KR101967637B1 - 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치 - Google Patents

증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치 Download PDF

Info

Publication number
KR101967637B1
KR101967637B1 KR1020180109891A KR20180109891A KR101967637B1 KR 101967637 B1 KR101967637 B1 KR 101967637B1 KR 1020180109891 A KR1020180109891 A KR 1020180109891A KR 20180109891 A KR20180109891 A KR 20180109891A KR 101967637 B1 KR101967637 B1 KR 101967637B1
Authority
KR
South Korea
Prior art keywords
signal
vibration
defect
augmented reality
division
Prior art date
Application number
KR1020180109891A
Other languages
English (en)
Inventor
임강민
Original Assignee
임강민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임강민 filed Critical 임강민
Priority to KR1020180109891A priority Critical patent/KR101967637B1/ko
Application granted granted Critical
Publication of KR101967637B1 publication Critical patent/KR101967637B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

본 발명은 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치에 관한 것으로, 원자력 발전설비의 부품으로부터 진동신호를 수신하여 상기 부품의 종류에 따라 구분하여 저장하는 진동신호 수신모듈(3); 상기 진동신호 수신모듈(3)에 수신된 상기 진동신호를 상기 부품의 종류에 따라 별도로 전처리하는 신호 전처리모듈(5); 상기 신호 전처리모듈(5)에서 전처리된 상기 진동신호로부터 통계적, 형태적 특성값을 계산하는 특성 추출모듈(7); 및 상기 특성 추출모듈(7)에서 추출된 상기 특성값을 증강현실로 표현하는 증강현실 표현모듈(9);를 포함하여 이루어지며, 상기 신호 전처리모듈(5)은, 상기 진동신호의 상기 부품의 종류를 확인하는 진동원 확인부(11); 상기 부품 마다 이미 정해져 있는 회수만큼 상기 진동신호를 평균화하는 평균화부(13); 및 상기 진동신호를 상기 부품마다 이미 정해진 대로 시간영역 및 주파수영역으로 구분하거나, 임의의 구간으로 분할한 뒤 시간분할영역 및 주파수분할영역으로 구분한 뒤, 상기 특성 추출모듈(7)로 출력하는 결함신호 추출부(15);를 포함하여 이루어지는 것을 특징으로 하며, 따라서 원전설비에서 발생할 수 있는 결함을 예측 진단할 수 있도록 결함신호 데이터를 증강현실화하므로, 원전설비에 대한 자동 예측진단 결과의 신뢰성 및 성능을 크게 개선할 수 있게 된다.

Description

증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치{Signal Data Processing Apparatus For Prediction And Diagnosis Of Nuclear Power Plant By Augmented Reality}
본 발명은 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치에 관한 것으로, 보다 상세하게는 원자력 발전설비에서 취득한 진동신호에서 불필요한 신호를 전처리를 통해 제거하고, 설비의 부품마다 예상할 수 있는 결함 유형에 따라 진동신호에 선택적으로 부대역을 지정한 다음, 결함신호를 추출하여, 통계적 및 형태적 특성을 계산하고, 이를 증강현실로 표현함으로써, 설비에 있을 수 있는 결함을 쉽고 정확하게 예측하여 진단할 수 있도록 해주는 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치에 관한 것이다.
원자력 발전 설비의 운전 상태를 정밀하게 파악하는 결함진단(diagnostics)기술은 설비가 의도된 기능과 표준성능을 지속하기 위한 일련의 활동으로 설비가 취득되어 폐기될 때까지의 전 수명기간 동안 관리하는 설비 관리기술(terotechnology) 중의 핵심기술이다. 설비의 건전성 감시와 예측결함 진단기술은 설비의 유지관리, 보수에 이용되는 지식기반의 서비스기술로서, 핵심기계설비의 상시 상태감시, 향후 결함 진행정도를 파악하기 위한 각 결정 단계(결함감지, 결함 진단)에서 신뢰성 높은 결과를 추론하기 위해 데이터를 융합하는 새로운 형태의 지식기반의 공정 모니터링 기술이 산업설비에 대한 적용 및 개발이 활발하게 진행되는 실정이다.
하지만 원자력 발전설비의 경우, 전술한 결함진단 기술의 단계는 예방정비(Preventive Maintenance) 수준 즉, 주기적으로 설비를 점검하는 수준에 머물러 있는 실정이며, 따라서 결함을 예측하여 진단하기 위한 신뢰성 높은 결과를 도출할 수 없는 문제점이 있었다.
아울러, 예방정비 결과를 컴퓨터 모니터 등 한정된 조건의 단말기를 통해서만 확인할 수 있으므로, 정비 결과에 대한 사용자의 즉시성이나 시인성이 상대적으로 떨어지는 문제점도 있었다.
KR 10-1060139
본 발명은 위와 같은 종래의 발전설비 예측진단 시스템이 가지고 있는 문제점을 해결하기 위해 제안된 것으로, 원자력 발전소 별로 수동 정비에 의해 수행되는 예측 진단 작업을 자동 예측진단으로 대체함으로써, 설비 건전성을 더욱 높이고, 원자력 발전소의 운영을 보다 향상시키고자 하는 데 그 목적이 있다.
또한, 위와 같이 설비에서 발생할 수 있는 결함에 의한 진동신호 즉, 진동신호 중 결함성분을 진동신호로부터 추출하여 처리함으로써, 원전 설비에 대한 효율적인 자동 예측진단을 가능하게 하는 데 또 다른 목적이 있다.
아울러, 설비의 각종 부품에 발생한 결함사실을 진단 결과로서 보다 쉽고도 분명하게 현장에서 즉각 인지할 수 있도록 추출함으로써, 마찬가지로 원전 설비에 대한 효율적인 예측진단을 가능하게 하는 데 또 다른 목적이 있다.
이러한 목적을 달성하기 위해 본 발명은 원자력 발전설비의 부품으로부터 진동신호를 수신하여 저장하는 진동신호 수신모듈; 상기 진동신호 수신모듈에 수신된 상기 진동신호를 전처리하는 신호 전처리모듈; 상기 신호 전처리모듈에서 전처리된 상기 진동신호로부터 통계적, 형태적 특성값을 계산하는 특성 추출모듈; 및 상기 특성 추출모듈에서 추출된 상기 특성값을 증강현실로 표현하는 증강현실 표현모듈;을 포함하여 이루어지며, 상기 신호 전처리모듈은, 상기 진동신호 수신모듈에 수신된 상기 진동신호의 상기 부품의 종류를 확인하는 진동원 확인부; 상기 진동원 확인부에서 확인된 상기 부품 마다 이미 정해져 있는 회수만큼 상기 진동신호를 평균화하는 평균화부; 및 상기 평균화부에서 평균화를 마친 상기 진동신호를 상기 부품마다 이미 정해진 대로 시간영역 및 주파수영역으로 구분하거나, 임의의 구간으로 분할한 뒤 시간분할영역 및 주파수분할영역으로 구분한 다음, 상기 특성 추출모듈로 출력하는 결함신호 추출부;를 포함하여 이루어지는 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치를 제공한다.
또한, 상기 결함신호 추출부는, 상기 진동신호를 시간영역 및 주파수영역으로 구분하여 출력하는 영역 지정섹터; 및 상기 진동신호를 임의의 구간으로 분할한 뒤 추출한 결함신호를 시간분할영역 및 주파수분할영역으로 구분하여 출력하는 부대역 지정섹터;를 포함하여 이루어지는 것이 바람직하다.
또한, 상기 부대역 지정섹터는, 상기 진동신호를 웨이블릿 기반으로 포락분석하여 복수의 부대역으로 분할하고, 분할된 상기 각각의 부대역의 진동분할신호 레벨을 평가하여 해당 진동분할신호의 결함여부를 판단하는 결함신호 추출단; 및 상기 결함신호 추출단에서 추출된 결함신호를 시간분할영역 및 주파수분할영역으로 구분하여 상기 특성 추출모듈로 출력하는 진동분할신호 출력단;을 포함하여 이루어지는 것이 바람직하다.
또한, 상기 결함신호 추출단은, 상기 부품의 요소마다 이미 정해져 있는 결함신호의 주파수대역폭을 확인하고, 확인한 값을 서로 비교하여 결함신호의 주파수대역폭이 최소인 요소를 찾아내는 결함신호 비교부분; 및 상기 결함신호 비교부분에서 찾아낸 요소의 결함신호 주파수대역을 포함하는 최소폭이 될 때까지 상기 진동신호를 n회차 분할하되, 매 분할회차마다 n+1개의 부대역을 생성하는 진동신호 분할부분; 상기 진동신호 분할부분에서 상기 진동신호가 n회차 분할되는 동안 발생한 총 n(n+1)/2+n개의 부대역을 대상으로 하여 각 부대역의 진동분할신호의 레벨을 평가함으로써 해당 진동분할신호의 결함성장 가능성을 판단하는 결함 판단부분; 및 상기 결함 판단부분에서 진동분할신호가 결함성장 가능성이 있는 것으로 판단된 때 해당 진동분할신호를 결함신호로 추출하여 상기 진동분할신호 출력단으로 전달하는 결함신호 추출부분;을 포함하여 이루어지는 것이 바람직하다.
또한, 상기 결함 판단부분은 상기 부대역 전체를 대상으로 각각의 진동분할신호의 레벨을 평가함으로써, 상기 요소 이외의 다른 요소에서 발생된 진동분할신호의 결함성장 가능성을 판단하며, 상기 결함신호 추출부분은 상기 다른 요소에 결함성장 가능성이 있는 것으로 판단된 때 해당 진동분할신호를 결함신호로 추출하여 상기 진동분할신호 출력단으로 전달하도록 되어 있는 것이 바람직하다.
또한, 상기 증강현실 표현모듈은, 진단 대상이 된 상기 발전설비를 확인하여 DB로부터 상기 발전설비의 3D 화상데이터를 수신하는 화상준비부; 상기 특성 추출모듈에서 추출된 특성값을 수신하여, 상기 화상준비부에서 출력된 3D 화상데이터와 결합하여 3D화상 결함데이터를 생성하고, 상기 3D결함 화상데이터를 실사 이미지와 합성함으로써 증강현실 화상데이터를 생성하여, 결함이 발견된 상기 부품 또는 요소를 시각적으로 강조한 상태에서 표현되도록 하는 증강현실 표현부; 및 상기 증강현실 표현부에서 생성된 증강현실 화상데이터를 3D 화상으로 출력하는 화상출력부;를 포함하여 구성되는 것이 바람직하다.
또한, 상기 증강현실 표현모듈은 상기 발전설비로부터 상기 진동신호 수신모듈에 수신된 진동신호를 포함하여, 상기 발전설비의 진단에 필요한 기타 데이터를 2D 또는 3D 화상데이터로 생성하는 모니터링 표현부;를 더 포함하는 것이 바람직하다.
본 발명의 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치에 따르면, 원전설비에서 발생할 수 있는 결함을 예측 진단할 수 있도록 결함신호 데이터를 처리하므로, 원전설비에 대한 자동 예측진단 결과의 신뢰성 및 성능을 크게 개선할 수 있게 된다. 또한, 원전설비 예측진단 장치의 효용성을 대폭 향상시킬 수 있게 된다.
또한, 원자력 발전소의 설비에서 발생할 수 있는 결함 중에서 조기 검출이 어려운 정상 마모로 인한 베어링의 미소한 결함진전, 과도한 축방향 추력으로 인한 비금속부품의 피로 손상 및 열 충격에 의한 미소 뒤틀림 등을 조기에 검출할 수 있게 되므로, 원자력 발전소 설비에 대한 예측진단 성능을 획기적으로 향상시킬 수 있게 된다.
더욱이, 진동신호에 대한 웨이블릿 기반의 부대역 지정을 통해 조기 검출이 어려운 결함신호를 진동신호로부터 보다 간편하고, 정확하게 추출해 낼 수 있으므로, 예측진단의 성능을 더욱 향상시킬 수 있게 된다.
또한, 진동신호에 대한 부대역 지정에 앞서, 각 부품의 결함신호가 갖는 결함신호의 시간 의존도 높낮이에 따라 진동신호를 발생시킨 부품을 구분한 다음, 해당 진동신호에 대해 영역 지정 또는 부대역 지정을 하고 있으므로, 예측진단의 간단화를 도모할 수 있게 된다.
또한, 결함신호 추출을 위한 부대역 지정 시 부대역의 분할 횟수와 부대역의 개수를 진동원 즉, 진동신호를 발생시킨 부품의 요소에 대응하여 연동시킴으로써 에측진단의 성능을 더욱 향상시킬 수 있게 된다.
더욱이, 발전설비가 설치된 현장에서 또는 원격지에서, 발전설비 부품의 결함에 대한 특성값 또는 일반적인 진동 정보를 3D 화상데이터에 의한 증강현실 기술을 통해 분명하면서도 편리하게 확인, 파악할 수 있으므로, 원전 설비에 대한 예측 진단을 보다 효율적이면서도, 정확하게 수행할 수 있게 된다.
도 1은 본 발명의 일 실시예에 따른 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치의 블록도.
도 2는 도 1의 증강현실 표현모듈의 세부 구성을 보인 블록도.
도 3은 도 1의 예측진단용 신호데이터 처리장치에 의한 진동신호 데이터 처리 과정을 단계 별로 도시한 흐름도.
도 4는 도 3의 결함신호 추출단에 의한 진동신호 데이터 처리 과정을 단계 별로 도시한 흐름도.
도 5는 진동신호 분할부분에서 진동신호를 복수 회차 분할하여 복수의 부대역을 만드는 과정을 보인 도면.
이하, 본 발명의 일 실시예에 따른 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치를 첨부 도면을 참조로 상세히 설명한다.
본 발명의 신호데이터 처리장치는 도 1에 도면부호 1로 도시된 바와 같이, 진동신호 수신모듈(3), 신호 전처리모듈(5), 특성 추출모듈(7), 및 증강현실 표현모듈(9)을 포함하여 이루어진다.
여기에서, 먼저 상기 진동신호 수신모듈(3)은 원자력 발전설비 중 예측 진단을 하고자 하는 대상 설비의 진동원에서 발생한 진동신호를 수신하는 부분으로, 도 1에 도시된 바와 같이, 예컨대 터빈, 펌프, 송풍팬 등과 같은 대상 설비의 베어링이나 회전축 등과 같은 부품 즉, 진동원에 설치한 진동센서(변위 및 가속도 센서)로부터 보내진 진동신호를 단위시간 동안 예컨대, 2초 간 수신하여 해당 부품의 종류 별로 구분하여 DB에 저장한다.
이때, 도 1에 도시되어 있지 않지만, DB에 저장된 진동신호 데이터는 후술하는 전처리를 진행하기 전에 노이즈제거부를 통해 노이즈가 포함될 수 있는 주파수 대역을 저주파, 중주파, 고주파 등의 통과 필터링 과정을 거치게 된다. 해당 과정은 원자력 발전설비에서 변위 및 가속도 센서 등의 진동센서를 통해 수집된 아날로그 신호를 디지털화하는 과정에서 양자화 오차로 인해 발생하는 노이즈 성분을 제거하며, 특히 부품이 회전 설비인 경우 진동신호의 결함성분이 수렴(convergence)하는 현상을 방지한다. 즉, 필수 요소인 디지털화 과정에서 불가피하게 발생하는 노이즈를 사전에 제거 및 저감하는 역할을 수행한다.
상기 신호 전처리모듈(5)은 위 진동신호 수신모듈(3)에 수신된 진동신호를 부품 즉, 진동원의 종류에 따라 별도로 전처리하는 부분으로, 도 1에 도시된 바와 같이, 진동원 확인부(11), 평균화부(13), 및 결함신호 추출부(15)를 포함하여 이루어진다.
여기에서, 상기 진동원 확인부(11)는 진동신호의 진동원을 확인하는 부분으로, 진동원 별로 DB에 저장된 진동신호의 진동원이 무엇인지 진동원의 종류를 확인하는 바, 진동원 별로 진동신호의 전처리를 진행할 수 있도록 한다.
또한, 상기 평균화부(13)는 진동신호 내의 불안정한 성분을 저감하는 부분으로, 진동원 확인부(11)에서 확인된 진동원 별로 이미 정해져 있는 적정 회수만큼 진동신호를 평균화한다. 즉, 평균화부(13)는 노이즈가 제거된 진동신호 데이터에 대하여 부품 즉, 진동원 별로 횟수를 달리하여 평균화 처리를 수행한다. 예컨대, 터빈은 구동 특성 상 진동신호의 불안정한 성질이 낮기 때문에, 평균화 횟수를 줄여 주요성분의 손실을 최소화한다. 반면, 폄프나 팬 등은 적정 효율점을 벗어난 운전 및 다른 부품의 진동 등으로 인한 진단 방해요인(진동 성분) 때문에 진단 오류를 일으킬 가능성이 높으므로, 평균화 횟수를 늘려 신호의 불안정한 성질(non-stationary)을 제거한다. 한편, 평균화부(13)는 평균화 수행과정을 거치면서 데이터 크기를 감소시키므로, 효율적인 데이터 누적 관리도 가능하게 한다.
또한, 상기 결함신호 추출부(15)는 부품 별로 평균화를 마친 진동신호를 부품 즉, 진동원의 특성에 따라 예컨대 결함신호의 시간 의존도가 낮은 즉, 장시간 의존성인 터빈의 경우에는 시간영역 및 주파수영역으로 구분하고, 반대로 결함신호의 시간 의존도가 높은 즉, 단시간 의존성인 펌프나 팬의 경우에는 진동신호를 임의의 구간으로 분할한 뒤 시간분할영역 및 주파수분할영역으로 구분한 뒤, 특성 추출모듈(7)로 출력한다. 이때, 결함신호의 시간 의존도가 낮다는 것은 결함신호가 시간 경과에 따라 변화가 적다는 것을, 시간 의존도가 높다는 것은 그 반대를 의미한다. 즉, 터빈과 같이 상대적으로 중후장대한 부품은 진동신호가 다른 이웃한 부품의 영향을 거의 받지 않고, 결함이 일단 발생하면 주기적으로 신호를 발생시키는 반면, 펌프나 팬 등은 그 반대로 결함신호가 간헐적으로 발생한다는 것을 의미한다.
이를 위해, 결함신호 추출부(15)는 도 1에 도시된 바와 같이, 다시 영역 지정섹터(21)와 부대역 지정섹터(23)로 구분되는 바, 위에서 언급한 것처럼, 상기 영역 지정섹터(21)는 시간 의존도가 낮은 터빈과 같은 부품의 평균화를 마친 진동신호를 시간영역 및 주파수영역으로 구분하여 출력한다. 이때, 진동신호를 주파수영역의 데이터로 출력하기 위해서는 진동신호에 대해 FFT(고속 푸리에 변환)를 수행한다. 반대로, 부대역 지정섹터(23)는 시간 의존도가 높은 펌프나 팬과 같은 부품의 평균화를 마친 진동신호의 시간파형을 임의의 구간 즉, 부대역으로 분할한 뒤 시간분할영역 및 주파수분할영역으로 구분하여 출력한다.
이때, 부대역 지정섹터(23)는 다시 도 1에 도시된 것처럼, 결함신호 추출단(31) 그리고 진동분할신호 출력단(33)을 포함하여 이루어지는 바, 상기 결함신호 추출단(31)은 부대역 지정섹터(23)로 전달된 진동신호를 웨이블릿(wavelet) 기반으로 포락분석하여 복수의 부대역으로 분할한다. 이와 같이 분할된 진동신호 즉, 진동분할신호 데이터는 특정 기저 함수의 집합으로 분리하는 과정을 수행하며, 사용되는 기저 함수의 집합은 하나의 기본 웨이블릿 기저함수(mother wavelet basic function)에 대한 시간 축 방향으로의 확대 및 축소와 평행이동을 통해 확보된다. 또한, 결함신호 추출단(31)은 위와 같이 분할된 각 부대역의 진동분할신호 레벨을 평가하여 해당 진동분할신호의 결함여부를 판단한다.
이를 위해, 결함신호 추출단(31)은 다시 결함신호 비교부분(41), 진동신호 분할부분(43), 결함 판단부분(45), 결함신호 추출부분(47)으로 이루어지는 바, 상기 결함신호 비교부분(41)은 부품을 이루는 각각의 요소마다 이미 정해져 있는 결함신호의 주파수대역폭을 DB로부터 확인하고, 확인한 값을 요소끼리 서로 비교하여 결함신호의 주파수대역폭이 최소인 요소를 찾아낸다. 예컨대, 발전설비인 팬의 부품을 구름베어링이라고 하면, 구름베어링의 각 요소 즉, 내륜, 외륜, 및 롤러가 갖는 결함신호의 주파수대역폭을 DB에서 각각 확인하여 최소의 결함신호 주파수대역폭을 갖는 요소 예컨대 내륜을 찾아낸다.
또한, 상기 진동신호 분할부분(43)은 위와 같이 결함신호 비교부분(41)에서 찾아낸 요소 즉, 내륜의 결함신호 주파수성분을 포함하는 최소폭이 될 때까지 진동신호를 도 5에 도시된 것처럼 n회차 예컨대, 4회차에 걸쳐 분할한다. 이때, 매 분할회차마다 진동신호는 n+1개의 부대역을 생성한다, 즉, 진동신호를 1회차 분할한 때는 2개의 부대역이, 2회차 분할한 때는 3개의 부대역이, 3회차 분할한 때는 4개의 부대역이, 4회차 분할한 때는 5개의 부대역이 각각 생성된다.
또한, 상기 결함 판단부분(45)은 위 진동신호 분할부분(43)에서 진동신호가 n=4회차 분할되는 동안 발생한 총 n(n+1)/2+n개 즉, 예컨대 14개의 부대역을 대상으로 하여 각 부대역의 진동분할신호의 레벨을 평가하고, 해당 요소 즉, 내륜의 진동분할신호의 결함성장 가능성을 판단한다.
또한, 상기 결함신호 추출부분(47)은 위 결함 판단부분(45)에서 평가된 각 부대역의 진동분할신호가 결함성장 가능성이 있는 것으로 판단된 때 즉, 해당 요소 즉, 내륜의 결함신호가 임계치를 초과한 때, 해당 진동분할신호를 결함신호로 추출하여 진동분할신호 출력단(33)으로 전달한다.
이와 동시에, 결함 판단부분(45)는 위 n(n+1)/2+n개 즉, 14개의 부대역 전체를 대상으로 각각의 진동분할신호의 레벨을 평가함으로써, 결함신호 주파수대역폭이 최소가 아닌 요소 예컨대, 외륜 또는 롤러에서 발생된 진동분할신호의 결함성장 가능성을 판단한다. 판단 결과, 다른 요소에 결함성장 가능성이 있는 것으로 판단되면, 마찬가지로 결함신호 추출부분(47)은 해당 진동분할신호를 결함신호로 추출하여 진동분할신호 출력단(33)으로 전달하도록 한다.
상기 진동분할신호 출력단(33)은 위 결함신호 추출단(31)에 분할된 복수의 부대역 중 위 결함신호 추출단(31)에서 진동분할신호에 결함이 있다고 판단된 특정 부대역의 해당 진동분할신호를 도 1에 도시된 바와 같이, 시간분할영역 및 주파수분할영역으로 구분하여 특성 추출모듈(7)로 출력한다. 다만, 이때에도 주파수분할영역 데이터를 출력하기 위해서는 마찬가지로 진동분할신호에 대해 FFT를 수행한다.
따라서, 부대역 지정섹터(23)로 전달된 진동신호는 임의의 구간으로 분할되기 때문에, 기존의 신호처리 기술로는 검출이 어려운 시간 의존도가 높은 결함성분이 조기에 검출될 수 있다. 반면, 영역 지정섹터(21)로 전달된 진동신호는 부대역 지정섹터의 처리가 불필요한 진동신호에 해당한다. 즉, 영역 지정섹터(21)에서의 처리는 시간 의존도가 낮은 결함성분을 검출할 목적으로 수행되며, 로터의 굽힘으로 인한 불평형 및 정렬불량 등의 일반적인 진동 분석으로 검출이 용이한 결함성분의 추출을 위하여 수행된다.
상기 특성 추출모듈(7)은 도 1에 도시된 것처럼, 위에서 신호 전처리모듈(5)에 의해 전처리가 완료되어 출력된 진동신호 데이터에 대하여 각각 통계적, 형태적 특성을 가진 계산값을 추출하는 기능을 수행한다. 추출은 후술하는 수학식을 통해 설정된 개수만큼의 특성값을 계산함으로써 이루어진다. 수학식 1 내지 13에 의해 추출된 각 특성값은 구성된 시스템 내에서 특성 벡터별 상관계수 도출을 통해 머신러닝 알고리즘 전용 데이터 등 여러 용도의 데이터로 제공될 수 있다.
Figure 112018091410176-pat00001
x(n) : 고장 특징 추출에 사용되는 시간 영역 신호 (이하 동일)
N : x(n)의 샘플 개수 (이하 동일)
RMS(Root-Mean-Square)는 신호의 변화 크기에 대한 값으로 사인 파형과 같이 연속되는 파형의 음과 양을 오가는 정도 또는 그 크기를 의미한다.
Figure 112018091410176-pat00002
Figure 112018091410176-pat00003
: x(n)의 평균, σ : x(n)의 표준편차 (이하 동일)
통계에서 왜도(skewness)는 확률 분포의 비대칭성을 나타내는 지표로 신호의 편중성(신호의 평균을 기준으로 신호 값들의 분포가 한쪽으로 몰리는 정도)이 증가할수록 왜도 또한 증가한다.
Figure 112018091410176-pat00004
임펄스 계수(impulse factor)는 신호에서 가장 큰 임펄스(파형이 뾰족하게 솟아오르는 부분)의 크기에 대한 지표이다.
Figure 112018091410176-pat00005
통계에서 첨도(kurtosis)는 확률분포의 모양이 뾰족한 정도를 나타내는 지표로 신호의 값들의 분포가 특정 값 근처에 몰려 뾰족한 형태를 이룰수록 첨도가 증가한다.
Figure 112018091410176-pat00006
첨도 계수(kurtosis factor)는 첨도의 변형된 값으로 첨도가 신호 전체의 크기에 민감한 단점을 보완한 값이다.
Figure 112018091410176-pat00007
SMR(Square-Mean-Root)는 RMS와 동일하게 연속되는 파형의 음과 양을 오가는 정도 또는 그 크기를 의미하며 RMS보다 신호의 크기에 더 민감하다.
Figure 112018091410176-pat00008
양진폭(peak-to-peak)은 신호의 전체 폭을 나타내는 지표로 신호에서 가장 작은 값과 가장 큰 값의 차이이다.
Figure 112018091410176-pat00009
여유도 계수(margin factor)는 신호의 평균적인 크기에 비해 최소/최대 값의 차이를 의미한다.
Figure 112018091410176-pat00010
파고율(crest factor)은 여유도와 동일하게 신호의 평균적인 크기에 비해 최소/최대 값의 차이를 의미하며 평균 크기로 SMR대신 RMS를 사용한다.
Figure 112018091410176-pat00011
형상 계수(shape factor)는 전자공학에서 DC 성분과 AC 성분의 비율을 나타내는 지표로 신호의 평균 대비 음과 양을 오가는 연속 파형의 크기 비율을 의미한다.
Figure 112018091410176-pat00012
주파수 중심(frequency center)은 주파수 영역의 평균을 의미한다.
Figure 112018091410176-pat00013
주파수 RMS는 주파수 영역의 RMS 값을 의미한다.
Figure 112018091410176-pat00014
표준편차 주파수(root variance frequency)는 주파수 영역에서 주파수 값들의 분산을 의미한다.
상기 증강현실 표현모듈(9)은 위 특성 추출모듈(7)에서 추출해낸 각각의 특성값을 사용자가 증강현실로 확인할 수 있도록 표현하는 부분으로, 도 2에 도시된 바와 같이, 화상준비부(51), 증강현실 표현부(53), 및 화상출력부(55)를 포함하여 이루어진다.
여기에서, 먼저 상기 화상준비부(51)는 위 과정을 거쳐 특성값이 추출된 발전설비의 화상데이터를 DB로부터 가져와 특성값을 증강현실로 표현하기 위한 준비를 하는 바, 도 1 및 도 2에 도시된 바와 같이, 현재 진단 대상인 발전설비를 재차 확인하여 해당 발전설비가 정확히 특정되도록 한다. 이를 위해, 화상준비부(51)는 전용의 또는 휴대폰과 같은 범용의 화상 입력장치를 통해 팬의 태그 이미지를 촬영하거나 전체 이미지를 촬영하여 DB화 되어 있는 설비정보와 비교함으로써 팬에 대한 정보나 데이터를 정확하게 얻을 수 있고, 따라서 대상 발전설비를 정확히 특정할 수 있게 된다. 이렇게 해서 대상 발전설비가 확인되면, 화상준비부(51)는 다시 DB로부터 해당 발전설비의 3D 화상데이터를 수신한다. 이때, 3D 화상데이터는 발전설비를 부품 별로 또는 부품을 이루는 요소 별로 나누어 표현한 3D 분해도인 것이 바람직하지만, 다른 3D 화상데이터가 될 수도 있다.
상기 증강현실 표현부(53)는 3D 화상데이터에 특성값 데이터를 결합하여, 특성 추출모듈(7)에 추출한 특성값이 3D로 증강되어 표현되도록 하는 부분으로, 도 2에 도시된 바와 같이, 위 화상준비부(51)에서 보내진 팬 부품이나 요소의 3D 화상데이터를, 특성 추출모듈(7)에서 추출된 특성값 데이터와 합성하여 3D화상 특성값데이터로 만들어, 실사 이미지와 합성함으로써, 발전설비의 부품이나 요소를 분해하여 나타낸 3D 화상데이터에 각각의 특성값이 시각적으로 강조되어 증강현실로 표현되도록 증강현실 화상데이터를 생성한다. 이때, 진단모듈(10)에서 보내진 진단결과는 특정 부품이나 요소의 발생한 결함의 종류, 확실도, 및 심각도의 형태로 다양하게 제공될 수 있다.
상기 화상출력부(55)는 위 증강현실 화상데이터를 3D 화상으로 출력하는 단말부분으로, 위 증강현실 표현부(53)에서 생성된 증강현실 화상데이터를 전용의 화상출력장치나 범용의 온오프라인 유무선 화상출력장치를 통해 3D 화상으로 출력하여 사용자가 발전설비에서 추출된 특성값을 쉽고, 분명하게 확인할 수 있도록 한다. 아울러, 화상출력부(55)는 아래 모니터링 표현부(57)에 의해 생성된 진단데이터를 팬의 3D 화상이 아닌 다양한 형태로 동시에 화상 출력할 수도 있다.
아울러, 상기 증강현실 표현모듈(9)은 해당 발전설비의 진단에 필요한 일반적인 진단데이터를 2D 또는 3D 화상데이터로 실사 이미지와 합성하여 생성하는 모니터링 표현부(57)를 포함할 수 있는데, 이 모니터링 표현부(57)는 위 증강현실 표현부(53)에서 생성되는 결함신호 데이터로 이루어진 3D화상 결함데이터 이외에, 종전에 발전설비를 진단하던 진단데이터를 증강현실 화상데이터와 함께 실사 이미지와 함성하여 또 다른 형태의 증강현실 화상데이터로서 화상출력부(55)에 출력한다.
이제, 본 발명의 바람직한 실시예에 따른 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치(1)의 작용을 설명하면 다음과 같다.
본 발명의 신호 데이터 처리장치(1)에 의하면, 도 1에 도 면부호 1로 도시된 것처럼, 최초 진동신호 수신모듈(3)을 통해 결함의 예측진단이 요구되는 원자력 설비 예컨대, 터빈이나 펌프와 같은 설비의 예컨대, 베어링과 같은 부품으로부터 진동신호를 수신한다(S100). 다음으로, 위 수신모듈(3)을 통해 수신된 진동신호 데이터를 신호 전처리모듈(5)을 통해 전처리한다(S200). 그리고 나서, 특성 추출모듈(7)에서 전처리된 진동신호로부터 위 수학식 1 내지 13을 이용해 통계적, 형태적 특성값을 계산하고, 계산값을 외부로 송신하면(S300), 신호데이터 처리장치(1)에 의한 일련의 진동신호 처리과정이 완료된다.
이때, 신호 전처리모듈(5)로 입력된 진동신호 데이터는 도 3에 도시된 바와 같이, 일차적으로 노이즈부를 통해 노이즈가 제거된다. 특히, 진동센서로부터 수집된 아날로그 신호를 디지털화하는 과정에서 불가피하게 발생하는 양자화 오차로 인한 노이즈 성분을 사전에 제거 및 저감한다.
그 다음, 도 3에 도시된 것처럼, 진동원 확인부(11)를 통해 노이즈가 제거된 진동신호의 발생원이 무엇인지 확인한다. 즉, 진단 대상인 발전설비 중 해당 진동신호를 발생시킨 부품이 무엇인지 확인하여, 이후 부품 즉, 진동원 별로 전처리가 이루어질 수 있도록 한다(S210).
그리고 나서, 진동원이 확인된 진동신호는 평균화부(13)에 의해 평균화된다. 즉, 진동원 확인부(11)에서 확인된 부품이 예컨대, 터빈과 같이 시간 의존도가 낮은 것이면, 특성 상 신호 내의 불안정한 성질이 낮으므로, 상대적으로 평균횟수를 적게 한다. 반대로, 펌프와 같이 시간 의존도가 높은 것이면, 진동오류가 발생할 가능성이 높기 때문에, 상대적으로 평균횟수를 늘려, 진동신호 중의 불안정한 성질을 제거한다(S220).
이어서, 평균화가 완료된 진동신호는 결함신호 추출부(15)로 전달되어, 결함신호가 추출된다(S230). 즉, 시간의존도가 낮은 부품의 진동신호 데이터는 영역 지정섹터(21)로 보내져 도 3과 같이 시간 또는 주파수 영역으로 구분된 다음, 시간영역에서는 시간영역 데이터를 출력하며, 주파수 영역에서는 먼저 FFT를 수행한 다음, 주파수영역 데이터를 출력한다(S231).
반면, 시간의존도가 높은 부품의 진동신호 데이터는 도 1에 도시된 것처럼, 부대역 지정섹터(23)로 보내져 결함신호가 추출된다(S232). 이를 위해, 도 4에 도시된 바와 같이, 해당 진동신호 데이터는 결함신호 추출단(31)으로 보내져 결함신호 추출단(31)에서 결함신호를 추출하고(SS100), 추출된 결함신호는 진동분할신호 출력단(33)을 통해 특성 추출모듈(7)로 출력된다. 이때, 추출된 결함신호는 시간 또는 주파수 영역으로 구분된 다음, 시간분할영역에서는 시간분할영역 데이터를 출력하며, 주파수분할영역에서는 먼저 FFT를 수행한 다음, 주파수분할영역 데이터를 출력한다(SS200).
한편, 결함신호 추출단(31)에서 진동신호 데이터는 도 3에 도시된 바와 같이, 먼저 결함신호 비교부분(41)에 의해 위에서 언급한 바와 같이, 부품의 각 요소마다 이미 정해져 있는 결함신호의 주파수대역폭을 서로 비교하여 결함신호의 주파수대역(B) 폭이 최소인 요소를 찾아낸다(SS110). 그 다음, 결함신호 비교부분(41)에서 찾아낸 요소의 결함신호 주파수대역(B)을 포함하는 최소폭이 될 때까지 진동신호를 n회차에 걸쳐 분할하여 매 분할회차 마다 n+1개씩 총 n(n+1)/2+n개의 부대역을 생성한다(SS120). 끝으로, 총 n(n+1)/2+n개의 부대역을 대상으로 하여 각 부대역의 진동분할신호의 레벨을 평가하고, 해당 요소의 진동분할신호의 결함성장 가능성을 판단하여(SS130), 최종적으로 결함신호를 추출한다(SS140).
이렇게 해서 머신에 대한 학습이 완료되면, 몇 차례의 테스트를 거친 후, 위 그래프에 의해 특정 부품의 현재 상태를 진단할 수 있게 된다(S520). 이때, 진단이란 팬으로부터 주파수 RMS 값이 200인 진동신호가 머신에 수신되었다면, 머신은 이 신호를 통해 현재 팬은 베어링의 내륜에 1㎜의 크랙이 발생하였다는 예측 진단을 내리게 되는 것이다.
이와 같이, 특성값 추출이 완료되면, 증강현실 표현모듈(9)에서 각각의 특성값을 증강현실로 표현하는 바(S400), 먼저 화상준비부(51)에서 진단 대상이 된 발전설비를 확인하고, DB로부터 해당 설비의 3D 화상데이터를 수신한다(S410). 이를 위해, DB에는 모든 발전설비의 모든 부품에 대한 3D 화상데이터가 사전에 확보되어 있어야 하며, 화상준비부(51)에서 요청한 때 특정 부품 또는 요소에 대한 3D 화상데이터를 제공할 수 있어야 한다.
이렇게 해서 화상준비부(51)로부터 해당 팬의 3D 화상데이터가 제공되면, 증강현실 표현부(53)는 위 특성 추출모듈(7)로부터 추출된 특성값을 수신한 다음, 발전설비의 3D 화상데이터와 특정 부품 또는 요소의 특성값 데이터를 합성하여 3D화상 특성값데이터를 합성하고, 여기에 다시 실사 이미지를 합성하여 최종적으로 증강현실 화상데이터를 생성한다(S420). 더욱이, 발전설비 중 결함이 발견된 부품 또는 요소가 예컨대, 색상을 달리하거나 깜박거리게 하여 시각적으로 강조함으로써 사용자의 시인성을 높일 수 있다.
또한, 증강현실 표현모듈(9)은 위와 같이 증강현실 표현부(53)를 통해서 결함데이터가 결합된 증강현실 화상데이터를 생성할 수 있을 뿐 아니라, 모니터링 표현부(57)를 통해 일반적인 진단데이터 즉, 현재까지 전통적으로 진단의 대상이 되어왔던 진단데이터도 함께 증강현실 화상데이터로 생성할 수 있다(S430). 이를 위해, 모니터링 표현부(57)는 해당 발전설비로부터 진동신호 수신모듈(3)에 수신된 진동신호는 물론, 일반적으로 각 발전설비의 진단에 따른 진단데이터를 진동신호 수신모듈(3)로부터 전달 받아, 2D 화상데이터(B) 또는 3D의 화상데이터를 합성한다.
끝으로, 화상출력부(55)는 위 증강현실 표현부(53)에서 생성된 증강현실 화상데이터를 3D 화상으로 출력하거나, 여기에 모니터링 표현부(57)에서 생성된 2D 또는 3D 화상데이터를 합성하여 화상으로 출력한다(S440). 이를 위해, 화상출력부(55)는 예컨대, 휴대폰 단말기와 같은 범용의 오프라인 무선 화상출력장치를 통해 화상데이터를 출력하여, 사용자로 하여금 팬에 대한 진단 결과를 시각적으로 보다 확실하고 분명하게 확인할 수 있도록 한다.
1 : 신호데이터 처리장치 3 : 진동신호 수신모듈
5 : 신호 전처리모듈 7 : 특성 추출모듈
9 : 증강현실 표현모듈 11 : 진동원 확인부
13 : 평균화부 15 : 결함신호 추출부
21 : 영역 지정섹터 23 : 부대역 지정섹터
31 : 결함신호 추출단 33 : 진동분할신호 출력단
41 : 결함신호 비교부분 43 : 진동신호 분할부분
45 : 결함 판단부분 47 : 결함신호 추출부분
51 : 화상준비부 53 : 증강현실 표현부
55 : 화상출력부 57 : 모니터링 표현부

Claims (7)

  1. 삭제
  2. 삭제
  3. 원자력 발전설비의 부품으로부터 진동신호를 수신하여 저장하는 진동신호 수신모듈(3);
    상기 진동신호 수신모듈(3)에 수신된 상기 진동신호를 전처리하는 신호 전처리모듈(5);
    상기 신호 전처리모듈(5)에서 전처리된 상기 진동신호로부터 통계적, 형태적 특성값을 계산하는 특성 추출모듈(7); 및
    상기 특성 추출모듈(7)에서 추출된 상기 특성값을 증강현실로 표현하는 증강현실 표현모듈(9);을 포함하여 이루어지며,
    상기 신호 전처리모듈(5)은,
    상기 진동신호 수신모듈(3)에 수신된 상기 진동신호의 상기 부품의 종류를 확인하는 진동원 확인부(11);
    상기 진동원 확인부(11)에서 확인된 상기 부품 마다 이미 정해져 있는 회수만큼 상기 진동신호를 평균화하는 평균화부(13); 및
    상기 평균화부(13)에서 평균화를 마친 상기 진동신호를 상기 부품마다 이미 정해진 대로 시간영역 및 주파수영역으로 구분하거나, 임의의 구간으로 분할한 뒤 시간분할영역 및 주파수분할영역으로 구분한 다음, 상기 특성 추출모듈(7)로 출력하는 결함신호 추출부(15);를 포함하여 이루어지고,
    상기 결함신호 추출부(15)는,
    상기 진동신호를 시간영역 및 주파수영역으로 구분하여 출력하는 영역 지정섹터(21); 및
    상기 진동신호를 임의의 구간으로 분할한 뒤 추출한 결함신호를 시간분할영역 및 주파수분할영역으로 구분하여 출력하는 부대역 지정섹터(23);를 포함하여 이루어지며,
    상기 부대역 지정섹터(23)는,
    상기 진동신호를 웨이블릿(wavelet) 기반으로 포락분석하여 복수의 부대역으로 분할하고, 분할된 상기 각각의 부대역의 진동분할신호 레벨을 평가하여 해당 진동분할신호의 결함여부를 판단하며, 진동분할신호가 결함성장 가능성이 있는 것으로 판단된 때 해당 진동분할신호를 결함신호로 추출하는 결함신호 추출단(31); 및
    상기 결함신호 추출단(31)에서 추출된 결함신호를 시간분할영역 및 주파수분할영역으로 구분하여 상기 특성 추출모듈(7)로 출력하는 진동분할신호 출력단(33);을 포함하여 이루어지는 것을 특징으로 하는 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치.
  4. 청구항 3에 있어서,
    상기 결함신호 추출단(31)은,
    상기 부품의 요소마다 이미 정해져 있는 결함신호의 주파수대역폭을 확인하고, 확인한 값을 서로 비교하여 결함신호의 주파수대역폭이 최소인 요소를 찾아내는 결함신호 비교부분(41);
    상기 결함신호 비교부분(41)에서 찾아낸 요소의 결함신호 주파수대역을 포함하는 최소폭이 될 때까지 상기 진동신호를 n회차 분할하되, 매 분할회차마다 n+1개의 부대역을 생성하는 진동신호 분할부분(43);
    상기 진동신호 분할부분(43)에서 상기 진동신호가 n회차 분할되는 동안 발생한 총 n(n+1)/2+n개의 부대역을 대상으로 하여 각 부대역의 진동분할신호의 레벨을 평가함으로써 해당 진동분할신호의 결함성장 가능성을 판단하는 결함 판단부분(45); 및
    상기 결함 판단부분(45)에서 진동분할신호가 결함성장 가능성이 있는 것으로 판단된 때 해당 진동분할신호를 결함신호로 추출하여 상기 진동분할신호 출력단(33)으로 전달하는 결함신호 추출부분(47);을 포함하여 이루어지는 것을 특징으로 하는 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치.
  5. 청구항 4에 있어서,
    상기 결함 판단부분(45)은 상기 부대역 전체를 대상으로 각각의 진동분할신호의 레벨을 평가함으로써, 상기 요소 이외의 다른 요소에서 발생된 진동분할신호의 결함성장 가능성을 판단하며, 상기 결함신호 추출부분(47)은 상기 다른 요소에 결함성장 가능성이 있는 것으로 판단된 때 해당 진동분할신호를 결함신호로 추출하여 상기 진동분할신호 출력단(33)으로 전달하도록 되어 있는 것을 특징으로 하는 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치.
  6. 청구항 3 내지 청구항 5 중 어느 한 항에 있어서,
    상기 증강현실 표현모듈(9)은,
    진단 대상이 된 상기 발전설비를 확인하여 DB로부터 상기 발전설비의 3D 화상데이터를 수신하는 화상준비부(51);
    상기 특성 추출모듈(7)에서 추출된 특성값을 수신하여, 상기 화상준비부(51)에서 출력된 3D 화상데이터와 결합하여 3D화상 결함데이터를 생성하고, 상기 3D화상 결함데이터를 실사 이미지와 합성함으로써 증강현실 화상데이터를 생성하여, 결함이 발견된 상기 부품 또는 요소를 시각적으로 강조한 상태에서 표현되도록 하는 증강현실 표현부(53); 및
    상기 증강현실 표현부(53)에서 생성된 증강현실 화상데이터를 3D 화상으로 출력하는 화상출력부(55);를 포함하여 구성되는 것을 특징으로 하는 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치.
  7. 청구항 6에 있어서,
    상기 증강현실 표현모듈(9)은 상기 발전설비로부터 상기 진동신호 수신모듈(3)에 수신된 진동신호를 포함하여, 상기 발전설비의 진단에 필요한 기타 데이터를 2D 또는 3D 화상데이터로 생성하는 모니터링 표현부(57);를 더 포함하는 것을 특징으로 하는 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치.
KR1020180109891A 2018-09-13 2018-09-13 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치 KR101967637B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180109891A KR101967637B1 (ko) 2018-09-13 2018-09-13 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180109891A KR101967637B1 (ko) 2018-09-13 2018-09-13 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치

Publications (1)

Publication Number Publication Date
KR101967637B1 true KR101967637B1 (ko) 2019-04-10

Family

ID=66163903

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180109891A KR101967637B1 (ko) 2018-09-13 2018-09-13 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치

Country Status (1)

Country Link
KR (1) KR101967637B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101060139B1 (ko) 2010-12-24 2011-08-29 한국남부발전 주식회사 발전설비의 운전정보 분석과 예측진단 시스템
JP5874344B2 (ja) * 2010-11-24 2016-03-02 株式会社Jvcケンウッド 音声判定装置、音声判定方法、および音声判定プログラム
US20160176724A1 (en) * 2013-12-12 2016-06-23 Hanla Ims Co., Ltd. Remote managed ballast water treatment system using augmented reality

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874344B2 (ja) * 2010-11-24 2016-03-02 株式会社Jvcケンウッド 音声判定装置、音声判定方法、および音声判定プログラム
KR101060139B1 (ko) 2010-12-24 2011-08-29 한국남부발전 주식회사 발전설비의 운전정보 분석과 예측진단 시스템
US20160176724A1 (en) * 2013-12-12 2016-06-23 Hanla Ims Co., Ltd. Remote managed ballast water treatment system using augmented reality

Similar Documents

Publication Publication Date Title
KR101936283B1 (ko) 기계적 결함에 대한 진단 및 예측 방법
US10496466B2 (en) Preprocessor of abnormality sign diagnosing device and processing method of the same
KR102141391B1 (ko) 군집 평가에 기반한 고장 데이터의 관리 방법
CN115034248A (zh) 用于设备的自动诊断方法、系统和存储介质
US20100114502A1 (en) System and method for article monitoring
WO2020090770A1 (ja) 異常検出装置、異常検出方法、およびプログラム
JPH07168619A (ja) 機器/設備診断方法およびシステム
KR102119661B1 (ko) 회전기기 고장 예지를 위한 건전성 지표 추이 및 잔존수명 예측 기법
CN107291475B (zh) 通用型phm应用配置方法和装置
JP6714498B2 (ja) 設備診断装置及び設備診断方法
KR101984248B1 (ko) 원자력 발전설비의 기계학습식 예측진단장치
KR102253230B1 (ko) 원전설비의 예측 진단 방법 및 시스템
Medjaher et al. Feature extraction and evaluation for health assessment and failure prognostics
KR101776350B1 (ko) 압축기를 진단하는 방법 및 시스템
KR101983603B1 (ko) 증강현실을 활용한 원자력 발전설비의 기계학습식 예측진단장치
KR101967637B1 (ko) 증강현실을 활용한 원자력 발전설비 예측진단용 신호데이터 처리장치
CN117370879A (zh) 一种风力机齿轮箱的实时在线故障诊断方法及系统
KR101967633B1 (ko) 원자력 발전설비의 기계학습식 예측진단장치
KR101967641B1 (ko) 증강현실을 활용한 원자력 발전설비의 기계학습식 예측진단장치
KR20210006832A (ko) 기계고장 진단 방법 및 장치
KR101838857B1 (ko) 열화 트랜드를 이용한 기계 열화 추이 추정 방법
KR101967629B1 (ko) 원자력 발전설비 예측진단용 신호데이터 처리장치
EP4273520A1 (en) Method and system for comprehensively diagnosing defect in rotating machine
KR102303406B1 (ko) 산업설비의 이상유무 진단장치 및 방법
JP7127477B2 (ja) 学習方法、装置及びプログラム、並びに設備の異常診断方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant