트 조성물 100 중량%에 대하여 5 내지 30 중량%를 첨가하는 것이 바람직하다. 상기 범위 미만 첨가되는 경우 탄소소재의 접착 성능이 줄어들거나 바이폴라 플레이트의 표면 및 내부에 공극이 발생할 수 있으며, 상기 범위 초과 첨가되는 경우 수지량이 과량으로 존재하여 전기저항 특성 및 에너지 효율이 저하될 수 있다.In the present invention, the polymer resin is preferably added in an amount of 5 to 30% by weight based on 100% by weight of the entire bipolar plate composition. If the amount is less than the above range, the adhesion property of the carbon material may be reduced or voids may be formed on the surface and inside of the bipolar plate. If the amount is exceeded, the amount of resin may be excessively present, .

또한 본 발명에 따른 바이폴라 플레이트는 조성물 제조 시 필요에 따라 도전성 필러를 더 첨가할 수도 있다. Further, the bipolar plate according to the present invention may further include a conductive filler as needed in the preparation of the composition.

상기 도전성 필러는 상기 바이폴라 플레이트의 전기적 특성을 더욱 높이기 위한 것으로, 상기 탄소소재 또는 고분자 수지와의 혼화성 및 분산성이 높은 금속입자를 사용하는 것이 바람직하다.The conductive filler is used to further increase the electrical characteristics of the bipolar plate, and it is preferable to use metal particles having high miscibility and dispersibility with the carbon material or the polymer resin.

상기 도전성 필러는 상기 특성을 만족하면 종류를 한정하지 않으며, 이들의 일예를 들면 구리, 알루미늄, 티타늄, 금, 백금, 철, 은, 규소, 주석, 비스무트, 마그네슘, 아연, 인듐, 게르마늄 및 납 등을 들 수 있으며, 이들을 하나 또는 복수의 혼합물을 사용하여도 무방하다. Examples of the conductive filler include copper, aluminum, titanium, gold, platinum, iron, silver, silicon, tin, bismuth, magnesium, zinc, indium, germanium, lead and the like And one or a mixture of these may be used.

상기 도전성 필러는 상기 탄소소재와 동일 또는 유사한 입경 크기를 가질 수있으며, 이들의 첨가량을 한정하지는 않으나 전체 바이폴라 플레이트 조성물 100 중량부 중 0.01 내지 1 중량부 첨가하는 것이 전체 조성물의 분산 특성 및 전기 전도도 특성을 만족할 수 있어 바람직하다.The conductive filler may have a particle size the same as or similar to that of the carbon material, and the addition amount thereof is not limited. However, the addition of 0.01 to 1 part by weight of the conductive filler in 100 parts by weight of the total bipolar plate composition results in dispersion characteristics and electrical conductivity Can be satisfied.

본 발명에 따른 바이폴라 플레이트 조성물은 경화성, 시트 제조 상의 용이성 및 점도 조절 등을 고려하여 유기용매, 경화제, 분산제 등의 첨가제를 추가로 첨가할 수 있다. 이때 이들의 첨가량을 본 발명에서 한정하지 않으며, 구체적으로 첨가제 전체의 첨가량은 전체 바이폴라 플레이트 조성물 100 중량부 중 10 내지 100 중량부를 만족하는 것이 바람직하다.The bipolar plate composition according to the present invention may further contain additives such as an organic solvent, a curing agent and a dispersing agent in consideration of curability, ease of sheet production, and viscosity control. In this case, the addition amount of the additives is not limited to the present invention. Specifically, it is preferable that the total amount of the additives is 10 to 100 parts by weight in 100 parts by weight of the entire bipolar plate composition.

본 발명에 따른 바이폴라 플레이트는 제조방법을 한정하지 않는다. 구체적으로 상기와 같이 조성물을 혼합한 후, 이를 원하는 크기로 설정된 주형에 붓고 열압 강화하여 제조할 수 있다. 이때 가하는 온도 및 압력을 한정하지 않으며, 구체적으로 상기 고분자 수지의 특성을 고려하여 열화온도 미만의 온도를 가하면서 압착하여 제조할 수 있다. 특히 열경화성 수지인 경우 저온에서 경화가 가능하므로, 일정량의 압력을 가함으로써 쉽게 제조할 수 있다.The manufacturing method of the bipolar plate according to the present invention is not limited. Specifically, the composition can be prepared by mixing the composition as described above, pouring the composition into a mold having a desired size and thermo-pressing it. In this case, the temperature and the pressure to be applied are not limited. Specifically, the pressure and the pressure may be adjusted while the temperature is lower than the deterioration temperature in consideration of the characteristics of the polymer resin. In particular, in the case of a thermosetting resin, since it can be cured at a low temperature, it can be easily produced by applying a certain amount of pressure.

본 발명에 따라 제조된 바이폴라 플레이트는 크기 및 형태를 한정하지 않는다. 다만 두께가 너무 얇은 경우 삽입홈 형성 과정에서 파손이 발생할 수 있으므로, 일정 이상의 두께를 갖는 것이 좋으며, 전체 전지 셀의 부피 및 삽입되는 전극의 두께를 고려하여 3㎜ 이하, 더욱 바람직하게는 0.5 내지 3㎜의 두께를 갖는 것이 바람직하다.The bipolar plate produced in accordance with the present invention is not limited in size and shape. However, if the thickness is too thin, it may cause breakage in the process of forming the insertion groove. Therefore, it is preferable that the thickness is equal to or more than a certain thickness. In consideration of the volume of the whole battery cell and the thickness of the inserted electrode, Mm. ≪ / RTI >

다음으로 상기와 같이 완성된 바이폴라 플레이트의 적층 방향으로 상기 바이폴라 플레이트를 관통하도록 전해액유로를 형성하는 전해액유로 형성단계를 진행한다(B) 단계).Next, the electrolyte flow path forming step for forming the electrolyte flow path through the bipolar plate in the stacking direction of the completed bipolar plate is performed (step B).

상기 전해액유로 형성단계는 도 1 및 2와 같이 양극 또는 음극에 따라 양극 전해액이나 음극 전해액이 상기 바이폴라 플레이트를 통과하여 유로 프레임 및 가스켓에 의해 형성된 공간으로 이송되거나 상기 공간에서 전해액탱크로 이송될 수 있도록 상기 바이폴라 플레이트의 일측면에 한 쌍으로 구비될 수 있다.1 and 2, the anode electrolyte or the cathode electrolyte may be transferred to the space formed by the flow path frame and the gasket through the bipolar plate or may be transferred to the electrolyte tank from the space. And may be provided on one side of the bipolar plate.

이를 더욱 상세히 설명하면, 상기 전해액유로(112)는 양극 또는 음극 전해액이 상기 유로 프레임이나 가스켓에 의해 형성된 공간으로 유입되는 유입구 및 상기 유로 프레임이나 가스켓에서 전해액탱크로 배출되는 배출구의 역할을 수행하는 것으로, 도 1과 같이 바이폴라 플레이트가 장방형인 경우로 예를 들면, 각 꼭지점을 잇는 대각선과 겹치도록 형성될 수 있다. 이때 상기 바이폴라 플레이트는 상기와 같이 장방형인 경우를 예로 들었으나, 바이폴라 플레이트의 형상에 따라 상기 전해액 유로의 형성 위치를 자유롭게 변경할 수 있으며, 본 발명이 이에 제한되는 것은 아니다. More specifically, the electrolyte flow path 112 serves as an inlet through which the anode or cathode electrolyte flows into the space formed by the flow path frame or the gasket, and a discharge port discharged from the flow path frame or gasket to the electrolyte tank , The bipolar plate may have a rectangular shape as shown in Fig. 1, and may be formed to overlap with diagonal lines connecting the respective vertexes, for example. In this case, the bipolar plate has a rectangular shape as described above. However, the position of the electrolyte flow path can be freely changed according to the shape of the bipolar plate, and the present invention is not limited thereto.

다음으로 상기와 같이 완성된 바이폴라 플레이트의 양측 단부를 도 4와 같이 위치 변위가 제한된 고정부재(500)로 압박한다(C) 단계).Next, the both ends of the bipolar plate as described above are pressed by the fixing member 500 whose positional displacement is limited as shown in FIG. 4 (C)).

상기 C) 단계는 상기 바이폴라 플레이트의 열변형에 따른 내부 균열을 유도하여 삽입홀을 형성하기 위한 것으로, 위치 변위가 제한된 고정부재(500), 예를 들어 지그 등을 이용하여 바이폴라 플레이트의 양 끝단을 잡아 고정하고, 바이폴라 플레이트의 일정 부분에 열을 가할 경우, 바이폴라 플레이트는 열팽창이 발생하나, 양 끝단이 지그로 고정되어 있으므로 팽창이 지속되면서 도 4와 같이 바이폴라 플레이트의 일정 영역에 균열이 발생할 수 있다.The step C) is for forming an insertion hole by inducing internal cracks due to thermal deformation of the bipolar plate. The fixing member 500 having a limited positional displacement, for example, a jig, When heat is applied to a certain portion of the bipolar plate, the bipolar plate thermally expands, but since the both ends are fixed by the jig, expansion may continue and cracks may occur in a certain region of the bipolar plate as shown in FIG. .

상기 탄소소재는 상대적으로 층강도는 낮으나 열전도도가 높아 열에 의해 팽창이 되고 양 끝단이 고정부재에 의해 구속되면 상하부가 대칭형상이므로 중앙 부분부터 균열이 발생하고, 상기 균열은 길이 방향으로 발생하여 확장된다. When the carbon material is relatively low in layer strength but high in thermal conductivity, it is expanded by heat, and when both ends are constrained by the fixing member, since the upper and lower portions are symmetrical, cracks are generated from the center portion, do.

상기 바이폴라 플레이트를 고정부재로 압박할 때 상기 전해액유로를 고정부재가 덮도록 압박하는 것이 바람직하다. 만약 다음 단계에서 바이폴라 플레이트의 일정 영역을 가열하여 삽입홈을 형성할 때 상기 고정부재가 상기 전해액유로를 덮지 않는다면 바이폴라 플레이트의 열변형 시 상기 전해액유로에 변형이 가해져 전해액유로의 직경이나 유로 방향이 변형될 수 있기 때문이다.It is preferable that when the bipolar plate is pressed by the holding member, the electrolyte flow path is pressed so that the holding member covers the bipolar plate. If the fixing member does not cover the electrolyte flow path when a certain region of the bipolar plate is heated by heating a certain region of the bipolar plate in the next step, the electrolyte flow path is deformed at the time of thermal deformation of the bipolar plate, It can be.

상기와 같이 바이폴라 플레이트를 고정한 후에는 상기 바이폴라 플레이트의 일정 영역을 가열하여 바이폴라 플레이트의 균열을 유도하여 전극의 삽입홈(111)을 형성할 수 있다(D) 단계).After fixing the bipolar plate as described above, a predetermined region of the bipolar plate may be heated to induce cracks in the bipolar plate to form the electrode insertion groove 111 (step D).

본 발명에서 상기 바이폴라 플레이트의 가열 조건, 특히 가열 온도 및 가열시간은 바이폴라 플레이트를 이루는 조성물, 특히 고분자 수지의 용해, 변형, 열화 온도를 고려하여 설정하는 것이 바람직하다.In the present invention, the heating conditions, particularly the heating temperature and the heating time, of the bipolar plate are preferably set in consideration of the dissolution, deformation and deterioration temperature of the composition of the bipolar plate, in particular, the polymer resin.

본 발명에서 상기 바이폴라 플레이트의 가열 온도는 바이폴라 플레이트의 균열 크기 및 속도에 따라 조절할 수 있으나, 500 내지 1,500℃, 더욱 바람직하게는 800 내지 900℃인 것이 좋으며, 가열 시간은 1 내지 15초, 더욱 바람직하게는 3 내지 7초인 것이 바람직하다. 상기 범위에서 고분자 수지의 용해, 변형, 열화를 방지하면서도 바이폴라 플레이트의 열팽창에 따른 삽입홈이 균일하게 형성할 수 있어 바람직하다. In the present invention, the heating temperature of the bipolar plate can be controlled according to the size and speed of the bipolar plate, but it is preferably 500 to 1,500 ° C, more preferably 800 to 900 ° C, more preferably 1 to 15 seconds, Preferably 3 to 7 seconds. It is preferable that the insertion groove according to the thermal expansion of the bipolar plate can be uniformly formed while preventing the dissolution, deformation and deterioration of the polymer resin in the above range.

본 발명에서 상기 바이폴라 플레이트의 가열장치는 가열 온도 및 가열 시간 조절이 용이하며 크기가 작아 가열 공정에 불편함을 주지 않을 정도라면 종류에 한정치 않고 사용할 수 있다. 일예로 부탄(butane) 화염발생기를 사용할 수 있으며, 이외에도 다양한 가열 수단을 사용할 수 있다.In the present invention, the bipolar plate heating apparatus can be used without limitation as long as the heating temperature and the heating time can be easily controlled and the size thereof is small so as not to inconvenience in the heating process. For example, a butane flame generator may be used, and various heating means may be used.

또한 상기 D) 단계는 바이폴라 플레이트를 구성하는 고분자 조건에 따라 가열 시점을 조절할 수 있다. 일예로 상기 고분자 수지가 열가소성 수지인 경우, 바이폴라 플레이트가 완전히 경화한 이후에 가열하여도 무방하나, 열경화성 수지인 경우 완전히 경화가 일어난 이후에는 삼차원 그물구조를 가져 피착체인 탄소소재에 강고하게 접착하는 성질을 가지나, 이러한 삼차원 그물구조가 파괴되면 다시 회복되지 못하므로 완전히 경화한 후에 열변형에 의한 균열을 발생시키면 균열에 의해 바이폴라 플레이트의 파손이 발생할 수 있으므로, 경화가 진행되는 중간에 바이폴라 플레이트에 열처리를 하는 것이 바람직하다.Also, the step (D) may control the heating time according to the polymer condition of the bipolar plate. For example, when the polymer resin is a thermoplastic resin, it may be heated after the bipolar plate is completely cured. However, in the case of a thermosetting resin, after the bipolar plate is completely cured, it has a three-dimensional net structure, However, if the three-dimensional net structure is destroyed, the bipolar plate may not be restored. Therefore, if cracks due to thermal deformation are generated after complete curing, breakage of the bipolar plate may occur due to cracks. .

더욱 상세하게 상기 고분자 수지가 열경화성 수지인 경우, 상기 D) 단계는 상기 열경화성 수지 경화 과정의 B-stage 또는 B-stage 내에 진행하는 것이 바람직하다. More specifically, when the polymer resin is a thermosetting resin, the step D) preferably proceeds in the B-stage or the B-stage of the curing process of the thermosetting resin.

다음으로 도 5 및 6과 같이 바이폴라 플레이트에 삽입홈(111)이 형성되면, 바이폴라 플레이트에 형성된 삽입홈에 전극(120)을 삽입하되, 일정전극 부분이 노출되도록 삽입하는 전극 삽입단계를 진행할 수 있다(E) 단계).Next, as shown in FIGS. 5 and 6, when the insertion groove 111 is formed in the bipolar plate, the electrode insertion step may be performed in which the electrode 120 is inserted into the insertion groove formed in the bipolar plate, (E) step).

상기 전극은 전지 셀 내에서의 위치에 따라 양극, 음극으로 나눌 수 있으며, 상기와 같이 양극 및 음극으로 나눌 경우, 상기 양극 및 음극은 각각 두께, 공극도분포, 공극율, 비표면적, 밀도 및 전도성 등을 서로 상이하게 가져갈 수 있다.The electrode may be divided into an anode and a cathode according to the position in the battery cell. When the anode and the cathode are divided into the anode and the cathode as described above, the anode and the cathode may have different thicknesses, porosity distributions, porosities, specific surface areas, Can be taken differently from each other.

상기 전극은 전도성을 갖는 물질로 당업계에서 레독스 흐름전지나 이차전지의 전극으로 사용되는 것이라면 종류에 한정치 않는다. 일예로, 흑연, 그래핀, 탄소섬유와 같은 탄소재나, 구리, 은, 금, 백금, 알루미늄 등의 금속 또는 상기 금속의 금속 산화물 등을 들 수 있으며, 상기 탄소재와 금속 또는 금속 산화물을 혼합하여 사용하여도 좋다.The electrode is not limited to a material having conductivity as long as it is used as a redox flow battery or an electrode of a secondary battery in the art. For example, carbon materials such as graphite, graphene and carbon fibers, metals such as copper, silver, gold, platinum and aluminum, and metal oxides of the above metals may be mentioned. The carbon material may be mixed with a metal or a metal oxide May be used.

본 발명에 따른 상기 전극은 크기나 형태를 한정하지 않는다. 다만 상기 전극은 바이폴라 플레이트의 삽입홈에 일정 영역 삽입되어야 하므로, 크기, 형태 및 두께가 상기 삽입홈에 원활하게 삽입될 수 있도록 제조되는 것이 바람직하다. 특히 두께의 경우 상기 바이폴라 플레이트의 두께보다 작은 것이 좋으며, 전체 전지 셀의 부피 및 삽입홈의 폭, 깊이 등을 고려하여 2㎜ 이하, 더욱 바람직하게는 0.05 내지 2㎜인 것이 바람직하다.The electrodes according to the present invention are not limited in size or shape. However, since the electrode is to be inserted into the insertion groove of the bipolar plate in a predetermined area, it is preferable that the size, shape and thickness of the electrode are smoothly inserted into the insertion groove. In particular, it is preferable that the thickness is smaller than the thickness of the bipolar plate, and it is preferably 2 mm or less, more preferably 0.05 to 2 mm in consideration of the volume of the whole battery cells and the width and depth of the insertion grooves.

상기 전극은 도 1 및 2와 같이 삽입홈에 밀어 넣되, 외부에서 전기적 연결이 가능하도록 전극의 일부분이 바이폴라 플레이트로부터 노출되도록 하는 것이 바람직하다. The electrode is preferably pushed into the insertion groove as shown in FIGS. 1 and 2, and a portion of the electrode is exposed from the bipolar plate so that the electrode can be electrically connected to the outside.

상기와 같이 전극을 삽입홈에 삽입하면, 도 7과 같이 상기 바이폴라 플레이트를 냉각하여 수축시킴으로써 팽창된 바이폴라 플레이트를 원상태로 복구하여 완성할 수 있다. 이때 상기 바이폴라 플레이트의 냉각 조건은 상기 바이폴라 플레이트 조성물에 포함되는 수지의 종류, 첨가량, 기타 첨가제 포함 유무 등에 따라 상이하며, 본 발명이 이를 제한하지 않는다.When the electrode is inserted into the insertion groove as described above, the bipolar plate is cooled and contracted as shown in FIG. 7, whereby the expanded bipolar plate can be restored to its original state and completed. At this time, the cooling condition of the bipolar plate differs depending on the kind of the resin included in the bipolar plate composition, the addition amount, the presence or absence of other additives, and the present invention is not limited thereto.

또한 상기 복합 전극은 필요에 따라 상기 전극을 바이폴라 플레이트 내에 삽입한 후에 상기 삽입홈을 봉인하여 상기 전극의 노출을 차단할 수 있다. 이때 상기 삽입홈을 봉인하는 방법은 본 발명에서 한정하지 않으나, 바람직하게는 상기 바이폴라 플레이트 조성물을 상기 삽입홈에 붓고 이를 경화함으로써 달성할 수 있다.In addition, the composite electrode may be exposed to the electrode by sealing the insertion groove after inserting the electrode into the bipolar plate, if necessary. At this time, the method of sealing the insertion groove is not limited to the present invention, but preferably, the bipolar plate composition can be poured into the insertion groove and cured.

본 발명은 상기와 같은 제조방법으로부터 제조된 복합 전극과 상기 복합 전극을 일 구성으로 포함하는 전지셀 및 이를 포함하는 레독스 흐름전지를 더 포함할 수 있다. The present invention may further include a battery cell including the composite electrode and the composite electrode manufactured as described above, and a redox flow cell including the same.

도 8을 통해 상기 전지셀을 더욱 상세히 설명하면, 상기 전지셀은 복합전극(100a, 100b), 가스켓(200a, 200b, 200c, 200d), 유로프레임(300a, 300b), 분리막(400)을 포함할 수 있으며, 이외에도 상기 셀을 압착시키는 고정프레임(미도시) 및 전해액유로(미도시)를 더 포함할 수 있다.8, the battery cell includes the composite electrodes 100a and 100b, the gaskets 200a, 200b, 200c, and 200d, the flow path frames 300a and 300b, and the separation membrane 400 And may further include a fixed frame (not shown) for pressing the cell and an electrolyte flow path (not shown).

상기 전지셀의 복합전극 중 상단에 위치한 복합전극(100a)을 양극으로, 하단에 위치한 복합전극(100b)을 음극으로 가정하여 설명하면 양극 전해액이 양극 전해액 유로(미도시)로부터 양극 측 유로프레임(300a)의 유입측 유로를 통해 양극 측 유로프레임 내부에 유입되고, 이후 양극 측 유로프레임 내부에 유입된 양극 전해액은 유출측 유로를 통해 양극 전해액 유로(미도시)로 유출된다. 여기서 유입측 유로와 유출측 유로가 도 8에서는 유로프레임(300a)의 한쪽 모서리와 반대쪽 모서리에 형성되어 있다.Assuming that the composite electrode 100a located at the uppermost one of the composite electrodes of the battery cell is an anode and the composite electrode 100b located at the lower end thereof is a cathode, the anode electrolyte flows from the anode electrolyte flow channel (not shown) Side flow path frame through the inlet-side flow path of the anode-side flow path frame 300a, and then flows into the anode-side electrolyte flow path (not shown) through the outflow-side flow path. Here, the inlet-side flow path and the outlet-side flow path are formed at the opposite corner of one side of the flow path frame 300a in Fig.

음극 전해액이 음극 전해액 유로(미도시)로부터 음극 측 유로프레임(300b)의 유입측 유로를 통해 음극 측 유로프레임 내부로 유입되고, 이후 음극 측 유로프레임 내부에 유입된 음극 전해액은 음극 측 유로프레임의 유출측 유로를 통해 음극 전해액 유로(미도시)로 유출된다. 여기서 유입측 유로와 유출측 유로가 도 3에서는 유로프레임(300b)의 한쪽 모서리와 반대쪽 모서리에 형성되어 있다.The negative electrode electrolytic solution flows into the negative electrode side flow path frame from the negative electrode electrolyte flow path (not shown) through the inflow-side flow path of the negative electrode side flow path frame 300b, and then the negative electrode electrolyte flowed into the negative electrode side flow path frame, And flows out to the negative electrode electrolyte flow path (not shown) through the outflow-side flow path. Here, the inflow-side flow path and the outflow-side flow path are formed at the opposite edge of one side of the flow path frame 300b in Fig.

도 8에는 양극 측 유로프레임(300a)의 유출측 유로 및 유입측 유로가, 음극 측 유로프레임(300b)의 유출측 유로 및 유입측 유로와 마주보지 않도록 엇갈리게 형성되어 있으나, 본 발명이 이에 한정된 것은 아니며, 분리막(400)에 의해 양극 전해액과 음극 전해액이 섞이지 못하기 때문에 다양한 유로의 형성이 가능함은 물론이다.8, the outflow-side flow path and the inflow-side flow path of the positive-electrode-side flow path frame 300a are staggered so as not to face the outflow-side flow path and the inflow-side flow path of the negative electrode side flow path frame 300b. However, And it is of course possible to form various channels because the separator 400 can not mix the positive and negative electrode electrolytic solutions.

상기 분리막은 일면에 양극 전해액이 접촉하여 순환되고, 타면에 음극 전해액이 접촉하여 순한되면서 양극 전해액 및 음극 전해액 간에 이온 교환이 이루어진다. 상기 분리막은 이온교환이 가능하여 충방전이 진행된다.The separator is ion-exchanged between the anode electrolyte and the cathode electrolyte while circulating the anode electrolyte in contact with the one surface of the separator, and contacting the cathode electrolyte with the other electrolyte. The separation membrane is ion-exchangeable, and charging / discharging proceeds.

상기와 같은 이온교환을 통해 발생된 전자는 상기 복합전극(100)을 통해 이동되면서 충방전이 이루어질 수 있다. 상기 복합전극은 도 1, 2와 같이 내부에 금속 전극과, 상기 금속 전극의 일부를 감싸는 바이폴라 플레이트(분리판)이 포함된 것으로, 상기 바이폴라 플레이트는 일종의 도전체로, 이온교환을 통해 발생한 전자를 전달받아 상기 전극으로 이송시킨다.Electrons generated through ion exchange as described above may be charged and discharged while being moved through the composite electrode 100. As shown in FIGS. 1 and 2, the composite electrode includes a metal electrode and a bipolar plate (separator) surrounding a part of the metal electrode. The bipolar plate is a kind of conductor, And transferred to the electrode.

상기와 같이, 양극 전해액은 양극 전해액 유로를 따라 순환하게 되고, 음극 전해액은 음극 전해액 유로를 따라 순환하게 되며, 내부에 유입된 각각의 전해액은 이온 교환이 가능한 분리막(400)을 사이에 두고 산화 및 환원반응에 의해 충방전이 일어날 수 있다.As described above, the positive electrode electrolytic solution circulates along the positive electrode electrolyte flow path, the negative electrode electrolyte circulates along the negative electrode electrolyte flow path, and the respective electrolytic solution introduced into the inside flows through the ion exchange membrane 400, Charging and discharging may occur due to the reduction reaction.

본 발명에 따른 레독스 흐름전지는 상기 전극이 바이폴라 플레이트 내부에 삽입됨으로써, 상기 전극에 전해액의 유로인 타공부를 형성할 필요가 없으며, 이를 통해 상기 전해액에 의한 상기 타공부의 부식을 막기 위한 버퍼(오링) 등을 구비할 필요가 없다. 따라서 공정이 단순해지고, 일반적인 레독스 흐름전지가 전극의 타공부에 버퍼를 구비함에 따라 상기 버퍼와 바이폴라 플레이트 사이에 단차가 발생할 수 있으나, 본 발명에 따른 복합 전극을 구비한 레독스 흐름전지는 이러한 단점이 발생하지 않는다. 여기에 상기 전극이 바이폴라 플레이트 내에 삽입됨으로 전해액을 직접 접촉하지 않아 전핵액에 의한 부식을 방지할 수 있으며, 바이폴라 플레이트와 전극을 일체로 하여 전지 셀의 부피를 획기적으로 줄일 수 있다.In the redox flow cell according to the present invention, since the electrode is inserted into the bipolar plate, it is not necessary to form a trough, which is a flow path of the electrolytic solution, to the electrode, and through which a buffer for preventing corrosion of the tread by the electrolyte (O-ring), and the like. Therefore, a step may be formed between the buffer and the bipolar plate as a result of simplification of the process, and a general redox flow cell having a buffer in the other electrode of the electrode. However, in the redox flow battery having the composite electrode according to the present invention, There is no disadvantage. Since the electrode is inserted into the bipolar plate, the electrolyte is not directly contacted with the electrode, so that corrosion due to the pre-nucleus solution can be prevented, and the volume of the battery cell can be drastically reduced by integrating the bipolar plate and the electrode.

상술한 바와 같이, 본 발명에 따른 레독스 흐름전지의 대략적인 연결구조 등을 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, the approximate connection structure of the redox flow cell according to the present invention has been described. However, those skilled in the art will appreciate that various modifications and changes may be made without departing from the spirit and scope of the present invention as set forth in the following claims It will be understood that the invention may be variously modified and changed.

100a, 100b : 복합전극
110 : 바이폴라 플레이트
111 : 삽입홈
112 : 전해액유로
120 : 전극
200a, 200b, 200c, 200d : 가스켓
300a, 300b : 유로프레임
400 : 분리막
500 : 고정부재
100a, 100b: composite electrode
110: bipolar plate
111: insertion groove
112: electrolyte flow path
120: Electrode
200a, 200b, 200c, 200d: gasket
300a and 300b:
400: membrane
500: Fixing member

Claims (10)

삭제delete 삭제delete 삭제delete 삭제delete A) 탄소소재를 포함하는 조성물로 바이폴라 플레이트를 제조하는 조성물 제조 단계;
B) 상기 바이폴라 플레이트의 적층 방향으로 상기 바이폴라 플레이트를 관통하도록 전해액유로를 형성하는 전해액유로 형성단계;
C) 상기 바이폴라 플레이트의 양측 단부를 위치 변위가 제한된 고정부재로 압박하되, 상기 전해액 유로를 고정부재가 덮도록 압박하는 압박단계;
D) 상기 바이폴라 플레이트의 중심부를 가열하여 상기 바이폴라 플레이트의 균열에 의한 삽입홈을 형성하는 삽입홈 형성단계; 및
E) 상기 삽입홈에 전극을 삽입하되 일정 부분이 노출되도록 삽입하는 전극 삽입단계;
를 포함하는 레독스 흐름전지용 복합 전극의 제조방법.
A) preparing a composition for producing a bipolar plate from a composition comprising a carbonaceous material;
B) forming an electrolytic solution flow path through the bipolar plate in a direction of stacking the bipolar plate;
C) a pressing step of pressing both side ends of the bipolar plate with a fixing member whose positional displacement is limited, and pressing the electrolyte flow path so as to cover the fixing member;
D) forming an insertion groove by heating a central portion of the bipolar plate to form an insertion groove by cracking of the bipolar plate; And
E) inserting an electrode into the insertion groove so as to expose a predetermined portion;
Wherein the composite electrode has a thickness of 100 nm or less.
제 5항에 있어서,
상기 조성물은 탄소소재 70 내지 95 중량% 및 고분자 수지 5 내지 30 중량%를 포함하는 레독스 흐름전지용 복합 전극의 제조방법.
6. The method of claim 5,
Wherein the composition comprises 70 to 95% by weight of the carbon material and 5 to 30% by weight of the polymer resin.
제 6항에 있어서,
상기 고분자 수지가 열가소성 수지인 경우, 상기 D) 단계는 상기 열가소성 수지의 경화 이후에 진행하는 것인 레독스 흐름전지용 복합 전극의 제조방법.
The method according to claim 6,
Wherein when the polymer resin is a thermoplastic resin, the step (D) proceeds after curing of the thermoplastic resin.
제 6항에 있어서,
상기 고분자 수지가 열경화성 수지인 경우, 상기 D) 단계는 상기 열경화성 수지의 경화도가 B-stage 또는 B-stage 내에 진행하는 것인 레독스 흐름전지용 복합 전극의 제조방법.
The method according to claim 6,
Wherein when the polymer resin is a thermosetting resin, the curing degree of the thermosetting resin proceeds in a B-stage or a B-stage in the step (D).
제 5항에 있어서,
상기 D) 단계의 가열 온도는 500 내지 1500℃인 레독스 흐름전지용 복합 전극의 제조방법.
6. The method of claim 5,
Wherein the heating temperature in the step (D) is 500 to 1500 ° C.
제 5항에 있어서,
상기 D) 단계의 가열 시간은 1 내지 15초인 레독스 흐름전지용 복합 전극의 제조방법.
6. The method of claim 5,
Wherein the heating time in the step (D) is 1 to 15 seconds.
KR1020170177883A 2017-12-22 2017-12-22 A combination electrode for redox flow battery and manufacturing method thereof KR101978472B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170177883A KR101978472B1 (en) 2017-12-22 2017-12-22 A combination electrode for redox flow battery and manufacturing method thereof
PCT/KR2017/015334 WO2019124596A1 (en) 2017-12-22 2017-12-22 Composite electrode for redox flow battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170177883A KR101978472B1 (en) 2017-12-22 2017-12-22 A combination electrode for redox flow battery and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020180163978A Division KR102003541B1 (en) 2018-12-18 2018-12-18 A combination electrode for redox flow battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR101978472B1 true KR101978472B1 (en) 2019-05-14

Family

ID=66581172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170177883A KR101978472B1 (en) 2017-12-22 2017-12-22 A combination electrode for redox flow battery and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR101978472B1 (en)
WO (1) WO2019124596A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054548A (en) * 2011-11-17 2013-05-27 한국에너지기술연구원 Redox flow battery
KR20170020563A (en) * 2015-08-12 2017-02-23 (주)씨엔티솔루션 Complex material carbon nanotube for plastic bipolar plate
KR20170115848A (en) 2016-04-08 2017-10-18 한국에너지기술연구원 Electrode structure, method for manufacturing thereof and use thereof, and stack structure of redox flow battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569824A (en) * 2011-12-30 2012-07-11 黄权波 Bipolar plate of integrated composite electrode, and manufacturing method and application thereof
CN102569843B (en) * 2012-01-13 2014-10-29 清华大学 Embedded electrode frame of flow cell pile
KR101359704B1 (en) * 2012-11-28 2014-02-10 롯데케미칼 주식회사 Complex body of electrode and bipolar plate for redox flow battery, preparation method of the same, and redox flow battery
KR101498597B1 (en) * 2013-03-12 2015-03-04 한국에너지기술연구원 Integrated electrodes-bipolar plate and manufacturing method thereof
KR101645273B1 (en) * 2014-06-09 2016-08-05 주식회사 스타메드 Bipolar electrode for radiofrequency ablation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054548A (en) * 2011-11-17 2013-05-27 한국에너지기술연구원 Redox flow battery
KR20170020563A (en) * 2015-08-12 2017-02-23 (주)씨엔티솔루션 Complex material carbon nanotube for plastic bipolar plate
KR20170115848A (en) 2016-04-08 2017-10-18 한국에너지기술연구원 Electrode structure, method for manufacturing thereof and use thereof, and stack structure of redox flow battery

Also Published As

Publication number Publication date
WO2019124596A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
CN100585927C (en) Fuel cell
JP4790873B2 (en) Membrane electrode assembly, method for producing the same, and fuel cell
US8609267B2 (en) Electrochemical cell with an electrolyte flow, comprising through-electrodes and production method
KR101887713B1 (en) Lithium accumulator
CN101617434B (en) Power storage device
CN1647296A (en) Metal air cell system
WO2014058643A1 (en) Design of bipolar plates for use in conduction-cooled electrochemical cells
WO2006047015A2 (en) Passive dual-phase cooling for fuel cell assemblies
US10756357B2 (en) Bipolar plate with coolant flow channel
EP3553864A1 (en) Bipolar plate, cell stack, and redox flow battery
KR102003541B1 (en) A combination electrode for redox flow battery and manufacturing method thereof
KR100992165B1 (en) Fuel cell
KR101978472B1 (en) A combination electrode for redox flow battery and manufacturing method thereof
KR20140148147A (en) Secondary Battery
KR102130874B1 (en) Electrode structure for battery and redox flow battery comprising said electrode
KR20200055311A (en) Manifold with back side flow path and Redox flow battery
KR101511843B1 (en) Bipolar Plate and Method of manufacturing the same and secondary battery using the same
WO2018111635A1 (en) Monopolar plate-electrode assemblies and electrochemical cells and liquid flow batteries therefrom
JP2005293910A (en) Fuel cell and its aggregate
US20050214623A1 (en) Lightweight fuel cell plates
JP2008140658A (en) Fuel cell
JP3479774B2 (en) Fuel cell separator
KR20240028862A (en) Static redox battery and energy storage system
EP1580831A2 (en) Solid-state polyelectrolyte type fuel cell
JP2005197064A (en) Electrode structure for fuel cell, gas diffusion electrode, and fuel cell

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant