KR101920101B1 - Novel compounds and organic electro luminescence device using the same - Google Patents

Novel compounds and organic electro luminescence device using the same Download PDF

Info

Publication number
KR101920101B1
KR101920101B1 KR1020140049341A KR20140049341A KR101920101B1 KR 101920101 B1 KR101920101 B1 KR 101920101B1 KR 1020140049341 A KR1020140049341 A KR 1020140049341A KR 20140049341 A KR20140049341 A KR 20140049341A KR 101920101 B1 KR101920101 B1 KR 101920101B1
Authority
KR
South Korea
Prior art keywords
mat
synthesis
core
group
yield
Prior art date
Application number
KR1020140049341A
Other languages
Korean (ko)
Other versions
KR20140076533A (en
Inventor
김태형
배형찬
손효석
백영미
박호철
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to KR1020140049341A priority Critical patent/KR101920101B1/en
Publication of KR20140076533A publication Critical patent/KR20140076533A/en
Application granted granted Critical
Publication of KR101920101B1 publication Critical patent/KR101920101B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur

Abstract

본 발명은 벤조싸이아노피리딘(benzothienopyridine) 또는 벤조퓨로피리딘(benzofuropyridine)의 말단에 헤테로환 모이어티, 특히 인돌 유도체 모이어티가 융합되는 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다. 이러한 본 발명의 화합물을 유기물층에 사용할 경우 발광효율, 구동 전압 및 수명이 향상된 유기 전계 발광 소자를 제공할 수 있다.The present invention relates to a compound in which a heterocyclic moiety, particularly an indole derivative moiety, is fused to the terminal of benzothienopyridine or benzofuropyridine, and an organic electroluminescent device comprising the same. When the compound of the present invention is used in an organic material layer, an organic electroluminescent device having improved luminous efficiency, driving voltage and lifetime can be provided.

Description

신규 화합물 및 이를 포함하는 유기 전계 발광 소자{NOVEL COMPOUNDS AND ORGANIC ELECTRO LUMINESCENCE DEVICE USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a novel compound, and an organic electroluminescent device including the same. BACKGROUND OF THE INVENTION [0002]

본 발명은 신규 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 보다 구체적으로는 유기 전계 발광 소자의 유기물층에 사용되는 화합물에 관한 것이다.TECHNICAL FIELD The present invention relates to a novel compound and an organic electroluminescent device including the same and more particularly to a compound used in an organic material layer of an organic electroluminescent device.

1950년대 Bernanose의 유기 박막 발광 관측을 시점으로 하여, 1965년 안트라센 단결정을 이용한 청색 전기발광으로 이어진 유기 전계 발광(electroluminescent, EL) 소자에 대한 연구는 1987년 탕(Tang)에 의하여 정공층과 발광층의 기능층으로 나눈 적층 구조의 유기 전계 발광 소자가 제시되었다. 이후 유기 전계 발광 소자는 소자의 효율 및 수명을 향상시키기 위하여 소자 내 특징적인 유기물 층을 도입하는 형태로 발전해왔다.A study on the electroluminescent (EL) devices that led to the blue electroluminescence using the anthracene single crystal in 1965 based on the observation of the organic thin film emission of the Bernanose in the 1950s was carried out by Tang in 1987, An organic electroluminescent device having a laminated structure divided by functional layers has been proposed. In order to improve the efficiency and lifetime of the organic electroluminescent device, the organic electroluminescent device has been developed to introduce characteristic organic layers in the device.

유기 전계 발광 소자는 두 전극 사이에 전압을 걸어 주면 양극에서 정공이, 음극에서 전자가 유기물층으로 주입되어, 주입된 정공과 전자가 만나 엑시톤(exciton)이 형성되며, 형성된 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 유기물층으로 사용되는 물질은 기능에 따라, 발광 물질, 정공 주입 물질, 정공 수송 물질, 전자 수송 물질, 전자 주입 물질 등으로 분류될 수 있다.In the organic electroluminescent device, when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic layer, and the injected holes and electrons meet to form an exciton. When the exciton formed drops to a ground state The light comes out. The material used as the organic material layer may be classified into a light emitting material, a hole injecting material, a hole transporting material, an electron transporting material, and an electron injecting material depending on functions.

발광 물질은 발광색에 따라 청색, 녹색, 적색 발광 물질과 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 물질로 구분될 수 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 물질로서 호스트/도판트 계를 사용할 수 있다.The luminescent material can be classified into blue, green and red luminescent materials according to luminescent colors and yellow and orange luminescent materials necessary for realizing better natural colors. Further, in order to increase the color purity and to increase the luminous efficiency through energy transfer, a host / dopant system can be used as a luminescent material.

도판트 물질은 유기 물질을 사용하는 형광 도판트와 Ir, Pt 등의 중원자(heavy atoms)가 포함된 금속 착체 화합물을 사용하는 인광 도판트로 나눌 수 있다. 인광 도판트의 개발은 이론적으로 형광 도판트에 비해 4배까지 발광 효율을 향상 시킬 수 있어 인광 도판트 뿐만 아니라 인광 호스트에 대해서도 연구되고 있다.The dopant material can be divided into a fluorescent dopant using an organic material and a phosphorescent dopant using a metal complex compound containing heavy atoms such as Ir and Pt. The development of the phosphorescent dopant can theoretically improve the luminous efficiency up to 4 times as compared with the fluorescent dopant, so that the phosphorescent dopant as well as the phosphorescent host have been studied.

현재까지 정공 수송층. 정공 주입층, 전자 수송층 등으로 사용되는 물질로는 NPB, BCP, Alq3 등이 널리 알려져 있으며, 발광 물질로는 안트라센 유도체들이 사용되고 있다. 특히 발광 물질 중 효율 향상 측면에서 큰 장점을 가지고 있는 Firpic, Ir(ppy)3, (acac)Ir(btp)2 등과 같은 Ir을 포함하는 금속 착체 화합물은 blue, green, red 인광 도판트 재료로, CBP는 인광 호스트 재료로 사용되고 있다. 이외에도 대한민국 공개특허공보 제2010-0108924호에는 아자카르바졸 유도체를 호스트 재료로 사용하는 기술이 개시되어 있다.Up to now, the hole transport layer. NPB, BCP, Alq 3 and the like are widely known as materials used for the hole injecting layer and the electron transporting layer, and anthracene derivatives are used as the light emitting material. In particular, metal complex compounds containing Ir such as Firpic, Ir (ppy) 3 , (acac) Ir (btp) 2 and the like having great advantages in terms of efficiency improvement of light emitting materials are blue, green, red phosphorescent dopant materials, CBP is used as a phosphorescent host material. In addition, Korean Patent Publication No. 2010-0108924 discloses a technique of using an azacarbazole derivative as a host material.

그러나 종래의 발광 물질들은 발광 특성이 양호하나, 유기 전계 발광 소자의 수명측면에서 만족할만한 수준이 되지 못하기 때문에 우수한 성능을 가지는 발광 물질의 개발이 요구되고 있다.However, since the conventional luminescent materials have good luminescent characteristics, they are not satisfactory in terms of the lifetime of the organic electroluminescent devices, and thus it is required to develop luminescent materials having excellent performance.

본 발명은 상기한 문제점을 해결하기 위해, 유기 전계 발광 소자의 효율, 수명 및 안정성 등을 향상시킬 수 있는 신규 화합물 및 상기 화합물을 이용한 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems and it is an object of the present invention to provide a novel compound capable of improving the efficiency, lifetime and stability of the organic electroluminescent device and an organic electroluminescent device using the compound.

상기한 목적을 달성하기 위해 본 발명은, 하기 화학식 1로 표시되는 화합물을 제공한다.In order to accomplish the above object, the present invention provides a compound represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure 112014039243943-pat00001
Figure 112014039243943-pat00001

상기 화학식 1에서, A는 O(산소) 또는 S(황)이고, X1 내지 X4는, 각각 독립적으로, CR1 또는 N(질소)이고, Y1과 Y2, Y2와 Y3, Y3와 Y4 중 하나는 하기 화학식 2로 표시되는 화합물과 축합 고리를 형성하고, Y1 내지 Y4 중 축합 고리를 형성하지 않는 것은 CR2 또는 N(질소)이고, 이때, N(질소)를 반드시 하나 이상 포함하며,Wherein A is O (oxygen) or S (sulfur), X 1 to X 4 are each independently CR 1 or N (nitrogen), Y 1 and Y 2 , Y 2 and Y 3 , one of Y 3 and Y 4 is to form a compound with a fused ring represented by the formula 2, Y 1 to Y 4 It is preferable that CR 2 or N (nitrogen) does not form a condensed ring, and at least one of N (nitrogen)

[화학식 2] (2)

Figure 112014039243943-pat00002
Figure 112014039243943-pat00002

상기 화학식 2에서, Z1 내지 Z4는, 각각 독립적으로, CR3 또는 N(질소)이고,In the above formula (2), Z 1 to Z 4 are each independently CR 3 or N (nitrogen)

상기 R1 내지 R3는, 각각 독립적으로, 수소, 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, (C6~C40의 아릴)C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택되고, 인접하는 기와 서로 결합하여 축합(fused) 고리를 형성할 수 있으며, Wherein R 1 to R 3 are, each independently, hydrogen, deuterium, halogen, cyano group, C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, C 2 ~ C 40 alkynyl group, C 6 ~ of for C 40 aryl group, the number of nuclear atoms of 5 to 40 heteroaryl group, C 6 ~ C 40 aryloxy group, C 1 ~ C 40 alkyloxy group of, C arylamine group of 6 ~ C 40, (C 6 To C 40 aryl) C 1 to C 40 alkyl, C 3 to C 40 cycloalkyl, heterocycloalkyl having 3 to 40 nuclear atoms, C 1 to C 40 alkylsilyl and C 6 to C 40 An arylsilyl group, and is bonded to adjacent groups to form a fused ring Lt; / RTI >

상기 Ar1은 수소, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, (C6~C40의 아릴)C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택된다.Wherein Ar 1 represents hydrogen, a C 1 to C 40 alkyl group, a C 2 to C 40 alkenyl group, a C 2 to C 40 alkynyl group, a C 6 to C 40 aryl group, a heteroaryl group having 5 to 40 nuclear atoms A C 6 to C 40 aryloxy group, a C 1 to C 40 alkyloxy group, a C 6 to C 40 arylamine group, a (C 6 to C 40 aryl) C 1 to C 40 alkyl group, C 3 ~ C 40 of is selected from cycloalkyl groups, 3 to 40 nuclear atoms heterocycloalkyl group, the group consisting of C 1 ~ C 40 alkyl silyl group, and a C 6 ~ C 40 aryl group in the silyl.

여기서, 상기 R1 내지 R3는 인접하는 기와 결합하여 축합(fused) 고리(축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합)를 형성할 수 있다.Herein, R 1 to R 3 may combine with adjacent groups to form a fused ring (a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof).

또한, 상기 R1 내지 R3 및 Ar1의 알킬기, 알케닐기, 알키닐기, 아릴기, 헤테로아릴기, 아릴옥시기, 알킬옥시기, 아릴아민기, 아릴알킬기, 시클로알킬기, 헤테로시클로알킬기, 알킬실릴기 및 아릴실릴기는, 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, (C6~C40의 아릴)C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환될 수 있으며, 복수개의 치환기를 가질 경우, 각각의 치환기는 동일하거나 상이할 수 있다.In addition, the R 1 to R 3 and the group of Ar 1, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an aryloxy group, an alkyloxy group, an arylamine group, an aryl group, a cycloalkyl group, a heterocycloalkyl group, an alkyl The silyl group and the arylsilyl group may be substituted with at least one substituent selected from the group consisting of deuterium, halogen, cyano, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 alkynyl, C 6 to C 40 aryl, atoms of 5 to 40 heteroaryl group, an aryloxy group of a C 6 ~ C 40, C 1 ~ alkyloxy group of C 40, C 6 ~ C 40 aryl amine, (aryl C 6 ~ C 40) C 1 ~ C 40 alkyl group, C 3 ~ C 40 cycloalkyl group, nuclear atoms, 3 to 40 heterocycloalkyl group, C 1 ~ C 40 alkylsilyl group and a C 6 ~ C 40 aryl silyl group selected from the group consisting of May be substituted or unsubstituted with one or more substituents, and when plural substituents are present, the respective substituents may be the same or different.

본 발명에서의 “알킬”은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알킬의 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등을 들 수 있지만, 이에 한정되는 것은 아니다.&Quot; Alkyl " in the present invention means a monovalent substituent derived from a linear or branched saturated hydrocarbon having 1 to 40 carbon atoms. Examples of such alkyl include, but are not limited to, methyl, ethyl, propyl, isobutyl, sec-butyl, pentyl, iso-amyl and hexyl.

본 발명에서의 "알케닐"은 탄소-탄소 이중 결합을 1개 이상 가진, 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알케닐의 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등을 들 수 있지만, 이에 한정되는 것은 아니다."Alkenyl" in the present invention means a monovalent substituent derived from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon double bond. Examples of such alkenyls include, but are not limited to, vinyl, allyl, isopropenyl, 2-butenyl, and the like.

본 발명에서의 "알키닐"은 탄소-탄소 삼중 결합을 1개 이상 가진, 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소에서 유래되는 1가의 치환기를 의미한다. 이러한 알키닐의 예로는 에타인일(ethynyl), 2-프로파인일(2-propynyl) 등을 들 수 있지만, 이에 한정되는 것은 아니다."Alkynyl" in the present invention means a monovalent substituent derived from a straight-chain or branched-chain unsaturated hydrocarbon having 2 to 40 carbon atoms and having at least one carbon-carbon triple bond. Examples of such alkynyls include, but are not limited to, ethynyl, 2-propynyl, and the like.

본 발명에서의 “아릴”은 단독 고리 또는 2 이상의 고리가 조합된, 탄소수 6 내지 60의 방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된(fused) 형태도 포함할 수 있다. 이러한 아릴의 예로, 페닐, 나프틸, 페난트릴, 안트릴 등을 들 수 있지만, 이에 한정되는 것은 아니다.&Quot; Aryl " in the present invention means a monovalent substituent derived from an aromatic hydrocarbon having 6 to 60 carbon atoms, in which a single ring or two or more rings are combined, and when two or more rings are pendant or condensed with each other ) ≪ / RTI > Examples of such aryl include, but are not limited to, phenyl, naphthyl, phenanthryl, anthryl and the like.

본 발명에서의 “헤테로아릴”은 핵원자수(탄소를 포함하는 원자의 수) 5 내지 40의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O, S 또는 Se와 같은 헤테로원자로 치환된다. 헤테로아릴은 2 이상의 고리가 서로 단순 부착(pendant)되거나 축합된(fused) 형태로 부착될 수 있고, 아릴기와의 축합된 형태도 포함하는 것으로 해석할 수 있다. 이러한 헤테로아릴의 예로, 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6원 모노사이클릭 고리; 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리; 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있지만, 이에 한정되는 것은 아니다.&Quot; Heteroaryl " in the present invention means a monovalent substituent derived from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 40 nuclear atoms (the number of atoms containing carbon), and at least one of the rings The carbon, preferably 1 to 3 carbons, is substituted with a heteroatom such as N, O, S or Se. Heteroaryl can be attached to two or more rings in a pendant or fused form to each other and can be interpreted to include condensed forms with aryl groups. Examples of such heteroaryls include 6-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, and triazinyl; Such as phenoxathienyl, indolizinyl, indolyl, purinyl, quinolyl, benzothiazole, carbazolyl, and the like. ring; And 2-furanyl, N-imidazolyl, 2-isoxazolyl, 2-pyridinyl, 2-pyrimidinyl and the like, but are not limited thereto.

본 발명에서의 "아릴옥시"는 RO-로 표시되는 1가의 치환기로서, 상기 R은 탄소수 6 내지 60의 아릴이다. 이러한 아릴옥시의 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있지만, 이에 한정되는 것은 아니다.In the present invention, "aryloxy" is a monovalent substituent represented by RO-, and R is aryl having 6 to 60 carbon atoms. Examples of such aryloxy include, but are not limited to, phenyloxy, naphthyloxy, diphenyloxy, and the like.

본 발명에서의 "알킬옥시"는 R´O-로 표시되는 1가의 치환기로서, 상기 R´는 탄소수 1 내지 40의 알킬을 의미하며, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함하는 것으로 해석할 수 있다. 이러한 알킬옥시의 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있지만, 이에 한정되는 것은 아니다.In the present invention, "alkyloxy" means a monovalent substituent group represented by R'O-, wherein R 'represents alkyl having 1 to 40 carbon atoms, and may be linear, branched or cyclic, And the like. Examples of such alkyloxy include, but are not limited to, methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy and pentoxy.

본 발명에서의 "아릴아민"은 탄소수 6 내지 60의 아릴로 치환된 아민을 의미한다.&Quot; Arylamine " in the present invention means an amine substituted with aryl having 6 to 60 carbon atoms.

본 발명에서의 "시클로알킬"은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미한다. 이러한 사이클로알킬의 예로는 사이클로프로필, 사이클로펜틸, 사이클로헥실, 놀보닐(norbornyl), 아다만틴(adamantine) 등을 들 수 있지만, 이에 한정되는 것은 아니다. "Cycloalkyl" in the present invention means a monovalent substituent derived from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms. Examples of such cycloalkyls include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine, and the like.

본 발명에서의 “헤테로시클로알킬”은 핵원자수 3 내지 40의 비-방향족 탄화수소로부터 유래된 1가의 치환기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O 또는 S와 같은 헤테로 원자로 치환된다. 이러한 헤테로시클로알킬의 예로는 모르폴린, 피페라진 등을 들 수 있지만, 이에 한정되는 것은 아니다.&Quot; Heterocycloalkyl " in the present invention means a monovalent substituent derived from a non-aromatic hydrocarbon having 3 to 40 nuclear atoms, wherein at least one carbon, preferably 1 to 3 carbons, of the ring is N, O or S < / RTI > Examples of such heterocycloalkyl include, but are not limited to, morpholine, piperazine, and the like.

본 발명에서의 "알킬실릴"은 탄소수 1 내지 40의 알킬로 치환된 실릴이고, "아릴실릴"은 탄소수 6 내지 40의 아릴로 치환된 실릴을 의미한다.&Quot; Alkylsilyl " in the present invention is silyl substituted with alkyl having 1 to 40 carbon atoms, and " arylsilyl " means silyl substituted with aryl having 6 to 40 carbon atoms.

한편, 본 발명은 양극, 음극, 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중에서 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함하는 것이 특징인 유기 전계 발광 소자를 제공한다.According to another aspect of the present invention, there is provided an organic electroluminescent device comprising a cathode, a cathode, and at least one organic layer sandwiched between the anode and the cathode, wherein at least one of the one or more organic layers includes a compound And an organic electroluminescent device.

여기서, 상기 화학식 1로 표시되는 화합물을 포함하는 유기물층은 발광층인 것이 바람직하다. 이때, 화학식 1로 표시되는 화합물이 발광층에 사용될 경우, 상기 화학식 1로 표시되는 화합물은 청색, 녹색 또는 적색의 인광 호스트 재료로 사용될 수 있다.Here, the organic material layer including the compound represented by Formula 1 is preferably a light emitting layer. When the compound represented by Formula 1 is used in the light emitting layer, the compound represented by Formula 1 may be used as a blue, green, or red phosphorescent host material.

본 발명의 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 유기물층(바람직하게는, 발광층의 발광 물질로)에 사용할 경우, 유기 전계 발광 소자의 효율(발광 효율 및 전령 효율), 수명, 휘도 및 구동전압 등을 향상시킬 수 있다. 따라서, 본 발명은 성능 및 수명이 향상된 풀 칼라 유기 전계 발광 패널을 제공할 수 있다.When the compound represented by the general formula (1) of the present invention is used for an organic material layer (preferably, a light emitting material of a light emitting layer) of an organic electroluminescent device, efficiency (luminous efficiency and messaging efficiency), lifetime, Voltage and the like can be improved. Accordingly, the present invention can provide a full-color organic electroluminescence panel with improved performance and lifetime.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 종래의 유기 전계 발광 소자용 재료(예를 들어, 4,4-dicarbazolybiphenyl(이하, ´CBP´라 함))보다 분자량이 클 뿐만 아니라, 넓은 에너지 밴드갭을 가지면서, 정공과 전자의 결합력을 높일 수 있는 상기 화학식 1로 표시되는 화합물을 제공하는 것이 특징이다.The present invention has a larger molecular weight than a conventional organic electroluminescent device material (for example, 4,4-dicarbazolybiphenyl (hereinafter referred to as 'CBP')), and has a wide energy band gap, To thereby provide a compound represented by the above formula (1) capable of enhancing the binding force.

구체적으로, 본 발명의 화학식 1로 표시되는 화합물은, 벤조싸이아노피리딘(benzothienopyridine) 또는 벤조퓨로피리딘(benzofuropyridine)의 말단에 헤테로환 모이어티, 바람직하게는 인돌 유도체 모이어티(moiety)가 결합(융합)되어 있다. 벤조싸이아노피리딘(benzothienopyridine) 또는 벤조퓨로피리딘(benzofuropyridine) 골격은 높은 triplet 에너지 레벨을 가지고 있기 때문에, 본 발명의 화학식 1로 표시되는 화합물을 유기 전계 발광 소자에 사용할 경우, 소자의 인광특성을 개선함과 동시에 정공 주입 능력, 정공 수송 능력, 발광효율, 구동전압 및 수명 특성 등을 향상시킬 수 있다.Specifically, the compound represented by formula (1) of the present invention is a compound in which a heterocyclic moiety, preferably an indole derivative moiety, is bonded to the terminal of benzothienopyridine or benzofuropyridine Fusion). Since the benzothienopyridine or benzofuropyridine skeleton has a high triplet energy level, when the compound represented by Formula 1 of the present invention is used in an organic electroluminescent device, the phosphorescence property of the device is improved The hole injecting ability, the hole transporting ability, the light emitting efficiency, the driving voltage and the life characteristics can be improved.

특히, 본 발명의 화학식 1로 표시되는 화합물은 벤조싸이아노피리딘 또는 벤조퓨로피리딘 골격의 말단에 결합된 인돌 유도체 모이어티로 인해 넓은 밴드갭(sky blue ~ red)을 가지면서, 정공과 전자의 결합력을 높일 수 있기 때문에 종래의 CBP에 비해 발광층의 호스트 재료, 구체적으로는 청색, 녹색 및/또는 적색의 인광 호스트 재료로서 우수한 특성을 나타낼 수 있다.In particular, the compound represented by the formula (1) of the present invention has a wide band gap (sky blue to red) due to the indole derivative moiety bonded to the end of the benzothiopyridine or benzopyropyridine skeleton, It is possible to exhibit excellent properties as a host material of the light emitting layer, specifically, a blue, green and / or red phosphorescent host material, as compared with the conventional CBP.

또한, 본 발명의 화학식 1로 표시되는 화합물은 다양한 치환기(R1 내지 R3 및 Ar1)가 결합되어 화합물의 분자량이 유의적으로 증대되기 때문에 높은 유리전이온도를 나타내며, 이로 인해 종래 CBP 보다 높은 열적 안정성을 가질 수 있다.In addition, the compound represented by formula (1) of the present invention exhibits a high glass transition temperature because the compound has a significantly increased molecular weight due to various substituents (R 1 to R 3 and Ar 1 ) bonded thereto, And may have thermal stability.

본 발명의 화학식 1로 표시되는 화합물에 있어서, Y1 내지 Y4 중 축합 고리를 형성하지 않는 부분은 N을 하나 이상 포함하는 것이 바람직하다. 또한, X1 내지 X4는 모두 CR1이거나 N을 하나 이상 포함하는 것이 바람직하며, Z1 내지 Z4 도 모두 CR3이거나 N을 하나 이상 포함한 것이 바람직하다.In the compound represented by the general formula (1) of the present invention, Y 1 to Y 4 It is preferable that the portion not forming the condensed ring contains at least one of N. It is preferable that all of X 1 to X 4 are CR 1 or N, and that all of Z 1 to Z 4 are CR 3 or N or more.

한편, 본 발명의 화학식 1로 표시되는 화합물에서, 인돌 유도체 모이어티에 치환되는 Ar1은 C6~C40의 아릴기 또는 핵원자수 5 내지 40의 헤테로아릴기인 것이 바람직하다.In the compounds represented by the general formula (1) of the present invention, Ar 1 substituted on the indole derivative moiety is preferably a C 6 to C 40 aryl group or a heteroaryl group having 5 to 40 nuclear atoms.

여기서, 상기 Ar1의 아릴기, 헤테로아릴기, 아릴아민기 및 아릴실릴기는 중수소, 할로겐, 시아노기, C1~C40의 알킬기, C2~C40의 알케닐기, C2~C40의 알키닐기, C6~C40의 아릴기, 핵원자수 5 내지 40의 헤테로아릴기, C6~C40의 아릴옥시기, C1~C40의 알킬옥시기, C6~C40의 아릴아민기, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C1~C40의 알킬실릴기 및 C6~C40의 아릴실릴기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환될 수 있으며, 복수개의 치환기를 가질 경우, 각각의 치환기는 동일하거나 상이할 수 있다.The aryl group, heteroaryl group, arylamine group and arylsilyl group of Ar 1 may be substituted with a substituent selected from the group consisting of deuterium, halogen, cyano, C 1 to C 40 alkyl, C 2 to C 40 alkenyl, C 2 to C 40 A C 6 to C 40 aryl group, a heteroaryl group having 5 to 40 nuclear atoms, a C 6 to C 40 aryloxy group, a C 1 to C 40 alkyloxy group, a C 6 to C 40 aryl an amine group, C 1 ~ C 40 alkyl group, C 3 ~ C 40 cycloalkyl group, a number of nuclear atoms of 3 to 40 heterocycloalkyl group, C 1 ~ C 40 alkylsilyl group and a C 6 ~ C 40 aryl silyl group of the And when there are a plurality of substituents, the respective substituents may be the same or different.

이러한 본 발명의 화학식 1로 표시되는 화합물의 치환체(작용기)인 R1 내지 R3 및 Ar1의 예로 하기와 같은 예(S1~S138)를 들 수 있지만, 이에 한정되는 것은 아니다.Examples of substituents (functional groups) R 1 to R 3 and Ar 1 of the compound represented by the formula (1) of the invention include the following examples (S1 to S138), but the present invention is not limited thereto.

Figure 112014039243943-pat00003
Figure 112014039243943-pat00003

Figure 112014039243943-pat00004
Figure 112014039243943-pat00004

Figure 112014039243943-pat00005
Figure 112014039243943-pat00005

이때, 본 발명의 화학식 1로 표시되는 화합물의 치환체 중 Ar1은, 하기 S-1 내지 S-39로 표시되는 구조로 이루어진 군에서 선택되는 것이 바람직하다.At this time, Ar 1 in the substituent of the compound represented by the formula (1) of the present invention is preferably selected from the group consisting of the structures represented by the following S-1 to S-39.

Figure 112014039243943-pat00006
Figure 112014039243943-pat00006

상기한 본 발명의 화학식 1로 표시되는 화합물은 하기 화학식 3 내지 8로 표시되는 화합물로 이루어진 군에서 선택되는 것이 바람직하나, 이에 한정되는 것은 아니다.The compound represented by the formula (1) of the present invention is preferably selected from the group consisting of compounds represented by the following formulas (3) to (8), but is not limited thereto.

[화학식 3](3)

Figure 112014039243943-pat00007
Figure 112014039243943-pat00007

[화학식 4][Chemical Formula 4]

Figure 112014039243943-pat00008
Figure 112014039243943-pat00008

[화학식 5][Chemical Formula 5]

Figure 112014039243943-pat00009
Figure 112014039243943-pat00009

[화학식 6][Chemical Formula 6]

Figure 112014039243943-pat00010
Figure 112014039243943-pat00010

[화학식 7](7)

Figure 112014039243943-pat00011
Figure 112014039243943-pat00011

[화학식 8][Chemical Formula 8]

Figure 112014039243943-pat00012
Figure 112014039243943-pat00012

상기 화학식 3 내지 8에서, A, X1 내지 X4, Y1 내지 Y4 , Z1 내지 Z4 , 및 Ar1는 상기 화학식 1에서 정의한 바와 동일하다.In Formulas 3 to 8, A, X 1 to X 4 , Y 1 to Y 4 , Z 1 to Z 4 , and Ar 1 are the same as defined in Formula 1.

이러한 본 발명의 화학식 1로 표시되는 화합물은 보다 구체적으로, 하기 화학식 C1 내지 C18로 표시되는 화합물로 이루어진 군에서 선택되는 것이 바람직하나, 이에 한정되는 것은 아니다.The compound represented by formula (1) of the present invention is more preferably selected from the group consisting of compounds represented by the following formulas (C1) to (C18), but is not limited thereto.

Figure 112014039243943-pat00013
Figure 112014039243943-pat00013

상기 화학식 C1 내지 C18에서, A, X1 내지 X4 , Z1 내지 Z4 및 Ar1은 상기 화학식 1에서 정의한 바와 동일하다. 상기 화학식 C1 내지 C18로 표시되는 화합물에서 A는 S인 것이 더욱 바람직하다.In the above formulas C1 to C18, A, X 1 to X 4 , Z 1 to Z 4 And Ar 1 are the same as defined in formula (I). In the compounds represented by the above formulas C1 to C18, A is more preferably S.

이러한 본 발명의 화학식 1로 표시되는 화합물의 구체적인 예로 하기 화합물들(C-1 내지 C-578)을 들 수 있지만, 이에 한정되는 것은 아니다.Specific examples of the compound represented by the formula (1) of the present invention include, but are not limited to, the following compounds (C-1 to C-578).

Figure 112014039243943-pat00014
Figure 112014039243943-pat00014

Figure 112014039243943-pat00015
Figure 112014039243943-pat00015

Figure 112014039243943-pat00016
Figure 112014039243943-pat00016

Figure 112014039243943-pat00017
Figure 112014039243943-pat00017

Figure 112014039243943-pat00018
Figure 112014039243943-pat00018

Figure 112014039243943-pat00019
Figure 112014039243943-pat00019

Figure 112014039243943-pat00020
Figure 112014039243943-pat00020

Figure 112014039243943-pat00021
Figure 112014039243943-pat00021

Figure 112014039243943-pat00022
Figure 112014039243943-pat00022

Figure 112014039243943-pat00023
Figure 112014039243943-pat00023

Figure 112014039243943-pat00024
Figure 112014039243943-pat00024

Figure 112014039243943-pat00025
Figure 112014039243943-pat00025

Figure 112014039243943-pat00026
Figure 112014039243943-pat00026

Figure 112014039243943-pat00027
Figure 112014039243943-pat00027

Figure 112014039243943-pat00028
Figure 112014039243943-pat00028

Figure 112014039243943-pat00029
Figure 112014039243943-pat00029

Figure 112014039243943-pat00030
Figure 112014039243943-pat00030

Figure 112014039243943-pat00031
Figure 112014039243943-pat00031

Figure 112014039243943-pat00032
Figure 112014039243943-pat00032

Figure 112014039243943-pat00033
Figure 112014039243943-pat00033

Figure 112014039243943-pat00034
Figure 112014039243943-pat00034

이와 같은 본 발명의 화학식 1로 표시되는 화합물은 하기 실시예의 합성과정을 참고하여 다양하게 합성할 수 있다.
The compound represented by formula (1) of the present invention can be synthesized in various ways with reference to the synthesis process of the following examples.

2. 유기 2. Organic 전계Field 발광 소자 Light emitting element

본 발명은 상기 화학식 1로 표시되는 화합물, 바람직하게는 화학식 3 내지 8로 표시되는 화합물을 포함하는 유기 전계 발광 소자를 제공한다.The present invention provides an organic electroluminescent device comprising the compound represented by Formula 1, preferably the compound represented by Formula 3 to 8.

구체적으로, 본 발명은 양극(anode), 음극(cathode) 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물, 바람직하게는 화학식 3 내지 8로 표시되는 화합물을 포함한다. 이때, 상기 화학식 3 내지 8로 표시되는 화합물은 단독으로 또는 2 이상이 혼합되어 사용될 수 있다.More particularly, the present invention relates to an organic electroluminescent device comprising an anode, a cathode, and at least one organic material layer interposed between the anode and the cathode, wherein at least one of the organic material layers A compound represented by the general formula (1), preferably a compound represented by the general formulas (3) to (8). At this time, the compounds represented by the formulas (3) to (8) may be used singly or in combination of two or more.

상기 1층 이상의 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 어느 하나 이상일 수 있고, 바람직하게는 정공 주입층, 정공수송층, 발광층 또는 전자수송층일 수 있고, 보다 바람직하게는 발광층일 수 있다.The one or more organic layers may be at least one of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, and may be preferably a hole injection layer, a hole transport layer, a light emitting layer, or an electron transport layer, Emitting layer.

본 발명에 따른 유기 전계 발광 소자는 발광층에 호스트 재료를 포함할 수 있는데, 이때 호스트 재료로서 상기 화학식 1로 표시되는 화합물을 사용할 수 있다. 이와 같이, 상기 화학식 1로 표시되는 화합물을 유기 전계 발광 소자의 발광층, 바람직하게는 발광층의 청색, 녹색, 적색의 인광 호스트 재료로 사용할 경우, 발광층에서 정공과 전자의 결합력이 높아지기 때문에, 유기 전계 발광 소자의 효율(발광효율 및 전력효율), 수명, 휘도 및 구동전압 등이 향상될 수 있다.The organic electroluminescent device according to the present invention may include a host material in the light emitting layer. In this case, the compound represented by Formula 1 may be used as the host material. When the compound represented by Formula 1 is used as a phosphorescent host material for blue, green, and red phosphorescent layers of an organic electroluminescent device, preferably a phosphorescent emitting layer, the bonding force between holes and electrons in the phosphorescent emitting layer increases, The efficiency (luminous efficiency and power efficiency), lifetime, luminance, driving voltage and the like of the device can be improved.

이러한 본 발명의 유기 전계 발광 소자의 구조는 특별히 한정되지 않으나, 비제한적인 예로 기판, 양극, 정공주입층, 정공수송층, 발광층, 전자수송층 및 음극이 순차적으로 적층된 구조로 이루어질 수 있다. 여기서, 전자수송층 위에는 전자주입층이 추가로 적층될 수도 있다. 또한, 본 발명에 따른 유기 전계 발광 소자는 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조로 이루어질 수도 있다.The structure of the organic electroluminescent device of the present invention is not particularly limited, but may be a structure in which a substrate, an anode, a hole injecting layer, a hole transporting layer, a light emitting layer, an electron transporting layer, and a cathode are sequentially stacked. Here, the electron injection layer may be further stacked on the electron transporting layer. In addition, the organic electroluminescent device according to the present invention may have a structure in which an anode, one or more organic layers and an anode are sequentially stacked, and an insulating layer or an adhesive layer is interposed between the electrodes and the organic layer.

한편, 본 발명에 따른 유기 전계 발광 소자에 포함되는 양극으로 사용 가능한 물질은 특별히 한정되지 않으나, 비제한적인 예로 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 또는 폴리아닐린과 같은 전도성 고분자; 및 카본블랙 등을 사용할 수 있다.Examples of the material usable as the anode included in the organic electroluminescent device according to the present invention include, but are not limited to, metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ZnO: Al or SnO 2: a combination of a metal and an oxide such as Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole or polyaniline; And carbon black.

또한, 본 발명에 따른 유기 전계 발광 소자에 포함되는 음극으로 사용 가능한 물질은 특별히 한정되지 않으나, 비제한적인 예로 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등을 사용할 수 있다.Examples of materials usable as a cathode included in the organic electroluminescent device according to the present invention include, but are not limited to, magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, Tin, or lead, or alloys thereof; And a multilayer structure material such as LiF / Al or LiO 2 / Al.

또, 본 발명에 따른 유기 전계 발광 소자에 포함되는 유기물층은 상기 화학식 1로 표시되는 화합물을 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 중 어느 하나에 사용하는 것을 제외하고는 당업계에 공지된 물질로 이루어질 수 있다.The organic material layer included in the organic electroluminescent device according to the present invention is not limited to the organic material layer of the organic electroluminescent device according to the present invention except that the compound represented by Chemical Formula 1 is used in any one of the hole injecting layer, the hole transporting layer, the light emitting layer, , ≪ / RTI >

본 발명에 따른 유기 전계 발광 소자에 포함되는 기판으로 사용 가능한 물질은 특별히 한정되지 않으나, 비제한적인 예로 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름 및 시트 등이 사용될 수 있다. Materials that can be used as the substrate included in the organic electroluminescent device according to the present invention are not particularly limited, but examples thereof include silicon wafers, quartz, glass plates, metal plates, plastic films and sheets.

이와 같은 본 발명의 유기 전계 발광 소자는 당업계에 공지된 방법으로 제조될 수 있으며, 이때, 유기물층에 포함되는 발광층은 진공 증착법이나 용액 도포법으로 제조될 수 있다. 여기서, 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이들에 한정되지 않는다.
The organic electroluminescent device of the present invention may be manufactured by a method known in the art, and the luminescent layer included in the organic material layer may be prepared by a vacuum evaporation method or a solution coating method. Examples of the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, and thermal transfer.

이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

[[ 준비예Preparation Example 1]  One] CORECORE -1의 합성Synthesis of -1

<단계 1> <Step 1> CORE1CORE1 -A의 합성Synthesis of -A

Figure 112014039243943-pat00035
Figure 112014039243943-pat00035

질소 기류 하에서 10.6g (40.13mmol)의 CORE1-A-1, 8.0g (48.15mmol)의 2-nitrophenylboronic acid, 4.8g (120.4mmol)의 NaOH과 200ml/50ml의 THF/H2O를 넣고 교반하였다. 40℃에서 1.39g (1.2mmol)의 Pd(PPh3)4를 넣고 80℃에서 12시간 동안 환류 교반하였다. 반응 종결 후 디클로로메탄으로 추출하고 유기층을 MgSO4로 건조 후 감압여과 하였다. 여과된 유기층을 감압증류 한 뒤 컬럼 크로마토그래피를 이용하여 CORE1-A 6.4 g (yield: 52%)을 획득하였다. N-nitrophenylboronic acid, 4.8 g (120.4 mmol) of NaOH and 200 ml / 50 ml of THF / H 2 O were added to 10.6 g (40.13 mmol) of CORE1-A-1 and 8.0 g . At 40 ℃ into the Pd (PPh 3) 4 of 1.39g (1.2mmol) it was stirred under reflux at 80 ℃ for 12 hours. After completion of the reaction, the reaction mixture was extracted with dichloromethane. The organic layer was dried over MgSO 4 and filtered under reduced pressure. The filtered organic layer was distilled under reduced pressure, and 6.4 g (yield: 52%) of CORE1-A was obtained by column chromatography.

1H-NMR : δ 7.59 (m, 3H), 8.00 (m, 5H), 8.21 (d, 1H), 8.50 (d, 1H), & Lt; 1 &gt; H-NMR: [delta] 7.59 (m, 3H), 8.00 (m,

<단계 2> <Step 2> CORECORE -1의 합성Synthesis of -1

Figure 112014039243943-pat00036
Figure 112014039243943-pat00036

질소 기류 하에서 CORE1-A 6.4g (20.89mmol)과 triphenylphosphine 13.7g (52.22mmol), 1,2-dichlorobenzene 100ml를 넣은 후 12시간 교반하였다. 반응 종료 후 디스틸레이션을 통해 1,2-dichlorobenzene를 제거하고 디클로로메탄으로 추출하였다. 추출된 유기층은 MgSO4로 건조 후 감압여과 하였다. 여과된 유기층을 감압증류 한 뒤 컬럼크로마토그래피를 이용하여 CORE-1 3.3g (yield : 57%)을 획득 하였다.6.4 g (20.89 mmol) of CORE1-A, 13.7 g (52.22 mmol) of triphenylphosphine and 100 ml of 1,2-dichlorobenzene were placed in a nitrogen stream and stirred for 12 hours. After completion of the reaction, 1,2-dichlorobenzene was removed through distillation and extracted with dichloromethane. The extracted organic layer was dried with MgSO 4 and filtered under reduced pressure. The filtered organic layer was distilled under reduced pressure and 3.3 g (yield: 57%) of CORE-1 was obtained by column chromatography.

1H-NMR : δ 7.31 (t, 1H), 7.55 (m, 4H), 8.05 (m, 3H), 8.82 (s, 1H), 10.51 (s, 1H)
1 H-NMR:? 7.31 (t, IH), 7.55 (m, 4H), 8.05

[[ 준비예Preparation Example 2]  2] CORECORE -- 2 의2 of 합성  synthesis

<단계 1> 2,5-<Step 1> 2,5- dichlorodichloro -3-(2--3- (2- chlorophenylklorophenyl )) pyrazinepyrazine 의 합성Synthesis of

Figure 112014039243943-pat00037
Figure 112014039243943-pat00037

질소 기류 하에서 28g (152.65mmol)의 2,3,5-trichloropyrazine, 23.8g (152.65mmol)의 2-chlorophenylboronic acid, 63.3g (457.9mmol)의 K2CO3와 800ml/200ml의 THF/H2O를 넣고 교반하였다. 40℃에서 5.3g (4.58mmol)의 Pd(PPh3)4를 넣고 80℃에서 12시간 동안 교반하였다. 반응 종결 후 디클로로메탄으로 추출하고 유기층을 MgSO4로 건조 후 감압여과 하였다. 여과된 유기층을 감압증류 한 뒤 컬럼 크로마토그래피를 이용하여 목적 화합물인 2,5-dichloro-3-(2-chlorophenyl)pyrazine 12g (yield: 30%)을 획득하였다. Under nitrogen gas stream, 28g (152.65mmol) of 2,3,5-trichloropyrazine, 23.8g (152.65mmol) 2-chlorophenylboronic acid, 63.3g (457.9mmol) of K 2 CO 3 and the THF / H 2 O of 800ml / 200ml of And the mixture was stirred. At 40 ℃ into the Pd (PPh 3) 4 of 5.3g (4.58mmol) was stirred at 80 ℃ for 12 hours. After completion of the reaction, the reaction mixture was extracted with dichloromethane. The organic layer was dried over MgSO 4 and filtered under reduced pressure. The filtered organic layer was distilled under reduced pressure, and 12 g (yield: 30%) of 2,5-dichloro-3- (2-chlorophenyl) pyrazine was obtained by column chromatography.

1H-NMR : δ 7.37(m, 2H), 7.58(d, 1H), 7.75(d, 1H), 8.69(s, 1H) 1 H-NMR:? 7.37 (m, 2H), 7.58 (d, IH), 7.75

<단계 2> <Step 2> ethylethyl 3-(2-(3,6- 3- (2- (3,6- dichloropyrazindichloropyrazine -2--2- ylyl )) phenylthio메틸THIO )) propanoatepropanoate 의 합성Synthesis of

Figure 112014039243943-pat00038
Figure 112014039243943-pat00038

질소 기류 하에서 12g (46.2mmol)의 2,5-dichloro-3-(2-chlorophenyl)pyrazine, 12.4g (92.47mmol)의 ethyl 3-mercaptopropanoate, 2.96g (3.23mmol)의 Pd2dba3, 0.1g (0.7mmol)의 dpephos, 16g (115.6mmol)의 K2CO3를 250ml의 Toluene에 넣고 110℃에서 15시간 교반하였다. 반응 종결 후 디클로로메탄으로 추출하고 유기층을 MgSO4로 건조 후 감압여과 하였다. 여과된 유기층을 감압증류 한 뒤 컬럼 크로마토그래피를 이용하여 ethyl 3-(2-(3,6-dichloropyrazin-2-yl)phenylthio)propanoate 14.7g (yield: 89%)을 획득하였다.12.4 g (92.47 mmol) of ethyl 3-mercaptopropanoate, 2.96 g (3.23 mmol) of Pd 2 dba 3 , 0.1 g (0.7 mmol) of dpephos and 16 g (115.6 mmol) of K 2 CO 3 were placed in 250 ml of toluene, and the mixture was stirred at 110 ° C for 15 hours. After completion of the reaction, the reaction mixture was extracted with dichloromethane. The organic layer was dried over MgSO 4 and filtered under reduced pressure. The filtered organic layer was distilled under reduced pressure, and 14.7 g (yield: 89%) of ethyl 3- (2- (3,6-dichloropyrazin-2- yl) phenylthio) propanoate was obtained by column chromatography.

1H-NMR : δ 1.27 (m, 3H), 2.52 (m, 2H), 3.03 (m, 2H), 4.09 (m, 2H), 7.30 (m, 2H), 7.71 (d, 1H), 7.87 (d, 1H), 8.69 (s, 1H) 1 H-NMR: δ 1.27 ( m, 3H), 2.52 (m, 2H), 3.03 (m, 2H), 4.09 (m, 2H), 7.30 (m, 2H), 7.71 (d, 1H), 7.87 ( d, 1 H), 8.69 (s, 1 H)

<단계 3> <Step 3> CORE2CORE2 -- A 의Of A 합성 synthesis

Figure 112014039243943-pat00039
Figure 112014039243943-pat00039

질소 기류 하에서 14.7g (41.1mmol)의 ethyl 3-(2-(3,6-dichloropyrazin-2-yl)phenylthio)propanoate, 6.92g (61.7mmol)의 potassium tert-butoxide를 200ml의 THF에 넣고 50℃에서 8시간 교반하였다. 반응 종결 후 디클로로메탄으로 추출하고 유기층을 MgSO4로 건조 후 감압여과 하였다. 여과된 유기층을 감압증류 한 뒤 컬럼 크로마토그래피를 이용하여 목적 화합물인 CORE2-A 6.6g (yield: 80%)을 획득하였다. (Potassium tert-butoxide) of 6.92 g (61.7 mmol) were added to 200 ml of THF under nitrogen atmosphere, and 14.7 g (41.1 mmol) of ethyl 3- (2- (3,6-dichloropyrazin- Lt; / RTI &gt; for 8 hours. After completion of the reaction, the reaction mixture was extracted with dichloromethane. The organic layer was dried over MgSO 4 and filtered under reduced pressure. The filtered organic layer was distilled under reduced pressure and 6.6 g (yield: 80%) of CORE2-A as a target compound was obtained by column chromatography.

1H-NMR : δ 7.51(m, 2H), 8.02(m, 2H), 8.87(s, 1H) 1 H-NMR: δ 7.51 ( m, 2H), 8.02 (m, 2H), 8.87 (s, 1H)

<단계 4> <Step 4> CORE2CORE2 -B의 합성Synthesis of -B

Figure 112014039243943-pat00040
Figure 112014039243943-pat00040

CORE1-A-1 대신 CORE2-A 을 사용하는 것을 제외하고는 준비예 1의 <단계 1>과 동일한 과정을 수행하여 CORE2-B 6g (yield: 67%)을 획득하였다.6 g (yield: 67%) of CORE2-B was obtained by carrying out the same procedure as <Step 1> of Preparation Example 1 except that CORE2-A was used instead of CORE1-A-1.

1H-NMR : δ 7.61(m, 3H), 8.02(m, 4H), 8.18(d, 1H) 1 H-NMR:? 7.61 (m, 3H), 8.02 (m, 4H), 8.18

<단계 5> <Step 5> CORECORE -- 2 의2 of 합성 synthesis

Figure 112014039243943-pat00041
Figure 112014039243943-pat00041

CORE1-A 대신 CORE2-B를 사용하는 것을 제외하고는 준비예 1의 <단계 2>와 동일한 과정을 수행하여 CORE-2 3.2g(yield: 54%)을 얻었다.3.2 g (yield: 54%) of CORE-2 was obtained by carrying out the same procedure as <Step 2> of Preparation Example 1 except that CORE2-B was used instead of CORE1-A.

1H-NMR : δ 7.27(t, 1H), 7.59(m, 4H), 8.07(m, 3H) 10.50(s, 1H)
1 H-NMR: [delta] 7.27 (t, IH), 7.59 (m, 4H), 8.07 (m, 3H)

[[ 준비예Preparation Example 3]  3] CORECORE -- 3 의3 of 합성  synthesis

<단계 1> 2,5-<Step 1> 2,5- dichlorodichloro -3-(2--3- (2- chlorophenylklorophenyl )) pyridine피리딘 의 합성Synthesis of

Figure 112014039243943-pat00042
Figure 112014039243943-pat00042

2,3,5-trichloropyrazine 대신 2,3,5-trichloropyridine을 사용하는 것을 제외하고는 준비예 2의 <단계 1>과 동일한 과정을 수행하여 2,5-dichloro-3-(2-chlorophenyl)pyridine 13g (yield: 46%)을 획득하였다.The procedure of Step 1 of Preparation Example 2 was repeated except that 2,3,5-trichloropyridine was used instead of 2,3,5-trichloropyrazine to obtain 2,5-dichloro-3- (2-chlorophenyl) pyridine 13 g (yield: 46%).

1H-NMR : δ 7.38 (m, 2H), 7.75 (m, 2H), 8.81 (s, 1H) 1 H-NMR: δ 7.38 ( m, 2H), 7.75 (m, 2H), 8.81 (s, 1H)

<< 단계2Step 2 > > ethylethyl 3-(2-(2,5- 3- (2- (2,5- dichloropyridindichloropyridine -3--3- ylyl )) phenylthio메틸THIO )) propanoatepropanoate 의 합성Synthesis of

Figure 112014039243943-pat00043
Figure 112014039243943-pat00043

2,5-dichloro-3-(2-chlorophenyl)pyrazine 대신 2,5-dichloro-3-(2-chlorophenyl)pyridine을 사용하는 것을 제외하고는 준비예 2의 <단계 2>와 동일한 과정을 수행하여 ethyl 3-(2-(2,5-dichloropyridin-3-yl)phenylthio)propanoate 15.3g (yield: 85%)을 획득하였다.Step 2 of Preparation Example 2 was carried out except that 2,5-dichloro-3- (2-chlorophenyl) pyridine was used instead of 2,5-dichloro-3- (2-chlorophenyl) pyrazine 15.3 g (yield: 85%) of ethyl 3- (2- (2,5-dichloropyridin-3-yl) phenylthio) propanoate.

1H-NMR : δ 1.28 (m, 3H), 2.56 (m, 2H), 3.32 (m, 2H), 4.19 (m, 2H), 7.39 (m, 2H), 7.64 (m, 2H), 8.44 (s, 1H), 8.67 (s, 1H) 1 H-NMR: δ 1.28 ( m, 3H), 2.56 (m, 2H), 3.32 (m, 2H), 4.19 (m, 2H), 7.39 (m, 2H), 7.64 (m, 2H), 8.44 ( s, 1 H), 8.67 (s, 1 H)

<< 단계3Step 3 > > CORE3CORE3 -A의 합성Synthesis of -A

Figure 112014039243943-pat00044
Figure 112014039243943-pat00044

ethyl 3-(2-(3,6-dichloropyrazin-2-yl)phenylthio)propanoate 대신 ethyl 3-(2-(2,5-dichloropyridin-3-yl)phenylthio)propanoate을 사용하는 것을 제외하고는 준비예 2의 <단계 3>과 동일한 과정을 수행하여 CORE3-A 7.4g (yield: 78%)을 획득하였다.except that ethyl 3- (2- (2,5-dichloropyridin-3-yl) phenylthio) propanoate was used in place of ethyl 3- (3- (6,6-dichloropyrazin- (Yield: 78%) of CORE3-A was obtained by performing the same procedure as in <Step 3>.

1H-NMR : δ 7.48 (m, 2H), 7.96 (m, 2H), 8.49 (d, 1H), 8.81 (s, 1H) 1 H-NMR:? 7.48 (m, 2H), 7.96 (m, 2H), 8.49

<< 단계4Step 4 > > CORE3CORE3 -B의 합성Synthesis of -B

Figure 112014039243943-pat00045
Figure 112014039243943-pat00045

CORE1-A-1 대신 CORE3-A를 사용하는 것을 제외하고는 준비예 1의 <단계 1>과 동일한 과정을 수행하여 CORE3-B 6.2g (yield: 60%)을 획득하였다.6.2 g (yield: 60%) of CORE3-B was obtained by carrying out the same procedure as <Step 1> of Preparation Example 1 except that CORE3-A was used instead of CORE1-A-1.

1H-NMR : δ 7.49 (m, 2H), 7.66 (t, 1H), 8.01 (m, 4H), 8.19 (d, 1H), 8.43 (d, 1H), 9.36(s, 1H) 1 H-NMR:? 7.49 (m, 2H), 7.66 (t, IH), 8.01 (m, 4H), 8.19 (d,

<< 단계5Step 5 > > CORECORE -3A 및 3B의 합성Synthesis of -3A and 3B

Figure 112014039243943-pat00046
Figure 112014039243943-pat00046

CORE1-A 대신 CORE3-B 을 사용하는 것을 제외하고는 준비예 1의 <단계 2>과 동일한 과정을 수행하여 CORE-3A 1.8g(yield: 32%) CORE-3B 2.0g(yield: 36%)을 얻었다.(Yield: 32%) CORE-3B (yield: 36%) was performed in the same manner as <Step 2> of Preparation Example 1 except that CORE3-B was used instead of CORE1- &Lt; / RTI &gt;

CORE-3A 1H-NMR : δ 7.32 (t, 1H), 7.49 (m, 3H), 7.81 (s, 1H), 8.05 (m, 2H), 8.49 (d, 1H), 10.35 (s, 1H) CORE-3A 1 H-NMR: δ 7.32 (t, 1H), 7.49 (m, 3H), 7.81 (s, 1H), 8.05 (m, 2H), 8.49 (d, 1H), 10.35 (s, 1H)

CORE-3B 1H-NMR : δ 7.31 (t, 1H), 7.51 (m, 3H), 7.83 (d, 1H), 8.02 (d, 1H), 8.15 (d, 1H), 8.47 (d, 1H), 9.55(s, 1H) CORE-3B 1 H-NMR: δ 7.31 (t, 1H), 7.51 (m, 3H), 7.83 (d, 1H), 8.02 (d, 1H), 8.15 (d, 1H), 8.47 (d, 1H) , 9.55 (s, 1 H)

[준비예 4] CORE-4 의 합성 [Preparation Example 4] Synthesis of CORE-4

<단계 1> 3-(2-&Lt; Step 1 > 3- (2- nitrophenylnitrophenyl )) benzofurobenzofuro [2,3-b][2,3-b] pyridine피리딘 의 합성Synthesis of

Figure 112014039243943-pat00047
Figure 112014039243943-pat00047

CORE1-A-1 대신 3-chlorobenzofuro[2,3-b]pyridine을 사용하는 것을 제외하고는 준비예 1의 <단계 1>과 동일한 과정을 수행하여 3-(2-nitrophenyl)benzofuro[2,3-b]pyridine 9.7g (yield: 56%)을 획득하였다.Except that 3-chlorobenzofuro [2,3-b] pyridine was used in place of CORE1-A-1 to prepare 3- (2-nitrophenyl) benzofuro [2,3 -b] pyridine (yield: 56%).

1H-NMR : δ 7.34 (m, 2H), 7.66 (m, 2H), 7.95 (m, 4H), 8.18 (d, 1H), 9.50 (s, 1H) 1 H-NMR:? 7.34 (m, 2H), 7.66 (m, 2H), 7.95

<단계 2> <Step 2> CORECORE -4A 및 4B의 합성Synthesis of -4A and 4B

Figure 112014039243943-pat00048
Figure 112014039243943-pat00048

CORE1-A 대신 3-(2-nitrophenyl)benzofuro[2,3-b]pyridine을 사용하는 것을 제외하고는 준비예 1의 <단계 2>와 동일한 과정을 수행하여 CORE-4A 2.8g(yield: 32%), CORE-4B 3.0g (yield: 35%)을 얻었다.The procedure of Step 2 of Preparation Example 1 was repeated except that 3- (2-nitrophenyl) benzofuro [2,3-b] pyridine was used in place of CORE1-A to yield 2.8 g (yield: 32 %) And 3.0 g (yield: 35%) of CORE-4B.

CORE-4A 1H-NMR : δ 7.34 (m, 3H), 7.50 (t, 1H), 7.65 (m, 2H), 7.80 (s, 1H), 7.92 (d, 1H), 8.15(d, 1H), 10.45(s, 1H) CORE-4A 1 H-NMR: δ 7.34 (m, 3H), 7.50 (t, 1H), 7.65 (m, 2H), 7.80 (s, 1H), 7.92 (d, 1H), 8.15 (d, 1H) , 10.45 (s, 1 H)

CORE-4B 1H-NMR : δ 7.32 (m, 3H), 7.49 (t, 1H), 7.64 (m, 2H), 7.89 (d, 1H), 8.13 (d, 1H), 9.53(s, 1H), 10.42(s, 1H)
CORE-4B 1 H-NMR: δ 7.32 (m, 3H), 7.49 (t, 1H), 7.64 (m, 2H), 7.89 (d, 1H), 8.13 (d, 1H), 9.53 (s, 1H) , 10.42 (s, 1 H)

[[ 합성예Synthetic example 1]  One] MatMat -1의 합성Synthesis of -1

Figure 112014039243943-pat00049
Figure 112014039243943-pat00049

질소 기류 하에서 준비예 1에서 제조한 화합물인 CORE-1 (3.28g, 12.00mmol), 1-bromo-3,5-diphenylbenzene (7.39g, 24.00mmol), Cu powder(0.09g, 1.30mmol), K2CO3(3.58g, 26.00mmol), Na2SO4(3.70g, 26.00mmol) 및 nitrobenzene(100ml)를 혼합하고 190℃에서 12시간 동안 교반하였다. (3.28 g, 12.00 mmol), 1-bromo-3,5-diphenylbenzene (7.39 g, 24.00 mmol), Cu powder (0.09 g, 1.30 mmol), K 2 CO 3 (3.58 g, 26.00 mmol), Na 2 SO 4 (3.70 g, 26.00 mmol) and nitrobenzene (100 ml) were mixed and stirred at 190 ° C for 12 hours.

반응이 종결된 후 nitrobenzene을 제거하고 메틸렌클로라이드로 유기층을 분리한 다음 MgSO4를 사용하여 물을 제거하였다. 유기층의 용매를 제거한 후 컬럼크로마토그래피로 정제하여 목적 화합물인 Mat-1 (4.22g, 수율 70%)을 얻었다.After the reaction was completed, the nitrobenzene was removed, the organic layer was separated with methylene chloride, and water was removed using MgSO 4 . After removing the solvent of the organic layer, the residue was purified by column chromatography to obtain 4.22 g (yield 70%) of the object compound Mat-1.

Exact Mass: 502.15g/molExact Mass: 502.15 g / mol

Elemental Analysis: C, 83.64; H, 4.41; N, 5.57; S, 6.38
Elemental Analysis: C, 83.64; H, 4.41; N, 5.57; S, 6.38

[[ 합성예Synthetic example 2]  2] MatMat -2의 합성Synthesis of -2

Figure 112014039243943-pat00050
Figure 112014039243943-pat00050

1-bromo-3,5-diphenylbenzene 대신 2-bromo-4,6-diphenylpyridine을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Mat-2 (4.04g, 수율 67%)을 얻었다.Mat-2 (4.04 g, yield 67%) was obtained in the same manner as in Synthesis Example 1, except that 2-bromo-4,6-diphenylpyridine was used in place of 1-bromo-3,5-diphenylbenzene .

Exact Mass: 503.15g/molExact Mass: 503.15 g / mol

Elemental Analysis: C, 81.09; H, 4.20; N, 8.34; S, 6.37
Elemental Analysis: C, 81.09; H, 4.20; N, 8.34; S, 6.37

[[ 합성예Synthetic example 3]  3] MatMat -3의 합성Synthesis of -3

Figure 112014039243943-pat00051
Figure 112014039243943-pat00051

질소 기류 하에서 준비예 1에서 제조한 화합물인 CORE-1 (3.28g, 12.00mmol), 2-chloro-4,6-diphenylpyrimidine (6.38g, 24.00mmol), NaH (3.45g, 14.40mmol) 및 DMF(80ml)를 혼합하고 상온에서 3시간 동안 교반하였다. 반응이 종결된 후 물을 넣고 고체 화합물을 filter한 후, 컬럼 크로마토그래피로 정제하여 목적 화합물인 Mat-3 (4.89g, 수율 81%)를 얻었다.(3.28 g, 12.00 mmol), 2-chloro-4,6-diphenylpyrimidine (6.38 g, 24.00 mmol), NaH (3.45 g, 14.40 mmol) and DMF 80 ml) were mixed and stirred at room temperature for 3 hours. After completion of the reaction, water was added thereto, and the solid compound was filtered and purified by column chromatography to obtain 4.79 g (yield: 81%) of the target compound Mat-3.

Exact Mass: 504.14g/molExact Mass: 504.14 g / mol

Elemental Analysis: C, 78.55; H, 3.99; N, 11.10; S, 6.35
Elemental Analysis: C, 78.55; H, 3.99; N, 11.10; S, 6.35

[[ 합성예Synthetic example 4]  4] MatMat -4의 합성Synthesis of -4

Figure 112014039243943-pat00052
Figure 112014039243943-pat00052

2-chloro-4,6-diphenylpyrimidine 대신 2-chloro-4,6-diphenyl-1,3,5-triazine을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Mat-4 4.84g, 수율 80%)을 얻었다.The procedure of Synthesis Example 3 was repeated except that 2-chloro-4,6-diphenyl-1,3,5-triazine was used instead of 2-chloro-4,6-diphenylpyrimidine to obtain the target compound Mat- g, yield: 80%).

Exact Mass: 505g/molExact Mass: 505 g / mol

Elemental Analysis: C, 76.02; H, 3.79; N, 13.85; S, 6.34
Elemental Analysis: C, 76.02; H, 3.79; N, 13.85; S, 6.34

[[ 합성예Synthetic example 5]  5] MatMat -5의 합성Synthesis of -5

Figure 112014039243943-pat00053
Figure 112014039243943-pat00053

2-chloro-4,6-diphenylpyrimidine 대신 2,4-di(biphenyl-3-yl)-6-chloro-1,3,5-triazine을 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Mat-5 (5.99g, 수율 76%)을 얻었다.The procedure of Synthesis Example 3 was repeated except that 2,4-di (biphenyl-3-yl) -6-chloro-1,3,5-triazine was used in place of 2-chloro-4,6-diphenylpyrimidine Mat-5 (5.99 g, yield 76%) as a target compound was obtained.

Exact Mass: 657.20g/molExact Mass: 657.20 g / mol

Elemental Analysis: C, 80.34; H, 4.14; N, 10.65; S, 4.87
Elemental Analysis: C, 80.34; H, 4.14; N, 10.65; S, 4.87

[[ 합성예Synthetic example 6]  6] MatMat -6의 합성Synthesis of -6

Figure 112014039243943-pat00054
Figure 112014039243943-pat00054

1-bromo-3,5-diphenylbenzene 대신 3-bromo-9-phenyl-9H-carbazole을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Mat-6 (4.38g, 수율 71%)을 얻었다.Mat-6 (4.38 g, yield 71%) was obtained in the same manner as in Synthesis Example 1, except that 3-bromo-9-phenyl-9H-carbazole was used instead of 1-bromo-3,5- ).

Exact Mass: 515.15g/molExact Mass: 515.15 g / mol

Elemental Analysis: C, 81.53; H, 4.11; N, 8.15; S, 6.22
Elemental Analysis: C, 81.53; H, 4.11; N, 8.15; S, 6.22

[[ 합성예Synthetic example 7]  7] MatMat -7의 합성Synthesis of -7

Figure 112014039243943-pat00055
Figure 112014039243943-pat00055

1-bromo-3,5-diphenylbenzene 대신 2-bromo-5-phenylpyridine을 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Mat-7 (3.48g, 수율 68%)을 얻었다.Mat-7 (3.48 g, yield 68%) was obtained in the same manner as in Synthesis Example 1, except that 2-bromo-5-phenylpyridine was used instead of 1-bromo-3,5-diphenylbenzene.

Exact Mass: 427.11g/molExact Mass: 427.11 g / mol

Elemental Analysis: C, 78.66; H, 4.01; N, 9.83; S, 7.50
Elemental Analysis: C, 78.66; H, 4.01; N, 9.83; S, 7.50

[[ 합성예Synthetic example 8]  8] MatMat -8의 합성Synthesis of -8

Figure 112014039243943-pat00056
Figure 112014039243943-pat00056

CORE-1 대신 CORE-2를 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Mat-8 (4.22g, 수율 70%)을 얻었다.Mat-8 (4.22 g, yield 70%) was obtained by carrying out the same procedure as in Synthesis Example 1, except that CORE-2 was used instead of CORE-1.

Exact Mass: 503.15g/molExact Mass: 503.15 g / mol

Elemental Analysis: C, 81.09; H, 4.20; N, 8.34; S, 6.37
Elemental Analysis: C, 81.09; H, 4.20; N, 8.34; S, 6.37

[[ 합성예Synthetic example 9]  9] MatMat -9의 합성Synthesis of -9

Figure 112014039243943-pat00057
Figure 112014039243943-pat00057

CORE-1 대신 CORE-2를 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Mat-9 (3.93g, 수율 65%)을 얻었다.Mat-9 (3.93 g, yield 65%) was obtained by carrying out the same procedure as in Synthesis Example 2 except that CORE-2 was used instead of CORE-1.

Exact Mass: 504.14g/molExact Mass: 504.14 g / mol

Elemental Analysis: C, 78.55; H, 3.99; N, 11.10; S, 6.35
Elemental Analysis: C, 78.55; H, 3.99; N, 11.10; S, 6.35

[[ 합성예Synthetic example 10]  10] MatMat -10의 합성Synthesis of -10

Figure 112014039243943-pat00058
Figure 112014039243943-pat00058

CORE-1 대신 CORE-2를 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Mat-10 (4.48g, 수율 74%)을 얻었다.Mat-10 (4.48 g, yield 74%) was obtained by carrying out the same procedure as in Synthesis Example 3 except that CORE-2 was used instead of CORE-1.

Exact Mass: 505.14g/molExact Mass: 505.14 g / mol

Elemental Analysis: C, 76.02; H, 3.79; N, 13.85; S, 6.34
Elemental Analysis: C, 76.02; H, 3.79; N, 13.85; S, 6.34

[[ 합성예Synthetic example 11]  11] MatMat -11의 합성Synthesis of -11

Figure 112014039243943-pat00059
Figure 112014039243943-pat00059

CORE-1 대신 CORE-2를 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Mat-11 (4.31g, 수율 71%)을 얻었다.Mat-11 (4.31 g, yield 71%) was obtained by carrying out the same procedure as in Synthesis Example 4, except that CORE-2 was used instead of CORE-1.

Exact Mass: 506.13g/molExact Mass: 506.13 g / mol

Elemental Analysis: C, 73.50; H, 3.58; N, 16.59; S, 6.33
Elemental Analysis: C, 73.50; H, 3.58; N, 16.59; S, 6.33

[[ 합성예Synthetic example 12]  12] MatMat -12의 합성Synthesis of -12

Figure 112014039243943-pat00060
Figure 112014039243943-pat00060

CORE-1 대신 CORE-2를 사용하는 것을 제외하고는 합성예 5와 동일한 과정을 수행하여 목적 화합물인 Mat-12 (5.92g, 수율 75%)을 얻었다.Mat-12 (5.92 g, yield 75%) was obtained by carrying out the same procedure as in Synthesis Example 5 except that CORE-2 was used instead of CORE-1.

Exact Mass: 658.19g/molExact Mass: 658.19 g / mol

Elemental Analysis: C, 78.40; H, 3.98; N, 12.76; S, 4.87
Elemental Analysis: C, 78.40; H, 3.98; N, 12.76; S, 4.87

[[ 합성예Synthetic example 13]  13] MatMat -13의 합성Synthesis of -13

Figure 112014039243943-pat00061
Figure 112014039243943-pat00061

CORE-1 대신 CORE-2를 사용하는 것을 제외하고는 합성예 6과 동일한 과정을 수행하여 목적 화합물인 Mat-13 (4.08g, 수율 66%)을 얻었다.Mat-13 (4.08 g, yield 66%) was obtained by carrying out the same procedure as in Synthesis Example 6 except that CORE-2 was used instead of CORE-1.

Exact Mass: 516.14g/molExact Mass: 516.14 g / mol

Elemental Analysis: C, 79.05; H, 3.90; N, 10.84; S, 6.21
Elemental Analysis: C, 79.05; H, 3.90; N, 10.84; S, 6.21

[[ 합성예Synthetic example 14]  14] MatMat -14의 합성Synthesis of -14

Figure 112014039243943-pat00062
Figure 112014039243943-pat00062

CORE-1 대신 CORE-2를 사용하는 것을 제외하고는 합성예 7과 동일한 과정을 수행하여 목적 화합물인 Mat-14 (3.23g, 수율 63%)을 얻었다.Mat-14 (3.23 g, yield 63%) was obtained by carrying out the same procedure as in Synthesis Example 7, except that CORE-2 was used instead of CORE-1.

Exact Mass: 428.11g/molExact Mass: 428.11 g / mol

Elemental Analysis: C, 75.68; H, 3.76; N, 13.07; S, 7.48
Elemental Analysis: C, 75.68; H, 3.76; N, 13.07; S, 7.48

[[ 합성예Synthetic example 15]  15] MatMat -15의 합성Synthesis of -15

Figure 112014039243943-pat00063
Figure 112014039243943-pat00063

CORE-1 대신 CORE-3A를 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Mat-15 (4.21g, 수율 70%)을 얻었다.Mat-15 (4.21 g, yield 70%) was obtained in the same manner as in Synthesis Example 1 except that CORE-3A was used instead of CORE-1.

Exact Mass: 502.15g/molExact Mass: 502.15 g / mol

Elemental Analysis: C, 83.64; H, 4.41; N, 5.57; S, 6.38
Elemental Analysis: C, 83.64; H, 4.41; N, 5.57; S, 6.38

[[ 합성예Synthetic example 16]  16] MatMat -16의 합성Synthesis of -16

Figure 112014039243943-pat00064
Figure 112014039243943-pat00064

CORE-1 대신 CORE-3A를 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Mat-16 (3.62g, 수율 60%)을 얻었다.Mat-16 (3.62 g, yield 60%) was obtained by carrying out the same procedure as in Synthesis Example 2 except that CORE-3A was used instead of CORE-1.

Exact Mass: 503.15g/molExact Mass: 503.15 g / mol

Elemental Analysis: C, 81.09; H, 4.20; N, 8.34; S, 6.37
Elemental Analysis: C, 81.09; H, 4.20; N, 8.34; S, 6.37

[[ 합성예Synthetic example 17]  17] MatMat -17의 합성Synthesis of -17

Figure 112014039243943-pat00065
Figure 112014039243943-pat00065

CORE-1 대신 CORE-3A를 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Mat-17 (4.53g, 수율 75%)을 얻었다.Mat-17 (4.53 g, yield 75%) was obtained by carrying out the same procedure as in Synthesis Example 3 except that CORE-3A was used instead of CORE-1.

Exact Mass: 504.14g/molExact Mass: 504.14 g / mol

Elemental Analysis: C, 78.55; H, 3.99; N, 11.10; S, 6.35
Elemental Analysis: C, 78.55; H, 3.99; N, 11.10; S, 6.35

[[ 합성예Synthetic example 18]  18] MatMat -18의 합성Synthesis of -18

Figure 112014039243943-pat00066
Figure 112014039243943-pat00066

CORE-1 대신 CORE-3A를 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Mat-18 (4.36g, 수율 72%)을 얻었다.Mat-18 (4.36 g, yield 72%) was obtained by carrying out the same procedure as in Synthesis Example 4 except that CORE-3A was used instead of CORE-1.

Exact Mass: 505.14g/molExact Mass: 505.14 g / mol

Elemental Analysis: C, 76.02; H, 3.79; N, 13.85; S, 6.34
Elemental Analysis: C, 76.02; H, 3.79; N, 13.85; S, 6.34

[[ 합성예Synthetic example 19]  19] MatMat -19의 합성-19 Synthesis

Figure 112014039243943-pat00067
Figure 112014039243943-pat00067

CORE-1 대신 CORE-3A를 사용하는 것을 제외하고는 합성예 5와 동일한 과정을 수행하여 목적 화합물인 Mat-19 (5.51g, 수율 70%)을 얻었다.Mat-19 (5.51 g, yield 70%) was obtained by carrying out the same procedure as in Synthesis Example 5, except that CORE-3A was used instead of CORE-1.

Exact Mass: 657.20 g/molExact Mass: 657.20 g / mol

Elemental Analysis: C, 80.34; H, 4.14; N, 10.65; S, 4.87
Elemental Analysis: C, 80.34; H, 4.14; N, 10.65; S, 4.87

[[ 합성예Synthetic example 20]  20] MatMat -20의 합성Synthesis of -20

Figure 112014039243943-pat00068
Figure 112014039243943-pat00068

CORE-1 대신 CORE-3A를 사용하는 것을 제외하고는 합성예 6과 동일한 과정을 수행하여 목적 화합물인 Mat-20 (3.98g, 수율 63%)을 얻었다.Mat-20 (3.98 g, yield 63%) was obtained by carrying out the same procedure as in Synthesis Example 6 except that CORE-3A was used instead of CORE-1.

Exact Mass: 515.15g/molExact Mass: 515.15 g / mol

Elemental Analysis: C, 81.53; H, 4.11; N, 8.15; S, 6.22
Elemental Analysis: C, 81.53; H, 4.11; N, 8.15; S, 6.22

[[ 합성예Synthetic example 21]  21] MatMat -21의 합성Synthesis of -21

Figure 112014039243943-pat00069
Figure 112014039243943-pat00069

CORE-1 대신 CORE-3A를 사용하는 것을 제외하고는 합성예 7과 동일한 과정을 수행하여 목적 화합물인 Mat-21 (3.33g, 수율 65%)을 얻었다.Mat-21 (3.33 g, yield 65%) was obtained by carrying out the same procedure as in Synthesis Example 7, except that CORE-3A was used instead of CORE-1.

Exact Mass: 427.11g/molExact Mass: 427.11 g / mol

Elemental Analysis: C, 78.66; H, 4.01; N, 9.83; S, 7.50
Elemental Analysis: C, 78.66; H, 4.01; N, 9.83; S, 7.50

[[ 합성예Synthetic example 22]  22] MatMat -22의 합성Synthesis of -22

Figure 112014039243943-pat00070
Figure 112014039243943-pat00070

CORE-1 대신 CORE-3B를 사용하는 것을 제외하고는 합성예 1과 동일한 과정을 수행하여 목적 화합물인 Mat-22 (4.33g, 수율 72%)을 얻었다.Mat-22 (4.33 g, yield 72%) was obtained by carrying out the same procedure as in Synthesis Example 1 except that CORE-3B was used instead of CORE-1.

Exact Mass: 502.15g/molExact Mass: 502.15 g / mol

Elemental Analysis: C, 83.64; H, 4.41; N, 5.57; S, 6.38
Elemental Analysis: C, 83.64; H, 4.41; N, 5.57; S, 6.38

[[ 합성예Synthetic example 23]  23] MatMat -23의 합성Synthesis of -23

Figure 112014039243943-pat00071
Figure 112014039243943-pat00071

CORE-1 대신 CORE-3B를 사용하는 것을 제외하고는 합성예 2와 동일한 과정을 수행하여 목적 화합물인 Mat-23 (3.92g, 수율 65%)을 얻었다.Mat-23 (3.92 g, yield 65%) was obtained by carrying out the same procedure as in Synthesis Example 2 except that CORE-3B was used instead of CORE-1.

Exact Mass: 503.15g/molExact Mass: 503.15 g / mol

Elemental Analysis: C, 81.09; H, 4.20; N, 8.34; S, 6.37
Elemental Analysis: C, 81.09; H, 4.20; N, 8.34; S, 6.37

[[ 합성예Synthetic example 24]  24] MatMat -24의 합성Synthesis of -24

Figure 112014039243943-pat00072
Figure 112014039243943-pat00072

CORE-1 대신 CORE-3B를 사용하는 것을 제외하고는 합성예 3과 동일한 과정을 수행하여 목적 화합물인 Mat-24 (4.23g, 수율 70%)을 얻었다.Mat-24 (4.23 g, yield 70%) was obtained by carrying out the same procedure as in Synthesis Example 3 except that CORE-3B was used instead of CORE-1.

Exact Mass: 504.14g/molExact Mass: 504.14 g / mol

Elemental Analysis: C, 78.55; H, 3.99; N, 11.10; S, 6.35
Elemental Analysis: C, 78.55; H, 3.99; N, 11.10; S, 6.35

[[ 합성예Synthetic example 25]  25] MatMat -25의 합성Synthesis of -25

Figure 112014039243943-pat00073
Figure 112014039243943-pat00073

CORE-1 대신 CORE-3B를 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Mat-25 (4.24g, 수율 70%)을 얻었다.Mat-25 (4.24 g, yield 70%) was obtained by carrying out the same procedure as in Synthesis Example 4, except that CORE-3B was used instead of CORE-1.

Exact Mass: 505.14g/molExact Mass: 505.14 g / mol

Elemental Analysis: C, 76.02; H, 3.79; N, 13.85; S, 6.34
Elemental Analysis: C, 76.02; H, 3.79; N, 13.85; S, 6.34

[[ 합성예Synthetic example 26]  26] MatMat -26의 합성Synthesis of -26

Figure 112014039243943-pat00074
Figure 112014039243943-pat00074

CORE-1 대신 CORE-3B를 사용하는 것을 제외하고는 합성예 5와 동일한 과정을 수행하여 목적 화합물인 Mat-26 (5.36g, 수율 68%)을 얻었다.Mat-26 (5.36 g, yield 68%) was obtained by carrying out the same procedure as in Synthesis Example 5, except that CORE-3B was used instead of CORE-1.

Exact Mass: 657.20g/molExact Mass: 657.20 g / mol

Elemental Analysis: C, 80.34; H, 4.14; N, 10.65; S, 4.87
Elemental Analysis: C, 80.34; H, 4.14; N, 10.65; S, 4.87

[[ 합성예Synthetic example 27]  27] MatMat -27의 합성-27

Figure 112014039243943-pat00075
Figure 112014039243943-pat00075

CORE-1 대신 CORE-3B를 사용하는 것을 제외하고는 합성예 6과 동일한 과정을 수행하여 목적 화합물인 Mat-27 (4.02g, 수율 65%)을 얻었다.Mat-27 (4.02 g, yield 65%) was obtained by carrying out the same procedure as in Synthesis Example 6, except that CORE-3B was used instead of CORE-1.

Exact Mass: 515.15g/molExact Mass: 515.15 g / mol

Elemental Analysis: C, 81.53; H, 4.11; N, 8.15; S, 6.22
Elemental Analysis: C, 81.53; H, 4.11; N, 8.15; S, 6.22

[[ 합성예Synthetic example 28]  28] MatMat -28의 합성-28 Synthesis

Figure 112014039243943-pat00076
Figure 112014039243943-pat00076

CORE-1 대신 CORE-3B를 사용하는 것을 제외하고는 합성예 7과 동일한 과정을 수행하여 목적 화합물인 Mat-28 (3.12g, 수율 61%)을 얻었다.Mat-28 (3.12 g, yield 61%) was obtained by carrying out the same procedure as in Synthesis Example 7, except that CORE-3B was used instead of CORE-1.

Exact Mass: 427.11g/molExact Mass: 427.11 g / mol

Elemental Analysis: C, 78.66; H, 4.01; N, 9.83; S, 7.50
Elemental Analysis: C, 78.66; H, 4.01; N, 9.83; S, 7.50

[[ 합성예Synthetic example 29]  29] MatMat -29의 합성Synthesis of -29

Figure 112014039243943-pat00077
Figure 112014039243943-pat00077

CORE-1 대신 CORE-4A를 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Mat-29 (4.24g, 수율 70%)을 얻었다.Mat-29 (4.24 g, yield 70%) was obtained by carrying out the same procedure as in Synthesis Example 4 except that CORE-4A was used instead of CORE-1.

Exact Mass: 489.16g/molExact Mass: 489.16 g / mol

Elemental Analysis: C, 78.51; H, 3.91; N, 14.31; O, 3.27
Elemental Analysis: C, 78.51; H, 3.91; N, 14.31; O, 3.27

[[ 합성예Synthetic example 30]  30] MatMat -30의 합성Synthesis of -30

Figure 112014039243943-pat00078
Figure 112014039243943-pat00078

CORE-1 대신 CORE-4A를 사용하는 것을 제외하고는 합성예 5와 동일한 과정을 수행하여 목적 화합물인 Mat-30 (5.00g, 수율 65%)을 얻었다.Mat-30 (5.00 g, yield 65%) was obtained by carrying out the same procedure as in Synthesis Example 5, except that CORE-4A was used instead of CORE-1.

Exact Mass: 641.22g/molExact Mass: 641.22 g / mol

Elemental Analysis: C, 82.35; H, 4.24; N, 10.91; O, 2.49
Elemental Analysis: C, 82.35; H, 4.24; N, 10.91; O, 2.49

[[ 합성예Synthetic example 31]  31] MatMat -31의 합성Synthesis of -31

Figure 112014039243943-pat00079
Figure 112014039243943-pat00079

CORE-1 대신 CORE-4A를 사용하는 것을 제외하고는 합성예 6과 동일한 과정을 수행하여 목적 화합물인 Mat-31 (3.77g, 수율 63%)을 얻었다.Mat-31 (3.77 g, yield 63%) was obtained by carrying out the same procedure as in Synthesis Example 6 except that CORE-4A was used instead of CORE-1.

Exact Mass: 499.17g/molExact Mass: 499.17 g / mol

Elemental Analysis: C, 84.15; H, 4.24; N, 8.41; O, 3.20
Elemental Analysis: C, 84.15; H, 4.24; N, 8.41; , 3.20

[[ 합성예Synthetic example 32]  32] MatMat -32의 합성Synthesis of -32

Figure 112014039243943-pat00080
Figure 112014039243943-pat00080

CORE-1 대신 CORE-4B를 사용하는 것을 제외하고는 합성예 4와 동일한 과정을 수행하여 목적 화합물인 Mat-32 (4.34g, 수율 74%)을 얻었다.Mat-32 (4.34 g, yield 74%) was obtained by carrying out the same procedure as in Synthesis Example 4 except that CORE-4B was used instead of CORE-1.

Exact Mass: 489.16g/molExact Mass: 489.16 g / mol

Elemental Analysis: C, 78.51; H, 3.91; N, 14.31; O, 3.27
Elemental Analysis: C, 78.51; H, 3.91; N, 14.31; O, 3.27

[[ 합성예Synthetic example 33]  33] MatMat -33의 합성Synthesis of -33

Figure 112014039243943-pat00081
Figure 112014039243943-pat00081

CORE-1 대신 CORE-4B를 사용하는 것을 제외하고는 합성예 5와 동일한 과정을 수행하여 목적 화합물인 Mat-33 (5.38g, 수율 70%)을 얻었다.Mat-33 (5.38 g, yield 70%) was obtained by carrying out the same procedure as in Synthesis Example 5 except that CORE-4B was used instead of CORE-1.

Exact Mass: 641.22g/molExact Mass: 641.22 g / mol

Elemental Analysis: C, 82.35; H, 4.24; N, 10.91; O, 2.49
Elemental Analysis: C, 82.35; H, 4.24; N, 10.91; O, 2.49

[[ 합성예Synthetic example 34]  34] MatMat -34의 합성Synthesis of -34

Figure 112014039243943-pat00082
Figure 112014039243943-pat00082

CORE-1 대신 CORE-4B를 사용하는 것을 제외하고는 합성예 6과 동일한 과정을 수행하여 목적 화합물인 Mat-34 (4.07g, 수율 68%)을 얻었다.Mat-34 (4.07 g, yield 68%) was obtained by carrying out the same procedure as in Synthesis Example 6, except that CORE-4B was used instead of CORE-1.

Exact Mass: 499.17g/molExact Mass: 499.17 g / mol

Elemental Analysis: C, 84.15; H, 4.24; N, 8.41; O, 3.20
Elemental Analysis: C, 84.15; H, 4.24; N, 8.41; , 3.20

[[ 실시예Example 1] 녹색 유기  1] Green organic 전계Field 발광 소자의 제작 Fabrication of light emitting device

합성예 1에서 합성된 화합물 Mat-1을 통상적으로 알려진 방법으로 고순도 승화정제를 한 후, 하기와 같이 녹색 유기 전계 발광 소자를 제조하였다.Compound Mat-1 synthesized in Synthesis Example 1 was subjected to high-purity sublimation purification by a conventionally known method, and then a green organic electroluminescent device was produced as follows.

ITO (Indium tin oxide)가 1500Å 두께로 박막 코팅된 유리 기판을 증류수로 세척하였다. 증류수 세척이 끝나면, 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV OZONE 세정기 (Power sonic 405, 화신테크)로 이송시킨 다음, UV를 이용하여 상기 기판을 5분간 세정하고 진공 증착기로 기판을 이송하였다.Glass substrate coated with ITO (Indium tin oxide) thin film with thickness of 1500 Å was washed with distilled water. After the distilled water was washed, it was ultrasonically washed with a solvent such as isopropyl alcohol, acetone, or methanol, dried, transferred to a UV OZONE cleaner (Power Sonic 405, Hoshin Tech), and then the substrate was cleaned using UV for 5 minutes The substrate was transferred to a vacuum evaporator.

상기와 같이 준비된 ITO 투명 전극 위에, 합성예 1의 화합물 Mat-1를 호스트로 이용하여, m-MTDATA(60 nm) / TCTA(80 nm) / 화합물 Mat-1 + 10 % Ir(ppy)3(300nm) / BCP(10 nm) / Alq3(30 nm) / LiF(1 nm) / Al(200 nm) 순으로 적층하여 녹색 유기 전계 발광 소자를 제작하였다.M-MTDATA (60 nm) / TCTA (80 nm) / Compound Mat-1 + 10% Ir (ppy) 3 (80 nm) was formed on the ITO transparent electrode prepared above using the compound Mat- (300 nm) / BCP (10 nm) / Alq 3 (30 nm) / LiF (1 nm) / Al (200 nm) were stacked in this order to prepare a green organic electroluminescent device.

사용된 m-MTDATA, TCTA, Ir(ppy)3 및 BCP의 구조는 하기와 같다.The structures of m-MTDATA, TCTA, Ir (ppy) 3 and BCP used are as follows.

Figure 112014039243943-pat00083
Figure 112014039243943-pat00083

Figure 112014039243943-pat00084

Figure 112014039243943-pat00084

[[ 실시예Example 2 ~ 34] 2 ~ 34]

실시예 1에서 발광층 형성시 발광 호스트 물질로서 사용된 화합물 Mat-1 대신 합성예 2 내지 34에서 각각 합성된 화합물 Mat-2 내지 Mat-34를 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 녹색 유기 전계 발광 소자를 제조하였다.
Mat-2 to Mat-34 each synthesized in Synthesis Examples 2 to 34 were used instead of the compound Mat-1 used as a light emitting host material in the formation of the light emitting layer in Example 1, Thereby preparing a green organic electroluminescent device.

[[ 비교예Comparative Example 1] One]

실시예 1에서 발광층 형성시 발광 호스트 물질로서 사용된 화합물 Mat-1 대신 CBP를 사용하는 것을 제외하고는, 실시예 1과 동일하게 수행하여 녹색 유기 전계 발광 소자를 제작하였다. 사용된 CBP의 구조는 하기와 같다.A green organic electroluminescent device was fabricated in the same manner as in Example 1, except that CBP was used in place of the compound Mat-1 used as a luminescent host material in the light emitting layer formation in Example 1. The structure of CBP used is as follows.

Figure 112014039243943-pat00085
Figure 112014039243943-pat00085

[[ 실험예Experimental Example ]]

실시예 1 내지 34 및 비교예 1에서 각각 제조된 녹색 유기 전계 발광 소자에 대하여, 전류밀도 10mA/㎠에서의 구동전압, 전류효율 및 발광 피크를 측정하였고, 그 결과를 하기 표 1에 나타내었다.The driving voltage, current efficiency and emission peak at a current density of 10 mA / cm 2 were measured for the green organic electroluminescent devices prepared in Examples 1 to 34 and Comparative Example 1, respectively, and the results are shown in Table 1 below.

샘플Sample 호스트Host 구동 전압
(V)
Driving voltage
(V)
발광 피크
(nm)
Emission peak
(nm)
전류효율
(cd/A)
Current efficiency
(cd / A)
실시예 1Example 1 Mat-1Mat-1 6.506.50 520520 41.041.0 실시예 2Example 2 Mat-2Mat-2 6.616.61 523523 41.241.2 실시예 3Example 3 Mat-3Mat-3 6.606.60 523523 40.840.8 실시예 4Example 4 Mat-4Mat-4 6.586.58 523523 41.141.1 실시예 5Example 5 Mat-5Mat-5 6.706.70 522522 41.841.8 실시예 6Example 6 Mat-6Mat-6 6.706.70 520520 41.341.3 실시예 7Example 7 Mat-7Mat-7 6.516.51 521521 41.441.4 실시예 8Example 8 Mat-8Mat-8 6.666.66 520520 40.940.9 실시예 9Example 9 Mat-9Mat-9 6.506.50 520520 41.041.0 실시예 10Example 10 Mat-10Mat-10 6.456.45 519519 41.541.5 실시예 11Example 11 Mat-11Mat-11 6.606.60 521521 41.341.3 실시예 12Example 12 Mat-12Mat-12 6.556.55 518518 41.141.1 실시예 13Example 13 Mat-13Mat-13 6.706.70 520520 41.241.2 실시예 14Example 14 Mat-14Mat-14 6.506.50 523523 41.341.3 실시예 15Example 15 Mat-15Mat-15 6.646.64 520520 41.141.1 실시예 16Example 16 Mat-16Mat-16 6.606.60 522522 41.541.5 실시예 17Example 17 Mat-17Mat-17 6.626.62 522522 40.940.9 실시예 18Example 18 Mat-18Mat-18 6.706.70 520520 41.441.4 실시예 19Example 19 Mat-19Mat-19 6.646.64 520520 41.041.0 실시예 20Example 20 Mat-20Mat-20 6.506.50 521521 41.641.6 실시예 21Example 21 Mat-21Mat-21 6.706.70 520520 41.541.5 실시예 22Example 22 Mat-22Mat-22 6.636.63 521521 41.041.0 실시예 23Example 23 Mat-23Mat-23 6.706.70 522522 40.940.9 실시예 24Example 24 Mat-24Mat-24 6.556.55 520520 41.841.8 실시예 25Example 25 Mat-25Mat-25 6.656.65 519519 40.940.9 실시예 26Example 26 Mat-26Mat-26 6.606.60 521521 41.141.1 실시예 27Example 27 Mat-27Mat-27 6.656.65 520520 41.541.5 실시예 28Example 28 Mat-28Mat-28 6.526.52 521521 41.441.4 실시예 29Example 29 Mat-29Mat-29 6.796.79 520520 39.839.8 실시예 30Example 30 Mat-30Mat-30 6.756.75 519519 39.539.5 실시예 31Example 31 Mat-31Mat-31 6.706.70 520520 39.039.0 실시예 32Example 32 Mat-32Mat-32 6.816.81 521521 39.239.2 실시예 33Example 33 Mat-33Mat-33 6.756.75 521521 39.539.5 실시예 34Example 34 Mat-34Mat-34 6.806.80 520520 39.739.7 비교예 1Comparative Example 1 CBPCBP 6.936.93 516516 38.238.2

상기 표 1을 살펴보면 본 발명의 화학식 1로 표시되는 화합물(화합물 Mat-1 내지 Mat-34)을 발광층의 호스트 물질로 사용하는 실시예 1 내지 34에서 각각 제조된 녹색 유기 전계 발광 소자는 종래 CBP를 사용하는 비교예 1의 녹색 유기 전계 발광 소자보다 전류효율 및 구동전압 면에서 우수한 성능을 나타내는 것을 확인할 수 있었다.As shown in Table 1, the green organic electroluminescent devices prepared in Examples 1 to 34 using the compounds (Mat-1 to Mat-34) represented by the formula 1 of the present invention as host materials for the light emitting layer, It was confirmed that the green organic electroluminescent device of Comparative Example 1 used had better current efficiency and excellent driving voltage.

Claims (7)

하기 화합물 Mat-8 내지 Mat-21, 및 Mat-29 내지 Mat-31로 이루어진 군에서 선택된 화합물:
Figure 112018106098243-pat00095
Figure 112018106098243-pat00096
Figure 112018106098243-pat00097
Figure 112018106098243-pat00098
Figure 112018106098243-pat00099
Figure 112018106098243-pat00100
Figure 112018106098243-pat00101
Figure 112018106098243-pat00102
Figure 112018106098243-pat00103
Figure 112018106098243-pat00104
Figure 112018106098243-pat00105
Figure 112018106098243-pat00106
Figure 112018106098243-pat00107
Figure 112018106098243-pat00108
Figure 112018106098243-pat00109
Figure 112018106098243-pat00110
Figure 112018106098243-pat00111
.
The following compounds are selected from the group consisting of Mat-8 to Mat-21, and Mat-29 to Mat-31:
Figure 112018106098243-pat00095
Figure 112018106098243-pat00096
Figure 112018106098243-pat00097
Figure 112018106098243-pat00098
Figure 112018106098243-pat00099
Figure 112018106098243-pat00100
Figure 112018106098243-pat00101
Figure 112018106098243-pat00102
Figure 112018106098243-pat00103
Figure 112018106098243-pat00104
Figure 112018106098243-pat00105
Figure 112018106098243-pat00106
Figure 112018106098243-pat00107
Figure 112018106098243-pat00108
Figure 112018106098243-pat00109
Figure 112018106098243-pat00110
Figure 112018106098243-pat00111
.
삭제delete 삭제delete 삭제delete 삭제delete 양극, 음극, 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자에 있어서,
상기 1층 이상의 유기물층 중 적어도 하나는 제1항에 기재된 화합물을 포함하는 유기 전계 발광 소자.
1. An organic electroluminescent device comprising an anode, a cathode, and at least one organic material layer interposed between the anode and the cathode,
Wherein at least one of the one or more organic layers includes the compound according to claim 1.
제6항에 있어서,
상기 화합물을 포함하는 유기물층은 발광층인 유기 전계 발광 소자.
The method according to claim 6,
Wherein the organic compound layer containing the compound is a light emitting layer.
KR1020140049341A 2014-04-24 2014-04-24 Novel compounds and organic electro luminescence device using the same KR101920101B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140049341A KR101920101B1 (en) 2014-04-24 2014-04-24 Novel compounds and organic electro luminescence device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140049341A KR101920101B1 (en) 2014-04-24 2014-04-24 Novel compounds and organic electro luminescence device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR20120048726A Division KR101488560B1 (en) 2012-05-08 2012-05-08 Novel compounds and organic electro luminescence device using the same

Publications (2)

Publication Number Publication Date
KR20140076533A KR20140076533A (en) 2014-06-20
KR101920101B1 true KR101920101B1 (en) 2018-11-19

Family

ID=51128819

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140049341A KR101920101B1 (en) 2014-04-24 2014-04-24 Novel compounds and organic electro luminescence device using the same

Country Status (1)

Country Link
KR (1) KR101920101B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037062A1 (en) 2008-03-17 2011-02-17 Nippon Steel Chemical Co., Ltd. Organic electroluminescent device
WO2011049063A1 (en) 2009-10-23 2011-04-28 新日鐵化学株式会社 Organic electroluminescent element
KR101418146B1 (en) * 2012-03-09 2014-07-09 주식회사 두산 Novel compounds and organic electro luminescence device using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471405B (en) * 2009-03-31 2015-02-01 Nippon Steel & Sumikin Chem Co A phosphorescent element material, and an organic electroluminescent device using the same
KR101472295B1 (en) * 2011-12-19 2014-12-15 단국대학교 산학협력단 Multicyclic aromatic compound and organic light emitting device including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037062A1 (en) 2008-03-17 2011-02-17 Nippon Steel Chemical Co., Ltd. Organic electroluminescent device
WO2011049063A1 (en) 2009-10-23 2011-04-28 新日鐵化学株式会社 Organic electroluminescent element
KR101418146B1 (en) * 2012-03-09 2014-07-09 주식회사 두산 Novel compounds and organic electro luminescence device using the same

Also Published As

Publication number Publication date
KR20140076533A (en) 2014-06-20

Similar Documents

Publication Publication Date Title
KR102611736B1 (en) Organic light-emitting compound and organic electroluminescent device using the same
KR101612164B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR102617944B1 (en) Organic compound and organic electroluminescent device using the same
KR101434732B1 (en) Novel compounds and organic electro luminescence device comprising the same
KR101488560B1 (en) Novel compounds and organic electro luminescence device using the same
KR102508486B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR102610868B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR101601354B1 (en) Novel compounds and organic electro luminescence device using the same
KR101366492B1 (en) Novel compound and organic electroluminescent device comprising the same
KR101506793B1 (en) Organic electro luminescence device
KR101634852B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR101641411B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR101577112B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR102559589B1 (en) Organic compound and organic electroluminescent device including the same
KR101618413B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR101548040B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR101390616B1 (en) Novel compounds and organic electro luminescence device using the same
KR102587380B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR102423186B1 (en) Organic lighting-emitting compound and organic electroluminescent device using the same
KR102508485B1 (en) Organic compounds and organic electro luminescence device comprising the same
KR20170065283A (en) Organic light-emitting compound and organic electroluminescent device using the same
KR20160076355A (en) Organic light-emitting compound and organic electroluminescent device using the same
KR101920101B1 (en) Novel compounds and organic electro luminescence device using the same
KR20150086107A (en) Organic compounds and organic electro luminescence device comprising the same
KR102599598B1 (en) Organic light-emitting compound and organic electroluminescent device using the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant