KR101968638B1 - Humidity controlling system having carbon nanotube transitor with metal chloride coating and method of operating the same - Google Patents

Humidity controlling system having carbon nanotube transitor with metal chloride coating and method of operating the same Download PDF

Info

Publication number
KR101968638B1
KR101968638B1 KR1020100019569A KR20100019569A KR101968638B1 KR 101968638 B1 KR101968638 B1 KR 101968638B1 KR 1020100019569 A KR1020100019569 A KR 1020100019569A KR 20100019569 A KR20100019569 A KR 20100019569A KR 101968638 B1 KR101968638 B1 KR 101968638B1
Authority
KR
South Korea
Prior art keywords
carbon nanotube
transistor
metal chloride
humidifier
switching unit
Prior art date
Application number
KR1020100019569A
Other languages
Korean (ko)
Other versions
KR20110100525A (en
Inventor
김언정
이은홍
손형빈
이일하
이영희
Original Assignee
삼성전자주식회사
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 성균관대학교 산학협력단 filed Critical 삼성전자주식회사
Priority to KR1020100019569A priority Critical patent/KR101968638B1/en
Publication of KR20110100525A publication Critical patent/KR20110100525A/en
Application granted granted Critical
Publication of KR101968638B1 publication Critical patent/KR101968638B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템 및 구동방법이 개시된다. 개시된 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템은 가습기를 선택적으로 턴온시키는 스위칭부와 상기 스위칭부에 턴온신호를 전송하는 습도 센서를 구비한다.
상기 습도 센서는, 탄소나노튜브의 표면에 염화금속이 도포된 탄소나노튜브 트랜지스터이다.
Disclosed is a humidity control system and a driving method provided with a carbon nanotube transistor coated with metal chloride. The humidity control system includes a carbon nanotube transistor coated with metal chloride. The humidity control system includes a switching unit for selectively turning on the humidifier and a humidity sensor for transmitting a turn-on signal to the switching unit.
The humidity sensor is a carbon nanotube transistor coated with a metal chloride on the surface of the carbon nanotube.

Description

염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템 및 구동방법{Humidity controlling system having carbon nanotube transitor with metal chloride coating and method of operating the same} TECHNICAL FIELD [0001] The present invention relates to a humidity control system having a carbon nanotube transistor coated with a metal chloride and a method of operating the same.

염화금속이 도포된 탄소나노튜브 트랜지스터를 습도센서로 이용한 습도조절 시스템에 관한 것이다. To a humidity control system using a carbon nanotube transistor coated with metal chloride as a humidity sensor.

습도 센서는 흡습성 물질에 물 분자가 흡착되어서 흡습성 물질의 물리적 성질이 변하는 것을 감지한다. 상용화된 전자식 습도 센서는 크게 전기 저항식과 전기 용량식으로 나뉜다. 실용화 되고 있는 습도 센서로는 고분자 재료에 의한 전기저항식과 전기용량식이 많다.The humidity sensor detects the change of the physical properties of the hygroscopic material by adsorbing water molecules on the hygroscopic material. Commercial electronic humidity sensors are divided into electric resistance type and capacitive type. There are many electric resistance type and capacitance type by the polymer material as the humidity sensor which is practically used.

그러나, 고분자를 이용한 습도 센서는 고온·고습에서 안정한 특성을 얻기 힘들고, 고분자 물질이 알코올, 씨너(thinner) 등 유기 용제에 약하고, 가습과 제습 과정에서 히스테리시스(Hysteresis)가 있으며, 고분자 물질을 감습제 막으로 사용시 고분자막을 물이 통과하는 시간이 있으므로 수초에서 수십 초의 반응시간이 필요하다. However, the humidity sensor using a polymer is difficult to obtain stable characteristics at high temperature and high humidity, the polymer material is weak to organic solvents such as alcohol, thinner, hysteresis in humidification and dehumidification process, When used as a membrane, the reaction time of several seconds to several seconds is required because water has time to pass through the polymer membrane.

탄소나노튜브를 채널로 사용하는 탄소나노튜브 트랜지스터는 다양한 용도로 전자 소자에 사용된다. 특히, 탄소나노튜브는 대표적인 1차원 구조(one dimensional structure)를 가지며, 유기 용매 또는 산에도 강하다. 또한 탄소나노튜브의 뛰어난 전기적 특성으로 전자소자 개발 연구에 많이 이용된다. 탄소나노튜브를 이용한 센서 제작은 고분자의 단점인 유기 용제 및 긴 반응시간에 대한 제한을 해결할 수 있다. Carbon nanotube transistors, which use carbon nanotubes as channels, are used in electronic devices for a variety of applications. In particular, carbon nanotubes have a typical one-dimensional structure and are also resistant to organic solvents or acids. In addition, carbon nanotubes are widely used for electronic device development due to their excellent electrical properties. The fabrication of sensors using carbon nanotubes can solve the limitations of organic solvents and long reaction time, which are disadvantages of polymers.

염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템을 제공한다. There is provided a humidity control system comprising a carbon nanotube transistor coated with metal chloride.

본 발명의 일 측면에 따른 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템은: According to an aspect of the present invention, there is provided a humidity control system including a metal chloride-coated carbon nanotube transistor,

가습기를 선택적으로 턴온시키는 스위칭부; 및 A switching unit for selectively turning on the humidifier; And

상기 스위칭부에 턴온신호를 전송하는 습도 센서;를 구비하며, And a humidity sensor for transmitting a turn-on signal to the switching unit,

상기 습도 센서는, 탄소나노튜브의 표면에 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한다.The humidity sensor includes a carbon nanotube transistor having a surface of a carbon nanotube coated with a metal chloride.

상기 염화금속은 염화금(AuCl3), ErCl3, EuCl3 또는 염화나트륨일 수 있다. The metal chloride may be yeomhwageum (AuCl 3), ErCl 3, EuCl 3 , or sodium chloride.

상기 트랜지스터는 0.01 ~ 14 mM 농도의 염화금속 용액으로 도포된다. The transistor is coated with a solution of metal chloride in a concentration of 0.01 to 14 mM.

상기 스위칭부는 상기 트랜지스터가 턴온되면 상기 가습기를 정지시키며, 상기 트랜지스터가 턴오프면 상기 가습기를 가동시키는 신호를 출력한다. The switching unit stops the humidifier when the transistor is turned on and outputs a signal for activating the humidifier when the transistor is turned off.

상기 트랜지스터는, 백게이트인 실리콘 기판;The transistor includes a silicon substrate as a back gate;

상기 실리콘 기판 상의 절연층;An insulating layer on the silicon substrate;

상기 절연층 상의 네트워크 탄소나노튜브; 및 A network carbon nanotube on the insulating layer; And

상기 절연층 상에서 네트워트 탄소나노튜브의 양단을 각각 덮는 소스 전극 및 드레인 전극;을 구비할 수 있다. And a source electrode and a drain electrode covering both ends of the network carbon nanotubes on the insulating layer.

본 발명의 다른 측면에 따른 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템의 구동방법은:According to another aspect of the present invention, there is provided a method of driving a humidity control system having a carbon nanotube transistor coated with metal chloride,

상기 가습기를 턴온시키는 단계;Turning on the humidifier;

상기 습도센서가 턴온되면, 상기 스위칭부에 제1신호를 전송하는 단계; 및Transmitting a first signal to the switching unit when the humidity sensor is turned on; And

상기 스위칭부는 상기 전송된 제1신호를 받아서, 상기 가습기를 턴오프하는 제어신호를 상기 가습기에 전송하는 단계;를 구비한다. The switching unit receives the transmitted first signal and transmits a control signal for turning off the humidifier to the humidifier.

일 실시예에 따른 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템에 따르면, 염화금속이 표면에 흡착된 탄소나노튜브 트랜지스터는 수분을 흡착하여 턴온된다. 즉, 습도가 일정한 수준 이상으로 되면, 트랜지스터는 턴온되므로, 이 턴온되는 신호로 가습기를 턴오프시키는 데 사용할 수 있으며, 따라서 일정한 습도를 유지하는 습도조절계로 이용할 수 있다. According to the humidity control system having a carbon nanotube transistor coated with a metal chloride according to an embodiment, a carbon nanotube transistor in which metal chloride is adsorbed on the surface absorbs moisture and is turned on. That is, when the humidity becomes higher than a certain level, the transistor is turned on, so that it can be used to turn off the humidifier with the turned-on signal, and thus can be used as a humidity controller that maintains a constant humidity.

도 1은 일 실시예에 따른 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템의 기능적 블록도이다.
도 2는 습도 센서의 일 예를 보여주는 단면도이다.
도 3은 염화금의 흡착농도에 따른 탄소나노튜브 트랜지스터의 I-V 특성곡선이다.
도 4는 본 발명의 탄소나노튜브의 동작 메커니즘을 설명하는 모식도이다.
도 5는 염화금이 도포된 탄소나노튜브 트랜지스터를 진공 상태에서 대기중으로 노출시의 I-V 특성 곡선을 도시한 그래프이다.
도 6은 진공상태에서 수분을 진공챔버에 넣었을 때의 I-V 곡선을 보여주는 그래프이다.
1 is a functional block diagram of a humidity control system including a carbon nanotube transistor coated with metal chloride according to an embodiment.
2 is a cross-sectional view showing an example of a humidity sensor.
3 is an IV characteristic curve of a carbon nanotube transistor according to adsorption concentration of chloride.
4 is a schematic view illustrating an operation mechanism of the carbon nanotube of the present invention.
5 is a graph showing an IV characteristic curve when a carbon nanotube transistor coated with chloride is exposed to the atmosphere in a vacuum state.
6 is a graph showing an IV curve when moisture is put in a vacuum chamber in a vacuum state.

이하, 첨부된 도면을 참조하여 본 발명의 실시예에 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템 및 구동방법을 상세하게 설명한다. 이 과정에서 도면에 도시된 층이나 영역들의 두께는 명세서의 명확성을 위해 과장되게 도시된 것이다. 명세서를 통하여 실질적으로 동일한 구성요소에는 동일한 참조번호를 사용하고 상세한 설명은 생략한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a humidity control system including a carbon nanotube transistor coated with a metal chloride and a driving method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this process, the thicknesses of the layers or regions shown in the figures are exaggerated for clarity of the description. The same reference numerals are used for substantially the same components throughout the specification and the detailed description is omitted.

도 1은 일 실시예에 따른 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템(100)의 기능적 블록도다. FIG. 1 is a functional block diagram of a humidity control system 100 having a carbon nanotube transistor coated with a metal chloride according to an embodiment. Referring to FIG.

도 1을 참조하면, 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템(100)은 가습기를 제어하는 스위칭부(110)와 스위칭부(110)에 제어신호를 출력하는 습도 센서(130)를 구비한다. 1, a humidity control system 100 including a carbon nanotube transistor coated with metal chloride includes a switching unit 110 for controlling a humidifier, a humidity sensor 130 for outputting a control signal to the switching unit 110, .

가습기(120)는 턴온 상태에서 실내에 수증기를 공급하는 기기이면 되며, 본 발명에서는 특정한 가습기를 한정하지 않는다. The humidifier 120 may be any device that supplies water vapor to a room in a turned-on state, and the present invention does not limit the specific humidifier.

스위칭부(110)는 턴온 상태에서 가습기(120)에 턴온 신호를 전송한다. 스위칭부(110)는 평상시 턴온 신호를 가습기로 출력한다. The switching unit 110 transmits a turn-on signal to the humidifier 120 in a turned-on state. The switching unit 110 normally outputs a turn-on signal to the humidifier.

습도 센서(130)는 턴온이 되면 스위칭부(110)로 턴오프 신호를 출력하며, 턴오프 상태에서는 스위칭부(110)로 제어신호를 출력하지 않는다. The humidity sensor 130 outputs a turn-off signal to the switching unit 110 when it is turned on and does not output a control signal to the switching unit 110 when the humidity sensor 130 is turned off.

따라서, 실내의 습도가 미리 정한 습도 이상으로 되지 않으면, 습도 센서(130)는 스위칭부(110)로 신호를 출력하지 않으며, 스위칭부(110)는 턴온 신호를 가습기(120)로 출력한다. 한편, 실내의 습도가 미리 정한 습도 이상으로 되면, 습도 센서(130)는 스위칭부(110)로 제어신호를 출력한다. 스위칭부(110)는 제어신호에 의해 턴오프되며, 가습기(120)에 턴오프 신호를 전송한다. 이에 따라 가습기(120)는 턴오프가 되며, 따라서, 실내 습도는 일정한 상태로 유지된다. The humidity sensor 130 does not output a signal to the switching unit 110 and the switching unit 110 outputs a turn-on signal to the humidifier 120. In this case, On the other hand, when the humidity of the room is higher than a predetermined humidity, the humidity sensor 130 outputs a control signal to the switching unit 110. The switching unit 110 is turned off by a control signal and transmits a turn-off signal to the humidifier 120. Accordingly, the humidifier 120 is turned off, and thus the indoor humidity is kept constant.

실내 습도가 다시 일정 수준 이하로 내려가면, 습도 센서(130)는 스위칭부(110)에 턴온 신호를 출력하며, 스위칭부(110)는 턴온되면서 가습기(120)를 가동한다. The humidity sensor 130 outputs a turn-on signal to the switching unit 110, and the switching unit 110 is turned on to operate the humidifier 120.

도 2는 습도 센서의 일 예를 보여주는 단면도이다. 2 is a cross-sectional view showing an example of a humidity sensor.

도 2를 참조하면, 습도 센서(200)는 염화금속이 도포된 탄소나노튜브 트랜지스터이다. 백게이트인 실리콘 기판(210) 상에 절연층(220)이 형성된다. 절연층(220)은 실리콘 옥사이드층일 수 있다. 절연층(220) 상에는 채널 기능을 하는 네트워크 탄소나노튜브(230)가 형성된다. 네트워크 탄소나노튜브(230)는 통상적인 탄소나노튜브 증착방법으로 형성된다. 즉, 절연층 상에 탄소포함 전구체가 공급되어서 네트워크 상으로 복수의 탄소나노튜브가 엉켜서 형성될 수 있다. Referring to FIG. 2, the humidity sensor 200 is a carbon nanotube transistor coated with a metal chloride. An insulating layer 220 is formed on the silicon substrate 210 as a back gate. The insulating layer 220 may be a silicon oxide layer. On the insulating layer 220, network carbon nanotubes 230 functioning as a channel are formed. The network carbon nanotubes 230 are formed by a conventional carbon nanotube deposition method. That is, a carbon-containing precursor may be supplied on the insulating layer to form a plurality of carbon nanotubes on the network.

네트워크 탄소나노튜브(230)는 대략 5 ㎛ 길이로 형성될 수 있다. 탄소나노튜브들(230)의 양단에는 소스 전극(240) 및 드레인 전극(250)이 형성된다. 소스 전극(240) 및 드레인 전극(250)은 Ti/Au 물질층일 수 있다. The network carbon nanotubes 230 may be formed to have a length of about 5 mu m. At both ends of the carbon nanotubes 230, a source electrode 240 and a drain electrode 250 are formed. The source electrode 240 and the drain electrode 250 may be a Ti / Au material layer.

이어서, 탄소나노튜브들(230) 상에 염화금속, 예컨대 염화금(AuCl3)이 도포된다. 염화금은 탄소나노튜브의 흡습성을 증가시키기 위한 것이며, 상세한 이유는 후술된다. 염화금은 분말상태로서 니트로메탄 용액에 대략 0.01-14 mM 농도로 녹인다. 니트로메탄 이외의 용매가 사용 될 수 있다. 이어서, 이 용액을 탄소나노튜브(230) 위에 스핀코팅할 수 있다. Then, the metal chloride onto the carbon nanotubes 230, for example yeomhwageum (AuCl 3) was applied. Chloride is for increasing the hygroscopicity of the carbon nanotubes, and the detailed reason will be described later. Chloride is in powder form and is dissolved in nitromethane solution at approximately 0.01-14 mM concentration. A solvent other than nitromethane may be used. Then, this solution can be spin-coated on the carbon nanotubes 230.

염화금속으로는 염화금 이외에 염화금(AuCl3), 염화에르븀(erbium chloride: ErCl3), 염화 유로퓸(europium chloride:EuCl3), 염화나트륨과 같은 흡습제가 사용될 수 있다. As the metal chloride, a hygroscopic agent such as chloride chloride (AuCl 3 ), erbium chloride (ErCl 3 ), europium chloride (EuCl 3 ) and sodium chloride may be used in addition to chloride chloride.

도 3은 염화금의 흡착농도에 따른 탄소나노튜브 트랜지스터의 I-V 특성곡선이다. 도 3을 참조하면, 염화금이 도포되지 않은 트랜지스터(Raw 그래프)는 공기중에서 산소흡착에 의한 p-type 특성을 보여준다. 탄소나노튜브에 부착된 염화금의 농도가 0.1 mM 에서 13.8 mM 로 증가함에 따라 on-current 가 증가하는 데 비해서, 상대적으로 off-current 가 더 급하게 증가하여 마치 게이팅이 되지 않는 것처럼 보인다. 즉, 트랜지스터가 턴온 상태를 유지한다. 이러한 원인은 아래에서 설명하듯이 수분이 탄소나노튜브에 많이 흡착되기 때문이다. 3 is an I-V characteristic curve of a carbon nanotube transistor according to adsorption concentration of chloride. Referring to FIG. 3, a transistor (Raw graph) in which chloride is not applied shows p-type characteristics due to oxygen adsorption in air. On-current increases as the concentration of chloride attached to the carbon nanotubes increases from 0.1 mM to 13.8 mM, but the off-current increases more rapidly and does not seem to be gated. That is, the transistor maintains the turn-on state. This is because the moisture is adsorbed to carbon nanotubes as described below.

도 4는 본 발명의 탄소나노튜브의 동작 메커니즘을 설명하는 모식도이다. 도 2의 구성요소와 실질적으로 동일한 구성요소에는 동일한 참조번호를 사용하고 상세한 설명은 생략한다. 4 is a schematic view illustrating an operation mechanism of the carbon nanotube of the present invention. The same reference numerals are used for components substantially the same as those of FIG. 2, and a detailed description thereof will be omitted.

도 4를 참조하면, AuCl3가 도포된 CNT 트랜지스터에서, AuCl3의 일부의 Au3+는 탄소나노튜브(230)로부터 전자를 받아 환원된 Auo 가 되며, 일부는 AuCl3로 남아서 물을 탄소나노튜브(230)에 흡착시킨다. 이에 따라서, 트랜지스터는 off-current가 증가된다. 즉, AuCl3는 물을 탄소나노튜브(230)에 흡착시키는 것을 도와준다. 참조번호 260은 AuCl3 분자이며, 262는 탄소나노튜브로부터 전자를 받아서 환원된 Auo 이며, 264는 물분자를 가리킨다. In Referring to Figure 4, AuCl 3 is applied CNT transistors, a portion of the Au 3+ of AuCl 3 is a reduced Au o accept an electron from the carbon nanotubes 230, some of which remains as AuCl 3 carbon water And adsorbed on the nanotubes 230. Accordingly, the off-current of the transistor is increased. That is, AuCl 3 helps to adsorb water on the carbon nanotubes 230. Reference numeral 260 is AuCl 3 molecule, 262 is Au o reduced by receiving electrons from carbon nanotubes, and 264 is a water molecule.

탄소나노튜브(230)의 표면에 흡착된 AuCl3 증가, 즉 도포된 AuCl3의 농도 증가시 이러한 물의 흡착량은 더 증가한다. 따라서, 염화금속의 흡착량의 증가에 따라 낮은 습도에서도 트랜지스터는 턴온이 되므로, 원하는 검출 습도에 턴온되는 트랜지스터를 제조할 수 있다. 검출된 습도는 염화금속의 종류에 따라서 변할 수 있다. The amount of adsorbed AuCl 3 on the surface of the carbon nanotubes 230, that is, the amount of adsorbed water, increases when the concentration of the applied AuCl 3 increases. Therefore, the transistor turns on even at low humidity as the adsorption amount of the metal chloride increases, so that a transistor turned on at a desired detection humidity can be manufactured. The detected humidity may vary depending on the type of the metal chloride.

도 5는 염화금이 도포된 탄소나노튜브 트랜지스터를 진공 상태에서 대기중으로 노출시의 I-V 특성 곡선을 도시한 그래프이다. 탄소나노튜브는 AuCl3 1 mM 농도의 용액으로 도포되었으며, 드레인 전극 및 소스 전극 사이의 전압은 2V 였다. 5 is a graph showing an IV characteristic curve when a carbon nanotube transistor coated with chloride is exposed to the atmosphere in a vacuum state. The carbon nanotubes were applied with a solution of AuCl 3 at a concentration of 1 mM, and the voltage between the drain electrode and the source electrode was 2V.

도 5를 참조하면, 염화금을 도포하기 전의 상태(Raw로 표시된 그래프)와, 염화금을 도포한 후 진공상태(Vacuum으로 표시된 그래프)에서는 나노튜브 트랜지스터가 p-type 특성을 보이나, 염화금 도포 트랜지스터를 대기중에 놓았을 때(Air로 표시된 그래프) on-current 가 진공상태(Vacuum)와 거의 같은 상태를 유지하는 반면, off-current가 증가되어서 게이팅 효과가 없어진다. 즉, 트랜지스터는 턴온 상태가 된다. Referring to FIG. 5, nanotube transistors exhibit p-type characteristics in the state before the application of the chloride (graph indicated by Raw) and in the vacuum state after the application of the chloride (graph indicated by Vacuum), but the chloride- (On the graph indicated by Air), the on-current maintains almost the same state as the vacuum (Vacuum), while the off-current is increased to eliminate the gating effect. That is, the transistor is turned on.

염화금이 도포된 탄소나노튜브의 off-current 증가 원인을 찾기 위해서 공기중의 질소, 산소 및 수분을 각각 염화금이 도포된 탄소나노튜브가 배치된 진공챔버에 공급하였을 때의 I-V 특성 변화를 조사하였다. 도 6은 진공상태와 수분을 진공챔버에 넣었을 때의 I-V 곡선을 보여준다. To investigate the cause of off-current increase of chlorinated carbon nanotubes, the changes of I-V characteristics were investigated when nitrogen, oxygen and moisture in the air were supplied to a vacuum chamber in which chloride-coated carbon nanotubes were placed, respectively. Fig. 6 shows the I-V curve when the vacuum state and moisture are put into the vacuum chamber.

진공챔버에 질소와 산소를 각각 넣었을 때는 진공상태와 비교하여 off-current 의 변화가 거의 없었다. 그러나, 1 mM 염화금으로 도포된 탄소나노튜브 트랜지스터는 진공상태(10-1 torr 분위기)(Vacuum 그래프)에서는 p-type 특성을 보이지만, 진공챔버를 10 torr 수분 분위기로 만든 경우(H2O 그래프) off-current가 증가하는 것을 확인할 수 있었다. 즉, 도 5와 같은 현상이 일어는 것을 알 수 있다. 이는 off-current 증가의 원인이 수분증가이며, 이는 흡습작용을 하는 염화금의 작용임을 보여준다.When nitrogen and oxygen were introduced into the vacuum chamber, there was almost no change in the off-current compared to the vacuum state. However, the carbon nanotube transistor coated with 1 mM chloride exhibited p-type characteristics in the vacuum state (10 -1 torr atmosphere) (Vacuum graph), but when the vacuum chamber was changed to 10 torr moisture atmosphere (H2O graph) current was increased. That is, the phenomenon as shown in FIG. 5 occurs. This indicates that the increase in off-current is caused by the increase in water content, which is a function of the absorbing chloride.

상술한 실시예에 따르면, 염화금이 표면에 흡착된 탄소나노튜브 트랜지스터는 수분을 흡착하여 턴온된다. 즉, 습도가 일정한 수준 이상으로 되면, 트랜지스터는 턴온되므로, 이를 이용하여 가습기를 턴오프시키는 신호를 출력하는 데 이용하면, 용이하게 일정한 습도를 유지하는 습도조절계로 이용할 수 있다. According to the above-described embodiment, the carbon nanotube transistor in which chloride is adsorbed on the surface adsorbs moisture and is turned on. That is, when the humidity is higher than a certain level, the transistor is turned on, and when the humidity is used to output a signal for turning off the humidifier by using it, it can be easily used as a humidity controller that maintains a constant humidity.

이상에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들은 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능함을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 보호범위는 첨부된 특허청구범위에 의해서만 정해져야 할 것이다. While the invention has been shown and described with reference to certain embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the scope of the invention as defined by the appended claims. Therefore, the true scope of protection of the present invention should be defined only by the appended claims.

100: 습도조절 시스템 110: 스위칭부
120: 가습기 130: 습도 센서
100: humidity control system 110: switching unit
120: Humidifier 130: Humidity sensor

Claims (6)

가습기를 선택적으로 턴온시키는 스위칭부; 및
상기 스위칭부에 턴온신호를 전송하는 습도 센서;를 구비하며,
상기 습도 센서는, 탄소나노튜브의 표면에 염화금속이 도포된 탄소나노튜브 트랜지스터인 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비하며,
상기 트랜지스터는, 백게이트인 실리콘 기판;
상기 실리콘 기판 상의 절연층;
상기 절연층 상의 네트워크 탄소나노튜브; 및
상기 절연층 상에서 네트워트 탄소나노튜브의 양단을 각각 덮는 소스 전극 및 드레인 전극;을 포함하며,
상기 염화금속은 염화금(AuCl3), 염화에르븀(erbium chloride: ErCl3), 염화 유로퓸(europium chloride:EuCl3) 및 염화나트륨을 포함하는 습도조절 시스템.
A switching unit for selectively turning on the humidifier; And
And a humidity sensor for transmitting a turn-on signal to the switching unit,
The humidity sensor includes a carbon nanotube transistor coated with metal chloride, which is a carbon nanotube transistor coated with a metal chloride on the surface of the carbon nanotube,
The transistor includes a silicon substrate as a back gate;
An insulating layer on the silicon substrate;
A network carbon nanotube on the insulating layer; And
And a source electrode and a drain electrode covering both ends of the network carbon nanotube on the insulating layer,
Wherein the metal chloride comprises AuCl 3 , ErCl 3 , EuCl 3 , and NaCl.
삭제delete 제 1 항에 있어서,
상기 트랜지스터는 0.01 ~ 14 mM 농도의 염화금(AuCl3) 용액으로 도포된 습도조절 시스템.
The method according to claim 1,
Wherein the transistor is coated with a solution of chloride (AuCl 3 ) in a concentration of 0.01 to 14 mM.
제 1 항 또는 제 3 항에 있어서,
상기 스위칭부는 상기 트랜지스터가 턴온되면 상기 가습기를 정지시키며, 상기 트랜지스터가 턴오프면 상기 가습기를 가동시키는 신호를 출력하는 습도조절 시스템.
The method according to claim 1 or 3,
Wherein the switching unit stops the humidifier when the transistor is turned on and outputs a signal that activates the humidifier when the transistor is turned off.
삭제delete 제 1 항의 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절 시스템의 구동방법에 있어서,
상기 가습기를 턴온시키는 단계;
상기 습도센서가 턴온되면, 상기 스위칭부에 제1신호를 전송하는 단계;
상기 스위칭부는 상기 전송된 제1신호를 받아서, 상기 가습기를 턴오프하는 제어신호를 상기 가습기에 전송하는 단계;를 구비한 염화금속이 도포된 탄소나노튜브 트랜지스터를 구비한 습도조절시스템의 구동방법.
A method of driving a humidity control system having a carbon nanotube transistor coated with metal chloride according to claim 1,
Turning on the humidifier;
Transmitting a first signal to the switching unit when the humidity sensor is turned on;
Wherein the switching unit receives the transmitted first signal and transmits a control signal for turning off the humidifier to the humidifier.
KR1020100019569A 2010-03-04 2010-03-04 Humidity controlling system having carbon nanotube transitor with metal chloride coating and method of operating the same KR101968638B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100019569A KR101968638B1 (en) 2010-03-04 2010-03-04 Humidity controlling system having carbon nanotube transitor with metal chloride coating and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100019569A KR101968638B1 (en) 2010-03-04 2010-03-04 Humidity controlling system having carbon nanotube transitor with metal chloride coating and method of operating the same

Publications (2)

Publication Number Publication Date
KR20110100525A KR20110100525A (en) 2011-09-14
KR101968638B1 true KR101968638B1 (en) 2019-04-15

Family

ID=44952927

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100019569A KR101968638B1 (en) 2010-03-04 2010-03-04 Humidity controlling system having carbon nanotube transitor with metal chloride coating and method of operating the same

Country Status (1)

Country Link
KR (1) KR101968638B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230040796A (en) * 2021-09-16 2023-03-23 국민대학교산학협력단 Carbon nanotube-based humidity sensor and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222803B1 (en) * 2018-12-13 2021-03-05 주식회사 신우전자 Humidity sensing film for humidity sensor including carbon doped with nano metal and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0136634B1 (en) * 1995-12-29 1998-07-01 김태구 Humidification device of vehicle using humidity sensor
KR20060127584A (en) * 2005-06-08 2006-12-13 삼성전자주식회사 Separation method of semiconducting and metallic carbon nanotube
KR100820102B1 (en) * 2005-06-30 2008-04-10 한국화학연구원 Semiconductor Nano Devices
KR101410930B1 (en) * 2008-01-17 2014-06-23 삼성전자주식회사 Method of fabricating metal oxide on carbon nanotube and method of fabricating carbon nanotube transistor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230040796A (en) * 2021-09-16 2023-03-23 국민대학교산학협력단 Carbon nanotube-based humidity sensor and manufacturing method thereof
KR102613378B1 (en) * 2021-09-16 2023-12-12 국민대학교산학협력단 Carbon nanotube-based humidity sensor and manufacturing method thereof

Also Published As

Publication number Publication date
KR20110100525A (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP2007073705A (en) Oxide semiconductor channel thin film transistor and method for manufacturing the same
Choi et al. Reduced water vapor transmission rate of graphene gas barrier films for flexible organic field-effect transistors
Tiwari et al. Poly-3-hexylthiophene based organic field-effect transistor: Detection of low concentration of ammonia
Han et al. Performance improvement of organic field-effect transistor ammonia gas sensor using ZnO/PMMA hybrid as dielectric layer
US9246007B2 (en) Oxide thin film transistor and method for manufacturing the same, array substrate, and display apparatus
Ye et al. Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors
KR101968638B1 (en) Humidity controlling system having carbon nanotube transitor with metal chloride coating and method of operating the same
GB2469331A (en) OFET-based sensor with organic gate dielectric for detecting an analyte
JPS6085358A (en) Moisture sensitive element and manufacture thereof
Choi et al. Control of current hysteresis of networked single‐walled carbon nanotube transistors by a ferroelectric polymer gate insulator
Zan et al. Porous organic TFTs for the applications on real-time and sensitive gas sensors
Tiwari et al. Poly-3-hexylthiophene (P3HT)/graphene nanocomposite field-effect-transistor as ammonia detector
KR101856858B1 (en) Oxide thin film transistor and method of manufacturing the same
JPH04361149A (en) Humidity sensor
Alam et al. Top Contact Pentacene Based Organic Thin Film Transistor with Bi-layer TiO2Electrodes
JP5235215B2 (en) Gas sensor
Jeon et al. Thin-film passivation by atomic layer deposition for organic field-effect transistors
CN106981486A (en) Low-work voltage phase inverter and preparation method thereof
Erouel et al. Humidity sensor using subthreshold regime of flexible organic field effect transistor: Concomitant effect of gate leakage current and semiconductor conductivity
KR20180103653A (en) Dopamine detecting biosensor and method of detecting dopamine using the same
JP2008084820A (en) Atmospheric pressure electric discharge surface treatment apparatus
Ahn et al. Extended lifetime of pentacene thin-film transistor with polyvinyl alcohol (PVA)/layered silicate nanocomposite passivation layer
KR102613378B1 (en) Carbon nanotube-based humidity sensor and manufacturing method thereof
KR20110100147A (en) Method for manufacturing IPO-based amorphous oxide semiconductor film and method for manufacturing field effect transistor using same
Banerjee et al. Effect of humidity on ethanol sensing performance of Pd sensitized ZnO nanorod based sensors

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100304

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20150226

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20100304

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20160325

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20160919

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20160325

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

PX0901 Re-examination

Patent event code: PX09011S01I

Patent event date: 20160919

Comment text: Decision to Refuse Application

Patent event code: PX09012R01I

Patent event date: 20160519

Comment text: Amendment to Specification, etc.

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20160930

Patent event code: PE09021S01D

PX0601 Decision of rejection after re-examination

Comment text: Decision to Refuse Application

Patent event code: PX06014S01D

Patent event date: 20170331

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20161130

Comment text: Notification of reason for refusal

Patent event code: PX06013S01I

Patent event date: 20160930

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20160926

Comment text: Decision to Refuse Application

Patent event code: PX06011S01I

Patent event date: 20160919

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20160519

Comment text: Notification of reason for refusal

Patent event code: PX06013S01I

Patent event date: 20160325

J201 Request for trial against refusal decision
PJ0201 Trial against decision of rejection

Patent event date: 20170425

Comment text: Request for Trial against Decision on Refusal

Patent event code: PJ02012R01D

Patent event date: 20170331

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Patent event date: 20160919

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Appeal kind category: Appeal against decision to decline refusal

Decision date: 20181227

Appeal identifier: 2017101001999

Request date: 20170425

J301 Trial decision

Free format text: TRIAL NUMBER: 2017101001999; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20170425

Effective date: 20181227

PJ1301 Trial decision

Patent event code: PJ13011S01D

Patent event date: 20181227

Comment text: Trial Decision on Objection to Decision on Refusal

Appeal kind category: Appeal against decision to decline refusal

Request date: 20170425

Decision date: 20181227

Appeal identifier: 2017101001999

PS0901 Examination by remand of revocation
S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
PS0701 Decision of registration after remand of revocation

Patent event date: 20190114

Patent event code: PS07012S01D

Comment text: Decision to Grant Registration

Patent event date: 20181227

Patent event code: PS07011S01I

Comment text: Notice of Trial Decision (Remand of Revocation)

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20190408

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20190409

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20220311

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20230321

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20240319

Start annual number: 6

End annual number: 6