KR101955093B1 - Preparing method of electrolyte additives with lowered acidity - Google Patents

Preparing method of electrolyte additives with lowered acidity Download PDF

Info

Publication number
KR101955093B1
KR101955093B1 KR1020170062390A KR20170062390A KR101955093B1 KR 101955093 B1 KR101955093 B1 KR 101955093B1 KR 1020170062390 A KR1020170062390 A KR 1020170062390A KR 20170062390 A KR20170062390 A KR 20170062390A KR 101955093 B1 KR101955093 B1 KR 101955093B1
Authority
KR
South Korea
Prior art keywords
lithium
fluorosulfonyl
compound
ppm
carbonate
Prior art date
Application number
KR1020170062390A
Other languages
Korean (ko)
Other versions
KR20180127064A (en
Inventor
임광민
Original Assignee
임광민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임광민 filed Critical 임광민
Priority to KR1020170062390A priority Critical patent/KR101955093B1/en
Publication of KR20180127064A publication Critical patent/KR20180127064A/en
Application granted granted Critical
Publication of KR101955093B1 publication Critical patent/KR101955093B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/12

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 산도가 줄어든 전해액 첨가제 제조방법에 관한 것으로서, 보다 상세하게는 전해액 첨가제인 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물과 용매를 혼합하여 혼합물을 준비하는 단계; 상기 혼합물에 알칼리 시약을 첨가한 후 교반하여 반응시키는 단계; 및 상기 반응 생성물을 여과 분리한 후 세척 및 건조하여 산도가 줄어든 하기 화학식 1로 표시되는 리튬 비스(플루오로술포닐)이미드 화합물 또는 하기 화학식 2로 표시되는 디플루오로인산리튬 화합물을 제조하는 단계;를 포함하는, 산도가 줄어든 전해액 첨가제 및 그를 포함하는 전해액에 사용될 수 있는 용액 제조방법에 관한 것이다.
[화학식 1]

Figure 112017047941524-pat00007

[화학식 2]
Figure 112017047941524-pat00008

본 발명에 따른 산도가 줄어든 전해액 첨가제 제조방법은 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물에 알칼리 시약을 첨가함으로써 위험한 공정 없이 간단한 방법으로 고순도 및 고수율의 산도가 줄어든 부식성 없는 전해액 첨가제 및 그를 포함하는 고온안정성과 장기보관 안정성이 확보되는 용액 조성을 제조할 수 있는 장점이 있다.The present invention relates to a method for preparing an electrolyte additive having reduced acidity, and more particularly, to a method for preparing an electrolyte additive comprising the steps of: preparing a mixture by mixing a lithium bis (fluorosulfonyl) imide compound or a lithium difluorophosphate compound as an electrolyte additive and a solvent; Adding an alkali reagent to the mixture, and stirring and reacting; And separating the reaction product by filtration, followed by washing and drying to obtain a lithium bis (fluorosulfonyl) imide compound represented by the following formula (1) or a lithium difluorophosphate compound represented by the following formula (2) ; And a method for producing a solution which can be used for an electrolytic solution containing the electrolytic solution additive.
[Chemical Formula 1]
Figure 112017047941524-pat00007

(2)
Figure 112017047941524-pat00008

The method for preparing an electrolyte additive with reduced acidity according to the present invention is characterized in that an alkaline reagent is added to a lithium bis (fluorosulfonyl) imide compound or a lithium difluorophosphate compound so that a high-purity and high- There is an advantage that it is possible to produce a solution composition in which a corrosion-resistant electrolyte additive and its high-temperature stability and long-term storage stability are ensured.

Description

산도가 줄어든 전해액 첨가제 제조방법{Preparing method of electrolyte additives with lowered acidity}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing an electrolyte additive having reduced acidity,

본 발명은 산도가 줄어든 전해액 첨가제 제조방법에 관한 것으로서, 보다 상세하게는 리튬 이차 전지용 전해액에 사용되는 리튬염을 경제적으로 위험한 공정없이 고순도 및 고수율로 간단한 방법으로 처리함으로써 산도(acidity)를 감소시켜 부식성이 없는 전해액 첨가제를 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method for producing an electrolyte additive having reduced acidity, and more particularly, to a process for producing an electrolyte additive by reducing the acidity by treating a lithium salt used for an electrolyte for a lithium secondary battery in a simple manner at a high purity and a high yield without an economically dangerous process And a method for producing an electrolyte additive having no corrosiveness.

최근, 각종 모바일 기기의 상품화에 따라 고성능 이차 전지의 필요성이 증대되고 있으며, 전기자동차, 하이브리드 전기자동차의 상용화, 및 전기저장 장치의 개발에 따라 고출력, 고에너지 밀도, 고방전 전압 등의 성능을 갖춘 이차 전지가 필요하게 되었다.With the commercialization of various types of mobile devices, the need for high performance secondary batteries is increasing. Commercialization of electric vehicles and hybrid electric vehicles, and development of electric storage devices have resulted in the development of high output, high energy density and high discharge voltage A secondary battery was required.

이에 적합한 전해액의 조성물 중 리튬염의 중요성이 대두되었으며, 특히 리튬 비스(플루오로술포닐)이미드 화합물이나 디플루오로인산리튬 화합물이 탁월한 요구성능을 가짐이 밝혀졌다.The importance of the lithium salt in the composition of the electrolytic solution suitable for this has been raised, and it has been found that the lithium bis (fluorosulfonyl) imide compound and the lithium difluorophosphate compound have excellent performance.

또한, 전기 자동차용 리튬 이차 전지는 기존 소형 이차 전지(노트북, 스마트폰 등의 모바일 기기)의 사용 연한이 2년인데 반하여 10년 이상 가혹한 조건에서 성능 저하없이 요구조건을 충족해야 하므로 더욱 품질이 높은 이차 전지 재료를 제조할 필요성이 절실하게 되었다.In addition, lithium rechargeable batteries for electric vehicles require more than 10 years of harsh conditions while satisfying the requirements without degradation, while conventional secondary batteries (mobile devices such as notebooks and smart phones) are used for two years. A necessity for manufacturing a secondary battery material becomes more urgent.

항 목Item 규격standard 순도water 99.5% 이상99.5% or more 불산(HF)Foshan (HF) 50 ppm이하50 ppm or less 염소(Cl)Chlorine (Cl) 5 ppm이하5 ppm or less 수분moisture 100 ppm이하100 ppm or less 메탈류(Na, K, Ca, Fe)The metals (Na, K, Ca, Fe) 10 ppm이하10 ppm or less

상기 표 1은 리튬 이차 전지의 전해액 첨가제로 사용되는 주요 물질인 리튬 비스(플루오로술포닐)이미드 화합물이 이차 전지 내에서 요구되는 성능을 충분히 발휘하기 위한 규격을 나타낸 것이다.Table 1 shows a standard for sufficiently exhibiting the performance required in a secondary battery of a lithium bis (fluorosulfonyl) imide compound, which is a main material used as an electrolyte additive for a lithium secondary battery.

항 목Item 규격standard 순도water 99.0% 이상99.0% or more 불산(HF)Foshan (HF) 1000 ppm이하1000 ppm or less 염소(Cl)Chlorine (Cl) 100 ppm이하100 ppm or less 수분moisture 200 ppm이하200 ppm or less 메탈류(Na, K, Ca, Fe)The metals (Na, K, Ca, Fe) 10 ppm이하10 ppm or less

또한, 상기 표 2는 리튬 이차 전지의 전해액 첨가제로 사용되는 주요 물질인 디플루오로인산리튬 화합물이 이차 전지 내에서 요구되는 성능을 충분히 발휘하기 위한 제품규격을 나타낸 것이다.Table 2 shows a product standard for sufficiently exhibiting the performance required in a secondary battery of a lithium difluorophosphate compound which is a main material used as an electrolyte additive of a lithium secondary battery.

특히, 불산(HF) 함량으로 표현되는 이차 전지의 산도(acidity)는 리튬 이차 전지의 지속적인 사용과정에서 전지내부에 부식을 일으켜 전지수명을 단축시킬 수 있는 문제를 초래하는 주범으로 알려져 있다.Particularly, the acidity of a secondary battery represented by the HF content is known to cause a problem of shortening the battery life due to corrosion in the battery during continuous use of the lithium secondary battery.

상기 표 2에 나타낸 규격(1000 ppm) 이하로 불산(HF) 함량을 관리하는 것이 매우 중요하며, 이차 전지의 산도(acidity)는 적으면 적을수록 유리하다. It is very important to control the hydrofluoric acid (HF) content to below the standard (1000 ppm) shown in Table 2, and the less the acidity of the secondary battery is, the more advantageous it is.

또한 염소(Cl)도 서서히 부식에 관여하므로 이 역시 이차 전지 내 함량이 적을 수록 유리하다.Also, since chlorine (Cl) is also involved in corrosion, it is also advantageous that the content in the secondary battery is smaller.

다만, 리튬 이차 전지의 전해액 첨가제로 사용되는 주요 물질의 불산(HF) 또는 염소(Cl)의 함량을 줄이기 위한 연구가 전무한 상황이므로 이에 대한 연구 개발이 시급한 실정이다.However, since there is no research to reduce the content of hydrofluoric acid (HF) or chlorine (Cl) of the main material used as an electrolyte additive for a lithium secondary battery, research and development thereof is urgent.

한국등록특허 제1521069호Korean Patent No. 1521069

본 발명의 목적은 상기와 같은 종래기술의 문제점을 해결하고, 중대형 리튬 이차 전지용 전해액에 사용되는 리튬염인 리튬 비스(플루오로술포닐)이미드 화합물과 디플루오로인산리튬 화합물을 경제적으로 위험한 공정없이 고순도 및 고수율로 간단한 방법으로 처리함으로써 산도를 줄임으로써 부식성을 감소시킬 수 있는 전해액 첨가제를 제조하는 방법을 제공하고 또한 그의 용액을 제공하는 데에 있다.Disclosure of the Invention An object of the present invention is to solve the problems of the prior art as described above and to provide a lithium bis (fluorosulfonyl) imide compound and a lithium difluorophosphate compound, which are lithium salts used in an electrolyte solution for a middle- or large- And which is capable of reducing corrosion resistance by reducing the acidity by treating it in a simple manner at a high purity and a high yield without the use of an acid catalyst.

상기 목적을 달성하기 위하여, 본 발명은 전해액 첨가제인 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물과 용매를 혼합하여 혼합물을 준비하는 단계; 상기 혼합물에 알칼리 시약을 첨가한 후 교반하여 반응시키는 단계; 및 상기 반응 생성물을 여과 분리한 후 세척 및 건조하여 산도가 줄어든 하기 화학식 1로 표시되는 리튬 비스(플루오로술포닐)이미드 화합물 또는 하기 화학식 2로 표시되는 디플루오로인산리튬 화합물을 제조하는 단계;를 포함하는, 산도가 줄어든 전해액 첨가제 제조방법에 관한 것이다.In order to accomplish the above object, the present invention provides a method for preparing a lithium secondary battery, comprising the steps of: preparing a mixture by mixing a lithium bis (fluorosulfonyl) imide compound or a lithium difluorophosphate compound as an electrolyte additive and a solvent; Adding an alkali reagent to the mixture, and stirring and reacting; And separating the reaction product by filtration, followed by washing and drying to obtain a lithium bis (fluorosulfonyl) imide compound represented by the following formula (1) or a lithium difluorophosphate compound represented by the following formula (2) ; And a method for producing an electrolyte additive having reduced acidity.

[화학식 1][Chemical Formula 1]

Figure 112017047941524-pat00001
Figure 112017047941524-pat00001

[화학식 2](2)

Figure 112017047941524-pat00002
Figure 112017047941524-pat00002

또한 본 발명은 용매에 상기 전해액 첨가제가 용해되어 포함되는, 산도가 줄어든 전해액 첨가제를 포함하는 전해액 용액에 관한 것이다.The present invention also relates to an electrolyte solution comprising an electrolyte additive having reduced acidity, in which the electrolyte additive is dissolved and contained in a solvent.

본 발명에 따른 산도가 줄어든 전해액 첨가제 제조방법은 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물에 알칼리 시약을 첨가함으로써 위험한 공정 없이 간단한 방법으로 고순도 및 고수율의 산도가 줄어든 부식성 없는 전해액 첨가제 및 그를 포함하는 고온안정성과 장기보관 안정성이 확보되는 용액 조성을 제조할 수 있는 장점이 있다.The method for preparing an electrolyte additive with reduced acidity according to the present invention is characterized in that an alkaline reagent is added to a lithium bis (fluorosulfonyl) imide compound or a lithium difluorophosphate compound so that a high purity and a high yield can be obtained There is an advantage that it is possible to produce a solution composition in which a corrosive electrolyte-containing additive and its high-temperature stability and long-term storage stability are ensured.

이하, 본 발명인 산도가 줄어든 전해액 첨가제 제조방법을 보다 상세하게 설명한다.Hereinafter, a method for producing an electrolyte additive with reduced acidity of the present invention will be described in more detail.

본 발명의 발명자는 전해액 첨가제인 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물에 알칼리 시약을 첨가하여 반응시킴으로써 불산(HF) 또는 염소(Cl)의 함량을 줄임으로써 전해액 첨가제의 산도를 감소시켜 부식성 없는 고수율 및 고순도의 전해액 첨가제를 제조할 수 있음을 밝혀내고 또한 그를 포함하는 전해액 조성을 제조할 수 있음을 밝혀내어 본 발명을 완성하였다.The inventors of the present invention have found that by reducing the content of hydrofluoric acid (HF) or chlorine (Cl) by adding an alkali reagent to a lithium bis (fluorosulfonyl) imide compound or a lithium difluorophosphate compound as an electrolyte additive, It is possible to produce an electrolytic solution composition containing the electrolytic solution with high purity and high purity without decreasing the acidity of the electrolytic solution. The present invention has been completed based on this finding.

본 발명은 전해액 첨가제인 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물과 용매를 혼합하여 혼합물을 준비하는 단계; 상기 혼합물에 알칼리 시약을 첨가한 후 교반하여 반응시키는 단계; 및 상기 반응 생성물을 여과 분리한 후 세척 및 건조하여 산도가 줄어든 하기 화학식 1로 표시되는 리튬 비스(플루오로술포닐)이미드 화합물 또는 하기 화학식 2로 표시되는 디플루오로인산리튬 화합물을 제조하는 단계;를 포함하는, 산도가 줄어든 전해액 첨가제 제조방법에 관한 것이다.The present invention relates to a method for preparing a lithium secondary battery, comprising the steps of: preparing a mixture by mixing a lithium bis (fluorosulfonyl) imide compound or a lithium difluorophosphate compound, which is an electrolyte additive, Adding an alkali reagent to the mixture, and stirring and reacting; And separating the reaction product by filtration, followed by washing and drying to obtain a lithium bis (fluorosulfonyl) imide compound represented by the following formula (1) or a lithium difluorophosphate compound represented by the following formula (2) ; And a method for producing an electrolyte additive having reduced acidity.

[화학식 1][Chemical Formula 1]

Figure 112017047941524-pat00003
Figure 112017047941524-pat00003

[화학식 2](2)

Figure 112017047941524-pat00004
Figure 112017047941524-pat00004

상기 용매는 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물 대비 0.5 내지 100의 당량비일 수 있으며, 이에 제한되는 것은 아니다.The solvent may be an equivalent ratio of 0.5 to 100 to the lithium bis (fluorosulfonyl) imide compound or the lithium difluorophosphate compound, but is not limited thereto.

상기 용매는 디에틸에테르, 디이소프로필 에테르, 및 메틸-t-부틸에테르로 이루어진 군에서 선택된 어느 하나인 에테르류; 디메톡시에탄, 및 디에톡시에탄의 알콕시에탄류; 초산메틸, 초산에틸, 초산프로필, 및 초산부틸로 이루어진 군에서 선택된 어느 하나인 에스테르류; 아세토니트릴, 프로피오니트릴, 및 부티로니트릴로 이루어진 군에서 선택된 어느 하나인 니트릴류; 펜탄, 헥산, 및 헵탄으로 이루어진 군에서 선택된 어느 하나인 탄화수소류; 메탄올, 에탄올, 프로판올, 및 부탄올로 이루어진 군에서 선택된 어느 하나인 알코올류; 아세톤, 메틸에틸케톤, 및 메틸이소프로필 케톤으로 이루어진 군에서 선택된 어느 하나인 케톤류; 및 디메틸카보네이트, 디에틸카보네이트, 및 메틸에틸카보네이트 등으로 이루어진 군에서 선택된 디알킬 카보네이트류;로 이루어진 군에서 선택된 것일 수 있으며, 이에 제한되는 것은 아니다. 특히 이중 전해액에 사용될 수 있는 디알킬카보네이트군을 용매로 사용할 경우 바로 산도가 떨어져 고온 안정성과 장기 보관안정성이 보장되는 전해액 조성의 용액을 제조할 수 있는 장점이 있다. The solvent is any one selected from the group consisting of diethyl ether, diisopropyl ether, and methyl-t-butyl ether; Alkoxyethanes of dimethoxyethane and diethoxyethane; Esters of any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; Nitriles selected from the group consisting of acetonitrile, propionitrile, and butyronitrile; Hydrocarbons selected from the group consisting of pentane, hexane, and heptane; Alcohols selected from the group consisting of methanol, ethanol, propanol, and butanol; Ketones selected from the group consisting of acetone, methyl ethyl ketone, and methyl isopropyl ketone; And dialkyl carbonates selected from the group consisting of dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; and the like, but are not limited thereto. In particular, when a dialkyl carbonate group which can be used for a double electrolyte solution is used as a solvent, there is an advantage that a solution of an electrolytic solution composition having a low acidity and ensuring high temperature stability and long-term storage stability can be produced.

상기 알칼리 시약은 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물 대비 0.0001 내지 0.01의 당량비일 수 있으며, 이에 제한되는 것은 아니다.The alkali reagent may be in an equivalent ratio of 0.0001 to 0.01 relative to lithium bis (fluorosulfonyl) imide compound or lithium difluorophosphate compound, but is not limited thereto.

상기 알칼리 시약은 암모니아, 알킬아민, 아릴아민, 디알킬아민, 디아릴아민, 알킬아릴아민, 트리알킬아민, 디알킬아릴아민, 알킬디아릴아민 등의 아민류; 및 알칼리(I)금속 또는 알칼리토(II)금속의 히드록시드염, 히드리드염, 탄산염, 탄산수소염, 알킬염, 및 아릴염;으로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The alkali reagent may be an amine such as ammonia, alkylamine, arylamine, dialkylamine, diarylamine, alkylarylamine, trialkylamine, dialkylarylamine, alkyldiarylamine; And a hydroxide salt, hydride salt, carbonate salt, hydrogen carbonate salt, alkyl salt, and aryl salt of an alkali (I) metal or alkaline earth (II) metal, no.

상기 알칼리 시약은 수산화리튬(LiOH), 수산화리튬·수화물(LiOH·H2O), 탄산리튬(Li2CO3), 탄산수소리튬(LiHCO3), 아세트산리튬(LiCH3COO), 또는 옥살산리튬(Li2C2O4) 중 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The alkaline reagent is lithium hydroxide (LiOH), lithium hydroxide hydrate (LiOH · H 2 O), lithium carbonate (Li 2 CO 3), hydrogen carbonate, lithium (LiHCO 3), lithium acetate (LiCH 3 COO), or oxalic acid lithium (Li 2 C 2 O 4 ), but the present invention is not limited thereto.

상기 반응시키는 단계는 혼합물에 알칼리 시약을 첨가한 후 45 내지 75 rpm으로 교반하여 -10 내지 60℃로 반응시키는 것일 수 있으며, 이에 제한되는 것은 아니다.The reaction may be carried out by adding an alkali reagent to the mixture, stirring the mixture at 45 to 75 rpm, and reacting the mixture at -10 to 60 ° C.

상기 반응온도 등의 반응조건은 특별히 한정되는 것은 아니고, 상황에 맞춘 임의의 조건에서 실시하면 되나, 반응온도의 상한은 바람직하게는 60℃, 보다 바람직하게는 40℃ 이하이며, 또한, 하한은 바람직하게는 -10℃, 보다 바람직하게는 0℃ 이상이다. 0℃보다 낮은 온도에서는 반응의 진행이 느리기 때문에 경제적이지 못하다.The reaction conditions such as the reaction temperature and the like are not particularly limited and may be carried out under arbitrary conditions depending on the circumstances, but the upper limit of the reaction temperature is preferably 60 占 폚, more preferably 40 占 폚 or lower, Deg.] C, more preferably 0 [deg.] C or higher. At a temperature lower than 0 ° C, the reaction proceeds slowly, which is not economical.

상기 산도가 줄어든 하기 화학식 1로 표시되는 리튬 비스(플루오로술포닐)이미드 화합물 또는 하기 화학식 2로 표시되는 디플루오로인산리튬 화합물을 제조하는 단계는 반응 생성물을 15 내지 25℃로 유지하고 여과 분리한 후 세척 및 건조할 수 있으며, 특히 반응 생성물을 20℃로 유지하는 것이 보다 바람직하다.The step of producing a lithium bis (fluorosulfonyl) imide compound represented by the following Chemical Formula 1 or a lithium difluorophosphate compound represented by the following Chemical Formula 2 in which the acidity is reduced may be carried out by maintaining the reaction product at 15 to 25 ° C, It may be washed and dried after separation, and it is more preferable to keep the reaction product at 20 캜.

또한 본 발명은 용매에 상기 전해액 첨가제가 용해되어 포함되는, 산도가 줄어든 전해액 첨가제를 포함하는 전해액 용액에 관한 것이다.The present invention also relates to an electrolyte solution comprising an electrolyte additive having reduced acidity, in which the electrolyte additive is dissolved and contained in a solvent.

상기 용매는 디에틸에테르, 디이소프로필 에테르, 및 메틸-t-부틸에테르로 이루어진 군에서 선택된 어느 하나인 에테르류; 디메톡시에탄, 및 디에톡시에탄의 알콕시에탄류; 초산메틸, 초산에틸, 초산프로필, 및 초산부틸로 이루어진 군에서 선택된 어느 하나인 에스테르류; 및 디메틸카보네이트, 디에틸카보네이트, 메틸에틸카보네이트, 에틸렌카보네이트, 및 프로필렌카보네이트로 이루어진 군에서 선택된 어느 하나인 카보네이트류;로 이루어진 군에서 선택된 어느 하나 이상일 수 있으며, 이에 제한되는 것은 아니다.The solvent is any one selected from the group consisting of diethyl ether, diisopropyl ether, and methyl-t-butyl ether; Alkoxyethanes of dimethoxyethane and diethoxyethane; Esters of any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; And carbonates selected from the group consisting of dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, and propylene carbonate; and the like, but is not limited thereto.

이하, 하기 실시예에 의해 본 발명인 산도가 줄어든 전해액 첨가제 제조방법및 그의 용액 제조방법을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, a method for preparing an electrolyte additive having reduced acidity and a method for producing a solution thereof according to the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1> 탄산리튬(Li&Lt; Example 1 > Synthesis of lithium carbonate (Li 22 COCO 33 )을 이용하여 산도가 줄어든 리튬 비스(플루오로술포닐)이미드 화합물의 제조) To prepare a lithium bis (fluorosulfonyl) imide compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 재질 플라스크에 질소분위기하에 리튬 비스(플루오로술포닐)이미드 화합물(순도: 99.5%; 불산(HF) 함량: 35 ppm) 90.0 g 및 디메틸카보네이트 210.0 g을 20℃에서 투입하여 혼합물을 준비하였다.90.0 g of a lithium bis (fluorosulfonyl) imide compound (purity: 99.5%; hydrofluoric acid (HF) content: 35 ppm) and 210.0 g of dimethyl carbonate were added to a 1,000 ml Teflon material flask equipped with a stirrer, a condenser and a thermometer under a nitrogen atmosphere. g at 20 &lt; [deg.] &gt; C to prepare a mixture.

혼합물을 20℃에서 60 rpm으로 교반하여 용해시킨 후 탄산리튬(Li2CO3) 분말 35.5 mg(리튬 비스(플루오로술포닐)이미드 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirred and dissolved at 20 rpm at 60 rpm and 35.5 mg (equivalent to 0.0010 of lithium bis (fluorosulfonyl) imide compound) of lithium carbonate (Li 2 CO 3 ) powder was added thereto. To prepare a reaction product.

반응 완료 후, 발생된 미량의 불용분을 거름종이로 걸러내 후, 21.0 g 의 디메틸카보네이트로 세척하였다. After the completion of the reaction, the insoluble matter generated was filtered out with filter paper and then washed with 21.0 g of dimethyl carbonate.

세척한 후 농축, 및 건조함으로써, 백색 분말인 리튬 비스(플루오로술포닐)이미드 화합물을 수득하였다(수율: 98%, 순도: 99.5%, 불산(HF) 함량: 0 ppm).(Yield: 98%, purity: 99.5%, hydrofluoric acid (HF) content: 0 ppm) was obtained as a white powder by washing with water, followed by concentration and drying to obtain a lithium bis (fluorosulfonyl) imide compound.

<< 실시예Example 2> 수산화리튬·수화물( 2> lithium hydroxide hydrate ( LiOHLiOH ·H· H 22 O)을 이용하여 산도가 줄어든 리튬 비스(플루오로술포닐)이미드 화합물의 제조O) to prepare a lithium bis (fluorosulfonyl) imide compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 재질 플라스크에 질소분위기하에 리튬 비스(플루오로술포닐)이미드 화합물(순도: 99.5%; 불산(HF) 함량: 35 ppm) 90.0 g 및 초산부틸 210.0 g을 20℃에서 투입하여 혼합물을 준비하였다.90.0 g of a lithium bis (fluorosulfonyl) imide compound (purity: 99.5%; hydrofluoric acid (HF) content: 35 ppm) and 210.0 g of butylated nitrate (hereinafter abbreviated as HF) were added to a 1,000 ml Teflon material flask equipped with a stirrer, a condenser and a thermometer under a nitrogen atmosphere. g at 20 &lt; [deg.] &gt; C to prepare a mixture.

혼합물을 20℃에서 60 rpm으로 교반하여 용해시킨 후 수산화리튬·수화물(LiOH·H2O) 분말 20.2 mg(리튬 비스(플루오로술포닐)이미드 화합물 대비 0.0010의 당량비)을 투입하고 20 ℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirred and dissolved at 20 rpm at 60 rpm and then 20.2 mg of lithium hydroxide hydrate (LiOH.H 2 O) powder (equivalent ratio of 0.0010 to lithium bis (fluorosulfonyl) imide compound) The reaction product was prepared by stirring and reacting.

반응 완료 후, 발생된 미량의 불용분을 거름종이로 걸러내 후, 21.0 g의 초산부틸로 세척하였다. After completion of the reaction, the insoluble matter generated was filtered out with a filter paper and then washed with 21.0 g of butyl acetate.

세척한 후 농축, 및 건조함으로써, 백색 분말인 리튬 비스(플루오로술포닐)이미드 화합물을 수득하였다(수율: 97%, 순도: 99.4%, 불산(HF) 함량: 5 ppm).(Yield: 97%, purity: 99.4%, hydrofluoric acid (HF) content: 5 ppm) was obtained as a white powder by washing with water, followed by concentration and drying to obtain a lithium bis (fluorosulfonyl) imide compound.

<비교예 1> 암모니아(ammonia)를 이용하여 산도가 줄어든 리튬 비스(플루오로술포닐)이미드 화합물의 제조 Comparative Example 1 Preparation of lithium bis (fluorosulfonyl) imide compound having reduced acidity using ammonia (ammonia)

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 재질 플라스크에 질소분위기하에 리튬 비스(플루오로술포닐)이미드 화합물(순도: 99.5%; 불산(HF) 함량: 35 ppm) 90.0 g 및 디메틸카보네이트 210.0 g을 20℃에서 투입하여 혼합물을 준비하였다.90.0 g of a lithium bis (fluorosulfonyl) imide compound (purity: 99.5%; hydrofluoric acid (HF) content: 35 ppm) and 210.0 g of dimethyl carbonate were added to a 1,000 ml Teflon material flask equipped with a stirrer, a condenser and a thermometer under a nitrogen atmosphere. g at 20 &lt; [deg.] &gt; C to prepare a mixture.

혼합물을 20℃에서 45 rpm으로 교반하여 용해시킨 후 25% 암모니아(ammonia)수 32.7 mg(리튬 비스(플루오로술포닐)이미드 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirred and dissolved at 45 rpm at 45 rpm, and then 32.7 mg of 25% ammonia water (equivalent ratio of 0.0010 to lithium bis (fluorosulfonyl) imide compound) was added thereto. The product was prepared.

반응 완료 후, 발생된 미량의 불용분을 거름종이로 걸러내 후, 21.0 g의 디메틸카보네이트로 세척하였다. After the completion of the reaction, the insoluble matter generated was filtered out with filter paper and then washed with 21.0 g of dimethyl carbonate.

세척한 후 농축, 및 건조함으로써, 백색 분말인 리튬 비스(플루오로술포닐)이미드 화합물을 수득하였다(수율: 93 %, 순도: 99.3%, 불산(HF) 함량: 9 ppm).(Yield: 93%, purity: 99.3%, hydrofluoric acid (HF) content: 9 ppm) was obtained as a white powder by washing with water, followed by concentration and drying to obtain a lithium bis (fluorosulfonyl) imide compound.

<비교예 2> 트리에틸아민(Et&Lt; Comparative Example 2 > 33 N)를 이용하여 산도가 줄어든 리튬 비스(플루오로술포닐)이미드 화합물의 제조 N) to prepare a lithium bis (fluorosulfonyl) imide compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 재질 플라스크에 질소분위기하에 리튬 비스(플루오로술포닐)이미드 화합물(순도: 99.5%; 불산(HF) 함량: 35 ppm) 90.0 g 및 디메틸카보네이트 210.0 g을 20℃에서 투입하여 혼합물을 준비하였다.90.0 g of a lithium bis (fluorosulfonyl) imide compound (purity: 99.5%; hydrofluoric acid (HF) content: 35 ppm) and 210.0 g of dimethyl carbonate were added to a 1,000 ml Teflon material flask equipped with a stirrer, a condenser and a thermometer under a nitrogen atmosphere. g at 20 &lt; [deg.] &gt; C to prepare a mixture.

혼합물을 20℃에서 60 rpm으로 교반하여 용해시킨 후 트리에틸아민(Et3N) 48.7 mg(리튬 비스(플루오로술포닐)이미드 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirred and dissolved at 20 rpm at 60 rpm and reacted by adding 48.7 mg of triethylamine (Et 3 N) (equivalent ratio of 0.0010 to lithium bis (fluorosulfonyl) imide compound) and stirring at 20 ° C The reaction product was prepared.

반응 완료 후, 발생된 미량의 불용분을 거름종이로 걸러내 후, 21.0 g의 디메틸카보네이트로 세척하였다. After the completion of the reaction, the insoluble matter generated was filtered out with filter paper and then washed with 21.0 g of dimethyl carbonate.

세척한 후 농축, 및 건조함으로써, 백색 분말인 리튬 비스(플루오로술포닐)이미드 화합물을 수득하였다(수율: 95 %, 순도: 99.3%, 불산(HF) 함량: 15 ppm).(Yield: 95%, purity: 99.3%, hydrofluoric acid (HF) content: 15 ppm) was obtained as a white powder by washing with water, followed by concentration and drying to obtain a lithium bis (fluorosulfonyl) imide compound.

<비교예 3> 아닐린(aniline)을 이용하여 산도가 줄어든 리튬 비스(플루오로술포닐)이미드 화합물의 제조 Comparative Example 3 Preparation of lithium bis (fluorosulfonyl) imide compound having reduced acidity using aniline

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 재질 플라스크에 질소분위기하에 리튬 비스(플루오로술포닐)이미드 화합물(순도: 99.5%; 불산(HF) 함량: 35 ppm) 90.0 g 및 디메틸카보네이트 210.0 g을 20℃에서 투입하여 혼합물을 준비하였다.90.0 g of a lithium bis (fluorosulfonyl) imide compound (purity: 99.5%; hydrofluoric acid (HF) content: 35 ppm) and 210.0 g of dimethyl carbonate were added to a 1,000 ml Teflon material flask equipped with a stirrer, a condenser and a thermometer under a nitrogen atmosphere. g at 20 &lt; [deg.] &gt; C to prepare a mixture.

혼합물을 20℃에서 60 rpm으로 교반하여 용해시킨 후 아닐린(aniline) 44.8 mg(리튬 비스(플루오로술포닐)이미드 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirred and dissolved at 60 rpm at 60 rpm, and then the reaction product was prepared by adding 44.8 mg of aniline (equivalent ratio of 0.0010 to lithium bis (fluorosulfonyl) imide compound) and stirring at 20 ° C Respectively.

반응 완료 후, 발생된 미량의 불용분을 거름종이로 걸러내 후, 21.0 g의 디메틸카보네이트로 세척하였다. After the completion of the reaction, the insoluble matter generated was filtered out with filter paper and then washed with 21.0 g of dimethyl carbonate.

세척한 후 농축, 및 건조함으로써, 백색 분말인 리튬 비스(플루오로술포닐)이미드 화합물을 수득하였다(수율: 95 %, 순도: 99.1%, 불산(HF) 함량: 18 ppm).(Yield: 95%, purity: 99.1%, hydrofluoric acid (HF) content: 18 ppm) was obtained as a white powder by washing with water, followed by concentration and drying to obtain a lithium bis (fluorosulfonyl) imide compound.

<비교예 4> 탄산수소리튬(LiHCO&Lt; Comparative Example 4 > Lithium bicarbonate (LiHCO 33 )을 이용하여 산도가 줄어든 리튬 비스(플루오로술포닐)이미드 화합물의 제조 ) To prepare a lithium bis (fluorosulfonyl) imide compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 재질 플라스크에 질소분위기하에 리튬 비스(플루오로술포닐)이미드 화합물(순도: 99.5%; 불산(HF) 함량: 35 ppm) 90.0 g 및 디메틸카보네이트 210.0 g을 20℃에서 투입하여 혼합물을 준비하였다.90.0 g of a lithium bis (fluorosulfonyl) imide compound (purity: 99.5%; hydrofluoric acid (HF) content: 35 ppm) and 210.0 g of dimethyl carbonate were added to a 1,000 ml Teflon material flask equipped with a stirrer, a condenser and a thermometer under a nitrogen atmosphere. g at 20 &lt; [deg.] &gt; C to prepare a mixture.

혼합물을 20℃에서 60 rpm으로 교반하여 용해시킨 후 탄산수소리튬(LiHCO3) 분말 32.7 mg(리튬 비스(플루오로술포닐)이미드 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirred and dissolved at 20 rpm at 60 rpm, and 32.7 mg (0.0010 equivalent to lithium bis (fluorosulfonyl) imide compound) of lithium hydrogen carbonate (LiHCO 3 ) was added thereto. The reaction product was prepared.

반응 완료 후, 발생된 미량의 불용분을 거름종이로 걸러내 후, 소량의 디메틸카보네이트로 세척하였다. After completion of the reaction, the insoluble matter generated was filtered out with a filter paper and then washed with a small amount of dimethyl carbonate.

세척한 후 농축, 및 건조함으로써, 백색 분말인 리튬 비스(플루오로술포닐)이미드 화합물을 수득하였다(수율: 96 %, 순도: 99.5%, 불산(HF) 함량: 12 ppm).(Yield: 96%, purity: 99.5%, hydrofluoric acid (HF) content: 12 ppm) was obtained as a white powder by washing with water, followed by concentration and drying.

<실험예 1> 다양한 알칼리 시약 처리에 따른 리튬 비스(플루오로술포닐)이미드 화합물에 포함된 불산(HF) 함량 분석Experimental Example 1 Analysis of HF Content in Lithium Bis (fluorosulfonyl) imide Compound by Treatment with Various Alkali Reagents

실시예 1 내지 실시예 2와, 비교예 1 내지 비교예 4에 따라 처리된 리튬 비스(플루오로술포닐)이미드 화합물에 포함된 불산(HF) 함량을 분석하였고, 그 결과를 하기 표 3에 나타내었다.The hydrofluoric acid (HF) content in the lithium bis (fluorosulfonyl) imide compound treated according to Examples 1 to 2 and Comparative Examples 1 to 4 was analyzed and the results are shown in Table 3 Respectively.

알칼리 시약Alkali reagent 처리 후 품질변화Quality change after treatment 순도(%)water(%) 불산(HF)(ppm)Fluoric acid (HF) (ppm) 실시예 1Example 1 탄산리튬Lithium carbonate 99.599.5 00 실시예 2Example 2 수산화리튬·수화물Lithium hydroxide hydrate 99.499.4 55 비교예 1Comparative Example 1 25% 암모니아수25% ammonia water 99.399.3 99 비교예 2Comparative Example 2 트리에틸아민Triethylamine 99.399.3 1515 비교예 3Comparative Example 3 아닐린aniline 99.199.1 1818 비교예 4Comparative Example 4 탄산수소리튬Lithium bicarbonate 99.599.5 1212

구체적으로, 상기 표 3을 참조하면, 다양한 알칼리 시약 중에서 탄산리튬(Li2CO3)을 이용(실시예 1)하였을 때 리튬 비스(플루오로술포닐)이미드 화합물에 잔존하는 불산(HF) 함량이 0 ppm이였고, 불산(HF) 함량의 감소 효과가 가장 우수하였다.Specifically, referring to Table 3, when the content of hydrofluoric acid (HF) remaining in the lithium bis (fluorosulfonyl) imide compound when using lithium carbonate (Li 2 CO 3 ) in various alkali reagents (Example 1) Was 0 ppm and the effect of decreasing the hydrofluoric acid (HF) content was the best.

특히, 미량인 0.0010의 당량비 만으로도 불산(HF) 함량을 완전히 줄일 수 있어 부식성 없는 리튬 비스(플루오로술포닐)이미드 화합물을 제조할 수 있음을 확인하였다.In particular, it was confirmed that the content of hydrofluoric acid (HF) can be completely reduced by only an equivalent ratio of 0.0010, which is a trace amount, so that a lithium bis (fluorosulfonyl) imide compound having no corrosiveness can be produced.

<실시예 3> 탄산리튬(Li&Lt; Example 3 > Lithium carbonate (Li 22 COCO 33 )을 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조) To prepare a lithium difluorophosphate compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 50 rpm으로 교반하면서 탄산리튬(Li2CO3) 분말 68.5 mg(디플루오로인산리튬 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirring at 20 ℃ to 50 rpm In the lithium carbonate (Li 2 CO 3) (equivalent ratio of 0.0010 compared to lithium phosphate compound difluoromethyl) powder 68.5 mg preparing a reaction product by reacting the mixture was stirred at 20 ℃.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 97 %, 순도: 99.4%, 불산(HF) 함량: 379 ppm; 염소(Cl) 함량: 6.9 ppm).(Yield: 97%, purity: 99.4%, hydrofluoric acid (HF) content: 379 ppm, chlorine (Cl) content: 6.9 ppm) as a white powder, .

<< 실시예Example 4> 수산화리튬·수화물( 4> lithium hydroxide hydrate ( LiOHLiOH ·H· H 22 O)을 이용하여 산도가 줄어든 O) was used to reduce the pH 디플루오로인산리튬Lithium difluorophosphate 화합물의 제조 Preparation of compounds

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 초산부틸 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of butyl acetate was added at 20 캜 to prepare a mixture.

혼합물을 20 ℃에서 60 rpm으로 교반하면서 수산화리튬·수화물(LiOH·H2O) 분말 38.9 mg(디플루오로인산리튬 화합물 대비 0.0010의 당량비)을 반응 생성물에 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.38.9 mg of lithium hydroxide hydrate (LiOH.H 2 O) powder (equivalent ratio of 0.0010 to lithium difluorophosphate compound) was added to the reaction product while stirring the mixture at 20 ° C and 60 rpm, followed by stirring at 20 ° C to react The product was prepared.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 초산부틸로 세척하였다. After completion of the reaction, the resulting salt was filtered with a filter paper, and then washed with 15.0 g of butyl acetate.

세척된 염을 회수하여 건조함으로써, 백색분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 93%, 순도: 99.0%, 불산(HF) 함량: 474 ppm; 염소(Cl) 함량: 7.3 ppm).(Yield: 93%, purity: 99.0%, hydrofluoric acid (HF) content: 474 ppm, chlorine (Cl) content: 7.3 ppm) was obtained as a white powder by recovering the washed salt. .

<비교예 5> 암모니아(ammonia)를 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조&Lt; Comparative Example 5 > Preparation of lithium difluorophosphate compound with reduced acidity using ammonia (ammonia)

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 45 rpm으로 교반하면서 25%암모니아(ammonia)수 63.1 mg(디플루오로인산리튬 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirred at 45 rpm at 20 DEG C, and a reaction product was prepared by adding 63.1 mg of 25% ammonia water (equivalent ratio of 0.0010 to lithium difluorophosphate compound) and stirring at 20 deg.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 94%, 순도: 99.2%, 불산(HF) 함량: 547 ppm; 염소(Cl) 함량: 9.1 ppm).(Yield: 94%, purity: 99.2%, hydrofluoric acid (HF) content: 547 ppm, chlorine (Cl) content: 9.1 ppm) was obtained as a white powder by recovering the washed salt. .

<비교예 6> 트리에틸아민(Et&Lt; Comparative Example 6 > 33 N)을 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조N) to prepare a lithium difluorophosphate compound having a reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 60 rpm으로 교반하면서 트리에틸아민(Et3N) 93.7 mg(디플루오로인산리튬 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.While stirring the mixture at 20 to 60 rpm In ℃ triethylamine (Et 3 N), 93.7 mg (equivalent ratio of 0.0010 compared to lithium phosphate compound-difluoro), which was prepared by reacting the reaction product was stirred at 20 ℃.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 93%, 순도: 99.1%, 불산(HF) 함량: 576 ppm; 염소(Cl) 함량: 8.9 ppm).(Yield: 93%, purity: 99.1%, hydrofluoric acid (HF) content: 576 ppm, chlorine (Cl) content: 8.9 ppm) was obtained as a white powder by recovering the washed salt. .

<비교예 7> 아닐린(aniline)을 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조&Lt; Comparative Example 7 > Preparation of lithium difluorophosphate compound with reduced acidity using aniline

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 75 rpm으로 교반하면서 아닐린(aniline) 86.3 mg(디플루오로인산리튬 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The reaction mixture was prepared by adding 86.3 mg of aniline (equivalent ratio of 0.0010 to lithium difluorophosphate) while stirring at 20 DEG C and 75 rpm, and stirring at 20 DEG C for reaction.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 91%, 순도: 99.1%, 불산(HF) 함량: 580 ppm; 염소(Cl) 함량: 9.0 ppm).(Yield: 91%, purity: 99.1%, hydrofluoric acid (HF) content: 580 ppm, chlorine (Cl) content: 9.0 ppm) was obtained as a white powder by recovering the washed salt. .

<비교예 8> 탄산수소리튬(LiHCO&Lt; Comparative Example 8 > Lithium bicarbonate (LiHCO 33 )을 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조) To prepare a lithium difluorophosphate compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 60 rpm으로 교반하면서 탄산수소리튬(LiHCO3) 분말 63.0 mg(디플루오로인산리튬 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.In the mixture of lithium carbonate and stirred at 20 ℃ to 60 rpm (LiHCO 3) powder 63.0 mg (equivalent ratio of 0.0010 compared to lithium phosphate compound-difluoro), which was prepared by reacting the reaction product was stirred at 20 ℃.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 96%, 순도: 99.3%, 불산(HF) 함량: 560 ppm; 염소(Cl) 함량: 7.8 ppm).(Yield: 96%, purity: 99.3%, hydrofluoric acid (HF) content: 560 ppm, chlorine (Cl) content: 7.8 ppm) was obtained as a white powder by recovering the washed salt. .

<실험예 2> 다양한 알칼리 시약 처리에 따른 디플루오로인산리튬 화합물에 포함된 불산(HF) 함량 분석<Experimental Example 2> Analysis of the content of hydrofluoric acid (HF) contained in the lithium difluorophosphate compound by treatment with various alkali reagents

실시예 3 내지 실시예 4와, 비교예 5 내지 비교예 8에 따라 처리된 디플루오로인산리튬 화합물에 포함된 불산(HF) 함량을 분석하였고, 그 결과를 하기 표 4에 나타내었다.The hydrofluoric acid (HF) content in the lithium difluorophosphate compounds treated according to Examples 3 to 4 and Comparative Examples 5 to 8 was analyzed, and the results are shown in Table 4 below.

알칼리 시약Alkali reagent 처리 후 품질변화Quality change after treatment 순도(%)water(%) 불산(HF)(ppm)Fluoric acid (HF) (ppm) 실시예 3Example 3 탄산리튬Lithium carbonate 99.499.4 379379 실시예 4Example 4 수산화리튬·수화물Lithium hydroxide hydrate 99.099.0 474474 비교예 5Comparative Example 5 25% 암모니아수25% ammonia water 99.299.2 547547 비교예 6Comparative Example 6 트리에틸아민Triethylamine 99.199.1 576576 비교예 7Comparative Example 7 아닐린aniline 99.199.1 580580 비교예 8Comparative Example 8 탄산수소리튬Lithium bicarbonate 99.399.3 560560

구체적으로, 상기 표 4를 참조하면, 다양한 알칼리 시약 중에서 탄산리튬(Li2CO3)을 이용(실시예 3)하였을 때 디플루오로인산리튬 화합물에 잔존하는 불산(HF) 함량이 379 ppm이였고, 알칼리 시약 처리전 디플루오로인산리튬 화합물의 품질(순도:99.4%; 불산(HF) 함량: 650 ppm)을 고려하였을 때 불산(HF) 함량 감소효과가 가장 우수함을 알 수 있다.Specifically, referring to Table 4, when the lithium carbonate (Li 2 CO 3 ) was used in various alkali reagents (Example 3), the amount of hydrofluoric acid (HF) remaining in the lithium difluorophosphate compound was 379 ppm (HF) content of 99.4% and HF content of 650 ppm) before the treatment with alkali reagents was taken into consideration.

<실시예 5> 탄산리튬(Li&Lt; Example 5 > Synthesis of lithium carbonate (Li 22 COCO 33 )을 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조) To prepare a lithium difluorophosphate compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 60 rpm으로 교반하면서 탄산리튬(Li2CO3) 분말 102.7 mg(디플루오로인산리튬 화합물 대비 0.0015의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirring at 20 ℃ to 60 rpm In the lithium carbonate (Li 2 CO 3) powder, 102.7 mg (difluoromethyl an equivalent ratio of 0.0015 compared to lithium phosphate compound) preparing a reaction product by reacting the mixture was stirred at 20 ℃.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 96%, 순도: 99.0%, 불산(HF) 함량: 278 ppm; 염소(Cl) 함량: 5.2 ppm).(Yield: 96%, purity: 99.0%, hydrofluoric acid (HF) content: 278 ppm, chlorine (Cl) content: 5.2 ppm) was obtained as a white powder by recovering the washed salt. .

<실시예 6> 탄산리튬(LiExample 6 Synthesis of lithium carbonate (Li 22 COCO 33 )을 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조) To prepare a lithium difluorophosphate compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 60 rpm으로 교반하면서 탄산리튬(Li2CO3) 분말 136.9 mg(디플루오로인산리튬 화합물 대비 0.0020의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirring at 20 ℃ to 60 rpm In the lithium carbonate (Li 2 CO 3) powder, 136.9 mg (difluoromethyl an equivalent ratio of 0.0020 compared to lithium phosphate compound) preparing a reaction product by reacting the mixture was stirred at 20 ℃.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 96%, 순도: 99.2%, 불산(HF) 함량: 202 ppm; 염소(Cl) 함량: 4.5 ppm).(Yield: 96%, purity: 99.2%, hydrofluoric acid (HF) content: 202 ppm, chlorine (Cl) content: 4.5 ppm) was obtained as a white powder by recovering the washed salt. .

<실시예 7> 탄산리튬(Li&Lt; Example 7 > Synthesis of lithium carbonate (Li 22 COCO 33 )을 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조) To prepare a lithium difluorophosphate compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 60 rpm으로 교반하면서 탄산리튬(Li2CO3) 분말 205.4 mg(디플루오로인산리튬 화합물 대비 0.0030의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirring at 20 ℃ to 60 rpm In the lithium carbonate (Li 2 CO 3) powder, 205.4 mg (difluoromethyl an equivalent ratio of 0.0030 compared to lithium phosphate compound) preparing a reaction product by reacting the mixture was stirred at 20 ℃.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 97%, 순도: 99.1%, 불산(HF) 함량: 120 ppm; 염소(Cl) 함량: 3.1 ppm).(Yield: 97%, purity: 99.1%, hydrofluoric acid (HF) content: 120 ppm, chlorine (Cl) content: 3.1 ppm) was obtained as a white powder by recovering the washed salt. .

<실시예 8> 탄산리튬(Li<Example 8> Synthesis of lithium carbonate (Li 22 COCO 33 )을 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조) To prepare a lithium difluorophosphate compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 60 rpm으로 교반하면서 탄산리튬(Li2CO3) 분말 308.1 mg(디플루오로인산리튬 화합물 대비 0.0045의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirring at 20 ℃ to 60 rpm In the lithium carbonate (Li 2 CO 3) powder, 308.1 mg (difluoromethyl an equivalent ratio of 0.0045 compared to lithium phosphate compound) preparing a reaction product by reacting the mixture was stirred at 20 ℃.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의 디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 98%, 순도: 99.1%, 불산(HF) 함량: 49 ppm; 염소(Cl) 함량: 2.0 ppm).(Yield: 98%, purity: 99.1%, hydrofluoric acid (HF) content: 49 ppm, chlorine (Cl) content: 2.0 ppm) was obtained as a white powder by recovering the washed salt. .

<실시예 9> 탄산리튬(Li<Example 9> Synthesis of lithium carbonate (Li 22 COCO 33 )을 이용하여 산도가 줄어든 디플루오로인산리튬 화합물의 제조) To prepare a lithium difluorophosphate compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 플라스크에 질소분위기하에 디플루오로인산리튬 화합물(순도: 99.4%; 불산(HF) 함량: 650 ppm; 염소(Cl) 함량: 9.3 ppm) 100.0 g 및 디메틸카보네이트 150.0 g을 20 ℃에서 투입하여 혼합물을 준비하였다.100.0 g of a lithium difluorophosphate compound (purity: 99.4%; hydrofluoric acid (HF) content: 650 ppm; chlorine (Cl) content: 9.3 ppm) was added to a 1,000 ml Teflon flask equipped with a stirrer, a condenser and a thermometer, 150.0 g of dimethyl carbonate was added at 20 占 폚 to prepare a mixture.

상기 혼합물을 20℃에서 60 rpm으로 교반하면서 탄산리튬(Li2CO3) 분말 410.8 mg(디플루오로인산리튬 화합물 대비 0.0060의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirring at 20 ℃ to 60 rpm In the lithium carbonate (Li 2 CO 3) powder, 410.8 mg (difluoromethyl an equivalent ratio of 0.0060 compared to lithium phosphate compound) preparing a reaction product by reacting the mixture was stirred at 20 ℃.

반응 완료 후, 발생된 염을 거름종이로 걸러내 후, 15.0 g의디메틸카보네이트로 세척하였다. After completion of the reaction, the generated salt was filtered with filter paper and then washed with 15.0 g of dimethyl carbonate.

세척된 염을 회수하여 건조함으로써, 백색 분말인 디플루오로인산리튬 화합물을 수득하였다(수율: 98%, 순도: 99.3%, 불산(HF) 함량: 0 ppm; 염소(Cl) 함량: 0.8 ppm).(Yield: 98%, purity: 99.3%, hydrofluoric acid (HF) content: 0 ppm, chlorine (Cl) content: 0.8 ppm) was obtained as a white powder by recovering the washed salt. .

<실험예 3> 디플루오로인산리튬 화합물 대비 첨가되는 탄산리튬(Li<Experimental Example 3> A lithium carbonate (Li (Li) was added to the lithium difluorophosphate compound 22 COCO 33 ) 당량비에 따른 디플루오로인산리튬 화합물에 잔존하는 불산(HF) 함량 분석) HF content analysis of residual lithium difluorophosphate according to equivalence ratio

상기 실험예 2에 따라 다양한 알칼리 시약 중에서 탄산리튬(Li2CO3)을 처리하였을 때 순도 저하 없이 동일한 당량비(디플루오로인산리튬 화합물 대비 0.0010의 당량비)에서 디플루오로인산리튬 화합물 내 잔존하는 불산(HF) 함량이 중대형 리튬 이차 전지에 적용이 가능할 수 있음을 확인하였는 바, 탄산리튬(Li2CO3)의 처리량에 따른 불산(HF) 감소 효과를 추가적으로 분석하였다.In the various alkali reagents according to Experimental Example 2, when the lithium carbonate (Li 2 CO 3 ) was treated, the amount of hydrofluoric acid remaining in the lithium difluorophosphate compound in the same equivalent ratio (equivalent ratio of 0.0010 to lithium difluorophosphate compound) (HF) content could be applied to middle- or large-sized lithium secondary batteries, and the effect of reducing HF according to the amount of lithium carbonate (Li 2 CO 3 ) was further analyzed.

알칼리 시약Alkali reagent 처리량Throughput 처리 후 품질변화Quality change after treatment 순도(%)water(%) 불산(HF)(ppm)Fluoric acid (HF) (ppm) 실시예 3Example 3 탄산리튬Lithium carbonate 0.00100.0010 99.499.4 379379 실시예 5Example 5 탄산리튬Lithium carbonate 0.00150.0015 99.099.0 278278 실시예 6Example 6 탄산리튬Lithium carbonate 0.00200.0020 99.299.2 202202 실시예 7Example 7 탄산리튬Lithium carbonate 0.00300.0030 99.199.1 120120 실시예 8Example 8 탄산리튬Lithium carbonate 0.00450.0045 99.199.1 4949 실시예 9Example 9 탄산리튬Lithium carbonate 0.00600.0060 99.399.3 00

구체적으로, 상기 표 5를 참조하면, 탄산리튬(Li2CO3)의 처리량에 따라 불산(HF) 함량이 감소함을 확인할 수 있다.Specifically, referring to Table 5, it can be confirmed that the hydrofluoric acid (HF) content decreases depending on the throughput of lithium carbonate (Li 2 CO 3 ).

특히, 디플루오로인산리튬 화합물 대비 0.0045의 당량비로 탄산리튬(Li2CO3)을 첨가할 경우 불산(HF) 함량을 50 ppm 이하로 낮출 수 있으며, 실시예 9에 따라 디플루오로인산리튬 화합물 대비 0.0060의 당량비로 탄산리튬(Li2CO3)을 첨가할 경우 0 ppm에 도달하여 부식성이 없는 디플루오로인산리튬 화합물을 제조할 수 있음을 확인하였다.Particularly, when lithium carbonate (Li 2 CO 3 ) is added at an equivalent ratio of 0.0045 to the lithium difluorophosphate compound, the content of hydrofluoric acid (HF) can be lowered to 50 ppm or less. According to Example 9, a lithium difluorophosphate It was confirmed that when lithium carbonate (Li 2 CO 3 ) was added at an equivalence ratio of 0.0060, the lithium difluorophosphate compound reached 0 ppm and thus the lithium difluorophosphate compound was not corrosive.

기존 상용화되고 있는 리튬 비스(플루오로술포닐)이미드 화합물의 경우 불산(HF) 함량이 20 내지 50 ppm 수준이고, 디플루오로인산리튬 화합물의 경우 200 내지 800 ppm 수준임을 감안하였을 때 기존에 상용화되고 있는 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물은 소형 리튬 이차 전지에 적용이 가능하나 중대형 리튬 이차 전지(전기자동차, 에너지 저장장치, ESS)에 적용할 경우 부식성 등의 문제로 인하여 미흡함을 알 수 있다.Considering that the amount of hydrofluoric acid (HF) in the lithium bis (fluorosulfonyl) imide compound is about 20 to 50 ppm, and that in the case of lithium difluorophosphate is about 200 to 800 ppm, Lithium bis (fluorosulfonyl) imide compound or lithium difluorophosphate compound which can be applied to a small-sized lithium secondary battery can be applied. However, when it is applied to a middle- or large-sized lithium secondary battery (electric vehicle, energy storage device, ESS) It can be understood that it is insufficient due to the problem of.

그러나, 상기 실험 결과 등에 비추어 보았을 때 본 발명에 따라 제조된 산도가 줄어든 전해액 첨가제의 경우 중대형 리튬 이차 전지에도 적용이 가능한 우수한 발명임을 알 수 있다.However, in view of the above experimental results, it can be understood that the electrolyte additive having reduced acidity prepared according to the present invention is an excellent invention applicable to a mid-to large-sized lithium secondary battery.

<실시예 10> 탄산리튬(LiExample 10 Synthesis of lithium carbonate (Li 22 COCO 33 )을 이용하여 산도가 줄어든 리튬 비스(플루오로술포닐)이미드 화합물의 용액 제조) To prepare a solution of lithium bis (fluorosulfonyl) imide compound having reduced acidity

교반 장치, 콘덴서 및 온도계가 부착된 1,000 ㎖ 테플론 재질 플라스크에 질소분위기하에 리튬 비스(플루오로술포닐)이미드 화합물(순도: 99.5%; 불산(HF) 함량: 35 ppm) 90.0 g 및 디메틸카보네이트 210.0 g을 20℃에서 투입하여 혼합물을 준비하였다.90.0 g of a lithium bis (fluorosulfonyl) imide compound (purity: 99.5%; hydrofluoric acid (HF) content: 35 ppm) and 210.0 g of dimethyl carbonate were added to a 1,000 ml Teflon material flask equipped with a stirrer, a condenser and a thermometer under a nitrogen atmosphere. g at 20 &lt; [deg.] &gt; C to prepare a mixture.

혼합물을 20℃에서 60 rpm으로 교반하여 용해시킨 후 탄산리튬(Li2CO3) 분말 35.5 mg(리튬 비스(플루오로술포닐)이미드 화합물 대비 0.0010의 당량비)을 투입하고 20℃에서 교반하여 반응시킴으로써 반응 생성물을 준비하였다.The mixture was stirred and dissolved at 20 rpm at 60 rpm and 35.5 mg (equivalent to 0.0010 of lithium bis (fluorosulfonyl) imide compound) of lithium carbonate (Li 2 CO 3 ) powder was added thereto. To prepare a reaction product.

반응 완료 후, 발생된 미량의 불용분을 거름종이로 걸러내 후, 21.0 g의 디메틸카보네이트로 세척하였다. After the completion of the reaction, the insoluble matter generated was filtered out with filter paper and then washed with 21.0 g of dimethyl carbonate.

걸러낸 후 리튬 비스(플루오로술포닐)이미드 화합물을 포함하는 무색투명의 디메틸카보네이트 용액을 수득하였다.(수율: 98%, 순도: 99.5%, 불산(HF) 함량: 0 ppm, 농도: 27.6 %).(Yield: 98%, purity: 99.5%, hydrofluoric acid (HF) content: 0 ppm, concentration: 27.6 (molar ratio), and the mixture was filtered to obtain a colorless transparent dimethyl carbonate solution containing lithium bis (fluorosulfonyl) imide compound. %).

<실험예 4> 리튬 비스(플루오로술포닐)이미드 및 디플루오로인산리튬 화합물의 용액에 대한 HF 함량에 따른 고온 안정도/장기보관안정도 비교분석 EXPERIMENTAL EXAMPLE 4 Comparative Analysis of High Temperature Stability / Long Term Storage Stability according to HF Content of Solutions of Lithium Bis (fluorosulfonyl) imide and lithium difluorophosphate

디메틸카보네이트에 실시예 1과 실시예 9에서 각각 얻어진 리튬 비스(플루오로술포닐)이미드와 디플루오로인산리튬 화합물을 용해시켜 30%와 1% 농도를 갖는 용액과, 실시예 10에서 얻어진 리튬 비스(플루오로술포닐)이미드 화합물을 포함하는 무색투명의 디메틸카보네이트 용액(농도 27.6%) 3종을 대상으로 미처리 시료의 동일 농도의 디메틸카보네이트 용액과 고온 안정성/장기보관 안정성을 비교하였다. A solution containing lithium bis (fluorosulfonyl) imide and a lithium difluorophosphate compound obtained in Example 1 and Example 9 respectively in 30% and 1% concentration, and lithium obtained in Example 10 Three kinds of colorless transparent dimethyl carbonate solution (concentration 27.6%) containing bis (fluorosulfonyl) imide compound were compared with the same concentration of dimethyl carbonate solution of untreated sample and stability stability at high temperature / long-term storage.

70℃에서 72시간 방치하여 색상변화와 용액의 pH 변화로 그 차이를 확인할 수 있었다. 중대형 리튬 이차 전지에 적용하기 위해서는 소형전지와는 다르게 전지사용 환경인 고온에서도 안정성이 유지되어야 하며 통상 소형전지가 2년 수명주기인 반면 중대형은 10년 이상 안정성이 유지되어야 하기 때문이다. 그 결과는 하기 표 6에 정리하였다. The mixture was allowed to stand at 70 ° C for 72 hours, and the difference in color and pH of the solution was confirmed. Unlike small batteries, it is necessary to maintain stability even at high temperature, which is the battery operating environment, for medium and large-sized lithium secondary batteries. Typically, small- and mid-sized batteries should be stable for more than 10 years. The results are summarized in Table 6 below.

시작start 70℃/72시간70 ° C / 72 hours 안정성stability 6개월6 months 12개월12 months #1#One 무색투명(pH:7.0)Colorless transparent (pH: 7.0) 무색투명(pH:6.8)Colorless transparent (pH: 6.8) 무색투명(pH:7.0)Colorless transparent (pH: 7.0) 무색투명(pH:7.0)Colorless transparent (pH: 7.0) #2#2 무색투명(pH:6.5)Colorless transparent (pH: 6.5) 담황색(pH:4.0)Pale yellow (pH: 4.0) 무색투명(pH:6.4)Colorless transparent (pH: 6.4) 무색투명(pH:6.1)Colorless transparent (pH: 6.1) #3# 3 무색투명(pH:7.0)Colorless transparent (pH: 7.0) 무색투명(pH:7.0)Colorless transparent (pH: 7.0) 무색투명(pH:7.0)Colorless transparent (pH: 7.0) 무색투명(pH:7.0)Colorless transparent (pH: 7.0) #4#4 무색투명(pH:6.7)Colorless transparent (pH: 6.7) 무색투명(pH:5.0)Colorless transparent (pH: 5.0) 무색투명(pH:6.7)Colorless transparent (pH: 6.7) 무색투명(pH:6.4)Colorless transparent (pH: 6.4) #5# 5 무색투명(pH:7.0)Colorless transparent (pH: 7.0) 무색투명(pH:7.0)Colorless transparent (pH: 7.0) 무색투명(pH:7.0)Colorless transparent (pH: 7.0) 무색투명(pH:7.0)Colorless transparent (pH: 7.0)

#1: 실시예 1에서 얻어진 리튬 비스(플루오로술포닐)이미드의 30.0% 디메틸카보네이트 용액# 1: 30.0% dimethyl carbonate solution of lithium bis (fluorosulfonyl) imide obtained in Example 1

#2: 실시예 1에 사용된 리튬 비스(플루오로술포닐)이미드의 30.0% 디메틸카보네이트 용액# 2: 30.0% dimethyl carbonate solution of lithium bis (fluorosulfonyl) imide used in Example 1

#3: 실시예 9에서 얻어진 디플루오로인산리튬의 1.0% 디메틸카보네이트 용액# 3: A 1.0% dimethyl carbonate solution of lithium difluorophosphate obtained in Example 9

#4: 실시예 9에 사용된 디플루오로인산리튬의 1.0% 디메틸카보네이트 용액# 4: 1.0% dimethyl carbonate solution of lithium difluorophosphate used in Example 9

#5: 실시예 10에서 얻어진 리튬 비스(플루오로술포닐)이미드의 27.6% 디메틸카보네이트 용액# 5: A 27.6% dimethyl carbonate solution of the lithium bis (fluorosulfonyl) imide obtained in Example 10

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various modifications and changes may be made without departing from the scope of the appended claims.

Claims (9)

전해액 첨가제인 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물과 용매를 혼합하여 혼합물을 준비하는 단계;
상기 혼합물에 리튬 알칼리 시약을 첨가한 후 45 내지 75 rpm으로 교반하여 -10 내지 60℃로 반응시키는 단계; 및
상기 반응 생성물을 여과 분리한 후 세척 및 건조하여 화학식 1로 표시되는 리튬 비스(플루오로술포닐)이미드 화합물 또는 하기 화학식 2로 표시되는 디플루오로인산리튬 화합물을 제조하는 단계;
를 포함하며,
상기 리튬 알칼리 시약은 리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물 대비 0.0045 내지 0.01의 당량비로 첨가한 것을 특징으로 하는, 전해액 첨가제 제조방법:
[화학식 1]
Figure 112018080454868-pat00009

[화학식 2]
Figure 112018080454868-pat00006
Preparing a mixture by mixing a lithium bis (fluorosulfonyl) imide compound or a lithium difluorophosphate compound as an electrolyte additive and a solvent;
Adding lithium alkali reagent to the mixture, stirring at 45 to 75 rpm, and reacting at -10 to 60 ° C; And
Separating the reaction product by filtration, washing and drying to prepare a lithium bis (fluorosulfonyl) imide compound represented by Formula 1 or a lithium difluorophosphate compound represented by Formula 2 below;
/ RTI &gt;
Wherein the lithium alkali reagent is added in an equivalent ratio of 0.0045 to 0.01 based on the lithium bis (fluorosulfonyl) imide compound or the lithium difluorophosphate compound.
[Chemical Formula 1]
Figure 112018080454868-pat00009

(2)
Figure 112018080454868-pat00006
청구항 1에 있어서,
상기 용매는,
리튬 비스(플루오로술포닐)이미드 화합물 또는 디플루오로인산리튬 화합물 대비 0.5 내지 100의 당량비인 것을 특징으로 하는, 전해액 첨가제 제조방법.
The method according to claim 1,
The solvent may be,
(Fluorosulfonyl) imide compound or lithium difluorophosphate compound in an equivalent ratio of 0.5 to 100, based on the total weight of the electrolyte solution.
청구항 1에 있어서,
상기 용매는,
디에틸에테르, 디이소프로필 에테르, 및 메틸-t-부틸에테르로 이루어진 군에서 선택된 어느 하나인 에테르류; 디메톡시에탄, 및 디에톡시에탄의 알콕시에탄류; 초산메틸, 초산에틸, 초산프로필, 및 초산부틸로 이루어진 군에서 선택된 어느 하나인 에스테르류; 아세토니트릴, 프로피오니트릴, 및 부티로니트릴로 이루어진 군에서 선택된 어느 하나인 니트릴류; 펜탄, 헥산, 및 헵탄으로 이루어진 군에서 선택된 어느 하나인 탄화수소류; 메탄올, 에탄올, 프로판올, 및 부탄올로 이루어진 군에서 선택된 어느 하나인 알코올류; 아세톤, 메틸에틸케톤, 및 메틸이소프로필 케톤으로 이루어진 군에서 선택된 어느 하나인 케톤류; 및 디메틸카보네이트, 디에틸카보네이트, 및 메틸에틸카보네이트로 이루어진 군에서 선택된 어느 하나인 카보네이트류;로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 전해액 첨가제 제조방법.
The method according to claim 1,
The solvent may be,
Ethers selected from the group consisting of diethyl ether, diisopropyl ether, and methyl-t-butyl ether; Alkoxyethanes of dimethoxyethane and diethoxyethane; Esters of any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; Nitriles selected from the group consisting of acetonitrile, propionitrile, and butyronitrile; Hydrocarbons selected from the group consisting of pentane, hexane, and heptane; Alcohols selected from the group consisting of methanol, ethanol, propanol, and butanol; Ketones selected from the group consisting of acetone, methyl ethyl ketone, and methyl isopropyl ketone; And carbonates which are selected from the group consisting of dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
삭제delete 삭제delete 청구항 1에 있어서,
상기 리튬 알칼리 시약은,
수산화리튬(LiOH), 수산화리튬·수화물(LiOH·H2O), 탄산리튬(Li2CO3), 탄산수소리튬(LiHCO3), 아세트산리튬(LiCH3COO), 또는 옥살산리튬(Li2C2O4) 중 어느 하나인 것을 특징으로 하는, 전해액 첨가제 제조방법.
The method according to claim 1,
The lithium alkali reagent may be,
Lithium hydroxide (LiOH), lithium hydroxide hydrate (LiOH · H 2 O), lithium carbonate (Li 2 CO 3), hydrogen carbonate, lithium (LiHCO 3), lithium acetate (LiCH 3 COO), or oxalic acid lithium (Li 2 C 2 &gt; O &lt; 4 &gt;).
삭제delete 삭제delete 삭제delete
KR1020170062390A 2017-05-19 2017-05-19 Preparing method of electrolyte additives with lowered acidity KR101955093B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170062390A KR101955093B1 (en) 2017-05-19 2017-05-19 Preparing method of electrolyte additives with lowered acidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170062390A KR101955093B1 (en) 2017-05-19 2017-05-19 Preparing method of electrolyte additives with lowered acidity

Publications (2)

Publication Number Publication Date
KR20180127064A KR20180127064A (en) 2018-11-28
KR101955093B1 true KR101955093B1 (en) 2019-03-06

Family

ID=64561797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170062390A KR101955093B1 (en) 2017-05-19 2017-05-19 Preparing method of electrolyte additives with lowered acidity

Country Status (1)

Country Link
KR (1) KR101955093B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346252B2 (en) * 2019-11-08 2023-09-19 株式会社日本触媒 Method for producing nonaqueous electrolyte and lithium ion secondary battery
JP7399738B2 (en) * 2020-02-18 2023-12-18 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery
CN113403672B (en) * 2021-06-09 2023-11-14 安徽强邦新材料股份有限公司 Electrolyte for thermosensitive positive CTP plate and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506505A (en) * 2005-08-29 2009-02-12 イドロ−ケベック Method for purifying electrolyte, electrolyte obtained by this method, power generation device and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506505A (en) * 2005-08-29 2009-02-12 イドロ−ケベック Method for purifying electrolyte, electrolyte obtained by this method, power generation device and use

Also Published As

Publication number Publication date
KR20180127064A (en) 2018-11-28

Similar Documents

Publication Publication Date Title
CN108368132B (en) Novel method for producing lithium bis (fluorosulfonyl) imide
EP3617140B1 (en) Method for preparing lithium difluorophosphate crystal with high purity, and non-aqueous electrolyte solution for secondary battery using same
KR101982602B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (1)
KR101955093B1 (en) Preparing method of electrolyte additives with lowered acidity
CN109742447B (en) Preparation method of lithium difluorobis (oxalato) phosphate solution
KR101739936B1 (en) Novel method for preparing lithium difluorophosphate
KR102285464B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
KR101944731B1 (en) Manufacturing Method For bis-Fluoro Sulfonyl Imide Salt And bis-Fluoro Sulfonyl Imide Ammonium Salt
KR101955452B1 (en) Manufacturing Method For bis-Fluoro Sulfonyl Imide Salt
US11987496B2 (en) Method for producing bis(fluorosulfonyl)imide lithium salt (LiFSI) with reduced fluorine anion content by using alkoxy trialkyl silane
CN111116429A (en) Method for synthesizing alkali metal trifluoromethanesulfonate
KR102007477B1 (en) New purification method of bis(fluorosulfonyl)imide
JP7523623B2 (en) Aqueous solution of alkali metal bis(fluorosulfonyl)imide, container containing the aqueous solution, and method for storing or transporting the aqueous solution
KR102285465B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
CN102229435A (en) Synthetic method for lithium iodide for cell and preparation method for electrolyte of lithium iodide
EP3546443A2 (en) Method for producing fluorine-containing dialkyl carbonate compounds
KR102007476B1 (en) New purification method of bis(fluorosulfonyl)imide lithium salt)
KR102181108B1 (en) Lithium bis (fluorosulfonyl) imide and its manufacturing method
KR102259985B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
KR101982603B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (2)
KR102272371B1 (en) New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same
KR102666044B1 (en) Mass Production Method of Metal bis(fluorosulfonyl)imide
KR102259984B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
KR20230055702A (en) Preparation Method of bis(fluorosulfony)imide Alkali metal salt in Nirile-Ether Solvent
JP6180718B2 (en) Method for producing lithium iodide aqueous solution and use thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant