KR101906858B1 - Flood forecast method using numerical model and perimeter interpolation - Google Patents

Flood forecast method using numerical model and perimeter interpolation Download PDF

Info

Publication number
KR101906858B1
KR101906858B1 KR1020170082057A KR20170082057A KR101906858B1 KR 101906858 B1 KR101906858 B1 KR 101906858B1 KR 1020170082057 A KR1020170082057 A KR 1020170082057A KR 20170082057 A KR20170082057 A KR 20170082057A KR 101906858 B1 KR101906858 B1 KR 101906858B1
Authority
KR
South Korea
Prior art keywords
flood
line
water
interpolation
numerical model
Prior art date
Application number
KR1020170082057A
Other languages
Korean (ko)
Inventor
이승오
유형주
Original Assignee
홍익대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍익대학교 산학협력단 filed Critical 홍익대학교 산학협력단
Priority to KR1020170082057A priority Critical patent/KR101906858B1/en
Application granted granted Critical
Publication of KR101906858B1 publication Critical patent/KR101906858B1/en

Links

Images

Classifications

    • G06F17/5009
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • G06F17/30241
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)

Abstract

The present invention relates to a river flood forecast method based on a numerical model. The river flood forecast method can rapidly and accurately forecast a flood-prone area corresponding to actual flood volume without operation of a numerical model by setting a destruction point (10) assuming breaking of a river embankment, forecasting the flood-prone zone around the destruction point (10) by stimulating a flood situation with the numerical model, repeatedly carrying out the forecast as flood quantity increases and decreases to set the flood-prone zone for each flood quantity, and interpolating a flooding line (20), which is a preset flooding zone boundary, when an actual flood occurs. According to the present invention, the river flood forecast method can quickly and accurately forecast the flood-prone zone formed due to river flooding, thereby reducing human and material damage due to river flooding.

Description

수치모형 및 침수선 보간을 이용한 하천 범람 예측 방법{FLOOD FORECAST METHOD USING NUMERICAL MODEL AND PERIMETER INTERPOLATION}FIELD FORECAST METHOD USING NUMERICAL MODEL AND PERIMETER INTERPOLATION [0002]

본 발명은 수치모형 기반 하천 범람 예측에 관한 것으로, 하천 제방 붕괴를 상정한 파괴점(10)을 설정하고, 수치모형으로 범람 상황을 모의하여 파괴점(10) 주변 제내지에 침수구역을 예측하되, 이를 홍수량을 증감하면서 반복 수행하여, 홍수량별 침수구역을 설정한 후, 실제 홍수 발생시 기 설정된 침수구역 경계선인 침수선(20)을 보간함으로써, 수치모형의 가동 없이도 실제 발생 홍수량에 대응되는 침수구역을 신속하게 예측할 수 있도록 한 것이다.The present invention relates to a numerical model-based river flood forecasting, wherein a destruction point (10) assuming a river bank depression is set, and a flood area is simulated with a numerical model to predict a flood zone around the destruction point (10) , It is repeatedly performed with increasing or decreasing the flood amount to set the flood area by the flood amount and then interpolate the flood line 20 which is the boundary line of the flood area at the time of actual flood, So that it can be predicted quickly.

수치모형을 이용하여 하천 범람에 따른 침수구역을 예측하는 다양한 시도가 이루어져 왔으며, 관련 종래기술로는 공개특허 제2009-16866호 등을 들 수 있다.Numerical models have been used to predict inundation zones due to river flooding, and the related art is disclosed in Japanese Patent Laid-Open No. 2009-16866.

공개특허 제2009-16866호를 비롯한 종래의 수치모형 기반 하천 범람 예측 방법은 홍수 발생시, 실측 또는 예측된 홍수량과 지형정보 등을 수치모형에 입력하여, 범람 상황을 모의하는 것으로, 수치모형을 통한 침수구역의 산출에 장시간이 소요될 수 밖에 없는 바, 실제 상황하에서 신속한 예측 및 경보가 불가능한 심각한 문제점을 가진다.The conventional numerical model-based river flood prediction method including Patent Publication No. 2009-16866 is to simulate the flooding situation by inputting the measured flood volume and the predicted flood volume and the terrain information into the numerical model, It takes a long time to calculate the area, and there is a serious problem that it is impossible to predict and warn under real situations.

본 발명은 전술한 문제점을 감안하여 창안된 것으로, 컴퓨터 및 수치모형을 이용하여 하천 범람을 예측하는 방법에 있어서, 컴퓨터에 탑재된 수치모형에 파괴점(10) 및 지형정보가 입력되는 지형입력단계(S10)와, 컴퓨터에 탑재된 수치모형에 계산홍수량이 입력되어 수치모형이 침수선(20)을 산출하되, 계산홍수량을 변동하면서 침수선(20) 산출을 반복하는 침수선산출단계(S20)와, 컴퓨터에 탑재된 예측프로그램이 실제홍수량을 초과하는 최소 계산홍수량과 실제홍수량 미만의 최대 계산홍수량을 각각 대홍수량 및 소홍수량으로 설정하고, 대홍수량 및 소홍수량에 각각 대응되는 침수선(20)을 인출하여 각각 대침수선(21) 및 소침수선(22)으로 설정하는 침수선인출단계(S30)와, 컴퓨터에 탑재된 예측프로그램이 대침수선(21)과 소침수선(22)을 보간하여 실제홍수량에 대응되는 보간침수선(25)을 산출하는 침수선보간단계(S40)로 이루어짐을 특징으로 하는 수치모형 및 침수선 보간을 이용한 하천 범람 예측 방법이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for predicting a river flood using a computer and a numerical model, the method comprising: inputting a destruction point (10) and a terrain information to a numerical model (S20) for calculating a flood line (20) by calculating a flood line (20) by inputting a computed flood amount into a numerical model installed in a computer and calculating a flood line (20) The flood line 20 corresponding to the large flood water quantity and the small flood water quantity, respectively, is set as the minimum flood water quantity and the maximum calculated flood water quantity which are less than the actual flood water quantity, A flood line extraction step S30 for setting the flood water line 21 and the low water repellency line 22 respectively to the flood water line 21 and the low water repellent line 22, And a submergence precursor step (S40) for calculating an interpolation water immersion line (25) corresponding to the amount of the flood water.

또한, 상기 침수선보간단계(S40)는 컴퓨터에 탑재된 예측프로그램이 지형정보를 인출하여 파괴점(10)을 중심으로 평면상 방사상으로 배열되는 다수의 방사기준선(30)을 형성하고, 방사기준선(30)을 지나는 수직면상의 지면선인 종단지면선(35)을 산출하는 종단산출단계(S41)와, 컴퓨터에 탑재된 예측프로그램이 대침수선(21)과 소침수선(22)에 각각 대응되는 종단지면선(35)상의 중첩점을 지나는 수평선을 각각 대수면선(27)과 소수면선(28)으로 설정하는 수면설정단계(S42)와, 컴퓨터에 탑재된 예측프로그램이 소수면선(28), 대수면선(27) 및 종단지면선(35) 사이의 면적을 대홍수량과 소홍수량 및 실제홍수량의 관계를 만족하는 비율로 분할하는 수평선인 보간수면선(29)을 산출하는 수면보간단계(S43)와, 컴퓨터에 탑재된 예측프로그램이 보간수면선(29)과 종단지면선(35)의 교점을 방사기준선(30)별로 산출하고, 산출된 다수의 교점을 연결하여 보간침수선(25)을 산출하는 교점연결단계(S44)로 이루어짐을 특징으로 하는 수치모형 및 침수선 보간을 이용한 하천 범람 예측 방법이다.In addition, the inter-immersion step (S40) includes a step of extracting the geographical information from the computer-readable program to form a plurality of radiation baselines (30) arranged radially in a plane around the fracture point (10) (S41) for calculating a termination ground line (35), which is a ground line on the vertical plane passing through the center line (30), and a termination calculation step A water level setting step S42 for setting horizontal lines passing through the overlap points on the line 35 to the water surface line 27 and the water surface line 28 respectively and the prediction program installed in the computer to set the water surface line 28, A water surface interpolation step S43 for calculating an interpolated water surface line 29 which is a horizontal line dividing the area between the line 27 and the termination ground line 35 into a ratio satisfying the relationship between the large water quantity and the small flood quantity and the actual flood quantity , A prediction program installed in the computer is transmitted to the interpolation water surface line 29 and the longitudinal plane And an intersection connecting step (S44) of calculating an intersection point of the intersection points of the intersection points (35) by the radial baseline (30) and connecting the calculated intersections to calculate the interpolation floodwater line (25) Is a river flood prediction method.

본 발명을 통하여, 하천 범람으로 인하여 형성되는 침수구역을 신속하고 정확하게 예측할 수 있으며, 이로써 하천 범람으로 인한 인적, 물적 피해를 경감할 수 있다.According to the present invention, it is possible to quickly and accurately predict the flooded area formed due to river flooding, thereby reducing human and material damage due to river flooding.

특히, 홍수 발생시 실측된 홍수량을 입력치로 수치모의를 수행하는 과정에서 장시간이 소요되어 하천 범람 및 침수 위험을 적시에 경보할 수 없었던 종래 기술의 문제점을 일거에 해소할 수 있다.In particular, it is possible to solve the problems of the prior art that it is impossible to timely alarm the flood flooding and the flood risk by taking a long time in the process of performing numerical simulation with the input flood value at the occurrence of the flood.

도 1은 본 발명이 적용되는 하천 유역 예시도
도 2는 본 발명의 흐름도
도 3은 본 발명의 파괴점 주변 지형도 및 계산격자 예시도
도 4는 본 발명의 계산격자 및 침수선 예시도
도 5는 본 발명의 홍수량별 침수선이 표시된 지형도 예시도
도 6은 본 발명의 보간침수선이 표시된 지형도 예시도
도 7은 본 발명의 방사기준선 적용 실시예 흐름도
도 8은 도 7 실시예의 지형도
도 9는 도 7 실시예의 종단면도
도 10은 도 7 실시예의 보간수면선이 표시된 종단면도
도 11은 도 7 실시예의 보간침수선이 표시된 지형도
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
2 is a flow chart
Figure 3 is a topographic map around a fracture point and an example of a computational grid
Figure 4 is a graphical illustration of a computational grid and a submerged line of the present invention
Figure 5 is a topographical illustration of the floodplain of the present invention,
Figure 6 is an exemplary topographical representation of an interpolated flood line of the present invention
FIG. 7 is a flowchart of an embodiment of the radiation reference line application of the present invention
Figure 8 is a topographic view of the < RTI ID = 0.0 >
9 is a longitudinal sectional view of the embodiment of Fig. 7
FIG. 10 is a longitudinal sectional view showing the interpolation water surface line of the embodiment of FIG.
Figure 11 is a topographic map of the < RTI ID = 0.0 >

본 발명의 상세한 구성 및 수행과정을 첨부된 도면을 통하여 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the accompanying drawings.

우선, 도 1은 본 발명이 적용되는 하천 유역을 예시한 유역도로서, 도시된 바와 같이, 하도상 다수의 파괴점(10)이 설정될 수 있으며, 유역내 및 인근에 산재한 다수의 수위표(stage station) 및 우량관측소(rainfall station)에서 수집된 수문자료를 통하여 홍수량을 산출하게 된다.First, FIG. 1 is a view of a river basin to which the present invention is applied. As shown in FIG. 1, a plurality of breakage points 10 on a lower basin can be set, and a plurality of water level tables stage station and a rainfall station to calculate the flood volume.

파괴점(10)은 범람 취약부 즉, 수충부 또는 제방 손상부 등에 설정되는 것으로, 해당 지점에서의 제방 파괴를 상정하여 제내지 범람을 모의하게 된다.The destruction point 10 is set in a flood vulnerability portion, that is, a water intake portion or a dam damage portion, and simulates the flood by assuming the destruction of the embankment at the corresponding point.

즉, 유역내 우량관측소에서 일정 수준을 상회하는 강우가 관측되거나, 수위표에서 일정 수준을 상회하는 수위가 측정되는 경우, 이를 기초로 홍수량을 산출하여 실제홍수량을 설정하고, 실제홍수량 조건하에서 파괴점(10)의 제방이 붕괴되는 상황을 상정하여 제내지 침수구역을 예측하는 것이다.In other words, if rainfall above a certain level is observed in a rainfall observatory in a watershed or if a water level above a certain level is measured in a watershed table, the actual flood volume is calculated based on the measured flood volume, (10) is collapsed to predict the flooding zone.

실제홍수량이란 실제 홍수 발생시 파괴점(10) 인접 하도의 유량으로서, 수위표에서 관측된 수위를 수위-유량 관계곡선에 대입하여 획득한 실측유량이 적용되거나, 우량관측소에서 관측된 강우량을 홍수유출 모형에 입력하여 산출된 홍수량이 적용될 수 있다.The actual flood volume is the flow volume adjacent to the breakdown point (10) at the time of actual flood, the measured flow obtained by substituting the water level observed in the water level table into the water level-flow relation curve is applied, And the calculated flood amount can be applied.

또한, 도 1에 도시된 바와 같이, 파괴점(10)에 수위표가 설치되지 않았을 가능성이 높으므로, 인근 수위표에서 실측된 유량을 유역면적비 등을 활용하여 환산하여 실제홍수량을 산정할 수도 있다.Also, as shown in FIG. 1, it is highly possible that the water level table is not installed at the destruction point 10. Therefore, the actual flood water amount may be calculated by converting the flow rate measured in the nearby water level table by using the watershed area ratio or the like .

이러한 본 발명의 하천 범람 예측 방법은 컴퓨터에 탑재된 프로그램으로서 하천 범람을 모의하는 수치모형과, 수치모형의 입력정보인 지형정보 및 홍수량과, 수치모형을 통하여 산출된 범람구역 즉, 침수선(20) 등을 컴퓨터의 기억장치에 수록 및 인출하고, 이를 처리하는 프로그램인 예측프로그램에 의하여 수행되는 것으로, 도 2에서와 같이, 컴퓨터에 탑재된 수치모형에 파괴점(10) 및 지형정보가 입력되는 지형입력단계(S10)로 개시된다.The flood forecasting method of the present invention is a computer-implemented program that includes a numerical model simulating a river flood, a terrain information and a flood amount, which are input information of a numerical model, and a flood area, ) And the like are stored in a storage device of a computer and are executed by a prediction program which is a program for processing the data. The failure point 10 and the terrain information are input to a numerical model mounted on the computer, The terrain input step S10 is started.

본 발명을 수행하는 수치모형으로는 하도 유동 및 제내지 범람을 모의할 수 있는 SCHISM 모형 또는 Delft3D 모형 등이 적용될 수 있으며, 지형입력단계(S10)에 있어서 입력되는 지형정보는 지표면의 표고와 건물 등 각종 지상 설치물의 제원 등으로 구성되어, 도 3에서와 같이, 지형도를 기초로 작성된 계산격자 형태로 입력된다.As a numerical model for carrying out the present invention, a SCHISM model or a Delft3D model capable of simulating the underground flow and the overflow can be applied. In the step of inputting the terrain (S10), the terrain information inputted is the elevation And specifications of various ground installations, and is inputted in the form of a calculation grid created based on the topographic map as shown in FIG.

지형입력단계(S10)가 완료되면, 컴퓨터에 탑재된 수치모형에 계산홍수량이 입력되어 수치모형이 침수선(20)을 산출하되, 계산홍수량을 변동하면서 침수선(20) 산출을 반복하는 침수선산출단계(S20)가 수행되며, 이로써 구간별로 설정된 다수의 계산홍수량에 대한 침수선(20)이 도 4에서와 같이 산출될 수 있다.When the terrain input step (S10) is completed, the computed flood amount is input to the numerical model installed in the computer, and the numerical model calculates the flood line (20), and the flood line The calculation step S20 is performed, whereby the flood line 20 for a plurality of calculated flood quantities set for each section can be calculated as shown in FIG.

도 4에 예시된 계산격자에서는 총 4개의 계산홍수량에 대한 침수선(20)이 산출되었으며, 이렇듯 산출된 침수선(20)은 도 5에서와 같이, 지형도에 중첩되어 출력될 수도 있다.In the calculation grid illustrated in FIG. 4, the flooded lines 20 for the total of four computed flood quantities have been calculated, and the flooded lines 20 thus calculated may be superimposed on the topographic map and output as shown in FIG.

도 5에 예시된 4개 침수선(20)은 각각 1,000㎥/s, 1,200㎥/s, 1,400㎥/s 및 1,600㎥/s의 홍수량에 대하여 산출되었으며, 홍수량이 증가함에 따라 침수 면적이 확대됨을 확인할 수 있다.The four floodwater lines 20 illustrated in FIG. 5 are calculated for floods of 1,000 m 3 / s, 1,200 m 3 / s, 1,400 m 3 / s and 1,600 m 3 / s, respectively, Can be confirmed.

침수선산출단계(S20)에서 다양한 계산홍수량에 대한 침수선(20)이 산출되고, 산출된 침수선(20)이 예측프로그램에 의하여 컴퓨터의 기억장치에 수록된 상태에서, 실제 홍수가 발생되어 파괴점(10)에서의 홍수량이 기준치를 상회하는 것으로 파악되면, 후술할 침수선인출단계(S30) 내지 침수선보간단계(S40)가 수행되어, 실제 범람 모의 수치모형의 가동 없이도 신속하게 침수선(20)을 예측할 수 있는데, 여기서 침수선인출단계(S30)가 개시되는 홍수량 기준치로는 전술한 계산홍수량 중 최소치를 적용하는 것이 바람직하다.In the flooded line calculation step S20, the flooded lines 20 for various computed flood quantities are calculated, and in the state where the calculated flooded lines 20 are stored in the computer's storage device by the prediction program, actual floods are generated, The flood line extraction step S30 to the flood line interconnection step S40 to be described later is performed so that the flood line 20 (step S40) can be quickly performed without operating the actual flood simulation numerical model, It is preferable to apply the minimum of the above-described calculated flood quantities to the flood volume reference value at which the flood water extraction step S30 is started.

또한, 강우가 지속되어 하천 유량이 지속적으로 증가하면, 침수선인출단계(S30) 내지 침수선보간단계(S40)에서의 실제 홍수량 역시 지속적으로 갱신하면서 본 발명을 반복 수행함으로써, 파괴점(10)에서의 제방 파괴시 형성될 침수선(20)을 실시간으로 예측할 수 있다.In addition, if the flow rate of the stream continuously increases due to the continuous rainfall, the actual flood amount in the flood line withdrawal step (S30) to the immersion advance step (S40) is also continuously updated, The flooding line 20 to be formed at the time of breaking the bank is able to be predicted in real time.

즉, 본 발명은 침수선산출단계(S20)까지의 과정은 평상시에 수행되고, 홍수시에는 침수선산출단계(S20) 이후의 과정이 수행되는 것으로, 침수선산출단계(S20)가 완료된 상태에서, 홍수가 발생되어 파괴점(10)에서의 제방 파괴 가능성이 제기되면, 컴퓨터에 탑재된 예측프로그램이 실제홍수량을 초과하는 최소 계산홍수량과 실제홍수량 미만의 최대 계산홍수량을 각각 대홍수량 및 소홍수량으로 설정하고, 대홍수량 및 소홍수량에 각각 대응되는 침수선(20)을 인출하여 각각 대침수선(21) 및 소침수선(22)으로 설정하는 침수선인출단계(S30)가 수행된다.That is, according to the present invention, the process up to the flood line calculation step (S20) is normally performed, and the flood line calculation step (S20) is performed at the time of flood. , If the flood occurs and the possibility of breaking the bank at the destruction point (10) is raised, the computer implemented forecasting program calculates the minimum calculated flood amount exceeding the actual flood amount and the maximum calculated flood amount below the actual flood amount as the A flood line extraction step S30 is performed in which the flood control lines 20 corresponding to the large flood water amount and the small flood water amount are drawn out and set as the flood water line 21 and the low water inflow point 22, respectively.

침수선인출단계(S30)가 수행된 후, 컴퓨터에 탑재된 예측프로그램이 대침수선(21)과 소침수선(22)을 보간하여 실제홍수량에 대응되는 보간침수선(25)을 산출하는 침수선보간단계(S40)가 수행되어, 도 6에서와 같이, 실제홍수량에 대응되는 침수선(20)을 정확하게 예측할 수 있으며, 이를 토대로 주민 대피를 유도하거나 방재 계획을 수립할 수 있다.After the flood line extraction step (S30) is performed, the predicted program installed in the computer calculates the interpolation flood line 25 corresponding to the actual flood amount by interpolating the flood water line 21 and the turnoff water line 22 The flooded line 20 corresponding to the actual flood amount can be accurately predicted as shown in FIG. 6, and the resident evacuation can be induced or the disaster prevention plan can be established based on this.

도 6에 예시된 실시예에서는 1,500㎥/s의 홍수량이 실제홍수량으로 적용되어, 각각 1,400㎥/s 및 1,600㎥/s가 소홍수량 및 대홍수량으로 설정되고, 각각의 침수선(20)이 소침수선(22) 및 대침수선(21)으로 설정되었으며, 이들 소침수선(22) 및 대침수선(21)이 선형보간되어 보간침수선(25)이 산출되었다.In the embodiment illustrated in FIG. 6, a flood amount of 1,500 m 3 / s is applied as the actual flood amount, and 1,400 m 3 / s and 1,600 m 3 / s are set as the small flood amount and the large flood amount, respectively, The repaired waterline 22 and the repaired waterline 21 were linearly interpolated to produce the interpolation water line 25.

한편, 홍수량의 비를 토대로 소침수선(22)과 대침수선(21)을 단순 선형보간하여 보간침수선(25)을 산출하는 경우, 실제 지형 변화 등을 반영할 수 없으므로, 본 발명에서는 침수선보간단계(S40)를 수행함에 있어서, 방사기준선(30) 및 종단 면적비를 적용하였으며, 이러한 본 발명의 방사기준선(30) 적용 실시예에 있어서 침수선보간단계(S40)는 도 7에서와 같이, 컴퓨터에 탑재된 예측프로그램이 지형정보를 인출하여 파괴점(10)을 중심으로 평면상 방사상으로 배열되는 다수의 방사기준선(30)을 형성하고, 방사기준선(30)을 지나는 수직면상의 지면선인 종단지면선(35)을 산출하는 종단산출단계(S41)로 개시된다.On the other hand, in the case of calculating the interpolation water immersion line 25 by simple linear interpolation between the water-drop line 22 and the flood water line 21 based on the ratio of the flood amount, the actual landform change can not be reflected. In step S40, the radial baseline 30 and the cross sectional area ratio are applied. In the application example of the radial baseline 30 according to the present invention, the submergence interstage step S40 includes, as shown in FIG. 7, A plurality of radiation baselines 30 that are arranged radially in a plane around the destruction point 10 are formed by a prediction program mounted on the radiation baseline 30 and a terrestrial line on the vertical plane passing through the radiation baseline 30, (Step S41) for calculating the termination number (35).

즉, 도 8에서와 같이, 예측프로그램이 지형도상 파괴점(10)을 중심으로 다수의 방사기준선(30)을 등각방사상(等角放射狀)으로 배열하고, 이 방사기준선(30)을 따르는 종단면도를 도 9에서와 같이 작성하는 것으로, 도 9에서는 수평 방사기준선(30)에 대한 종단면도가 도시되고 있으나, 동일한 방식으로 각각의 방사기준선(30)에 대한 종단면도가 별도로 작성되어 컴퓨터의 기억장치에 수록된다.That is, as shown in FIG. 8, the prediction program is configured to arrange a plurality of radial baselines 30 in conformal radial directions around the topographic fracture point 10, 9, a longitudinal sectional view of the horizontal radiation reference line 30 is shown in FIG. 9, but a vertical sectional view of each radiation reference line 30 is separately prepared in the same manner, Device.

종단산출단계(S41)가 완료된 후, 컴퓨터에 탑재된 예측프로그램이 대침수선(21)과 소침수선(22)에 각각 대응되는 종단지면선(35)상의 중첩점을 지나는 수평선을 각각 대수면선(27)과 소수면선(28)으로 설정하는 수면설정단계(S42)가 수행되고, 이어서, 컴퓨터에 탑재된 예측프로그램이 소수면선(28), 대수면선(27) 및 종단지면선(35) 사이의 면적을 대홍수량과 소홍수량 및 실제홍수량의 관계를 만족하는 비율로 분할하는 수평선인 보간수면선(29)을 산출하는 수면보간단계(S43)가 수행됨으로써, 도 10에서와 같은 종단면도가 각각의 방사기준선(30)에 대하여 작성된다.After the termination calculation step S41 is completed, the horizontal line passing through the overlapping point on the longitudinal ground line 35 corresponding to the thick water line 21 and the thick water line 22 is referred to as a horizontal line, The forecasting program installed in the computer is executed between the minor water line 28, the water surface line 27 and the end floor line 35 (S43) for calculating the interpolation water surface line (29), which is a horizontal line dividing the area of the water surface area into a ratio satisfying the relation between the large water quantity, the small flood water quantity and the actual flood water quantity, The radiation reference line 30 of FIG.

이러한 수면보간단계(S43)의 수행에 있어서, 보간수면선(29)은 대수면선(27) 및 종단지면선(35) 사이의 면적을 대홍수량과 소홍수량 및 실제홍수량의 관계를 만족하는 비율로 분할하게 되는데, 이는 도 10에서와 같이, 대수면선(27)과 소수면선(28) 및 종단지면선(35) 사이의 면적과 소수면선(28)과 보간수면선(29) 및 종단지면선(35) 사이의 면적의 비(比)가 대홍수량과 소홍수량의 차와, 실제홍수량과 소홍수량의 차의 비와 같도록 설정하는 것으로, 예측프로그램이 보간수면선(29)을 소수면선(28)을 기점으로 상승시키면서 소수면선(28)과 보간수면선(29) 및 종단지면선(35) 사이의 면적을 반복 산출하고, 전술한 조건을 만족하면 해당 시점의 보간수면선(29)을 확정하는 방식으로 수행될 수 있다.In performing the water surface interpolation step S43, the interpolation water surface line 29 is formed by dividing the area between the large water surface line 27 and the longitudinal water surface line 35 by a ratio satisfying the relationship between the large water amount, the small flood amount and the actual flood amount As shown in FIG. 10, the area between the large water surface line 27 and the small water surface line 28 and the end ground line 35 and the area between the small water surface line 28 and the interpolation water surface line 29 and the longitudinal plane The ratio of the area between the lines 35 is set to be equal to the difference between the great water quantity and the small flood quantity and the difference between the actual flood quantity and the small flood quantity, The interpolation water surface line 29 and the interpolation water surface line 29 are obtained by repeatedly calculating the area between the small water surface line 28 and the interpolation water surface line 29 and the end surface ground line 35 while raising the water surface 28 from the starting point, As shown in FIG.

각각의 방사기준선(30)별로 전술한 종단산출단계(S41) 내지 수면보간단계(S43)가 완료된 후, 컴퓨터에 탑재된 예측프로그램이 보간수면선(29)과 종단지면선(35)의 교점을 방사기준선(30)별로 산출하고, 산출된 다수의 교점을 연결하여 보간침수선(25)을 산출하는 교점연결단계(S44)가 수행됨으로써, 도 11에서와 같이, 실제 지형이 고려된 보간침수선(25)이 산출될 수 있다.After the end calculation step S41 and the water surface interpolation step S43 described above are completed for each radiation baseline 30, the prediction program installed in the computer is used to calculate the intersection point of the interpolation water surface line 29 and the longitudinal floor line 35 The intersection connecting step S44 of calculating the interpolation flood line 25 by calculating the number of the intersection points of the radiation baselines 30 and calculating the interpolation flood line 25 is performed, (25) can be calculated.

10 : 파괴점
20 : 침수선
21 : 대침수선
22 : 소침수선
25 : 보간침수선
27 : 대수면선
28 : 소수면선
29 : 보간수면선
30 : 방사기준선
35 : 종단지면선
S10 : 지형입력단계
S20 : 침수선산출단계
S30 : 침수선인출단계
S40 : 침수선보간단계
S41 : 종단산출단계
S42 : 수면설정단계
S43 : 수면보간단계
S44 : 교점연결단계
10: Destruction point
20: flood line
21: Repeat repair
22: Repairs repairs
25: Interpolation flood line
27: Large water surface line
28: minor water line
29: interpolated water line
30: Radial baseline
35: Termination ground wire
S10: terrain input step
S20: flood line calculation step
S30: flooding line withdrawal step
S40: Step between immersion
S41: Termination calculation step
S42: Sleep setting step
S43: Sleep interpolation step
S44: Cross-connection step

Claims (2)

컴퓨터 및 수치모형을 이용하여 하천 범람을 예측하는 방법으로서, 컴퓨터에 탑재된 수치모형에 파괴점(10) 및 지형정보가 입력되는 지형입력단계(S10)와, 컴퓨터에 탑재된 수치모형에 계산홍수량이 입력되어 수치모형이 침수선(20)을 산출하되, 계산홍수량을 변동하면서 침수선(20) 산출을 반복하는 침수선산출단계(S20)와, 컴퓨터에 탑재된 예측프로그램이 실제홍수량을 초과하는 최소 계산홍수량과 실제홍수량 미만의 최대 계산홍수량을 각각 대홍수량 및 소홍수량으로 설정하고, 대홍수량 및 소홍수량에 각각 대응되는 침수선(20)을 인출하여 각각 대침수선(21) 및 소침수선(22)으로 설정하는 침수선인출단계(S30)와, 컴퓨터에 탑재된 예측프로그램이 대침수선(21)과 소침수선(22)을 보간하여 실제홍수량에 대응되는 보간침수선(25)을 산출하는 침수선보간단계(S40)로 이루어지는 수치모형 및 침수선 보간을 이용한 하천 범람 예측 방법에 있어서,
상기 침수선보간단계(S40)는 컴퓨터에 탑재된 예측프로그램이 지형정보를 인출하여 파괴점(10)을 중심으로 평면상 방사상으로 배열되는 다수의 방사기준선(30)을 형성하고, 방사기준선(30)을 지나는 수직면상의 지면선인 종단지면선(35)을 산출하는 종단산출단계(S41)와;
컴퓨터에 탑재된 예측프로그램이 대침수선(21)과 소침수선(22)에 각각 대응되는 종단지면선(35)상의 중첩점을 지나는 수평선을 각각 대수면선(27)과 소수면선(28)으로 설정하는 수면설정단계(S42)와;
컴퓨터에 탑재된 예측프로그램이 소수면선(28), 대수면선(27) 및 종단지면선(35) 사이의 면적을 대홍수량과 소홍수량 및 실제홍수량의 관계를 만족하는 비율로 분할하는 수평선인 보간수면선(29)을 산출하는 수면보간단계(S43)와;
컴퓨터에 탑재된 예측프로그램이 보간수면선(29)과 종단지면선(35)의 교점을 방사기준선(30)별로 산출하고, 산출된 다수의 교점을 연결하여 보간침수선(25)을 산출하는 교점연결단계(S44)로 이루어짐을 특징으로 하는 수치모형 및 침수선 보간을 이용한 하천 범람 예측 방법.
A method for predicting a river flood using a computer and a numerical model, comprising: a terrain input step (S10) in which a destruction point (10) and a terrain information are input to a numerical model mounted on a computer; A flood line calculation step (S20) of calculating a flood line (20) by repeating the calculation of the flood line (20) while varying the calculated flood volume; and a flood line calculation step The flood line 20 corresponding to the large flood water quantity and the small flood water quantity is drawn out and the flood water line 21 and the low flood water line 22 A flooded line drawing step S30 for setting an interpolation flood line 25 corresponding to the actual flood flow by interpolating the flood water line 21 and the reduced water line 22, simple In the river flood predicting method using a numerical model and immersion line interpolation consisting of (S40),
The immersion interstage step S40 is a step in which the prediction program installed on the computer fetches the terrain information to form a plurality of radial baselines 30 arranged radially in a plane around the fracture point 10, (S41) of calculating a terminal ground line (35) which is a ground line on a vertical plane passing through the terminal ground line (35);
The forecasting program installed on the computer sets the horizontal lines passing through the overlapping points on the vertical ground line 35 corresponding to the vertical water line 21 and the vertical water line 22 respectively to the large water line 27 and the small water line 28 (S42);
An interpolation program which is a horizontal line dividing the area between the minor water line 28, the large water line 27 and the end ground line 35 at a rate satisfying the relationship between the large water quantity and the small flood quantity and the actual flood quantity, A water surface interpolation step S43 for calculating the water surface line 29;
A prediction program mounted on the computer calculates an intersection point of the interpolation water line 29 and the longitudinal ground line 35 for each radiation reference line 30 and calculates an interpolation flood line 25 by connecting the calculated intersection points And a connection step (S44). The flood forecasting method using the numerical model and flood line interpolation.
삭제delete
KR1020170082057A 2017-06-28 2017-06-28 Flood forecast method using numerical model and perimeter interpolation KR101906858B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170082057A KR101906858B1 (en) 2017-06-28 2017-06-28 Flood forecast method using numerical model and perimeter interpolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170082057A KR101906858B1 (en) 2017-06-28 2017-06-28 Flood forecast method using numerical model and perimeter interpolation

Publications (1)

Publication Number Publication Date
KR101906858B1 true KR101906858B1 (en) 2018-10-12

Family

ID=63876704

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170082057A KR101906858B1 (en) 2017-06-28 2017-06-28 Flood forecast method using numerical model and perimeter interpolation

Country Status (1)

Country Link
KR (1) KR101906858B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870146A (en) * 2019-02-13 2019-06-11 中国水利水电科学研究院 Flood frequency calculation method and device under a kind of climate change
CN110362925A (en) * 2019-07-16 2019-10-22 中国水利水电科学研究院 A kind of unrestrained top flood due to dam-break method for numerical simulation of the earth and rockfill dam comprising reservoir area
CN111143498A (en) * 2019-12-25 2020-05-12 中国电建集团中南勘测设计研究院有限公司 Small river flood forecasting method
CN112579725A (en) * 2021-01-04 2021-03-30 四创科技有限公司 River and lake multi-source heterogeneous data aggregation association method and system
KR102234631B1 (en) 2020-08-10 2021-04-01 주식회사 사라다 System for notifying disaster for preventing disaster damage of vehicle
KR102241760B1 (en) 2020-08-10 2021-04-19 주식회사 사라다 System for determining disaster risk of vehicle for preventing disaster damage
KR102243453B1 (en) * 2020-07-21 2021-04-22 동부엔지니어링 주식회사 Method for updating urban flood maps using river spatial topology, and recording medium thereof
CN112711917A (en) * 2021-03-26 2021-04-27 长江水利委员会水文局 Real-time flood forecasting intelligent method based on face recognition algorithm
CN113988419A (en) * 2021-10-28 2022-01-28 河海大学 Large river network water quantity forecasting and early warning method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003296516A (en) 2002-04-03 2003-10-17 Ntt Power & Building Facilities Inc Flooding depth prediction system, flooding depth prediction method, flooding depth prediction program and storage medium with flooding depth prediction program stored therein
JP2004197554A (en) * 2002-12-03 2004-07-15 Foundation Of River & Basin Integrated Communications Japan Real time dynamic flooding simulation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003296516A (en) 2002-04-03 2003-10-17 Ntt Power & Building Facilities Inc Flooding depth prediction system, flooding depth prediction method, flooding depth prediction program and storage medium with flooding depth prediction program stored therein
JP2004197554A (en) * 2002-12-03 2004-07-15 Foundation Of River & Basin Integrated Communications Japan Real time dynamic flooding simulation system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870146A (en) * 2019-02-13 2019-06-11 中国水利水电科学研究院 Flood frequency calculation method and device under a kind of climate change
CN110362925A (en) * 2019-07-16 2019-10-22 中国水利水电科学研究院 A kind of unrestrained top flood due to dam-break method for numerical simulation of the earth and rockfill dam comprising reservoir area
CN111143498A (en) * 2019-12-25 2020-05-12 中国电建集团中南勘测设计研究院有限公司 Small river flood forecasting method
CN111143498B (en) * 2019-12-25 2023-04-18 中国电建集团中南勘测设计研究院有限公司 Small river flood forecasting method
KR102243453B1 (en) * 2020-07-21 2021-04-22 동부엔지니어링 주식회사 Method for updating urban flood maps using river spatial topology, and recording medium thereof
KR102234631B1 (en) 2020-08-10 2021-04-01 주식회사 사라다 System for notifying disaster for preventing disaster damage of vehicle
KR102241760B1 (en) 2020-08-10 2021-04-19 주식회사 사라다 System for determining disaster risk of vehicle for preventing disaster damage
CN112579725A (en) * 2021-01-04 2021-03-30 四创科技有限公司 River and lake multi-source heterogeneous data aggregation association method and system
CN112579725B (en) * 2021-01-04 2022-11-15 四创科技有限公司 River and lake multi-source heterogeneous data aggregation association method and system
CN112711917A (en) * 2021-03-26 2021-04-27 长江水利委员会水文局 Real-time flood forecasting intelligent method based on face recognition algorithm
CN112711917B (en) * 2021-03-26 2021-07-16 长江水利委员会水文局 Real-time flood forecasting intelligent method based on face recognition algorithm
CN113988419A (en) * 2021-10-28 2022-01-28 河海大学 Large river network water quantity forecasting and early warning method

Similar Documents

Publication Publication Date Title
KR101906858B1 (en) Flood forecast method using numerical model and perimeter interpolation
Henonin et al. Real-time urban flood forecasting and modelling–a state of the art
Timbadiya et al. A 1D–2D coupled hydrodynamic model for river flood prediction in a coastal urban floodplain
Castellarin et al. Identifying robust large-scale flood risk mitigation strategies: A quasi-2D hydraulic model as a tool for the Po river
JP6716328B2 (en) Inundation risk diagnostic device, inundation risk diagnostic method, control device, and computer program
Monbaliu et al. Risk assessment of estuaries under climate change: Lessons from Western Europe
KR102191201B1 (en) Numerical model and scenario based damage prediction method considering the influence diffusion of complex disaster
Hartnett et al. High-resolution flood modeling of urban areas using MSN_Flood
CN111159848B (en) Flood risk simulation method under extreme environment of rainstorm, high water level and high tide level
CN113505546A (en) Flood risk prediction system
Battjes et al. Coastal modelling for flood defence
CN110414041B (en) Method and system for establishing storm surge and flood analysis based on GIS technology
Castrucci et al. Modeling the impacts of sea level rise on storm surge inundation in flood-prone urban areas of Hampton roads, Virginia
Duong et al. Model uncertainty in flood modelling. Case study at vu gia thu bon catchment-Vietnam
Li et al. Probabilistic modeling of wave climate and predicting dune erosion
CN116306340A (en) Method for simulating urban waterlogging risk distribution under different working conditions
KR101782559B1 (en) Method for planning of constructing a dam based on a digital elevation model, apparatus, and recording medium thereof
KR20140049187A (en) Mobile and web-based three-dimensional fluid simulation system and method
JP4083625B2 (en) Water damage analysis system
Dahm et al. Next generation flood modelling using 3Di: A case study in Taiwan
Chen et al. Numerical simulation of potential inundation in a coastal zone
KR101508603B1 (en) Three-dimensional fluid simulation apparatus and method for road drainage performance simulation
Pearson et al. Towards an integrated coastal sediment dynamics and shoreline response simulator
Saul et al. Integrated urban flood modelling
Rubiu Flood risk assessment in the vicinity of kartena town using hec-ras 1d-2d models

Legal Events

Date Code Title Description
GRNT Written decision to grant