KR20170020563A - Complex material carbon nanotube for plastic bipolar plate - Google Patents

Complex material carbon nanotube for plastic bipolar plate Download PDF

Info

Publication number
KR20170020563A
KR20170020563A KR1020150113557A KR20150113557A KR20170020563A KR 20170020563 A KR20170020563 A KR 20170020563A KR 1020150113557 A KR1020150113557 A KR 1020150113557A KR 20150113557 A KR20150113557 A KR 20150113557A KR 20170020563 A KR20170020563 A KR 20170020563A
Authority
KR
South Korea
Prior art keywords
composite material
bipolar plate
carbon nanotube
present
plastic
Prior art date
Application number
KR1020150113557A
Other languages
Korean (ko)
Other versions
KR101804856B1 (en
Inventor
서정국
김기천
장인목
Original Assignee
(주)씨엔티솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)씨엔티솔루션 filed Critical (주)씨엔티솔루션
Priority to KR1020150113557A priority Critical patent/KR101804856B1/en
Publication of KR20170020563A publication Critical patent/KR20170020563A/en
Application granted granted Critical
Publication of KR101804856B1 publication Critical patent/KR101804856B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • H01M2/166
    • Y02E60/12
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a carbon nanotube composite material for a plastic bipolar plate, and more specifically, to a bipolar plate fabrication technology based on a technology that fabricates a bipolar plate having a surface resistivity of 10 /square to 0.001 /square without having to use a metal. The present invention is a technology capable of making bipolar plate products having a specific range of thickness without limitation in size. Specifically, the present invention relates to a new carbon nanotube composite material for a plastic bipolar plate, which has a high content of carbon nanotubes (CNTs), and thus has chemical resistance, impact resistance, high electrical conductivity and the like. The carbon nanotube composite material according to the present invention can be used for a bipolar plate for a secondary battery, and can substitute for existing materials, including metal composites, carbon black, graphite and the like.

Description

플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재{COMPLEX MATERIAL CARBON NANOTUBE FOR PLASTIC BIPOLAR PLATE}TECHNICAL FIELD [0001] The present invention relates to a composite material for a plastic bipolar plate,

본 발명은 레독스 플로우 배터리용 또는 캐퍼시티 전지용 등에 사용되는 고전도성 플라스틱 복합소재를 제공하기 위한 것이다.The present invention is intended to provide a highly conductive plastic composite material for use in a redox flow battery or a capacity battery.

현대사회는 전기 및 전자분야의 고도성장에 의존하여 전지산업 또한 함께 비약적으로 발전하여 왔으며, 특히 전기에너지를 화학에너지로 변환하여 저장하였다가 필요시 다시 전기에너지로 변환하여 쓸 수 있을 뿐만 아니라 획기적인 용량의 개선을 통해 소형 및 경량의 전지에서 고용량의 전기를 사용할 수 있는 2차전지의 개발이 활발히 이루어져 왔다.Modern society depends on high growth of electric and electronic fields, and battery industry has also developed remarkably. Especially, it converts electric energy into chemical energy, stores it, converts it into electric energy if necessary, A secondary battery capable of using a large amount of electricity in a small and light-weight battery has been actively developed.

이러한 2차 전지는 높은 효율의 에너지저장시스템으로 소형 모바일용으로터 중대형 ups나 전력 저장용의 다양한 용도에 사용되어 왔으며, 그 용도로서 반도체 및 액정분야, 오디오와 같은 음향분야, 휴대전화, PDA, 노트북과 같은 정보통신분야에서 주요 핵심부품으로 사용되어 왔을 뿐만 아니라, 특히 최근 친환경적 하이브리드 전기자동차의 연료전지로서 배터리와 함께 조합하여 load levelling 등으로의 응용이 활발하게 진행되고 있다.These secondary batteries are energy storage systems of high efficiency and have been used for various applications such as medium to large size ups and electric power storage for small mobile applications. They are used for semiconductors and liquid crystal fields, audio fields such as audio, mobile phones, PDAs, Not only has it been used as a key component in information communication such as notebook computers, but also has recently been actively applied as a fuel cell of an environmentally friendly hybrid electric vehicle in combination with a battery and as a load leveling device.

상기와 같이 다양한 용도로 사용되고 있는 2차 전지들은 더욱 안정한 에너지 공급과 효율이 높은 에너지 변환시스템의 개발을 요구받고 있으며, 이에 최근 전력 저장등 대형화 시스템에 가장 적합한 고용량 및 고효율의 2차 전지로서 레독스 플로우 전지(redox flow battery)가 각광받고 있다.Secondary batteries, which are used for various purposes as described above, are required to supply more stable energy and to develop an energy conversion system with high efficiency. Recently, as a high capacity and high efficiency secondary battery which is most suitable for a large- A redox flow battery is attracting attention.

하지만, 레독스 플로우 2차 전지의 경우는 바나듐계, 아연-브롬계, 요오드등의 화학 용매를 활용하여 산화, 환원을 반복하는 시스템이므로 바이폴라 플레이트 용 전극판은 전자이동성이 우수해야 함은 물론 내화학성과 내충격성이 구비된 소재가 아니면 내구성이 보장되지 못하며 시스템의 특징상 유지보수 문제로 큰 장애가 될 수 있다.However, in the case of the redox flow secondary battery, the oxidation and reduction are repeated using a chemical solvent such as vanadium, zinc-bromide, or iodine. Therefore, the electrode plate for the bipolar plate must have excellent electron mobility, Durability can not be ensured unless it is made of chemical and impact resistant materials.

그러나 현재까지의 금속 복합제, 그라파이트, 카본 등의 소재로는 전기전도성, 내화학성, 내충격성을 동시에 보장하지는 못하고 있는 실정이다.However, to date, materials such as metal composite, graphite, and carbon have not been able to guarantee electrical conductivity, chemical resistance, and impact resistance at the same time.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 고분자의 우수한 성질과 탄소나노튜브의 기계적, 내화학성, 전기적 우수성을 활용한 플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재를 제공하는데 있다.SUMMARY OF THE INVENTION The present invention provides a carbon nanotube composite material for a plastic bipolar plate that utilizes excellent properties of a polymer and mechanical, chemical, and electrical properties of the carbon nanotube. .

또한, 바이폴라 플레이트의 충/방전 효율 극대화 및 제작 비용 유지 보수 비용을 최소화할 수 있도록 전기전도성이 최대화되고 내화학성, 충격 강도등이 보장되는 플라스틱 바이폴라 플라스틱 탄소나노튜브 복합소재를 제공하는데 있다.The present invention also provides a plastic bipolar plastic carbon nanotube composite material that maximizes electrical conductivity and ensures chemical resistance and impact strength so as to maximize charge / discharge efficiency of a bipolar plate and minimize maintenance cost of manufacturing cost.

또한, 본 발명은 탄소나노튜브(CARBON NANOTUBE, CNT)를 고함침하여 사용함으로서 내화학성과 내충격성, 고전기전도도 등을 갖춘 2차 전지의 바이폴라플레이트 용도로서, 기존 소재인 금속 복합체 또는 카본블랙(Carbon black), 그라파이트(Graphite) 등을 대체할 수 있는 신소재(플라스틱 바이폴라 플라스틱 탄소나노튜브 복합소재)를 제공하는데 있다.The present invention also relates to a bipolar plate for a secondary battery having a chemical resistance, an impact resistance and a high electrical conductivity by using a carbon nanotube (CARBON NANOTUBE, CNT) (plastic bipolar plastic carbon nanotube composite material) capable of replacing carbon black, graphite, and the like.

본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시 예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the present invention will be described hereinafter and will be understood by the embodiments of the present invention. Further, the objects and advantages of the present invention can be realized by the means and the combination shown in the claims.

본 발명은 상기와 같은 문제점을 해결하기 위한 수단으로서, 플라스틱 바이폴라 플레이트로 사용되는 복합소재에 있어서, 열가소성 플라스틱에 분산된 탄소나노튜브와 도전성 충전제를 컴파운딩하여, 펠렛상태로 제조되는 것을 특징으로 한다.In order to solve the above problems, the present invention provides a composite material used as a plastic bipolar plate, which is manufactured by compounding a carbon nanotube dispersed in a thermoplastic plastic and a conductive filler in a pellet form .

이상에서 살펴본 바와 같이, 본 발명은 기존보다 내화학성, 내충격성, 고전기전도성이 우수해지는 2차 전지의 바이폴라 플레이트로 사용가능한 효과가 있다. INDUSTRIAL APPLICABILITY As described above, the present invention has an effect that it can be used as a bipolar plate of a secondary battery which is superior in chemical resistance, impact resistance, and high electrical conductivity.

또한, 본 발명은 복합소재 제조시 분산된 탄소나노튜브를 사용함에 따라, 전기전도도 및 컴파운딩 작업성이 상승되는 효과가 있다.Also, since the present invention uses dispersed carbon nanotubes in the production of composite materials, electrical conductivity and compounding workability are improved.

도 1은 본 발명의 복합소재를 이용한 2차 전지 성능 테스트 개념도.
도 2는 탄소나노튜브 분산 전/후 전기전도성 비교표(체적저항 비교).
도 3은 탄소나노튜브 분산 전/후 점도 비교표.
도 4는 탄소나노튜브 및 전도성 충진제를 통한 표면 저항 구현 실시예.
1 is a conceptual view of performance test of a secondary battery using the composite material of the present invention.
2 is a comparison chart of electric conductivity before and after dispersion of carbon nanotubes (volume resistance comparison).
3 is a comparison chart of viscosity before and after dispersion of carbon nanotubes.
Fig. 4 shows an embodiment of surface resistance implementation through carbon nanotube and conductive filler. Fig.

본 발명의 여러 실시예들을 상세히 설명하기 전에, 다음의 상세한 설명에 기재되거나 도면에 도시된 구성요소들의 구성 및 배열들의 상세로 그 응용이 제한되는 것이 아니라는 것을 알 수 있을 것이다. 본 발명은 다른 실시예들로 구현되고 실시될 수 있고 다양한 방법으로 수행될 수 있다. 또, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)")등과 같은 용어들에 관하여 본원에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다는 것을 알 수 있을 것이다.
Before describing in detail several embodiments of the present invention, it will be appreciated that the application is not limited to the details of construction and arrangement of elements set forth in the following detailed description or illustrated in the drawings. The invention may be embodied and carried out in other embodiments and carried out in various ways. It should also be noted that the device or element orientation (e.g., "front,""back,""up,""down,""top,""bottom, Expressions and predicates used herein for terms such as "left,"" right, ""lateral," and the like are used merely to simplify the description of the present invention, Or that the element has to have a particular orientation.

본 발명은 상기의 목적을 달성하기 위해 아래의 특징을 갖는다.The present invention has the following features in order to achieve the above object.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.

이에, 본 발명의 일실시예를 살펴보면, 플라스틱 바이폴라 플레이트로 사용되는 복합소재에 있어서, 열가소성 플라스틱에 분산된 탄소나노튜브와 도전성 충전제를 컴파운딩하여, 펠렛(pellet)상태로 제조되는 것을 특징으로 한다.According to one embodiment of the present invention, in a composite material used as a plastic bipolar plate, carbon nanotubes dispersed in a thermoplastic resin and a conductive filler are compounded to form a pellet state .

또한, 열가소성 플라스틱, 탄소나노튜브, 도전성 충전제는 각각 50~87wt%, 10~40wt%, 3~10wt%로 이루어지는 것을 특징으로 한다.Further, the thermoplastic resin, the carbon nanotube, and the conductive filler are each composed of 50 to 87 wt%, 10 to 40 wt%, and 3 to 10 wt%, respectively.

또한, 상기 도전성 충전제는 카본블랙(Carbon Black), 그라파이트(Graphite), 그래핀 나노 플레이트(Graphene Nanoplates, GNP) 중 어느하나 또는 2개 이상의 혼합물인 것을 특징으로 한다.The conductive filler may be any one of carbon black, graphite, and Graphene Nanoplates (GNP), or a mixture of two or more thereof.

또한, 상기 열가소성 플라스틱은 폴리프로필렌(Polypropylene), 폴리에틸렌(Polyethylene), 폴리아이소뷰틸렌(Polyisobutylene) 중 어느 하나의 폴리올레핀(Polyolefine) 계열이 사용되는 것을 특징으로 한다.In addition, the thermoplastic plastic may be one of polyolefin series such as polypropylene, polyethylene, and polyisobutylene.

또한, 펠렛상태로 제조된 복합소재는 압출 및 사출공정을 통해 판재 또는 시트 형태로 제작되어 사용되는 것을 특징으로 한다.
Also, the composite material produced in the pellet state is characterized by being manufactured in the form of a plate or sheet through extrusion and injection processes.

이하, 도 1 내지 도 4를 참조하여 본 발명의 바람직한 실시예에 따른 플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재를 상세히 설명하도록 한다.Hereinafter, a carbon nanotube composite material for a plastic bipolar plate according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4. FIG.

도시한 바와 같이, 본 발명에 따른 플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재는 하기와 같다.
As shown, the carbon nanotube composite material for a plastic bipolar plate according to the present invention is as follows.

본 발명은 열가소성 플라스틱의 베이스에 분산된 탄소나노튜브 및 도전성 충전제를 컴파운딩하여 펠렛 상태로 제조한 것으로, 이렇게 제조된 펠렛 형태의 플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재는, 사용자의 실시예에 따라, 압출 및 사출공정을 통해, 표면 저항값이 10 Ω/sq ~ 0.001 Ω/sq의 저항값을 가지는 시트 또는 판재 형태의 바이폴라 플레이트로 제조되어 전극소재로 사용되는 것이다.
The present invention relates to a carbon nanotube composite material for a plastic bipolar plate in the form of pellets prepared by compounding carbon nanotubes and a conductive filler dispersed in a base of a thermoplastic plastic in a pellet form, A bipolar plate in the form of a sheet or a plate having a surface resistance value of 10? / Sq to 0.001? / Sq through an extrusion and an injection process is used as an electrode material.

이를 위해, 본 발명에서는 열가소성 플라스틱(폴리프로필렌(Polypropylene), 폴리에틸렌(Polyethylene), 폴리아이소뷰틸렌(Polyisobutylene) 중 어느 하나의 폴리올레핀(Polyolefine) 계열) 50~87wt%, 탄소나노튜브10~40wt%, 도전성 충전제(카본블랙(Carbon Black), 그라파이트(Graphite), 그래핀 나노 플레이트(Graphene Nanoplatelets, GNP) 중 어느하나 또는 2개 이상의 혼합물) 3~10wt%를 컴파운딩하여 제조하는데, 기존 기술 및 특허와는 달리, 탄소나노튜브를 분산처리함으로써 10~40wt% 을 혼합시킬 수 있도록 한 것이다.To this end, in the present invention, 50 to 87 wt% of thermoplastics (polypropylene, polyethylene, polyisobutylene), 10 to 40 wt% of carbon nanotubes, 3 to 10 wt% of a conductive filler (carbon black, graphite, Graphene Nanoplatelets (GNP), or a mixture of two or more thereof) The carbon nanotubes can be mixed with 10 to 40 wt% by dispersing the carbon nanotubes.

본 발명에서는 상기 탄소나노튜브를 분산 처리해야 결과물(복합소재)의 전도성과 작업성이 향상되는 것을 확인함에 따라, 분산 처리한 탄소나노튜브를 사용하였다.In the present invention, it has been confirmed that the resultant (composite material) can be improved in conductivity and workability by dispersing the carbon nanotubes.

상기 탄소나노튜브의 분산 효과를 살펴보면, 도 2에 도시된 바와 같이, 소량 사용만으로 전기전도도가 100 ~ 100,000배 상승하며, 탄소나노튜브 고함침시 성능 발현이 극대화될 것으로 기대되며, 도 3 및 도 4에 도시된 바와 같이, 분산된 탄소나노튜브는 컴파운딩 작업성이 2배 이상 향상되는 효과가 있어 고함침 작업시 중요한 요소가 된다.
As shown in FIG. 2, when the carbon nanotubes are dispersed in a small amount, the electric conductivity is increased 100 to 100,000 times and the performance of the carbon nanotubes is expected to be maximized. FIG. 3 and FIG. 4, dispersed carbon nanotubes have an effect of improving the compounding workability by more than two times, which is an important factor in a high-impact operation.

더불어, 바이폴라 플레이트의 경우, 0.1mm ~ 15mm 두께의 시트 또는 판재 형태로 사용됨을 확인하여, 이와 같은 형태의 시트 또는 판재로 제작이 가능토록 수십차례의 시험제작을 거쳐, 열가소성 플라스틱 베이스에 탄소나노튜브10~40wt%, 도전성 충전제 3~10wt%를 함침함으로써, 탄소나노튜브 복합소재로 바이폴라 플레이트가 요구하는 특성의 소재가 제작되도록 한 것이다.In addition, it has been confirmed that the bipolar plate is used in the form of a sheet or a plate having a thickness of 0.1 mm to 15 mm, and after several tens of test fabrication so that it can be made of such a sheet or plate, 10 to 40 wt%, and 3 to 10 wt% of a conductive filler are impregnated with a carbon nanotube composite material.

이러한, 본 발명의 기술을 통해 제조된 플라스틱 바이폴라 플레이트를 도 1과 같이, 2차 전지에 실제 적용하여 에너지 밀도를 측정한 결과, 하기와 같은 표 1과 같이 에너지 밀도 및 전압 효율이 향상됨을 확인하였다.As shown in FIG. 1, the plastic bipolar plate manufactured through the technique of the present invention was actually applied to a secondary battery and energy density was measured. As a result, energy density and voltage efficiency were improved as shown in Table 1 below .

구분division 전극 저항(Ω·cm)Electrode resistance (Ω · cm) 에너지 효율(%)Energy efficiency (%) 전압 효율(%)Voltage efficiency (%) 충전 전압(V)Charging voltage (V) 기존 제품Existing product 1.41.4 71.771.7 78.478.4 1.941.94 해당 기술제품Technical product 0.60.6 72.072.0 79.879.8 1.931.93

(표 1 : 2차 전지 성능 테스트)
(Table 1: Secondary battery performance test)

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변경이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various changes and modifications may be made without departing from the scope of the appended claims.

Claims (5)

플라스틱 바이폴라 플레이트로 사용되는 복합소재에 있어서,
열가소성 플라스틱에 분산된 탄소나노튜브와 도전성 충전제를 컴파운딩하여, 펠렛상태로 제조되는 것을 특징으로 하는 플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재.
In composite materials used as plastic bipolar plates,
A carbon nanotube composite material for a plastic bipolar plate, wherein the carbon nanotube composite material is produced in a pellet form by compounding a carbon nanotube dispersed in thermoplastic plastic and a conductive filler.
제 1항에 있어서,
열가소성 플라스틱, 탄소나노튜브, 도전성 충전제는
각각 50~87wt%, 10~40wt%, 3~10wt%로 이루어지는 것을 특징으로 하는 플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재.
The method according to claim 1,
Thermoplastics, carbon nanotubes, conductive fillers
Wherein the carbon nanotube composite material is composed of 50 to 87 wt%, 10 to 40 wt%, and 3 to 10 wt%, respectively.
제 1항에 있어서,
상기 도전성 충전제는
카본블랙(Carbon Black), 다중벽 탄소나노튜브(Multi Carbon Nanotube), 그라파이트(Graphite), 그래핀 나노 플레이트(Graphene Nanoplates, GNP) 중 어느하나 또는 2개 이상의 혼합물인 것을 특징으로 하는 플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재.
The method according to claim 1,
The conductive filler
Characterized in that it is a mixture of any one or more of carbon black, multi-wall carbon nanotubes, graphite, and graphene nanoplates (GNP). Carbon nanotube composite material.
제 1항에 있어서,
상기 열가소성 플라스틱은
폴리프로필렌(Polypropylene), 폴리에틸렌(Polyethylene), 폴리아이소뷰틸렌(Polyisobutylene) 중 어느 하나의 폴리올레핀(Polyolefine) 계열이 사용되는 것을 특징으로 하는 플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재.
The method according to claim 1,
The thermoplastic plastic
A composite material of carbon nanotubes for plastic bipolar plates, characterized in that any of polyolefine series of polypropylene, polyethylene, and polyisobutylene is used.
제 1항에 있어서,
펠렛상태로 제조된 복합소재는 압출 및 사출공정을 통해 판재 또는 시트 형태로 제작되어 사용되는 것을 특징으로 하는 플라스틱 바이폴라 플레이트용 탄소나노튜브 복합소재.
The method according to claim 1,
Wherein the composite material produced in the form of pellets is produced in the form of a sheet or sheet through extrusion and injection processes and is used for the composite material of carbon nanotubes for plastic bipolar plates.
KR1020150113557A 2015-08-12 2015-08-12 Complex material carbon nanotube for plastic bipolar plate KR101804856B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150113557A KR101804856B1 (en) 2015-08-12 2015-08-12 Complex material carbon nanotube for plastic bipolar plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150113557A KR101804856B1 (en) 2015-08-12 2015-08-12 Complex material carbon nanotube for plastic bipolar plate

Publications (2)

Publication Number Publication Date
KR20170020563A true KR20170020563A (en) 2017-02-23
KR101804856B1 KR101804856B1 (en) 2017-12-06

Family

ID=58315528

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150113557A KR101804856B1 (en) 2015-08-12 2015-08-12 Complex material carbon nanotube for plastic bipolar plate

Country Status (1)

Country Link
KR (1) KR101804856B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978472B1 (en) * 2017-12-22 2019-05-14 스탠다드에너지(주) A combination electrode for redox flow battery and manufacturing method thereof
KR20190076867A (en) * 2018-12-18 2019-07-02 스탠다드에너지(주) A combination electrode for redox flow battery and manufacturing method thereof
KR102044926B1 (en) * 2018-07-31 2019-11-14 한국생산기술연구원 Bipolar plate-electrode composite, method for preparing the same, and redox flow battery comprising the same
CN110467782A (en) * 2019-08-27 2019-11-19 山东大展纳米材料有限公司 A kind of carbon nanotube Plastic conductive composite material and its wet method preparation process
CN114256476A (en) * 2022-03-01 2022-03-29 杭州德海艾科能源科技有限公司 Conductive polymer bipolar plate for flow battery and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978472B1 (en) * 2017-12-22 2019-05-14 스탠다드에너지(주) A combination electrode for redox flow battery and manufacturing method thereof
KR102044926B1 (en) * 2018-07-31 2019-11-14 한국생산기술연구원 Bipolar plate-electrode composite, method for preparing the same, and redox flow battery comprising the same
KR20190076867A (en) * 2018-12-18 2019-07-02 스탠다드에너지(주) A combination electrode for redox flow battery and manufacturing method thereof
CN110467782A (en) * 2019-08-27 2019-11-19 山东大展纳米材料有限公司 A kind of carbon nanotube Plastic conductive composite material and its wet method preparation process
CN114256476A (en) * 2022-03-01 2022-03-29 杭州德海艾科能源科技有限公司 Conductive polymer bipolar plate for flow battery and preparation method thereof

Also Published As

Publication number Publication date
KR101804856B1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
KR101804856B1 (en) Complex material carbon nanotube for plastic bipolar plate
CN102844926B (en) Bipolar plate for redox flow battery
CN106797033B (en) Electric connection structure
CN101740743B (en) Molding material for fuel cell separator
Blunk et al. Polymeric composite bipolar plates for vehicle applications
US20050112441A1 (en) Electroconductive curable resin composition, cured product thereof and process for producing the same
Dhakate et al. Development and characterization of expanded graphite-based nanocomposite as bipolar plate for polymer electrolyte membrane fuel cells (PEMFCs)
Chen et al. Graphene based integrated tandem supercapacitors fabricated directly on separators
Ezika et al. Recently emerging trends in MXene hybrid conductive polymer energy storage nanoarchitectures
Cui et al. Polymer/graphene hybrids for advanced energy‐conversion and‐storage materials
KR20110059130A (en) Composite composition and bipolar plate for fuel cell using the same
Dhakate et al. Influence of expanded graphite particle size on the properties of composite bipolar plates for fuel cell application
Naz et al. Influence of graphite filler on physicochemical characteristics of polymer/graphite composites: a review
Bhadra et al. Electrical and electronic application of polymer–carbon composites
Lu et al. Epoxy resin/graphite electrically conductive nanosheet nanocomposite
Ramanujam et al. Conducting polymer–graphite binary and hybrid composites: Structure, properties, and applications
Li et al. Bis (2-hydroxyethyl) Terephthalate-Modified Ti3C2T x/Graphene Nanohybrids as Three-Dimensional Functional Chain Extenders for Polyurethane Composite Films with Strain-Sensing and Conductive Properties
Onyu et al. Evaluation of the possibility for using polypropylene/graphene composite as bipolar plate material instead of polypropylene/graphite composite
Cheng et al. Aqueous MBene-based electrochemical filter capacitors with high frequency response and capacity density
WO2015084139A1 (en) Electrically conductive elastomers with electrostatic dissipation and capacitance properties, and uses thereof in galvanic cells and esd materials
WO2015163253A1 (en) Carbon current collector and fuel cell provided with same
Zhang et al. In situ synthesis and characterization of polypyrrole/graphene conductive nanocomposites via electrochemical polymerization and chemical reduction
KR20160061799A (en) Separator for fuel cell, method for manufacturing the same and fuel cell comprising the same
Song et al. Miniaturized Integrated Micro-Supercapacitors as Efficient Power Sources for Wearable and Biocompatible Electronic Devices
Sun et al. Synthesis, characterization and supercapacitors of electrically conductive PPy/graphene/rare earth ions composites

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal