KR101915296B1 - OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof - Google Patents

OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof Download PDF

Info

Publication number
KR101915296B1
KR101915296B1 KR1020170120205A KR20170120205A KR101915296B1 KR 101915296 B1 KR101915296 B1 KR 101915296B1 KR 1020170120205 A KR1020170120205 A KR 1020170120205A KR 20170120205 A KR20170120205 A KR 20170120205A KR 101915296 B1 KR101915296 B1 KR 101915296B1
Authority
KR
South Korea
Prior art keywords
osphyb
plant
gene
leu
ser
Prior art date
Application number
KR1020170120205A
Other languages
Korean (ko)
Inventor
백남천
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020170120205A priority Critical patent/KR101915296B1/en
Application granted granted Critical
Publication of KR101915296B1 publication Critical patent/KR101915296B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to an OsPHYB gene derived from rice for regulating salt stress resistance of a plant, and a use thereof. In the present invention, it is founded that a mutation of OsPHYB improves the salt stress resistance. In the present invention, the effective use of the OsPHYB gene capable of regulating the salt resistance of the plant through the control of the expression of the OsPHYB gene in the plant. Therefore, the OsPHYB gene can be helpfully used for developing genetically modified (GM) crops such as transgenic plants and biofuel crops, which are resistant to environmental stress suitable for conditional disadvantages. A method for increasing the salt stress resistance of a plant includes the step of: inhibiting the expression of the OsPHYB gene by genetically transforming a plant cell with a recombinant vector including a gene to code OsPHYB protein.

Description

식물의 염 스트레스 내성을 조절하는 벼 유래의 OsPHYB 유전자 및 이의 용도{OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof}The OsPHYB gene from rice and its use for regulating the salt stress tolerance of a plant and its use (OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof)

본 발명은 식물의 염 스트레스 내성을 조절하는 벼 유래의 OsPHYB 유전자 및 이의 용도에 관한 것이다.The present invention relates to a rice-derived OsPHYB gene which regulates salt stress tolerance of a plant and its use.

빛은 종자 발아, 탄소 동화 작용, 줄기 생장, 잎 형태, 개화 시기와 같은 식물의 생장과 발달과정에 영향을 주는 주요 환경적 신호이다(Carvalho et al., 2011 J. Integr. Plant Biol. 53, 920-929). OsPHYB는 적외선(R)과 근적외선(FR)에 반응하는 식물 광 수용체 파이토크롬 패밀리의 하나로, 빛에 반응하는 다양한 유전자들에 의해 조절되는 많은 광 형태학적 사건들에 영향을 받는다(Franklin, K.A., Quail, P.H., 2010. J. Exp. Bot. 61, 11-24). 식물에 노출되는 R/FR 비율은 비생물적 스트레스에 대한 반응 중 파이토크롬이 매개하는 반응에 두드러지는 생화학적 변화를 일으킨다. 예를 들어, 적외선이 풍부한 환경에서 자란 Mesembryanthemum crystallinum는 CAM 주 효소인 PEP-탈탄산효소의 mRNA 레벨을 증가시킴으로써 C3 광합성에서 CAM(크레슐산 대사) 광합성으로 전환한다. 이러한 현상은 염 스트레스 노출되었을 때 관찰된다(McElwain et al., 1992 Plant Physiol. 99, 1261-1264). CBF / DREB1 유전자는 낮은 온도에서 유도되고 저온 스트레스에 반응하는 역할을 하는데, 이는 애기장대에서 낮은 R/FR에 의해 증가한다(Franklin and Whitelam, 2007 Nat. Genet. 39, 1410-1413).Light is a major environmental signal affecting the growth and development of plants such as seed germination, carbon assimilation, stem growth, leaf shape, and flowering time (Carvalho et al., 2011 J. Integr. Plant Biol. 53, 920-929). OsPHYB is a member of the phytochrome family of plant photoreceptors that respond to infrared (R) and near-infrared (FR) radiation and is influenced by many photomorphological events that are regulated by a variety of light-responsive genes (Franklin, KA, Quail , PH, 2010. J. Exp. Bot., 61, 11-24). R / FR ratios exposed to plants cause biochemical changes that are prominent in phytochrome-mediated reactions during responses to abiotic stress. For example, Mesembryanthemum grown in an infrared- crystallinum converts from C3 photosynthesis to CAM (cresylic acid metabolism) photosynthesis by increasing the mRNA level of the CAM parent enzyme PEP-decarboxylase. This phenomenon is observed when salt stress is exposed (McElwain et al., 1992 Plant Physiol. 99, 1261-1264). The CBF / DREB1 gene is induced at low temperatures and responds to cold stress, which is increased by low R / FR in Arabidopsis (Franklin and Whitelam, 2007, Nat. Genet. 39, 1410-1413).

식물은 가뭄, 높은 염 농도, 극심한 온도를 포함한 환경적 스트레스들에 지속적으로 직면한다. 특히, 염 스트레스는 식물 생장과 작물 생산량을 제한하는 주 요인이다(Allakhverdiev et al., 2000 Plant Physiol. 123, 1047-1056). 농업 지대를 포함한 전 세계 육지의 약 7%는 염 또는 나트륨 독성에 영향을 받으며, 벼와 같은 관개 식물의 30% 이상의 생산량이 염 스트레스에 의해 제한된다(Schroeder et al., 2013 Nature 497, 60-66). 높은 염 조건으로 인한 식물 세포에서의 과도한 Na+은 효소에 대한 Na+ 독성을 완화하기 위해 액포에서 압출되거나 구획화되어야 한다(Hasegawa et al., 2000 Annu. Rev. Plant Biol. 51, 463-499). 물관에서 뿌리 내로의 Na+ 유입은 지상부에서 Na+의 축적을 방지한다. 식물 HKT(높은 친화성 K+ 수송체) 수송체는 지상부로의 Na+ 수송을 감소시키고 염 저항성을 강화시키는데 필수적인 역할을 한다(Deinlein et al., 2014 PLoS One 7, e45117). 고등식물의 HKT 수송체는 계통발생학적 분석에 의해 두 개의 주 부류로 나눠진다(Platten et al., 2006 Trends Plant Sci. 11, 372-374). 클래스Ⅰ은 Na+-선택적 수송체로 구성되며, 외떡잎 식물 종과 쌍떡잎 식물 종 둘 다에 존재한다. 외떡잎 식물 종에 존재하는 Na+-K+ 공수송체는 클래스 Ⅱ에 속한다(Deinlein et al., 2014 Trends Plant Sci. 19, 371-379). 클래스Ⅰ에 속하는 OsHKT1;1OsHKT1;3은 Na+만 투과할 수 있다(Garciadeblas et al., 2003 Plant J. 34, 788-801). AtHKT1;1과 이의 벼 오솔로그 OsHKT1;5은 Na+를 상승하는 물관액에서 방출하고 하강하는 체관으로 이동시킴으로써 지상부로의 Na+수송을 감소시킨다(Berthomieu et al., 2003 EMBO J. 22, 2004-2014). OsHKT2;1은 외부 Na+와 K+ 농도에 따라 Na+-K+ 공수송, Na+단일수송, 또는 수송 억제 등 다양한 투과 모드로 존재한다(Horie et al., 2001 Plant J. 27, 129-138). Xenopus laevis 난모세포에서 OsHKT2;4의 이종 발현은 세포 외 Na+ 자극없이 강한 K+ 투과성을 보이며, 이는 다른 클래스 Ⅱ HKT 수송체의 일반적인 기작에 반대된다(Horie et al., 2011 Plant Physiol. 156, 1493-1507). OsHAK21는 K+ 흡수를 촉진하여, 지상부와 뿌리에서의 고농도의 Na+를 막음으로써 염 스트레스에 대한 내성을 가지게 한다(Shen et al., 2015 Plant Cell Environ. 38, 2766-2779).Plants continue to face environmental stresses, including drought, high salt concentrations, and extreme temperatures. In particular, salt stress is a major factor limiting plant growth and crop production (Allakhverdiev et al., 2000 Plant Physiol. 123, 1047-1056). Approximately 7% of the world's land area, including agricultural areas, is affected by salt or sodium toxicity, and over 30% of irrigated plants such as rice are limited by salt stress (Schroeder et al., 2013 Nature 497, 60- 66). Excessive Na + in plant cells due to high salt conditions must be extruded or compartmentalized in the vacuole to mitigate Na + toxicity to the enzyme (Hasegawa et al., 2000 Annu. Rev. Plant Biol. 51, 463-499) . The inflow of Na + into the roots from the water tube prevents accumulation of Na + in the ground. Plant HKT (high affinity K + transporter) transporter plays an essential role in reducing Na + transport to the ground and enhancing salt resistance (Deinlein et al., 2014 PLoS One 7, e45117). The HKT transporter of higher plants is divided into two main classes by phylogenetic analysis (Platten et al., 2006 Trends Plant Sci. 11, 372-374). Class I consists of Na + -selective transporter, and is present in both camphor plant species and dicotyledonous plant species. The Na + -K + cotransporter present in the cotyledon plant species belongs to class II (Deinlein et al., 2014 Trends Plant Sci. 19, 371-379). OsHKT1; 1 and OsHKT1; 3 belonging to Class I can only permeate Na + (Garciadeblas et al., 2003 Plant J. 34, 788-801). AtHKT1; 1 and its rice OSHKT1 ; 5 decrease Na + transport to the ground by releasing Na + from the ascending fluid and moving it to the descending tube (Berthomieu et al., 2003) -2014). OsHKT2; 1 is present in a variety of permeation modes, depending on the external Na + and K + concentrations, including Na + -K + , Na + , or transport inhibition (Horie et al., 2001 Plant J. 27, 138). Xenopus The heterologous expression of OsHKT2; 4 in laevis oocytes exhibits strong K + permeability without extracellular Na + stimulation, which is opposed to the general mechanism of other class II HKT transporters (Horie et al., 2011 Plant Physiol. 156, 1493 -1507). OsHAK21 promotes K + uptake and is resistant to salt stress by blocking high concentrations of Na + at the surface and at the root (Shen et al., 2015 Plant Cell Environ. 38, 2766-2779).

비생물학적 스트레스를 포함한 외부 자극들에 의해 촉진되는 많은 전사인자들은 그들의 타겟 유전자 발현을 조절함으로써 좋지 않은 환경스트레스에 대한 내성을 가지도록 유도한다. 식물-특이적 NAC, MYB, bZIP 그리고 AP2/ERF 전사인자는 염 스트레스 내성을 위한 조절 기작과 관련되어 있다. 이전의 연구는 OsNAP(Chen et al., 2014 . Plant Cell Physiol. 55, 604-619), SNAC1 (Hu et al., 2006 Proc. Natl. Acad. Sci. USA 103, 12987-12992) 그리고 ONAC016 (Sakuraba et al., 2015 Plant Cell Physiol. 56, 2325-2339)의 발현이 고염 스트레스에 의해 유도되며, 이 유전자들이 과발현되는 형질전환 식물체가 염 스트레스 내성 표현형을 가진다는 것을 보여준다. DREBs/CBFs 전사인자 패밀리인 OsDREB2A는 높은 염 스트레스에 의해 유도되고, OsDREB2A의 과발현은 탈수와 염 스트레스에 대한 내성을 향상시킨다(Dubouzet et al., 2003 Plant J. 33, 751-763). OsMYBc는 MYB coiled-coil 형 전사인자이고, 이 유전자의 돌연변이는 염 스트레스에 감수성 표현형을 보이며, OsHKT1;1 프로모터에 직접 붙는다(Wang et al., 2015 Plant Physiol. 168, 1076-1090). OsAP37OsAP59 전사인자는 APETEL2(AP2) 도메인을 가지고 있으며, 이들의 전사 레벨은 가뭄과 고염 상태에 노출됨으로서 증가한다. 프로모터 OsCc1에 의한 OsAP37OsAP59의 과발현은 영양 생장 단계에서 가뭄과 염 스트레스에 대한 내성을 증가시킨다(Oh et al., 2009 Plant Physiol. 150, 1368-1379). OsbZIP23은 벼의 염기성 류신지퍼(bZIP) 전사인자 패밀리의 한 종류이며, 염, 가뭄, 앱시스산(ABA), 폴리에틸렌글리콜(PEG)와 같은 다양한 스트레스 유도체에 의해 유도되고 ABA-의존적인 염과 가뭄 스트레스 내성에 기여한다(Xiang et al., 2008 Plant Physiol. 148, 1938-1952).Many of the transcription factors promoted by external stimuli, including abiotic stress, induce them to tolerate poor environmental stress by modulating their target gene expression. Plant-specific NAC, MYB, bZIP and AP2 / ERF transcription factors are associated with regulatory mechanisms for salt stress tolerance. Previous studies have OsNAP (Chen et al., 2014 . Plant Cell Physiol. 55, 604-619), SNAC1 (Hu et al., 2006 Proc. Natl. Acad. Sci. USA 103, 12987-12992) and ONAC016 ( Sakuraba et al., 2015 Plant Cell Physiol. 56, 2325-2339) is induced by high salt stress and transgenic plants overexpressing these genes have a salt stress tolerance phenotype. DREBs / CBFs transcription factor family of OsDREB2A is induced by high salt stress, over-expression of OsDREB2A improves the resistance to dehydration, and salt stress (Dubouzet et al., 2003 Plant J. 33, 751-763). OsMYBc is a MYB coiled-coil transcription factor. Mutations in this gene show a susceptible phenotype to salt stress and attach directly to the OsHKT1; 1 promoter (Wang et al., 2015 Plant Physiol. 168, 1076-1090). The OsAP37 and OsAP59 transcription factors have the APETEL2 (AP2) domain, and their transcription levels are increased by exposure to drought and high salt status. Overexpression of OsAP37 and OsAP59 by the promoter OsCc1 increases tolerance to drought and salt stress during the nutrient-growth phase (Oh et al., 2009 Plant Physiol. 150, 1368-1379). OsbZIP23 is a member of the basic leucine zipper (bZIP) transcription factor family of rice and is derived from various stress derivatives such as salts, drought, abasic acid (ABA), polyethylene glycol (PEG), ABA- (Xiang et al., 2008 Plant Physiol. 148, 1938-1952).

한편, 한국등록특허 제1669484호에는 '남세균 유래 자색/오렌지색 광호변성 피토크롬 TpR0787 단백질 및 이의 용도'가 개시되어 있으나, 본 발명에서와 같이, '식물의 염 스트레스 내성을 조절하는 벼 유래의 OsPHYB 유전자 및 이의 용도'에 대해서는 밝혀진 바가 전혀 없다.In the meantime, Korean Patent No. 1669484 discloses' Purple / orange-colored phytochrome TpR0787 protein and its use 'derived from S-bacillus. However, as in the present invention,' OsPHYB gene derived from rice, which regulates salt stress tolerance of plants, Has never been disclosed.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명에서는 OsPHYB의 돌연변이가 염 스트레스 내성을 향상시킨다는 것을 확인하였으며, OsPHYB가 염 스트레스를 조절하는 기작을 밝히기 위해, Na+와 K+ 함량을 측정하였고, 대조구와 osphyB 돌연변이체에서 전사인자와 HKT 수송체 유전자를 포함한 염 스트레스-관련 유전자들에 대한 RT-qPCR을 수행하였고, osphyB 돌연변이체에서, K+ 이온 축적이 대조구에 비해 지상부와 뿌리 모두에서 증가하였고, 그 다음 Na+ 흡수율이 감소하는 점을 확인하였다. 또한, osphyB 돌연변이체에서 HKT 수송체 유전자의 발현량이 바뀌어 있다는 사실을 통해 OsPHYB가 염 스트레스 조건에서 Na+/K+ 항상성을 유지하며, Na+와 K+ 이온 분배에 연관하고 있다는 것을 확인하였다. 따라서, 식물체에서 OsPHYB 유전자의 발현 조절을 통해 식물의 염 내성을 조절할 수 있는 효과적인 방법을 제공할 수 있는 점을 확인함으로써, 본 발명을 완성하였다.The present invention has been made in view of the above needs, and it has been confirmed that the mutation of OsPHYB improves the salt stress tolerance. In order to reveal the mechanism of OsPHYB to regulate salt stress, Na + and K + RT-qPCR was performed on the salt stress-related genes including transcription factors and HKT transporter genes in the control and osphyB mutants. In the osphyB mutants, K + ion accumulation was higher in both the root and the root than in the control , And then Na + uptake decreased. Furthermore, the fact that the expression level of the HKT transporter gene was changed in the osphyB mutant revealed that OsPHYB maintains Na + / K + homeostasis under salt stress conditions and is associated with Na + and K + ion distribution. Accordingly, the present invention has been accomplished by confirming that it is possible to provide an effective method for controlling the salt tolerance of a plant through the regulation of OsPHYB gene expression in plants.

상기 과제를 달성하기 위하여, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 벼 유래의 OsPHYB 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물 세포를 형질전환시켜 OsPHYB 유전자의 발현을 조절하는 단계를 포함하는 식물체의 염 스트레스 내성을 조절하는 방법을 제공한다.In order to accomplish the above object, the present invention provides a method for regulating expression of an OsPHYB gene by transforming a plant cell with a recombinant vector comprising a gene encoding a rice-derived OsPHYB protein comprising the amino acid sequence of SEQ ID NO: 2 A method for controlling the salt stress tolerance of a plant is provided.

또한, 본 발명은 상기 방법에 의해 염 스트레스 내성이 조절된 형질전환 식물체의 제조 방법을 제공한다.The present invention also provides a method for producing a transgenic plant in which the salt stress tolerance is regulated by the above method.

또한, 본 발명은 상기 방법에 의해 제조된 염 스트레스 내성이 조절된 형질전환 식물체를 제공한다.In addition, the present invention provides a transgenic plant having the salt stress tolerance regulated by the above method.

또한, 본 발명은 상기 염 스트레스 내성이 조절된 식물체의 형질전환된 종자를 제공한다.In addition, the present invention provides a transformed seed of a plant in which the salt stress tolerance is regulated.

또한, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 벼 유래의 OsPHYB 단백질을 코딩하는 유전자를 유효성분으로 함유하는 식물체의 염 스트레스 내성 조절용 조성물을 제공한다.In addition, the present invention provides a composition for controlling a salt stress tolerance of a plant comprising the gene encoding the OsPHYB protein derived from rice comprising the amino acid sequence of SEQ ID NO: 2 as an active ingredient.

본 발명에서는 OsPHYB의 돌연변이가 염 스트레스 내성을 향상시킨다는 것을 찾아냈으며, 식물체에서 OsPHYB 유전자의 발현 조절을 통해 식물의 염 내성을 조절할 수 있는 효과적인 OsPHYB 유전자의 용도를 새롭게 밝히게 된 것이다. 따라서 OsPHYB 유전자를 이용하면 조건 불리 지역에 적합한 환경 스트레스에 내성을 갖는 형질전환 식물체 및 바이오 연료 작물 등 GM(genetically modified) 작물을 개발하는데 유용하게 활용될 수 있을 것이다.In the present invention, it has been found that the mutation of OsPHYB improves the salt stress tolerance, and the use of the OsPHYB gene, which is effective in regulating the salt tolerance of plants through regulation of OsPHYB gene expression in plants, is newly revealed . Therefore, the use of OsPHYB gene could be useful for genetically modified (GM) crops such as transgenic plants and biofuel crops, which are resistant to environmental stresses suitable for the disadvantaged areas.

도 1은 osphyB 돌연변이체의 염 스트레스 저항성 증가를 확인한 결과이다. (A-D) 3주 동안 자란 후 200 mM NaCl을 10일 동안 처리하고, 이후 물에서 10일간 회복시킨 유묘. 대조구와 osphyB-2 돌연변이체의 OsPhyB 발현 수준(E), 생존율(F), 생중량(G), 이온 누출(H), 총 엽록소 함량(I), 엽록소 a/b 비율(J), 총 카로테노이드 함량(K), 각각 과산화수소와 슈퍼옥사이드 음이온 라디칼을 분석하기 위한 DAB과 NBT 분석(L). 생존율은 회복 이후 측정되었다. 생중량은 NaCl을 처리한 지 7일 후 측정되었다. 이온 누출, 총 엽록소 함량, 카로테노이드는 회복 전 분석되었다. 식물체의 사진은 독립적인 7번의 실험을 대표하며(n=30~50), 모든 실험은 10개체 이상 반복되었다. 통계적 분석을 위해 스튜던트의 t-검정을 이용하였다(** P < 0.01, *** P < 0.001).
도 2는 염 스트레스 조건에서의 osphyB-1osphyB-2의 표현형을 비교한 결과이다. 대조구와 비교한 osphyB-1(A-E) 및 osphyB-2(F-J)의 시간에 따른 표현형. 모든 식물체는 60일간 일반 포장 조건에서 키운 후, 화분으로 이식하고 200 mM NaCl을 처리하였다. 제시된 모든 표현형은 3개체 반복을 대표한다. DAS, 파종 후 일 수. DAT, 처리 후 일수.
도 3은 NaCl 처리에 의한 변화된 OsPhyB의 발현 양상을 나타낸다. 염 조건하의 대조구의 전 조직에서의 OsPHYB 전사체 발현 수준(A). 논 토양에서 3주 자란 유묘(0 DT)와 200 mM NaCl 처리 후 7일 더 키운 유묘(7 DT)에서 샘플을 수집하였다. 벼 유묘에서의 샘플 분할 도식(B). 분할된 각 부분의 상대적 OsPHYB 발현 수준(C). 위 실험은 최소 5 개체에 대한 실험이 독립적으로 3번 반복되었다. 모든 유전자 발현 수준은 RT-qPCR을 통해 측정되었으며, ubiquitin 5( UBQ5)를 통해 표준화되었다. 발현 수준의 평균값은 스튜던트의 t-검정에 의해 통계적으로 분석되었다(*** P<0.001).
도 4는 염 스트레스 조건에서 osphyB 돌연변이체의 Na+와 K+ 항상성을 나타낸다. 지상부 조직(A-C)과 뿌리 조직(D-F) 내 Na+와 K+ 이온 함량 분석. 이온 정량을 위해 수경재배한 유묘를 NaCl 처리 전과 처리 4일 후에 각각 50 개체 샘플링하였다. 이온 함량은 건조 중량(DW)에 의해 표준화되었다. 실험은 독립적으로 3번 이상 반복되었다. 모든 수치는 스튜던트의 t-검정에 의해 통계적으로 분석되었다(** P<0.01, *** P<0.001).
도 5는 osphyB 돌연변이체는 염 조건하에서 낮은 Na+ 순흡수율과 높은 K+ 흡수율을 보인다. 대조구와 osphyB -2 돌연변이체의 Na+ 순흡수율(A)과 K+ 순흡수율(B). 2주간 자란 유묘에 NaCl 용액을 4일간 처리하였다(n=50). 모든 자료는 3번 이상의 독립적인 실험을 통해 얻어졌다. 별표는 스튜던트의 t-검정에 의한 유의미한 차이를 의미한다(*** P<0.001). DWroot는 뿌리의 건조 중량을 의미한다.
도 6은 염 조건에서의 osphyB 돌연변이체의 전사 양상 분석을 나타낸다. 염 처리 후 0, 12, 24 시간에서 염 스트레스에 관여하는 것으로 알려졌거나, 관여할 것으로 추정되는 유전자들의 발현 수준 비율(대조구 대비 osphyB 돌연변이체). RT-qPCR을 통해 관련 유전자의 상대적 발현 비율을 측정한 후, 대조구 대비 osphyB -2의 발현 수준 비율을 계산하였다. 샘플은 120 mM NaCl을 처리하지 않은 유묘와 처리한 유묘의 지상부에서 얻었다(n=5). 이러한 실험은 3번 이상 반복 시행되었다.
FIG. 1 shows the results of confirming an increase in salt stress resistance of the osphyB mutant. (AD) seedlings grown for 3 weeks, treated with 200 mM NaCl for 10 days, and then restored for 10 days in water. Control and osphyB-2 OsPhyB level of expression of the mutant (E), survival rate (F), fresh weight (G), ion leakage (H), the total chlorophyll content (I), chlorophyll a / b ratio (J), the total carotenoid Content (K), DAB and NBT analysis (L) for analyzing hydrogen peroxide and superoxide anion radical, respectively. Survival was measured after recovery. The fresh weight was measured 7 days after treatment with NaCl. Ion leakage, total chlorophyll content, and carotenoid were analyzed before recovery. Photographs of the plants represent 7 independent experiments (n = 30-50), and all experiments were repeated over 10 individuals. Student t - test was used for statistical analysis (** P <0.01, *** P <0.001).
FIG. 2 shows the results of comparing the phenotype of osphyB-1 and osphyB-2 under salt stress conditions. Time-dependent phenotypes of osphyB-1 ( AE) and osphyB-2 ( FJ) compared to the control. All plants were grown for 60 days under general packaging conditions, then transplanted into pots and treated with 200 mM NaCl. All of the phenotypes presented represent 3 repeats. DAS, days after sowing. DAT, days after processing.
Fig. 3 shows the expression pattern of OsPhyB changed by NaCl treatment. Expression levels of OsPHYB transcript in whole tissues of control under salt conditions (A). Samples were collected from seedlings grown at 3 weeks in paddy soil (0 DT) and seedlings grown at 7 DT after 200 mM NaCl treatment for 7 days. Sample Segmentation Scheme in Rice Seedlings (B). Relative OsPHYB expression level (C) of each segmented fraction. In the above experiment, experiments on at least 5 individuals were repeated 3 times independently. All gene expression levels were measured by RT-qPCR and normalized by ubiquitin 5 ( UBQ5 ). The mean value of expression levels was statistically analyzed by Student's t -test (*** P <0.001).
Figure 4 shows Na + and K + homeostasis of osphyB mutants under salt stress conditions. Analysis of Na + and K + ion contents in surface (AC) and root tissue (DF). For the ion determination, 50 seedlings cultivated by hydroponics were sampled before and 4 days after NaCl treatment, respectively. The ion content was normalized by dry weight (DW). The experiment was repeated three or more times independently. All values were statistically analyzed by Student's t -test (** P <0.01, *** P <0.001).
Figure 5 osphyB Mutants show low Na + uptake and high K + uptake under salt conditions. Na + net uptake (A) and K + net uptake (B) of the control and osphyB -2 mutants. The seedlings grown for 2 weeks were treated with NaCl solution for 4 days (n = 50). All data were obtained from more than 3 independent experiments. The asterisk indicates a significant difference by Student's t -test (*** P <0.001). DW root means dry weight of root .
FIG. 6 is a graph showing the change of osphyB Transcript analysis of the mutant is shown. The ratio of expression levels of genes known to be involved in, or likely to be involved in, salt stress at 0, 12, 24 hours after salt treatment ( osphyB mutant versus control). The ratio of expression of osphyB- 2 relative to the control was calculated after measuring the relative expression ratios of the related genes through RT-qPCR. Samples were obtained at the top of seedlings treated with 120 mM NaCl and seedlings treated (n = 5). These experiments were repeated three or more times.

본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 벼 유래의 OsPHYB(Oryza sativa phytochrome B) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물 세포를 형질전환시켜 OsPHYB 유전자의 발현을 조절하는 단계를 포함하는 식물체의 염 스트레스 내성을 조절하는 방법을 제공한다.According to an aspect of the invention, the invention is by transforming the plant cell with a recombinant vector containing the gene encoding the OsPHYB (Oryza sativa phytochrome B) of rice-derived proteins comprising the amino acid sequence of SEQ ID NO: 2 in OsPHYB gene A method for regulating salt stress tolerance of a plant, comprising the step of regulating expression of the plant.

본 발명의 일 구현 예에 따른 방법은 상기 OsPHYB 유전자의 발현을 저해하여 식물체의 염 스트레스 내성을 증가시키는 것을 특징으로 하나, 이에 제한되지 않는다. 상기 OsPHYB 유전자의 발현을 저해하는 방법은 예를 들면, T-DNA 넉아웃을 통해 수행될 수 있으나, 이에 제한되지 않는다.The method according to one embodiment of the present invention is characterized by inhibiting the expression of the OsPHYB gene to increase the salt stress tolerance of the plant, but is not limited thereto. The method of inhibiting the expression of the OsPHYB gene can be performed through, for example, T-DNA knockout, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 OsPHYB 유전자는 바람직하게는 서열번호 1의 염기서열로 이루어질 수 있다. 또한, 상기 염기 서열의 상동체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.In the method according to one embodiment of the present invention, the OsPHYB gene may preferably consist of the nucleotide sequence of SEQ ID NO: 1. In addition, homologues of the nucleotide sequences are included within the scope of the present invention. Specifically, the gene has a nucleotide sequence having a sequence homology of 70% or more, more preferably 80% or more, still more preferably 90% or more, and most preferably 95% or more, with the nucleotide sequence of SEQ ID NO: 1 . &Quot;% of sequence homology to polynucleotides " is ascertained by comparing the comparison region with two optimally aligned sequences, and a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (I. E., A gap) relative to the &lt; / RTI &gt;

용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.The term " recombinant " refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, heterologous peptide or heterologous nucleic acid. The recombinant cell can express a gene or a gene fragment that is not found in the natural form of the cell in one of the sense or antisense form. In addition, the recombinant cell can express a gene found in a cell in its natural state, but the gene has been modified and reintroduced intracellularly by an artificial means.

본 발명에서, 상기 OsPHYB 유전자 서열은 재조합 발현 벡터 내로 삽입될 수 있다. 용어 "재조합 발현 벡터"는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.In the present invention, the OsPHYB gene sequence can be inserted into a recombinant expression vector. The term " recombinant expression vector " means a bacterial plasmid, a phage, a yeast plasmid, a plant cell virus, a mammalian cell virus, or other vector. In principle, any plasmid and vector can be used if it can replicate and stabilize within the host. An important characteristic of the expression vector is that it has a replication origin, a promoter, a marker gene and a translation control element.

OsPHYB 유전자 서열 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보좀 결합 부위 및 전사 터미네이터를 포함할 수 있다.Expression vectors containing OsPHYB gene sequences and appropriate transcription / translation control signals can be constructed by methods known to those skilled in the art. Such methods include in vitro recombinant DNA technology, DNA synthesis techniques, and in vivo recombination techniques. The DNA sequence can be effectively linked to appropriate promoters in the expression vector to drive mRNA synthesis. The expression vector may also include a ribosome binding site and a transcription terminator as a translation initiation site.

본 발명의 재조합 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터 (EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.A preferred example of the recombinant vector of the present invention is a Ti-plasmid vector capable of transferring a so-called T-region to a plant cell when present in a suitable host, such as Agrobacterium tumefaciens. Other types of Ti-plasmid vectors (see EP 0 116 718 B1) are currently used to transfer hybrid DNA sequences to plant cells or protoplasts in which new plants capable of properly inserting hybrid DNA into the plant's genome can be produced have. A particularly preferred form of the Ti-plasmid vector is a so-called binary vector as claimed in EP 0 120 516 B1 and U.S. Patent No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into the plant host include viral vectors such as those that can be derived from double-stranded plant viruses (e. G., CaMV) and single- For example, from non -complete plant virus vectors. The use of such vectors may be particularly advantageous when it is difficult to transform the plant host properly.

발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(phosphinothricin)과 같은 제초제 저항성 유전자, 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자, aadA 유전자 등이 있으나, 이에 한정되는 것은 아니다.The expression vector will preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having a property that can be selected by a chemical method, and includes all genes capable of distinguishing a transformed cell from a non-transformed cell. Examples include herbicide resistance genes such as glyphosate or phosphinothricin, antibiotics such as kanamycin, G418, Bleomycin, hygromycin, chloramphenicol, Resistant gene, aadA gene, and the like, but are not limited thereto.

본 발명의 재조합 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS, 히스톤 프로모터, Clp 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.In the recombinant vector of the present invention, the promoter may be CaMV 35S, actin, ubiquitin, pEMU, MAS, histone promoter, Clp promoter, but is not limited thereto. The term " promoter " refers to the region of DNA upstream from the structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A " plant promoter " is a promoter capable of initiating transcription in plant cells. A " constitutive promoter " is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constructive promoters may be preferred in the present invention because the choice of transformants can be made by various tissues at various stages. Thus, constitutive promoters do not limit selectivity.

본 발명의 재조합 벡터에서, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터, 대장균의 rrnB1/B2 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알려져 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.In the recombinant vector of the present invention, conventional terminators can be used. Examples thereof include nopaline synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, Agrobacterium tumefaciens (Agrobacterium tumefaciens ) Terminator of the Octopine gene, and the rrnB1 / B2 terminator of E. coli, but the present invention is not limited thereto. Regarding the need for terminators, it is generally known that such regions increase the certainty and efficiency of transcription in plant cells. Therefore, the use of a terminator is highly desirable in the context of the present invention.

본 발명의 벡터를 숙주세포 내로 운반하는 방법은, 미세주입법, 칼슘포스페이트 침전법, 전기천공법, 리포좀-매개 형질감염법, DEAE-덱스트란 처리법, 및 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 주입할 수 있다.The method of delivering the vector of the present invention into a host cell can be carried out by introducing the vector into a host cell by microinjection, calcium phosphate precipitation, electroporation, liposome-mediated transfection, DEAE-dextran treatment, Can be injected.

또한, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 벼 유래의 OsPHYB 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계; 및 상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 염 스트레스 내성이 조절된 형질전환 식물체의 제조 방법을 제공한다.The present invention also provides a method for producing a recombinant vector comprising the steps of: transforming a plant cell with a recombinant vector comprising a gene encoding a rice-derived OsPHYB protein comprising the amino acid sequence of SEQ ID NO: 2; And regenerating the plant from the transformed plant cell. The present invention also provides a method for producing a transgenic plant having regulated salt stress tolerance.

본 발명의 일 구현 예에 따른 방법은 상기 OsPHYB 유전자의 발현을 저해하여 식물체의 염 스트레스 내성을 증가시키는 것을 특징으로 하나, 이에 제한되지 않는다. 바람직하게는, 상기 OsPHYB 유전자는 서열번호 1의 염기서열로 이루어질 수 있다.The method according to one embodiment of the present invention is characterized by inhibiting the expression of the OsPHYB gene to increase the salt stress tolerance of the plant, but is not limited thereto. Preferably, the OsPHYB gene may comprise the nucleotide sequence of SEQ ID NO: 1.

본 발명의 방법은 본 발명에 따른 재조합 벡터로 식물 세포를 형질전환하는 단계를 포함하는데, 상기 형질전환은 예를 들면, 아그로박테리움 튜머파시엔스(Agrobacterium tumefiaciens)에 의해 매개될 수 있다. 또한, 본 발명의 방법은 상기 형질전환된 식물 세포로부터 형질전환 식물을 재분화하는 단계를 포함한다. 형질전환 식물 세포로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다.The method of the present invention comprises transforming a plant cell with a recombinant vector according to the invention, said transformation being mediated, for example, by Agrobacterium tumefaciens. In addition, the method of the present invention comprises regenerating a transgenic plant from the transformed plant cell. Any of the methods known in the art can be used for regeneration of transgenic plants from transgenic plant cells.

형질전환된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).Transformed plant cells must be regenerated into whole plants. Techniques for the regeneration of mature plants from callus or protoplast cultures are well known in the art for a number of different species (Handbook of Plant Cell Culture, Vol. 1-5, 1983-1989, Momillan, N. Y.).

또한, 본 발명은 상기 방법에 의해 제조된 염 스트레스에 대한 내성이 조절된 형질전환 식물체 및 이의 형질전환된 종자를 제공한다.In addition, the present invention provides a transgenic plant having resistance to salt stress produced by the above method and a transformed seed thereof.

바람직하게는, 상기 형질전환 식물체 및 이의 형질전환된 종자는 염 스트레스에 대한 내성이 증가된 형질전환 식물체 및 이의 형질전환된 종자이다.Preferably, the transgenic plants and their transformed seeds are transgenic plants with increased resistance to salt stress and their transformed seeds.

바람직하게는, 상기 식물체는 애기장대, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이 호박, 박, 딸기, 대두, 녹두, 강낭콩, 완두 등의 쌍자엽 식물 또는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리, 양파 등의 단자엽 식물이 될 수 있으며, 바람직하게는 단자엽 식물이다. 상기 식물체는 바람직하게는 벼(Oryza sativa)일 수 있으나, 이에 제한되지 않는다.Preferably, the plant is selected from the group consisting of Arabidopsis thaliana, eggplant, tobacco, red pepper, tomato, burdock, chinese broad bean, lettuce, bellflower, spinach, modern sweet potato, celery, carrot, parsley, parsley, cabbage, It may be a dicotyledonous plant such as cucumber, squash, poultry, strawberry, soybean, mung bean, kidney bean or pea or a monocotyledon such as rice, barley, wheat, rye, maize, sorghum, oat, onion, . The plant may be, but is not limited to, rice ( Oryza sativa ).

또한, 본 발명은 서열번호 2의 아미노산 서열로 이루어진 벼 유래의 OsPHYB 단백질을 코딩하는 유전자를 포함하는, 식물체의 염 스트레스 내성 조절용 조성물을 제공한다. 상기 조성물은 유효성분으로 서열번호 2의 아미노산 서열로 이루어진 벼 유래의 OsPHYB 단백질을 코딩하는 유전자를 포함하며, 상기 유전자를 식물체에 형질전환시켜 상기 유전자의 발현을 저해함으로써 식물체의 염 스트레스 내성을 조절할(바람직하게는, 증가시킬) 수 있는 것이다.In addition, the present invention provides a composition for controlling the salt stress tolerance of a plant, which comprises a gene encoding the OsPHYB protein derived from rice comprising the amino acid sequence of SEQ ID NO: 2. The composition comprises a gene encoding an OsPHYB protein derived from rice comprising the amino acid sequence of SEQ ID NO: 2 as an active ingredient, and the salt stress tolerance of the plant is regulated by transforming the gene into a plant to inhibit the expression of the gene Preferably, increased).

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

재료 및 방법Materials and methods

1. 대상 식물체 및 생장 조건1. Target plants and growth conditions

"동진벼" 그리고 osphyB-1, osphyB-2 돌연변이체는 위도 37도의 대한민국 수원에 위치한 포장과 온실, 그리고 위도 37도의 대한민국 서울 또는 안성에 위치한 생장 챔버에서 재배되었다. T-DNA 넉아웃 osphyB-1, osphyB-2 돌연변이체는 대한민국 경희대학교 작물바이오텍연구센터로부터 제공받았다(Jeon et al. 2000 Plant J. 22, 561-570). 두 osphyB 돌연변이체의 유전정보는 이전에 보고되었다(Jeon et al. 2007 Plant Cell Environ. 30, 590-599)."Dongjinbil" and osphyB-1 and osphyB-2 mutants were grown in packaging and greenhouses located in Suwon, South Korea at 37 degrees latitude, and in growth chambers located in 37 degrees latitude Seoul or Anseong, South Korea. T-DNA knockout osphyB-1 and osphyB-2 mutants were obtained from Kyunghee University's Crop Biotechnology Research Center (Jeon et al. 2000 Plant J. 22, 561-570). Genetic information of the two osphyB mutants has been previously reported (Jeon et al. 2007 Plant Cell Environ. 30, 590-599).

2. 염 저항성에 대한 생리학적 분석2. Physiological analysis of salt resistance

유묘에 대한 염 저항성을 측정하기 위해서 3주된 식물체에 200 mM NaCl 처리 후 다시 회복시켰다. 생존율 및 생중량과 같은 생리학적 분석 및 사진 촬영을 위해서 식물체는 온실에서 재배하였다. 생존율은 10일간 회복 후 측정하였고, 생중량은 일주일간 염 처리 후 측정하였다. 발아기 동안의 염 저항성을 알아보기 위해, 150 mM NaCl이 포함된 또는 포함되지 않은 MS 배지에서 발아시켰다. 배지에 파종 전, 껍질이 벗겨진 종자를 2% NaClO에 20분 동안 소독하였고 증류수로 4번 씻겨주었다. 모든 식물체는 14시간 30분 광조건(30℃), 9시간 30분 암조건(24℃) 챔버에서 키웠다.Three - week - old plants were treated with 200 mM NaCl to recover salt resistance. Plants were grown in a greenhouse for physiological analysis and photography such as survival rate and fresh weight. Survival rate was measured after recovery for 10 days, and fresh weight was measured after one week salt treatment. To determine salt resistance during germination, germination was carried out on MS medium with or without 150 mM NaCl. Prior to sowing in the medium, the peeled seeds were sterilized in 2% NaClO for 20 minutes and washed 4 times with distilled water. All plants were grown in a light condition (30 ° C) for 14 hours 30 minutes and in a dark condition (24 ° C) for 9 hours 30 minutes.

3. 광합성 색소 함량 분석3. Photosynthetic pigment content analysis

10일 동안 염 처리된 유묘를 회복하기 전에 광합성 색소 함량을 측정하였다. 전체 엽록소 및 카르테노이드 함량을 분석하기 위해, 80% 아세톤을 사용하여 각각의 잎에서 광합성 색소들을 추출하였다. 광합성 색소 함량은 이전의 보고에 사용된 방법을 이용하여 UV/VIS 분광광도계로 측정하였다(Lichtenthaler, 1987 Methods Enzymol. 148, 350-382).The photosynthetic pigment content was measured prior to recovery of salted seedlings for 10 days. To analyze total chlorophyll and carnenoid contents, photosynthetic pigments were extracted from each leaf using 80% acetone. Photosynthetic pigment content was measured with a UV / VIS spectrophotometer using the method used in previous reports (Lichtenthaler, 1987 Methods Enzymol. 148, 350-382).

4. 이온 누출 분석4. Ion leakage analysis

이온 누출 분석에 사용된 샘플은 10일 동안 염 처리된 유묘를 사용하였으며, 막 누출은 식물체에서 분리한 잎의 전해질(또는 이온) 측정을 통해 분석하였다. 막 누출은 벼에서 분리한 5개의 잎 조각들을 0.4 mM 만니톨 용액에 넣은 후 3시간 동안 상온에서 교반하면서 반응시켰고, 반응 후 첫 번째 전도율은 전도율 측정기(CON6 METER, LaMOTTE, USA)를 이용해 측정하였다. 두 번째 측정은 각 샘플들을 20분 동안 끓인 후 측정하였다. 이온 누출의 비율은 각 샘플에서 전체 전도율과 처리 후 전도율을 백분율로 표시하여 서로 비교 분석하였다. 이 실험은 이전에 수행 및 보고 되었다(Fan et al., 1997 Plant Cell 9, 2183-2196).Samples used for ion leakage analysis were seeded with salt for 10 days and membrane leakage was analyzed by measuring the electrolyte (or ion) of the leaves isolated from the plant. Membrane leakage was measured by placing 5 leaf pieces separated from rice in 0.4 mM mannitol solution and reacting for 3 hours while stirring at room temperature. The first conductivity was measured using a conductivity meter (CON6 METER, LaMOTTE, USA). The second measurement was performed after each sample was boiled for 20 minutes. The ratio of ion leakage was analyzed by comparing the total conductivity and the post-treatment conductivity as a percentage in each sample. This experiment was previously performed and reported (Fan et al., 1997 Plant Cell 9, 2183-2196).

5. 조직학적 활성산소 분석5. Histochemical analysis of reactive oxygen species

과산화수소(H2O2)와 초과산화물 음이온 라디칼(O2 -)에 대한 조직적 검출은 이전에 보고된 방법을 이용하여 수행하였다(Han et al., 2012 Mol. Cells 33, 87-97). 과산화수소와 초과산화물 음이온 라디칼 검출을 위해서 3,3'-다이아미노벤지딘(DAB)과 니트로블루 테트라졸리움 클로라이드(NBT)가 각각 사용되었다. 10일 동안 염 처리한 잎을 DAB와 NBT에 상온에서 혼합 및 교반해 주었다. 95% 에탄올 처리와 함께 끓여줌으로써 엽록소를 제거해주었다.Systematic detection of hydrogen peroxide (H 2 O 2 ) and excess oxide anion radicals (O 2 - ) was performed using previously reported methods (Han et al., 2012 Mol. Cells 33, 87-97). 3,3'-diaminobenzidine (DAB) and nitroblue tetrazolium chloride (NBT) were used for the detection of hydrogen peroxide and excess oxide anion radical, respectively. The leaf treated for 10 days was mixed with DAB and NBT at room temperature and stirred. The chlorophyll was removed by boiling with 95% ethanol treatment.

6. Na+과 K+ 함량 측정6. Measurement of Na + and K + content

수경재배로 2주 된 식물체를 120 mM NaCl을 4일 동안 챔버(14시간 30분 광조건; 30℃/ 9시간 30분 암조건; 24℃)에서 처리하였다. 식물체의 지상부와 뿌리를 면도칼로 자르고 Na+과 K+ 함량을 이전에 보고된 방법으로 측정하였다(Shen et al., 2015 Plant Cell Environ. 38, 2766-2779). 요약하자면, 샘플들을 물로 씻어주고 2일 동안 80℃에서 건조시켰다. 그 다음, 건조된 샘플들의 무게를 재었고 90℃에서 질산을 처리한 후 증류수로 희석하였다. 이온 농도는 유도결합플라즈마 분광분석기(ICP-OES, iCAP 7400 Duo, Thermo Fisher Scientific, Massachusetts, USA)로 측정하였다. 이온 순흡수율 측정은 이전에 보고된 계산법을 이용하였다(Nieves-Cordones et al., 2010 Mol. Plant 3, 326-333).Two-week-old plants with hydroponic cultivation were treated with 120 mM NaCl in a chamber (14 h 30 min light condition; 30 ° C / 9 hr 30 min dark condition; 24 ° C) for 4 days. The root and root of the plant were cut with a razor and the Na + and K + contents were measured by the previously reported method (Shen et al., 2015 Plant Cell Environ. 38, 2766-2779). To summarize, the samples were rinsed with water and dried at 80 ° C for 2 days. The dried samples were then weighed, treated with nitric acid at 90 ° C and then diluted with distilled water. Ion concentration was measured by an inductively coupled plasma spectrometer (ICP-OES, iCAP 7400 Duo, Thermo Fisher Scientific, Massachusetts, USA). The ionic net uptake rate measurements were performed using previously reported calculations (Nieves-Cordones et al., 2010 Mol. Plant 3, 326-333).

7. RNA 추출 및 RT-qPCR 분석7. RNA extraction and RT-qPCR analysis

RT-PCR 및 RT-qPCR 분석은 이전에 보고된 방법을 일부 수정하여 수행하였다(Kwon et al., 2015 Rice 8, 23). 식물체 조직의 총 RNA는 총 RNA 추출 키트(엠지메드, 대한민국)를 이용하여 추출하였다. 제1가닥 cDNA는 M-MLV 역전사효소와 oligo(dT)15 프라이머(프로메가, WI, USA)를 이용하여 2 μg RNA로부터 합성하였다. 전사체의 양은 유전자 특이적 프라이머를 이용하여 측정되었고, Ubiquitin5(Ubq5)(AK061988)로 표준화하였다(표 1). RT-qPCR 분석은 2 μl cDNA, 2 ㎕ 0.5 μM 프라이머, 그리고 10 μl 2X GoTaq qPCR Master Mix(프로메가), 총 20 μl 부피로 수행되었다. qPCR 반응은 LightCycler 480 기계(Roche)를 이용하여 수행하였고, 반응 조건은 다음과 같았다: 94℃ 2분 후, 94℃ 15초, 60℃ 1분 40 싸이클.RT-PCR and RT-qPCR assays were performed with some modification of previously reported methods (Kwon et al., 2015 Rice 8, 23). The total RNA of the plant tissue was extracted using a total RNA extraction kit (MM Med, Korea). First strand cDNA was synthesized from 2 μg RNA using M-MLV reverse transcriptase and oligo (dT) 15 primer (Promega, WI, USA). The amount of transcript was measured using a gene-specific primer and standardized with Ubiquitin 5 (Ubq5) (AK061988) (Table 1). RT-qPCR analysis was performed with 2 μl cDNA, 2 μl 0.5 μM primer, and 10 μl 2X GoTaq qPCR Master Mix (Promega) in a total volume of 20 μl. The qPCR reaction was carried out using a LightCycler 480 machine (Roche). The reaction conditions were as follows: 94 ° C for 2 minutes, 94 ° C for 15 seconds, 60 ° C for 1 minute 40 cycles.

GeneGene Forward(5'→3')(서열번호)Forward (5 '- &gt; 3') (SEQ ID NO: Reverse(5'→3')(서열번호)Reverse (5 '- &gt; 3') (SEQ ID NO: OsPHYB OsPHYB ATGGAACAGACACAATGCTT(3)ATGGAACAGACACAATGCTT (3) AGCATACACCATATCAGCTT(4)AGCATACACCATATCAGCTT (4) OsAP37 OsAP37 TCCGATGTTTTGGTCCTCTG(5)TCCGATGTTTTGGTCCTCTG (5) TCCACGGTTTAGTCCATCTCATC(6)TCCACGGTTTAGTCCATCTCATC (6) OsAP59 OsAP59 GGTGATTTAGCCATCTTGTGCG(7)GGTGATTTAGCCATCTTGTGCG (7) TCGTCACATTTCTTGGAGCAG(8)TCGTCACATTTCTTGGAGCAG (8) OsDREB2A OsDREB2A AGGGCAATGTATGGTCCCACAG(9)AGGGCAATGTATGGTCCCACAG (9) TGCTGATGTGCAGCCAGAGTTG(10)TGCTGATGTGCAGCCAGAGTTG (10) OsSalT OsSalT TGGATTCTTTGGAAGGTCTGG(11)TGGATTCTTTGGAAGGTCTGG (11) TTGACCACTGGGAATCAAGG(12)TTGACCACTGGGAATCAAGG (12) TRAB1 TRAB1 GGATGATCAAGAACAGGGAGT(13)GGATGATCAAGAACAGGGAGT (13) TCAGCCTTCTGTTCCTTCAGT(14)TCAGCCTTCTGTTCCTTCAGT (14) OsbZIP23 OsbZIP23 GGAGCTGAACGATGAACTCCAG(15)GGAGCTGAACGATGAACTCCAG (15) TCGGCTCATTCTCTCTAGAACCTC(16)TCGGCTCATTCTCTCTAGAACCTC (16) ZFP179 ZFP179 AGAGAAGAAGCGGAGAGCAAGG(17)AGAGAAGAAGCGGAGAGCAAGG (17) TGCACGTCTTGCACTCGAACAC(18)TGCACGTCTTGCACTCGAACAC (18) ZFP252 ZFP252 CCCTTGCAAGCTCAAGAAACCC(19)CCCTTGCAAGCTCAAGAAACCC (19) GCCTCCTCCTCACTACTACTTCTC(20)GCCTCCTCCTCACTACTACTTCTC (20) OsLEA3 OsLEA3 TTTCTGACGGGTGTGGGTGATG(21)TTTCTGACGGGTGTGGGTGATG (21) AACACAGACGAGAAACTCTGACG(22)AACACAGACGAGAAACTCTGACG (22) OsTCP19 OsTCP19 TTTTCTCCGTTTTTGTTTGAGTTG(23)TTTTCTCCGTTTTTGTTTGAGTTG (23) CATGAATATATGATGGGTCGAGGAA(24)CATGAATATATGATGGGTCGAGGAA (24) OsMYBc OsMYBc CAAATGAGCTGCACGAACGA(25)CAAATGAGCTGCACGAACGA (25) GAGGGGTCAGTTCTTTCGGA(26)GAGGGGTCAGTTCTTTCGGA (26) OsNAC5 OsNAC5 CGCAAGCTCTCCAAGTCCT(27)CGCAAGCTCTCCAAGTCCT (27) GTCCACCGTGTCGTACCTCT(28)GTCCACCGTGTCGTACCTCT (28) OsNAC6 OsNAC6 AGAAGAACAGCCTCAGGTTGGATG(29)AGAAGAACAGCCTCAGGTTGGATG (29) AGCCCGCCCTTCTTGTTGTAAATC(30)AGCCCGCCCTTCTTGTTGTAAATC (30) OsNAC10 OsNAC10 GCTTGAAGACATCCATGACAA(31)GCTTGAAGACATCCATGACAA (31) AGTCGATGGTGTTGAGGAGAT(32)AGTCGATGGTGTTGAGGAGAT (32) ONAC106 ONAC106 CGTGGCAACACACGAGTC(33)CGTGGCAACACACGAGTC (33) CGTGATGGTGAGCTGATGAC(34)CGTGATGGTGAGCTGATGAC (34) SNAC1 SNAC1 GCCAAGAAGGGATCTCTCAGGTTG(35)GCCAAGAAGGGATCTCTCAGGTTG (35) TCTTCTTGTTGTACAGCCGACAC(36)TCTTCTTGTTGTACAGCCGACAC (36) OsNAP OsNAP AGTTCCGCAACACCTCCA(37)AGTTCCGCAACACCTCCA (37) CTGCTCGTGGTCGGAGAG(38)CTGCTCGTGGTCGGAGAG (38) OsHKT1;1 OsHKT1; 1 TTCACCACTCTTGCGGCTATG(39)TTCACCACTCTTGCGGCTATG (39) TGTTTGTAGCCAGTCTCCCCAG(40)TGTTTGTAGCCAGTCTCCCCAG (40) OsHKT1;3 OsHKT1; 3 ATGTAGAGCCCAAGACGATT(41)ATGTAGAGCCCAAGACGATT (41) CCAACTGAGGAGATGGCTGT(42)CCAACTGAGGAGATGGCTGT (42) OsHKT2;1 OsHKT2; 1 CACAGTCTCCTCGTTTGCGAA(43)CACAGTCTCCTCGTTTGCGAA (43) GCAAGAATCTGGCCGATGAA(44)GCAAGAATCTGGCCGATGAA (44) OsHKT2;3 OsHKT2; 3 GCCCAGAAAGCGACGATAGA(45)GCCCAGAAAGCGACGATAGA (45) AACCCAATGTTCCCGTAGGC(46)AACCCAATGTTCCCGTAGGC (46) OsHKT2;4 OsHKT2; 4 ACTGCTCCCTATGTTTCTGA(47)ACTGCTCCCTATGTTTCTGA (47) ATCCCAGTTCAAGCAGCAGA(48)ATCCCAGTTCAAGCAGCAGA (48) OsHAK21 OsHAK21 GGTGGGACATTTGCACTCTACTC(49)GGTGGGACATTTGCACTCTACTC (49) ATGGCTTCCCGCTACTGCT(50)ATGGCTTCCCGCTACTGCT (50)

실시예 1. Example 1. OsPHYBOsPHYB 유전자의 돌연변이는 벼에서 염 저항성을 증가시킨다. Genetic mutations increase salt resistance in rice.

osphyB 돌연변이체의 내염성을 확인하기 위해, 대조구와 osphyB-2(이하 osphyB) 돌연변이체를 3주간 같은 포트에서 키웠다(도 1A). 생장한 식물체에 7일 및 10일간 200 mM NaCl을 처리하였고(도 1B 및 도 1C), 이후 10일간 증류수에서 배양하였다(도 1D). 위 실험을 통해 osphyB 돌연변이체가 대조구에 비해 염에 대한 더 높은 저항성을 지닌다는 것을 알 수 있었다. 도 1A(염 처리 전)의 잎 샘플에 대한 RT-qPCR 분석을 통해, osphyB 돌연변이체에서 OsPHYB 유전자가 RNA 수준에서 발현이 되지 않음을 확인하였다(도 1E). osphyB 돌연변이체는 대조구에 비해 생존율과 생중량은 더 높고, 이온 누출율은 더 낮았는데(도 1F-H), 이는 osphyB 돌연변이체가 대조구에 비해 염 저항성이 더 높다는 증거로 제시될 수 있다. 더욱이, osphyB 돌연변이체는 대조구에 비해 총 엽록소 함량, 엽록소 a/b 비율, 그리고 총 카로테노이드 함량이 높았는데, 이는 osphyB 돌연변이체가 대조구에 비해 염 스트레스에 덜 민감하다는 것을 시사한다(도 1I-K). 더 나아가, 우리는 염 스트레스 조건 하에서, osphyB 돌연변이체에 비해 대조구의 엽신에서 활성산소(과산화수소와 초과산화물 음이온기)가 축적되어 있음을 확인하였다(도 1L). osphyB 돌연변이체의 염 저항성을 재확인하기 위해, 우리는 일반 논에서 두 달간 생장한 osphyB-1osphyB-2 돌연변이체에 NaCl 용액을 처리하였다. 예상했던 것과 같이, osphyB-1osphyB-2 돌연변이체는 대조구에 비해 염 스트레스에 저항성이 있는 표현형을 보였다(도 2). 이러한 결과들을 통해, 우리는 osphyB 돌연변이체가 토양 조건에서 염에 대해 더 높은 저항성을 가지고 있다고 결론내렸다.To confirm the salt tolerance of the osphyB mutants, the control and osphyB-2 (hereinafter osphyB ) mutants were grown in the same pot for 3 weeks (Fig. IA). The grown plants were treated with 200 mM NaCl for 7 and 10 days (FIG. 1B and FIG. 1C) and then cultured in distilled water for 10 days (FIG. 1D). The above experiment showed that the osphyB mutant had higher resistance to salt than the control. Through RT-qPCR analysis of the leaf sample of Figure 1A (before salt treatment), it was confirmed that the OsPHYB gene was not expressed at the RNA level in the osphyB mutant (Fig. 1E). The osphyB mutants had a higher survival rate, higher live weight and lower ion leakage rate than the control (Fig. 1F-H), suggesting that the osphyB mutant is more resistant to salt than the control. Moreover, the osphyB mutants had higher total chlorophyll content, chlorophyll a / b ratio, and total carotenoid content than the control, suggesting that the osphyB mutants are less sensitive to salt stress than the control (FIG. 1I-K). Furthermore, we found that under salt stress conditions, active oxygen (hydrogen peroxide and excess oxide anion groups) accumulated in the leaves of the control compared to the osphyB mutants (Fig. 1L). To reaffirm the salt resistance of the osphyB mutant, we treated the NaCl solution to the osphyB-1 and osphyB-2 mutants grown in the two-month-old paddy field. As expected, the osphyB-1 and osphyB-2 mutants showed a salt stress resistant phenotype compared to the control (Figure 2). From these results, we conclude that the osphyB mutant has a higher resistance to salt in soil conditions.

실시예Example 2. 염 조건 하에서의  2. Under salt conditions OsPHYBOsPHYB 발현 패턴 Expression pattern

우리는 RT-qPCR 분석기법을 이용하여, 야생형에서의 OsPHYB 유전자 발현 패턴을, 염 조건 하에서 측정해 보았다. OsPHYB 유전자의 RNA 발현량은 정상 조건에서보다 염 조건에서 증가하였다(도 3A). OsPHYB 유전자의 발현 프로파일을 보다 더 상세히 조사하기 위해, 벼 유묘를 엽신(U), 줄기(M), 뿌리(L)로 나누어서, 각각에서의 OsPHYB RNA 발현량을 확인하였다(도 3B). 염 스트레스를 받기 이전에는, 엽신에서의 OsPHYB RNA 발현량이 다른 부분보다 높았던 반면, 일주일간 염을 처리한 후에는 엽신에서의 OsPHYB RNA 발현량이 매우 감소하였다. 그러나 줄기와 뿌리에서 OsPHYB 유전자의 mRNA 발현량은 엽신에서와는 반대로, 염 처리시 증가하였다. 특히, 뿌리에서의 OsPHYB 유전자 발현량은 염 처리시 3배나 증가하였다(도 3C). 이러한 결과들은 OsPHYB 발현량이 염 스트레스에 반응하여 증가함을 나타낸다.We measured the expression pattern of OsPHYB gene in the wild type, using RT-qPCR analysis technique, under salt conditions. The amount of RNA expression of the OsPHYB gene was increased in the salt condition than in the normal condition (Fig. 3A). To further investigate the expression profile of the OsPHYB gene, rice seedlings were divided into leaf (U), stem (M), and root (L) to determine the amount of OsPHYB RNA expression in each of them . Prior to salt stress, the amount of OsPHYB RNA expression was higher in leaves than in other parts, whereas the amount of OsPHYB RNA expression in leaves was significantly decreased after one week of salt treatment. However, the amount of mRNA expression of OsPHYB gene in stem and root was increased in salt treatment as opposed to leaf spot . In particular, the amount of OsPHYB gene expression in roots increased three-fold in the salt treatment (Fig. 3C). These results indicate that the amount of OsPHYB expression increases in response to salt stress.

실시예Example 3. 염  3. Salts 조건 하에서Under the conditions osphyBosphyB 돌연변이체의 나트륨 및 칼륨 함량은  The sodium and potassium contents of the mutant 대조구와Control and 다르다. different.

osphyB 돌연변이체가 염 저항성을 나타내는 기작을 조사하기 위해, 120 mM NaCl 용액에서 4일간 수경재배한 대조구와 osphyB 돌연변이체의 지상부와 뿌리조직에서의 Na+와 K+ 이온의 농도를 분석하였다. 대조실험으로는, 증류수에서 자란 대조구와 osphyB 돌연변이체의 지상부와 뿌리에서 Na+ 농도를 측정하였다. 그 결과, osphyB 돌연변이체의 지상부와 뿌리 Na+ 농도는 대조구와 차이가 없었다. 염 스트레스 조건 하에서는, osphyB 돌연변이체 지상부 조직에서의 Na+ 농도가 대조구에 비해 낮았고, 뿌리 조직에서의 Na+ 농도는 대조구와 비슷하였다(도 4A 및 4D). 반면에, osphyB 돌연변이체의 지상부 및 뿌리 조직에서의 K+ 농도는 대조구보다 높았다(도 4B 및 4E). 식물 세포가 염 스트레스에 대한 저항성을 가지기 위해서는 Na+/ K+ 항상성을 유지하는 것이 중요하기 때문에, 우리는 대조구와 osphyB 돌연변이체의 지상부 및 뿌리 조직에서 Na+/ K+ 비율을 계산해 보았다. osphyB 돌연변이체 지상부 조직에서의 Na+/ K+ 비율은 대조 실험과 염 처리 실험 모두에서 대조구에 비해 낮았다. 그러나, osphyB 돌연변이체 뿌리 조직에서의 Na+/ K+ 비율은 염 스트레스 조건에서, 대조구보다 낮았다(도 4C 및 4F). OsPHYB 유전자의 돌연변이가 Na+과 K+의 흡수에 영향을 미치는지 조사하기 위해, 우리는 염 스트레스 처리 동안, 이온의 순 흡수 속도를 비교해 보았다. 도 5A에서 나타나듯이, 염 조건 하에서 osphyB 돌연변이체의 Na+ 이온의 순 흡수 속도는 대조구보다 낮았다. 이와 반대로, 염 조건 하에서 osphyB 돌연변이체는 대조구보다 K+ 이온 순 흡수 속도가 매우 높음을 확인하였다. 다만 대조구와 osphyB 돌연변이체에서의 K+ 이온 순 흡수 속도는 둘 다 음의 값을 가졌다. 이러한 결과들은 OsPHYB 유전자가 염 조건 하에서 Na+과 K+의 흡수 및 분배에서 역할을 한다는 것을 나타낸다.To investigate the mechanism of osphyB mutants showing salt resistance, we analyzed the concentrations of Na + and K + ions in the root and root tissues of control and osphyB mutants cultivated in 120 mM NaCl solution for 4 days. As a control experiment, Na + concentration was measured at the root and root of the control and osphyB mutants grown in distilled water. As a result, there was no difference between the top and root Na + concentrations of the osphyB mutants in the control. Under salt stress conditions, the Na + concentration in the osphyB mutant body tissue was lower than that in the control, and the Na + concentration in the root tissue was similar to that of the control (Figs. 4A and 4D). On the other hand, K + concentration in the root and root tissues of the osphyB mutants was higher than in the control (Fig. 4B and 4E). Since it is important for plant cells to maintain Na + / K + homeostasis in order to be resistant to salt stress, we have calculated the Na + / K + ratio in the top and root tissues of the control and osphyB mutants. Na + / K + ratios in the osphyB mutant body surface tissues were lower in both the control and salt treatment experiments than the control. However, the Na + / K + ratio in the osphyB mutant root tissue was lower in the salt stress condition than in the control (Fig. 4C and 4F). To investigate whether mutations in the OsPHYB gene affect Na + and K + uptake, we compared the net absorption rates of ions during salt stress treatment. As shown in FIG. 5A, the net absorption rate of Na.sup. + Ions in the osphyB mutants was lower than that of the control under salt conditions. In contrast, osphyB mutants under salt conditions were found to have a higher net K + ion uptake rate than the control. However, the net K + ion uptake rates in the control and osphyB mutants were negative. These results indicate that the OsPHYB gene plays a role in Na + and K + uptake and distribution under salt conditions.

실시예Example 4. 4. OsPHYBOsPHYB 유전자의 돌연변이는 염  The mutation of the gene 조건 하에서Under the conditions 염 스트레스 관련 유전자들과 염 스트레스 관련  Salt stress related genes and salt stress related 수송체Vehicle 유전자들의 발현을 변화시킨다. Changes the expression of genes.

OsPHYB 유전자에 의해 조절 받는 유전자들을 동정하고 osphyB 돌연변이체가 염 저항성을 가지는 분자적 기작을 조사하기 위해, 우리는 RT-qPCR 분석기법을 통해, 선발된 21개 유전자들의 발현 프로파일을 염 스트레스 조건 하에서 측정해 보았다. 선발된 21개 유전자들은 각각의 기능적 역할에 기반하여 다음과 같은 3가지 그룹으로 나눌 수 있었다: (i) 염 스트레스에 관련된 유전자들, (ii) NAC 전사인자들, (iii) 칼륨에 높은 친화력을 가지는 칼륨 수송체에 대한 유전자들. To identify the genes regulated by the OsPHYB gene and to investigate the molecular mechanism of the salt resistance of the osphyB mutants, we used the RT-qPCR assay to measure the expression profiles of the 21 selected genes under salt stress conditions saw. The selected 21 genes were divided into three groups based on their respective functional roles: (i) genes involved in salt stress, (ii) NAC transcription factors, (iii) high affinity for potassium Genes for the Potassium Transporter.

발현 프로파일 분석을 위한 샘플들은 같은 생장 조건에서 자란 대조구와 osphyB 돌연변이체 각각으로부터 얻었다. 도 6에서와 같이, 염 스트레스에 관여되어 있는 전사인자를 암호화하는 유전자들인 OsAP37 , OsAP59 , OsDREB2A , TRAB1 , OsbZIP23, OsTCP19, 그리고 OsMYBcosphyB 돌연변이체에서 그 발현량이 증가하였다(Dubouzet et al., 2003 Plant J. 33, 751-763). 염 저항성에 관여되어 있는 징크 핑거 단백질을 암호화하는 유전자인 ZEP252(Xu et al., 2008 FEBS Lett. 582, 1037-1043)의 RNA 발현량도 osphyB 돌연변이체에서 증가되었다. ABA에 늦게 반응하는 유전자인 OsLEA3(Duan and Cai 2012 PLoS One 7, e45117)와 ABA에 의해 발현량이 증가하고 염 저항성에 관여하는 OsSalT(Claes et al., 1990 Plant Cell 2, 19-27) 유전자도 osphyB 돌연변이체에서 그 발현량이 증가하였다. 비생물적 스트레스에 반응하는 NAC 전사인자로 알려진 OsNAC106, SNAC1, 그리고 OsNAP 역시 osphyB 돌연변이체에서 그 발현량이 증가하였다. 염 스트레스 조건 하에서 ZEP179, OsNAC5, OsNAC6, 그리고 OsNAC10의 발현에는 변화가 없었다. HKT 수송체들은 지상부에서의 Na+ 이온 축적을 감소시킴으로써 염 스트레스에 대한 식물의 저항성을 유도하는데 중요한 역할을 한다. RT-qPCR 분석 결과, 5개의 HKT 수송체들(OsHKT1;1, OsHKT1;3, OsHKT2:3, OsHKT2:4, OsHAK21)의 발현량은 osphyB 돌연변이체에서 증가하였다. 종합하여 보면, 이러한 결과들은 벼에서 phyB의 기능적 결여가 전사인자를 포함한 염 스트레스 관련 유전자들의 발현을 증가시키고, 또한 HKT 수송체를 암호화하는 유전자들의 발현을 증가시킴으로써 Na+/K+ 항상성을 유지시키는데 기여를 함을 의미한다.Samples for expression profile analysis were obtained from each of the control and osphyB mutants that were grown under the same growth conditions. As shown in FIG. 6, OsAP37 , OsAP59 , OsDREB2A , TRAB1 , OsbZIP23, OsTCP19 , and OsMYBc , genes encoding transcription factors involved in salt stress, were increased in osphyB mutants (Dubouzet et al., 2003 Plant J. 33,751-763). RNA expression levels of ZEP252 (Xu et al., 2008 FEBS Lett. 582, 1037-1043), a gene encoding zinc finger proteins involved in salt resistance, were also increased in osphyB mutants. The late genes in response to ABA OsLEA3 (Duan and Cai 2012 PLoS One 7, e45117) and OsSalT to increase the amount of expression is involved in resistance to salt by ABA (Claes et al., 1990 Plant Cell 2, 19-27) genes The expression level of osphyB mutant was increased. The expression levels of OsNAC106, SNAC1 , and OsNAP, also known as NAC transcription factors in response to abiotic stress, were also increased in osphyB mutants. There was no change in expression of ZEP179, OsNAC5, OsNAC6 , and OsNAC10 under salt stress conditions. HKT transporters play an important role in inducing plant resistance to salt stress by reducing Na + ion accumulation at the surface. As a result of RT-qPCR analysis, the expression levels of five HKT transporters ( OsHKT1; 1, OsHKT1; 3, OsHKT2: 3, OsHKT2: 4, OsHAK21 ) were increased in osphyB mutants. Taken together, these results indicate that the functional deficiency of phyB in rice increases the expression of the stress-related genes including transcription factors and also maintains Na + / K + homeostasis by increasing the expression of genes encoding HKT transporter It means to contribute.

<110> Seoul National University R&DB Foundation <120> OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof <130> PN17308 <160> 50 <170> KopatentIn 2.0 <210> 1 <211> 3516 <212> DNA <213> Oryza sativa <400> 1 atggcctcgg gtagccgcgc cacgcccacg cgctccccct cctccgcgcg gcccgcggcg 60 ccgcggcacc agcaccacca ctcgcagtcc tcgggcggga gcacgtcccg cgcgggaggg 120 ggtggcgggg gcgggggagg gggagggggc ggcgcggccg ccgcggagtc ggtgtccaag 180 gccgtggcgc agtacaccct ggacgcgcgc ctccacgccg tgttcgagca gtcgggcgcg 240 tcgggccgca gcttcgacta cacgcagtcg ctgcgtgcgt cgcccacccc gtcctccgag 300 cagcagatcg ccgcctacct ctcccgcatc cagcgcggcg ggcacataca gcccttcggc 360 tgcacgctcg ccgtcgccga cgactcctcc ttccgcctcc tcgcctactc cgagaacacc 420 gccgacctgc tcgacctgtc gccccaccac tccgtcccct cgctcgactc ctccgcggtg 480 cctccccccg tctcgctcgg cgcagacgcg cgcctccttt tcgccccctc gtccgccgtc 540 ctcctcgagc gcgccttcgc cgcgcgcgag atctcgctgc tcaacccgct ctggatccac 600 tccagggtct cctctaaacc cttctacgcc atcctccacc gcatcgatgt cggcgtcgtc 660 atcgacctcg agcccgcccg caccgaggat cctgcactct ccatcgctgg cgcagtccag 720 tctcagaagc tcgcggtccg tgccatctcc cgcctccagg cgcttcccgg cggtgacgtc 780 aagctccttt gcgacaccgt tgttgagtat gttagagagc tcacaggtta tgaccgcgtt 840 atggtgtaca ggttccatga ggatgagcat ggagaagtcg ttgccgagag ccggcgcaat 900 aaccttgagc cctacatcgg gttgcattat cctgctacag atatcccaca ggcatcacgc 960 ttcctgttcc ggcagaaccg tgtgcggatg attgctgatt gccatgctgc gccggtgagg 1020 gtcatccagg atcctgcact aacacagccg ctgtgcttgg ttgggtccac gctgcgttcg 1080 ccgcatggtt gccatgcgca gtatatggcg aacatgggtt ccattgcatc tcttgttatg 1140 gcagtgatca ttagtagtgg tggggatgat gatcataaca tttcacgggg cagcatcccg 1200 tcggcgatga agttgtgggg gttggtagta tgccaccaca catctccacg gtgcatccct 1260 ttcccactac ggtatgcatg cgagttcctc atgcaagcct ttgggttgca gctcaacatg 1320 gagttgcagc ttgcacacca actgtcagag aaacacattc tgcggacgca gacactgctg 1380 tgtgatatgc tactccggga ttcaccaact ggcattgtca cacaaagccc cagcatcatg 1440 gaccttgtga agtgtgatgg tgctgctctg tattaccatg ggaagtacta ccctcttggt 1500 gtcactccca cagaagttca gattaaggac atcatcgagt ggttgactat gtgccatgga 1560 gactccacag ggctcagcac agatagcctt gctgatgcag gctaccctgg tgctgctgca 1620 ctaggagatg cagtgagtgg aatggcggta gcatatatca cgccaagtga ttatttgttt 1680 tggttccggt cacacacagc taaggagata aagtggggtg gtgcaaagca tcatccagag 1740 gataaggatg atggacaacg aatgcatcca cgatcatcgt tcaaggcatt tcttgaagtt 1800 gtgaagagta ggagcttacc atgggagaat gcggagatgg atgcaataca ttccttgcag 1860 ctcatattgc gggactcttt cagagattct gcagagggca caagtaactc aaaagccata 1920 gtgaatggcc aggttcagct tggggagcta gaattacggg gaatagatga gcttagctcg 1980 gtagcaaggg agatggttcg gttgatcgag acagcaacag tacccatctt tgcagtagat 2040 actgatggat gtataaatgg ttggaatgca aaggttgctg agctgacagg cctctctgtt 2100 gaggaagcaa tgggcaaatc attggtaaat gatctcatct tcaaggaatc tgaggaaaca 2160 gtaaacaagc tactctcacg agctttaaga ggtgatgaag acaaaaatgt agagataaag 2220 ttgaagacat tcgggccaga acaatctaaa ggaccaatat tcgttattgt gaatgcttgt 2280 tctagcaggg attacactaa aaatattgtt ggtgtttgtt ttgttggcca agatgtcaca 2340 ggacaaaagg tggtcatgga taaatttatc aacatacaag gggattacaa ggctatcgta 2400 cacaacccta atcctctcat acccccaata tttgcttcag atgagaatac ttgttgttcg 2460 gagtggaaca cagcaatgga aaaactcaca ggatggtcaa gaggggaagt tgttggtaag 2520 cttctggtcg gtgaggtctt tggtaattgt tgtcgactca agggcccaga tgcattaacg 2580 aaattcatga ttgtcctaca caacgctata ggaggacagg attgtgaaaa gttccccttt 2640 tcattttttg acaagaatgg gaaatacgtg caggccttat tgactgcaaa cacgaggagc 2700 agaatggatg gtgaggccat aggagccttc tgtttcttgc agattgcaag tcctgaatta 2760 cagcaagcct ttgagattca gagacaccat gaaaagaagt gttatgcaag gatgaaggaa 2820 ttggcttaca tttaccagga aataaagaat cctctcaacg gtatccgatt tacaaactcg 2880 ttattggaga tgactgatct aaaggatgac cagaggcagt ttcttgaaac cagcactgct 2940 tgtgagaaac agatgtccaa aattgttaag gatgctagcc tccaaagtat tgaggatggc 3000 tctttggtgc ttgagaaagg tgaattttca ctaggtagtg ttatgaatgc tgttgtcagc 3060 caagtgatga tacagttgag agaaagagat ttacaactta ttcgagatat ccctgatgaa 3120 attaaagaag cctcagcata tggtgaccaa tatagaattc aacaagtttt atgtgacttt 3180 ttgctaagca tggtgaggtt tgctccagct gaaaatggct gggtggagat acaggtcaga 3240 ccaaatataa aacaaaattc tgatggaaca gacacaatgc ttttcctctt caggtttgcc 3300 tgtcctggcg aaggccttcc cccagagatt gttcaagaca tgtttagtaa ctcccgctgg 3360 acaacccaag agggtattgg cctaagcata tgcaggaaga tcctaaaatt gatgggtggc 3420 gaggtccaat atataaggga gtcggagcgg agtttcttcc atatcgtact tgagctgccc 3480 cagcctcagc aagcagcaag tagggggaca agctga 3516 <210> 2 <211> 1171 <212> PRT <213> Oryza sativa <400> 2 Met Ala Ser Gly Ser Arg Ala Thr Pro Thr Arg Ser Pro Ser Ser Ala 1 5 10 15 Arg Pro Ala Ala Pro Arg His Gln His His His Ser Gln Ser Ser Gly 20 25 30 Gly Ser Thr Ser Arg Ala Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly 35 40 45 Gly Gly Gly Ala Ala Ala Ala Glu Ser Val Ser Lys Ala Val Ala Gln 50 55 60 Tyr Thr Leu Asp Ala Arg Leu His Ala Val Phe Glu Gln Ser Gly Ala 65 70 75 80 Ser Gly Arg Ser Phe Asp Tyr Thr Gln Ser Leu Arg Ala Ser Pro Thr 85 90 95 Pro Ser Ser Glu Gln Gln Ile Ala Ala Tyr Leu Ser Arg Ile Gln Arg 100 105 110 Gly Gly His Ile Gln Pro Phe Gly Cys Thr Leu Ala Val Ala Asp Asp 115 120 125 Ser Ser Phe Arg Leu Leu Ala Tyr Ser Glu Asn Thr Ala Asp Leu Leu 130 135 140 Asp Leu Ser Pro His His Ser Val Pro Ser Leu Asp Ser Ser Ala Val 145 150 155 160 Pro Pro Pro Val Ser Leu Gly Ala Asp Ala Arg Leu Leu Phe Ala Pro 165 170 175 Ser Ser Ala Val Leu Leu Glu Arg Ala Phe Ala Ala Arg Glu Ile Ser 180 185 190 Leu Leu Asn Pro Leu Trp Ile His Ser Arg Val Ser Ser Lys Pro Phe 195 200 205 Tyr Ala Ile Leu His Arg Ile Asp Val Gly Val Val Ile Asp Leu Glu 210 215 220 Pro Ala Arg Thr Glu Asp Pro Ala Leu Ser Ile Ala Gly Ala Val Gln 225 230 235 240 Ser Gln Lys Leu Ala Val Arg Ala Ile Ser Arg Leu Gln Ala Leu Pro 245 250 255 Gly Gly Asp Val Lys Leu Leu Cys Asp Thr Val Val Glu Tyr Val Arg 260 265 270 Glu Leu Thr Gly Tyr Asp Arg Val Met Val Tyr Arg Phe His Glu Asp 275 280 285 Glu His Gly Glu Val Val Ala Glu Ser Arg Arg Asn Asn Leu Glu Pro 290 295 300 Tyr Ile Gly Leu His Tyr Pro Ala Thr Asp Ile Pro Gln Ala Ser Arg 305 310 315 320 Phe Leu Phe Arg Gln Asn Arg Val Arg Met Ile Ala Asp Cys His Ala 325 330 335 Ala Pro Val Arg Val Ile Gln Asp Pro Ala Leu Thr Gln Pro Leu Cys 340 345 350 Leu Val Gly Ser Thr Leu Arg Ser Pro His Gly Cys His Ala Gln Tyr 355 360 365 Met Ala Asn Met Gly Ser Ile Ala Ser Leu Val Met Ala Val Ile Ile 370 375 380 Ser Ser Gly Gly Asp Asp Asp His Asn Ile Ser Arg Gly Ser Ile Pro 385 390 395 400 Ser Ala Met Lys Leu Trp Gly Leu Val Val Cys His His Thr Ser Pro 405 410 415 Arg Cys Ile Pro Phe Pro Leu Arg Tyr Ala Cys Glu Phe Leu Met Gln 420 425 430 Ala Phe Gly Leu Gln Leu Asn Met Glu Leu Gln Leu Ala His Gln Leu 435 440 445 Ser Glu Lys His Ile Leu Arg Thr Gln Thr Leu Leu Cys Asp Met Leu 450 455 460 Leu Arg Asp Ser Pro Thr Gly Ile Val Thr Gln Ser Pro Ser Ile Met 465 470 475 480 Asp Leu Val Lys Cys Asp Gly Ala Ala Leu Tyr Tyr His Gly Lys Tyr 485 490 495 Tyr Pro Leu Gly Val Thr Pro Thr Glu Val Gln Ile Lys Asp Ile Ile 500 505 510 Glu Trp Leu Thr Met Cys His Gly Asp Ser Thr Gly Leu Ser Thr Asp 515 520 525 Ser Leu Ala Asp Ala Gly Tyr Pro Gly Ala Ala Ala Leu Gly Asp Ala 530 535 540 Val Ser Gly Met Ala Val Ala Tyr Ile Thr Pro Ser Asp Tyr Leu Phe 545 550 555 560 Trp Phe Arg Ser His Thr Ala Lys Glu Ile Lys Trp Gly Gly Ala Lys 565 570 575 His His Pro Glu Asp Lys Asp Asp Gly Gln Arg Met His Pro Arg Ser 580 585 590 Ser Phe Lys Ala Phe Leu Glu Val Val Lys Ser Arg Ser Leu Pro Trp 595 600 605 Glu Asn Ala Glu Met Asp Ala Ile His Ser Leu Gln Leu Ile Leu Arg 610 615 620 Asp Ser Phe Arg Asp Ser Ala Glu Gly Thr Ser Asn Ser Lys Ala Ile 625 630 635 640 Val Asn Gly Gln Val Gln Leu Gly Glu Leu Glu Leu Arg Gly Ile Asp 645 650 655 Glu Leu Ser Ser Val Ala Arg Glu Met Val Arg Leu Ile Glu Thr Ala 660 665 670 Thr Val Pro Ile Phe Ala Val Asp Thr Asp Gly Cys Ile Asn Gly Trp 675 680 685 Asn Ala Lys Val Ala Glu Leu Thr Gly Leu Ser Val Glu Glu Ala Met 690 695 700 Gly Lys Ser Leu Val Asn Asp Leu Ile Phe Lys Glu Ser Glu Glu Thr 705 710 715 720 Val Asn Lys Leu Leu Ser Arg Ala Leu Arg Gly Asp Glu Asp Lys Asn 725 730 735 Val Glu Ile Lys Leu Lys Thr Phe Gly Pro Glu Gln Ser Lys Gly Pro 740 745 750 Ile Phe Val Ile Val Asn Ala Cys Ser Ser Arg Asp Tyr Thr Lys Asn 755 760 765 Ile Val Gly Val Cys Phe Val Gly Gln Asp Val Thr Gly Gln Lys Val 770 775 780 Val Met Asp Lys Phe Ile Asn Ile Gln Gly Asp Tyr Lys Ala Ile Val 785 790 795 800 His Asn Pro Asn Pro Leu Ile Pro Pro Ile Phe Ala Ser Asp Glu Asn 805 810 815 Thr Cys Cys Ser Glu Trp Asn Thr Ala Met Glu Lys Leu Thr Gly Trp 820 825 830 Ser Arg Gly Glu Val Val Gly Lys Leu Leu Val Gly Glu Val Phe Gly 835 840 845 Asn Cys Cys Arg Leu Lys Gly Pro Asp Ala Leu Thr Lys Phe Met Ile 850 855 860 Val Leu His Asn Ala Ile Gly Gly Gln Asp Cys Glu Lys Phe Pro Phe 865 870 875 880 Ser Phe Phe Asp Lys Asn Gly Lys Tyr Val Gln Ala Leu Leu Thr Ala 885 890 895 Asn Thr Arg Ser Arg Met Asp Gly Glu Ala Ile Gly Ala Phe Cys Phe 900 905 910 Leu Gln Ile Ala Ser Pro Glu Leu Gln Gln Ala Phe Glu Ile Gln Arg 915 920 925 His His Glu Lys Lys Cys Tyr Ala Arg Met Lys Glu Leu Ala Tyr Ile 930 935 940 Tyr Gln Glu Ile Lys Asn Pro Leu Asn Gly Ile Arg Phe Thr Asn Ser 945 950 955 960 Leu Leu Glu Met Thr Asp Leu Lys Asp Asp Gln Arg Gln Phe Leu Glu 965 970 975 Thr Ser Thr Ala Cys Glu Lys Gln Met Ser Lys Ile Val Lys Asp Ala 980 985 990 Ser Leu Gln Ser Ile Glu Asp Gly Ser Leu Val Leu Glu Lys Gly Glu 995 1000 1005 Phe Ser Leu Gly Ser Val Met Asn Ala Val Val Ser Gln Val Met Ile 1010 1015 1020 Gln Leu Arg Glu Arg Asp Leu Gln Leu Ile Arg Asp Ile Pro Asp Glu 1025 1030 1035 1040 Ile Lys Glu Ala Ser Ala Tyr Gly Asp Gln Tyr Arg Ile Gln Gln Val 1045 1050 1055 Leu Cys Asp Phe Leu Leu Ser Met Val Arg Phe Ala Pro Ala Glu Asn 1060 1065 1070 Gly Trp Val Glu Ile Gln Val Arg Pro Asn Ile Lys Gln Asn Ser Asp 1075 1080 1085 Gly Thr Asp Thr Met Leu Phe Leu Phe Arg Phe Ala Cys Pro Gly Glu 1090 1095 1100 Gly Leu Pro Pro Glu Ile Val Gln Asp Met Phe Ser Asn Ser Arg Trp 1105 1110 1115 1120 Thr Thr Gln Glu Gly Ile Gly Leu Ser Ile Cys Arg Lys Ile Leu Lys 1125 1130 1135 Leu Met Gly Gly Glu Val Gln Tyr Ile Arg Glu Ser Glu Arg Ser Phe 1140 1145 1150 Phe His Ile Val Leu Glu Leu Pro Gln Pro Gln Gln Ala Ala Ser Arg 1155 1160 1165 Gly Thr Ser 1170 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 atggaacaga cacaatgctt 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 agcatacacc atatcagctt 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tccgatgttt tggtcctctg 20 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tccacggttt agtccatctc atc 23 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ggtgatttag ccatcttgtg cg 22 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 tcgtcacatt tcttggagca g 21 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 agggcaatgt atggtcccac ag 22 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tgctgatgtg cagccagagt tg 22 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tggattcttt ggaaggtctg g 21 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ttgaccactg ggaatcaagg 20 <210> 13 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 ggatgatcaa gaacagggag t 21 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tcagccttct gttccttcag t 21 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ggagctgaac gatgaactcc ag 22 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tcggctcatt ctctctagaa cctc 24 <210> 17 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 agagaagaag cggagagcaa gg 22 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tgcacgtctt gcactcgaac ac 22 <210> 19 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 cccttgcaag ctcaagaaac cc 22 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gcctcctcct cactactact tctc 24 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 tttctgacgg gtgtgggtga tg 22 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 aacacagacg agaaactctg acg 23 <210> 23 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ttttctccgt ttttgtttga gttg 24 <210> 24 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 catgaatata tgatgggtcg aggaa 25 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 caaatgagct gcacgaacga 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaggggtcag ttctttcgga 20 <210> 27 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 cgcaagctct ccaagtcct 19 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gtccaccgtg tcgtacctct 20 <210> 29 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 agaagaacag cctcaggttg gatg 24 <210> 30 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 agcccgccct tcttgttgta aatc 24 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gcttgaagac atccatgaca a 21 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 agtcgatggt gttgaggaga t 21 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cgtggcaaca cacgagtc 18 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 cgtgatggtg agctgatgac 20 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gccaagaagg gatctctcag gttg 24 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 tcttcttgtt gtacagccga cac 23 <210> 37 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 agttccgcaa cacctcca 18 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 ctgctcgtgg tcggagag 18 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 ttcaccactc ttgcggctat g 21 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 tgtttgtagc cagtctcccc ag 22 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 atgtagagcc caagacgatt 20 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 ccaactgagg agatggctgt 20 <210> 43 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 cacagtctcc tcgtttgcga a 21 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 gcaagaatct ggccgatgaa 20 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 gcccagaaag cgacgataga 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 aacccaatgt tcccgtaggc 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 actgctccct atgtttctga 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 atcccagttc aagcagcaga 20 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 ggtgggacat ttgcactcta ctc 23 <210> 50 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 atggcttccc gctactgct 19 <110> Seoul National University R & DB Foundation <120> OsPHYB gene from Oryza sativa for regulating salt stress          resistance of plant and uses thereof <130> PN17308 <160> 50 <170> Kopatentin 2.0 <210> 1 <211> 3516 <212> DNA <213> Oryza sativa <400> 1 atggcctcgg gtagccgcgc cacgcccacg cgctccccct cctccgcgcg gcccgcggcg 60 ccgcggcacc agcaccacca ctcgcagtcc tcgggcggga gcacgtcccg cgcgggaggg 120 ggtggcgggg gcgggggagg gggagggggc ggcgcggccg ccgcggagtc ggtgtccaag 180 gccgtggcgc agtacaccct ggacgcgcgc ctccacgccg tgttcgagca gtcgggcgcg 240 tcgggccgca gcttcgacta cacgcagtcg ctgcgtgcgt cgcccacccc gtcctccgag 300 cagcagatcg ccgcctacct ctcccgcatc cagcgcggcg ggcacataca gcccttcggc 360 tgcacgctcg ccgtcgccga cgactcctcc ttccgcctcc tcgcctactc cgagaacacc 420 gccgacctgc tcgacctgtc gccccaccac tccgtcccct cgctcgactc ctccgcggtg 480 cctccccccg tctcgctcgg cgcagacgcg cgcctccttt tcgccccctc gtccgccgtc 540 ctcctcgagc gcgccttcgc cgcgcgcgag atctcgctgc tcaacccgct ctggatccac 600 tccagggtct cctctaaacc cttctacgcc atcctccacc gcatcgatgt cggcgtcgtc 660 atcgacctcg agcccgcccg caccgaggat cctgcactct ccatcgctgg cgcagtccag 720 tctcagaagc tcgcggtccg tgccatctcc cgcctccagg cgcttcccgg cggtgacgtc 780 aagctccttt gcgacaccgt tgttgagtat gttagagagc tcacaggtta tgaccgcgtt 840 atggtgtaca ggttccatga ggatgagcat ggagaagtcg ttgccgagag ccggcgcaat 900 aaccttgagc cctacatcgg gttgcattat cctgctacag atatcccaca ggcatcacgc 960 ttcctgttcc ggcagaaccg tgtgcggatg attgctgatt gccatgctgc gccggtgagg 1020 gtcatccagg atcctgcact aacacagccg ctgtgcttgg ttgggtccac gctgcgttcg 1080 ccgcatggtt gccatgcgca gtatatggcg aacatgggtt ccattgcatc tcttgttatg 1140 gcagtgatca ttagtagtgg tggggatgat gatcataaca tttcacgggg cagcatcccg 1200 tcggcgatga agttgtgggg gttggtagta tgccaccaca catctccacg gtgcatccct 1260 ttcccactac ggtatgcatg cgagttcctc atgcaagcct ttgggttgca gctcaacatg 1320 gagttgcagc ttgcacacca actgtcagag aaacacattc tgcggacgca gacactgctg 1380 tgtgatatgc tactccggga ttcaccaact ggcattgtca cacaaagccc cagcatcatg 1440 gaccttgtga agtgtgatgg tgctgctctg tattaccatg ggaagtacta ccctcttggt 1500 gtcactccca cagaagttca gattaaggac atcatcgagt ggttgactat gtgccatgga 1560 gactccacag ggctcagcac agatagcctt gctgatgcag gctaccctgg tgctgctgca 1620 ctaggagatg cagtgagtgg aatggcggta gcatatatca cgccaagtga ttatttgttt 1680 tggttccggt cacacacagc taaggagata aagtggggtg gtgcaaagca tcatccagag 1740 gataaggatg atggacaacg aatgcatcca cgatcatcgt tcaaggcatt tcttgaagtt 1800 gtgaagagta ggagcttacc atgggagaat gcggagatgg atgcaataca ttccttgcag 1860 ctcatattgc gggactcttt cagagattct gcagagggca caagtaactc aaaagccata 1920 gtgaatggcc aggttcagct tggggagcta gaattacggg gaatagatga gcttagctcg 1980 gtagcaaggg agatggttcg gttgatcgag acagcaacag tacccatctt tgcagtagat 2040 actgatggat gtataaatgg ttggaatgca aaggttgctg agctgacagg cctctctgtt 2100 gaggaagcaa tgggcaaatc attggtaaat gatctcatct tcaaggaatc tgaggaaaca 2160 gtaaacaagc tactctcacg agctttaaga ggtgatgaag acaaaaatgt agagataaag 2220 ttgaagacat tcgggccaga acaatctaaa ggaccaatat tcgttattgt gaatgcttgt 2280 tctagcaggg attacactaa aaatattgtt ggtgtttgtt ttgttggcca agatgtcaca 2340 ggacaaaagg tggtcatgga taaatttatc aacatacaag gggattacaa ggctatcgta 2400 cacaacccta atcctctcat acccccaata tttgcttcag atgagaatac ttgttgttcg 2460 gagtggaaca cagcaatgga aaaactcaca ggatggtcaa gaggggaagt tgttggtaag 2520 cttctggtcg gtgaggtctt tggtaattgt tgtcgactca agggcccaga tgcattaacg 2580 aaattcatga ttgtcctaca caacgctata ggaggacagg attgtgaaaa gttccccttt 2640 tcattttttg acaagaatgg gaaatacgtg caggccttat tgactgcaaa cacgaggagc 2700 agaatggatg gtgaggccat aggagccttc tgtttcttgc agattgcaag tcctgaatta 2760 cagcaagcct ttgagattca gagacaccat gaaaagaagt gttatgcaag gatgaaggaa 2820 ttggcttaca tttaccagga aataaagaat cctctcaacg gtatccgatt tacaaactcg 2880 ttattggaga tgactgatct aaaggatgac cagaggcagt ttcttgaaac cagcactgct 2940 tgtgagaaac agatgtccaa aattgttaag gatgctagcc tccaaagtat tgaggatggc 3000 tctttggtgc ttgagaaagg tgaattttca ctaggtagtg ttatgaatgc tgttgtcagc 3060 caagtgatga tacagttgag agaaagagat ttacaactta ttcgagatat ccctgatgaa 3120 attaaagaag cctcagcata tggtgaccaa tatagaattc aacaagtttt atgtgacttt 3180 ttgctaagca tggtgaggtt tgctccagct gaaaatggct gggtggagat acaggtcaga 3240 ccaaatataa aacaaaattc tgatggaaca gacacaatgc ttttcctctt caggtttgcc 3300 tgtcctggcg aaggccttcc cccagagatt gttcaagaca tgtttagtaa ctcccgctgg 3360 acaacccaag agggtattgg cctaagcata tgcaggaaga tcctaaaatt gatgggtggc 3420 gaggtccaat atataaggga gtcggagcgg agtttcttcc atatcgtact tgagctgccc 3480 cagcctcagc aagcagcaag tagggggaca agctga 3516 <210> 2 <211> 1171 <212> PRT <213> Oryza sativa <400> 2 Met Ala Ser Gly Ser Arg Ala Thr Pro Thr Arg Ser Ser Ser Ser Ala   1 5 10 15 Arg Pro Ala Ala Pro Arg His Gln His His His Ser Gln Ser Ser Gly              20 25 30 Gly Ser Thr Ser Arg Ala Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly          35 40 45 Gly Gly Gly Ala Ala Ala Glu Ser Val Ser Lys Ala Val Ala Gln      50 55 60 Tyr Thr Leu Asp Ala Arg Leu His Ala Val Phe Glu Gln Ser Gly Ala  65 70 75 80 Ser Gly Arg Ser Phe Asp Tyr Thr Gln Ser Leu Arg Ala Ser Pro Thr                  85 90 95 Pro Ser Ser Glu Gln Gln Ile Ala Ala Tyr Leu Ser Arg Ile Gln Arg             100 105 110 Gly Gly His Ile Gln Pro Phe Gly Cys Thr Leu Ala Val Ala Asp Asp         115 120 125 Ser Ser Phe Arg Leu Leu Ala Tyr Ser Glu Asn Thr Ala Asp Leu Leu     130 135 140 Asp Leu Ser Pro His His Ser Val Ser Ser Leu Asp Ser Ser Ala Val 145 150 155 160 Pro Pro Pro Val Ser Leu Gly Ala Asp Ala Arg Leu Leu Phe Ala Pro                 165 170 175 Ser Ser Ala Val Leu Leu Glu Arg Ala Phe Ala Ala Arg Glu Ile Ser             180 185 190 Leu Leu Asn Pro Leu Trp Ile His Ser Arg Val Ser Ser Lys Pro Phe         195 200 205 Tyr Ala Ile Leu His Arg Ile Asp Val Gly Val Val Ile Asp Leu Glu     210 215 220 Pro Ala Arg Thr Glu Asp Pro Ala Leu Ser Ile Ala Gly Ala Val Gln 225 230 235 240 Ser Gln Lys Leu Ala Val Arg Ala Ile Ser Arg Leu Gln Ala Leu Pro                 245 250 255 Gly Gly Asp Val Lys Leu Leu Cys Asp Thr Val Val Glu Tyr Val Arg             260 265 270 Glu Leu Thr Gly Tyr Asp Arg Val Met Val Tyr Arg Phe His Glu Asp         275 280 285 Glu His Gly Glu Val Val Ala Glu Ser Arg Arg Asn Leu Glu Pro     290 295 300 Tyr Ile Gly Leu His Tyr Pro Ala Thr Asp Ile Pro Gln Ala Ser Arg 305 310 315 320 Phe Leu Phe Arg Gln Asn Arg Val Met Met Ile Ala Asp Cys His Ala                 325 330 335 Ala Pro Val Arg Ile Gln Asp Pro Ala Leu Thr Gln Pro Leu Cys             340 345 350 Leu Val Gly Ser Thr Leu Arg Ser Pro His Gly Cys His Ala Gln Tyr         355 360 365 Met Ala Asn Met Gly Ser Ile Ala Ser Leu Val Met Ala Val Ile Ile     370 375 380 Ser Ser Gly Gly Asp Asp Asp His Asn Ile Ser Arg Gly Ser Ile Pro 385 390 395 400 Ser Ala Met Lys Leu Trp Gly Leu Val Val Cys His His Thr Ser Pro                 405 410 415 Arg Cys Ile Pro Phe Pro Leu Arg Tyr Ala Cys Glu Phe Leu Met Gln             420 425 430 Ala Phe Gly Leu Gln Leu Asn Met Glu Leu Gln Leu Ala His Gln Leu         435 440 445 Ser Glu Lys His Ile Leu Arg Thr Gln Thr Leu Leu Cys Asp Met Leu     450 455 460 Leu Arg Asp Ser Pro Thr Gly Ile Val Thr Gln Ser Pro Ser Ile Met 465 470 475 480 Asp Leu Val Lys Cys Asp Gly Ala Leu Tyr Tyr His Gly Lys Tyr                 485 490 495 Tyr Pro Leu Gly Val Thr Pro Thr Glu Val Gln Ile Lys Asp Ile Ile             500 505 510 Glu Trp Leu Thr Met Cys His Gly Asp Ser Thr Gly Leu Ser Thr Asp         515 520 525 Ser Leu Ala Asp Ala Gly Tyr Pro Gly Ala Ala Ala Leu Gly Asp Ala     530 535 540 Val Ser Gly Met Ala Val Ala Tyr Ile Thr Pro Ser Asp Tyr Leu Phe 545 550 555 560 Trp Phe Arg Ser His Thr Ala Lys Glu Ile Lys Trp Gly Gly Ala Lys                 565 570 575 His His Pro Glu Asp Lys Asp Asp Gly Gln Arg Met Met His Pro Arg Ser             580 585 590 Ser Phe Lys Ala Phe Leu Glu Val Val Lys Ser Arg Ser Leu Pro Trp         595 600 605 Glu Asn Ala Glu Met Asp Ala Ile His Ser Leu Gln Leu Ile Leu Arg     610 615 620 Asp Ser Phe Arg Asp Ser Ala Glu Gly Thr Ser Asn Ser Lys Ala Ile 625 630 635 640 Val Asn Gly Glu Val Glu Leu Gly Glu Leu Glu Leu Arg Gly Ile Asp                 645 650 655 Glu Leu Ser Ser Ala Arg Glu Met Val Arg Leu Ile Glu Thr Ala             660 665 670 Thr Val Ile Phe Ala Val Asp Thr Asp Gly Cys Ile Asn Gly Trp         675 680 685 Asn Ala Lys Val Ala Glu Leu Thr Gly Leu Ser Val Glu Glu Ala Met     690 695 700 Gly Lys Ser Leu Val Asn Asp Leu Ile Phe Lys Glu Ser Glu Glu Thr 705 710 715 720 Val Asn Lys Leu Leu Ser Arg Ala Leu Arg Gly Asp Glu Asp Lys Asn                 725 730 735 Val Glu Ile Lys Leu Lys Thr Phe Gly Pro Glu Gln Ser Lys Gly Pro             740 745 750 Ile Phe Val Ile Val Asn Ala Cys Ser Ser Arg Asp Tyr Thr Lys Asn         755 760 765 Ile Val Gly Val Cys Phe Val Gly Gln Asp Val Thr Gly Gln Lys Val     770 775 780 Val Met Asp Lys Phe Ile Asn Ile Gln Gly Asp Tyr Lys Ala Ile Val 785 790 795 800 His Asn Pro Asn Pro Leu Ile Pro Pro Ile Phe Ala Ser Asp Glu Asn                 805 810 815 Thr Cys Cys Ser Glu Trp Asn Thr Ala Met Glu Lys Leu Thr Gly Trp             820 825 830 Ser Arg Gly Glu Val Val Gly Lys Leu Leu Val Gly Glu Val Phe Gly         835 840 845 Asn Cys Cys Arg Leu Lys Gly Pro Asp Ala Leu Thr Lys Phe Met Ile     850 855 860 Val Leu His Asn Ala Ile Gly Gly Gln Asp Cys Glu Lys Phe Pro Phe 865 870 875 880 Ser Phe Phe Asp Lys Asn Gly Lys Tyr Val Gln Ala Leu Leu Thr Ala                 885 890 895 Asn Thr Arg Ser Arg Met Asp Gly Glu Ala Ile Gly Ala Phe Cys Phe             900 905 910 Leu Gln Ile Ala Ser Pro Glu Leu Gln Gln Ala Phe Glu Ile Gln Arg         915 920 925 His His Glu Lys Lys Cys Tyr Ala Arg Met Lys Glu Leu Ala Tyr Ile     930 935 940 Tyr Gln Glu Ile Lys Asn Pro Leu Asn Gly Ile Arg Phe Thr Asn Ser 945 950 955 960 Leu Leu Glu Met Thr Asp Leu Lys Asp Asp Gln Arg Gln Phe Leu Glu                 965 970 975 Thr Ser Thr Ala Cys Glu Lys Gln Met Ser Lys Ile Val Lys Asp Ala             980 985 990 Ser Leu Gln Ser Ile Glu Asp Gly Ser Leu Val Leu Glu Lys Gly Glu         995 1000 1005 Phe Ser Leu Gly Ser Val Met Asn Ala Val Val Ser Gln Val Met Ile    1010 1015 1020 Gln Leu Arg Glu Arg Asp Leu Gln Leu Ile Arg Asp Ile Pro Asp Glu 1025 1030 1035 1040 Ile Lys Glu Ala Ser Ala Tyr Gly Asp Gln Tyr Arg Ile Gln Gln Val                1045 1050 1055 Leu Cys Asp Phe Leu Leu Ser Met Val Arg Phe Ala Pro Ala Glu Asn            1060 1065 1070 Gly Trp Val Glu Ile Gln Val Arg Pro Asn Ile Lys Gln Asn Ser Asp        1075 1080 1085 Gly Thr Asp Thr Met Leu Phe Leu Phe Arg Phe Ala Cys Pro Gly Glu    1090 1095 1100 Gly Leu Pro Pro Glu Ile Val Gln Asp Met Phe Ser Asn Ser Arg Trp 1105 1110 1115 1120 Thr Gln Glu Gly Ile Gly Leu Ser Ile Cys Arg Lys Ile Leu Lys                1125 1130 1135 Leu Met Gly Gly Glu Val Gln Tyr Ile Arg Glu Ser Glu Arg Ser Phe            1140 1145 1150 Phe His Ile Val Leu Glu Leu Pro Gln Pro Gln Gln Ala Ala Ser Arg        1155 1160 1165 Gly Thr Ser    1170 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 atggaacaga cacaatgctt 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 agcatacacc atatcagctt 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tccgatgttt tggtcctctg 20 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tccacggttt agtccatctc atc 23 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ggtgatttag ccatcttgtg cg 22 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 tcgtcacatt tcttggagca g 21 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 agggcaatgt atggtcccac ag 22 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tgctgatgtg cagccagagt tg 22 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tggattcttt ggaaggtctg g 21 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ttgaccactg ggaatcaagg 20 <210> 13 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 ggatgatcaa gaacagggag t 21 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tcagccttct gttccttcag t 21 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ggagctgaac gatgaactcc ag 22 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tcggctcatt ctctctagaa cctc 24 <210> 17 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 agagaagaag cggagagcaa gg 22 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tgcacgtctt gcactcgaac ac 22 <210> 19 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 cccttgcaag ctcaagaaac cc 22 <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gcctcctcct cactactact tctc 24 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 tttctgacgg gtgtgggtga tg 22 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 aacacagacg agaaactctg acg 23 <210> 23 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 ttttctccgt ttttgtttga gttg 24 <210> 24 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 catgaatata tgatgggtcg aggaa 25 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 caaatgagct gcacgaacga 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaggggtcag ttctttcgga 20 <210> 27 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 cgcaagctct ccaagtcct 19 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gtccaccgtg tcgtacctct 20 <210> 29 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 agaagaacag cctcaggttg gatg 24 <210> 30 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 agcccgccct tcttgttgta aatc 24 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gcttgaagac atccatgaca a 21 <210> 32 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 agtcgatggt gttgaggaga t 21 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cgtggcaaca cacgagtc 18 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 cgtgatggtg agctgatgac 20 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gccaagaagg gatctctcag gttg 24 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 tcttcttgtt gtacagccga cac 23 <210> 37 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 agttccgcaa cacctcca 18 <210> 38 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 ctgctcgtgg tcggagag 18 <210> 39 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 ttcaccactc ttgcggctat g 21 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 tgtttgtagc cagtctcccc ag 22 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 atgtagagcc caagacgatt 20 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 ccaactgagg agatggctgt 20 <210> 43 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 cacagtctcc tcgtttgcga a 21 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 gcaagaatct ggccgatgaa 20 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 gcccagaaag cgacgataga 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 aacccaatgt tcccgtaggc 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 actgctccct atgtttctga 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 atcccagttc aagcagcaga 20 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 ggtgggacat ttgcactcta ctc 23 <210> 50 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 atggcttccc gctactgct 19

Claims (6)

서열번호 2의 아미노산 서열로 이루어진 벼 유래의 OsPHYB(Oryza sativa phytochrome B) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물 세포를 형질전환시켜 OsPHYB 유전자의 발현을 저해하는 단계를 포함하는 식물체의 염 스트레스 내성을 증가시키는 방법.Comprising the step of transforming a plant cell with a recombinant vector comprising a gene encoding a rice-derived OsPHYB ( Oryza sativa phytochrome B) protein consisting of the amino acid sequence of SEQ ID NO: 2 to inhibit the expression of the OsPHYB gene. Methods of increasing tolerance. 삭제delete 서열번호 2의 아미노산 서열로 이루어진 벼 유래의 OsPHYB 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환시켜 OsPHYB 단백질을 코딩하는 유전자의 발현을 저해하는 단계; 및
상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 염 스트레스 내성이 증가된 형질전환 식물체의 제조 방법.
A step of transforming a plant cell with a recombinant vector comprising a gene encoding an OsPHYB protein derived from rice and comprising the amino acid sequence of SEQ ID NO: 2 to inhibit the expression of a gene encoding OsPHYB protein; And
And regenerating the plant from the transformed plant cell.
제3항의 방법에 의해 제조된 염 스트레스 내성이 증가된 형질전환 식물체. A transformed plant having increased salt stress tolerance produced by the method of claim 3. 제4항의 염 스트레스 내성이 증가된 식물체의 형질전환된 종자.The transformed seed of a plant of claim 4 having increased salt stress tolerance. 서열번호 2의 아미노산 서열로 이루어진 벼 유래의 OsPHYB 단백질을 코딩하는 유전자를 유효성분으로 함유하는 식물체의 염 스트레스 내성 증가용 조성물로서,
상기 OsPHYB 단백질을 코딩하는 유전자의 발현을 저해함으로써 식물체의 염 스트레스를 증가시키는 것을 특징으로 하는 조성물.
A composition for increasing the salt stress tolerance of a plant comprising the gene encoding the OsPHYB protein derived from rice comprising the amino acid sequence of SEQ ID NO: 2 as an active ingredient,
Wherein the expression of the gene encoding the OsPHYB protein is inhibited to thereby increase the salt stress of the plant.
KR1020170120205A 2017-09-19 2017-09-19 OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof KR101915296B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170120205A KR101915296B1 (en) 2017-09-19 2017-09-19 OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170120205A KR101915296B1 (en) 2017-09-19 2017-09-19 OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof

Publications (1)

Publication Number Publication Date
KR101915296B1 true KR101915296B1 (en) 2018-11-05

Family

ID=64329057

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170120205A KR101915296B1 (en) 2017-09-19 2017-09-19 OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof

Country Status (1)

Country Link
KR (1) KR101915296B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046970B2 (en) 2019-07-19 2021-06-29 Seoul National University R&Db Foundation DIAT gene derived from Oryza sativa controlling drought stress tolerance of a plant and uses thereof
KR20220053096A (en) 2020-10-21 2022-04-29 대한민국(농촌진흥청장) DP1608 gene enhancing salt tolerance or pre harvest sprouting tolerance derived from Oryza sativa and uses thereof
CN115044591A (en) * 2022-06-23 2022-09-13 中量大黄山高质量发展研究院有限公司 Application of rice OsBRP1 gene in regulation and control of plant salt stress capability and sodium element accumulation capability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Integrative Plant Biology. Vol. 53, No. 12, 페이지 920-929(2011.11.01.)*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11046970B2 (en) 2019-07-19 2021-06-29 Seoul National University R&Db Foundation DIAT gene derived from Oryza sativa controlling drought stress tolerance of a plant and uses thereof
KR20220053096A (en) 2020-10-21 2022-04-29 대한민국(농촌진흥청장) DP1608 gene enhancing salt tolerance or pre harvest sprouting tolerance derived from Oryza sativa and uses thereof
CN115044591A (en) * 2022-06-23 2022-09-13 中量大黄山高质量发展研究院有限公司 Application of rice OsBRP1 gene in regulation and control of plant salt stress capability and sodium element accumulation capability

Similar Documents

Publication Publication Date Title
CA2516645C (en) Abiotic stress responsive plant transcription factor polynucleotides and polypeptides and use thereof for generating transgenic plants
Long-Tang et al. Constitutive expression of CmSKOR, an outward K+ channel gene from melon, in Arabidopsis thaliana involved in saline tolerance
US10407689B2 (en) Mutation of the EAR motif of class II HD-ZIP polypeptides
BRPI0708660A2 (en) methods for improving the performance of a plant grown under conditions of high population density, isolated polynucleotide, expression cassette, plant, seed, method for modulating expression of a polynucleotide of interest in a plant
EP2976941A1 (en) Plants with improved nitrogen utilization and stress tolerance
KR101915296B1 (en) OsPHYB gene from Oryza sativa for regulating salt stress resistance of plant and uses thereof
KR101144624B1 (en) OsMPT gene modifying plant architecture and uses theoreof
Kwon et al. Functional deficiency of phytochrome B improves salt tolerance in rice
CN112125966A (en) Application of stress-resistance-related protein bHLH85 in regulation and control of plant stress resistance
WO2012139532A1 (en) Use of oxhs4 gene in controlling rice drought resistance
US20140373193A1 (en) Use of OsPP18 Gene in Controlling Rice Drought Resistance
CN116410279B (en) Protein related to regulation of rice abiotic stress tolerance, related biological material and application thereof
KR20140040372A (en) Method for increasing stilbene content and changing flower color in plant using romt and sts gene
KR101710806B1 (en) Method for improving the resistance to the abiotic stresses using CaAINR1 in plants
KR101376522B1 (en) OsMLD gene increasing tolerance to salt stress from rice and uses thereof
KR101326017B1 (en) Salt-resistant SyGT gene from Synechocystis and uses thereof
KR101664206B1 (en) OsWOX13 gene from rice for increasing environmental stress resistance of plant and uses thereof
KR101841606B1 (en) OsLCT1 gene from Oryza sativa increasing bacterial blight resistance of plant and uses thereof
KR102032494B1 (en) A novel OsZF1M gene for enhancing salt and drought resistance and uses thereof
US20110016579A1 (en) Gene of transporter selective to mugineic acid-iron complex
KR101785095B1 (en) Transgenic plant overexpressing OsGRX1 gene with resistance for bacterial blight and method for producing the same
CN114507672B (en) Application of OsSLT1 gene in controlling salt tolerance of rice
KR20140050218A (en) Method for producing transgenic plant with increased resistance to various environmental stresses using brrzfp1 gene and the plant thereof
KR101326019B1 (en) Salt-resistant SyDBSP gene from Synechocystis and uses thereof
KR101412555B1 (en) Method for producing transgenic plant with increased resistance to environmental stresses using OsCYP19-4 gene

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant