KR101905840B1 - 근적외선 분광기 및 그 제조 방법 - Google Patents
근적외선 분광기 및 그 제조 방법 Download PDFInfo
- Publication number
- KR101905840B1 KR101905840B1 KR1020170049252A KR20170049252A KR101905840B1 KR 101905840 B1 KR101905840 B1 KR 101905840B1 KR 1020170049252 A KR1020170049252 A KR 1020170049252A KR 20170049252 A KR20170049252 A KR 20170049252A KR 101905840 B1 KR101905840 B1 KR 101905840B1
- Authority
- KR
- South Korea
- Prior art keywords
- window
- ccd
- nano
- mesh
- quantum
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title description 11
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 20
- 238000002835 absorbance Methods 0.000 claims abstract description 7
- 239000000976 ink Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 10
- 229920002120 photoresistant polymer Polymers 0.000 claims description 9
- 239000003566 sealing material Substances 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 claims description 3
- 229910004262 HgTe Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000002086 nanomaterial Substances 0.000 claims 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
- G01J3/108—Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/148—Charge coupled imagers
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
본 발명의 일 실시예에 따른 근적외선 분광기는 기판, 상기 기판 위에 위치하며 가시 광을 검출하는 복수개의 CCD 셀을 포함하는 CCD 센서, 상기 CCD 센서와 이격되어 위치하는 윈도우, 상기 윈도우에 위치하며 상기 복수개의 CCD 셀에 대응하는 복수개의 메쉬 개구부를 가지는 메쉬 부재, 상기 복수개의 메쉬 개구부를 각각 채우는 복수개의 필터 부재를 포함하고, 상기 복수개의 필터 부재는 근적외선의 흡광도가 서로 다른 복수개의 나노 양자 물질을 포함한다.
Description
본 발명은 근적외선 분광기 및 그 제조 방법에 관한 것이다.
최근 근적외선을 이용한 스펙트럼 측정법은 시료가 방출하는 고유의 근적외선 신호를 이용하여 바이오 진단, 보안기술, 소재분석, 국방 등 다양한 분야에서 응용이 가능한 기술로 주목 받고 있다. 그러나 고해상 근적외선 센서의 경우 고가이며 냉각을 필요로 하는 센서의 경우 장치가 커지고 전력소모 또한 커서 휴대용 기기에 적용하는데 어려움이 있다.
근적외선을 파장별로 구분하여 측정해야 하는 스펙트럼 측정의 경우 일반적으로 프리즘과 같은 역할을 하는 격자판(grating)을 이용하여 입사광을 펼치고 펼쳐진 영역만큼의 광 센서를 어레이 형태로 배치하거나 CCD 소자를 부착하여 측정한다. 이 경우, 광 센서의 전면에 추가 광학계와 빔 경로를 위한 공간이 필요하므로 장치의 크기가 커지게 된다.
본 발명은 제조 비용이 낮고 휴대용 기기에 적용 가능한 초소형의 근적외선 분광기 및 그 제조 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 근적외선 분광기는 기판, 상기 기판 위에 위치하며 가시 광을 검출하는 복수개의 CCD 셀을 포함하는 CCD 센서, 상기 CCD 센서와 이격되어 위치하는 윈도우, 상기 윈도우에 위치하며 상기 복수개의 CCD 셀에 대응하는 복수개의 메쉬 개구부를 가지는 메쉬 부재, 상기 복수개의 메쉬 개구부를 각각 채우는 복수개의 필터 부재를 포함하고, 상기 복수개의 필터 부재는 근적외선의 흡광도가 서로 다른 복수개의 나노 양자 물질을 포함한다.
상기 필터 부재는 적어도 하나 이상의 CCD 셀에 대응할 수 있다.
상기 메쉬 부재 및 필터 부재는 상기 윈도우와 상기 CCD 센서 사이에 위치할 수 있다.
상기 기판의 가장자리와 상기 윈도우의 가장자리 사이에 위치하는 밀봉재를 더 포함할 수 있다.
상기 나노 양자 물질은 800 nm 내지 1200 nm의 밴드갭을 가질 수 있다.
상기 나노 양자 물질은 PbS, PbSe, HgTe, Ag2S, Ag2Se, CuInS2, CuInSe2, perovskite에서 선택된 어느 하나를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 근적외선 분광기의 제조 방법은 기판 위에 복수개의 CCD 셀을 포함하는 CCD 센서를 형성하는 단계, 윈도우 위에 상기 복수개의 CCD 셀에 대응하는 복수개의 메쉬 개구부를 가지는 메쉬 부재를 형성하는 단계, 상기 복수개의 메쉬 개구부에 근적외선의 흡광도가 다른 복수개의 나노 양자 잉크를 각각 적하시켜 복수개의 필터 부재를 형성하는 단계, 그리고 상기 윈도우를 상기 기판에 대향시키는 단계를 포함한다.
상기 기판의 가장자리에 밀봉재를 형성하는 단계를 더 포함할 수 있다.
상기 메쉬 부재를 형성하는 단계는 상기 윈도우 위에 감광막을 형성하는 단계, 상기 감광막에 메쉬 패턴을 형성하는 단계, 상기 메쉬 패턴에 금속을 채우는 단계, 그리고 상기 감광막을 제거하여 메쉬 부재를 완성하는 단계를 포함할 수 있다.
상기 나노 양자 잉크는 800 nm 내지 1200 nm의 밴드갭을 가질 수 있다.
상기 나노 양자 잉크는 30cP 내지 10,000cP의 점도를 가질 수 있다.
본 발명의 일 실시예에 따른 근적외선 분광기 및 그 제조 방법은 가시광 검출용 CCD 센서를 이용하므로 비용이 절감된다.
또한, 초소형으로 제조가 가능하므로, 휴대폰, 사물 인터넷(internet of thing, IOT), 가상 현실(virtual reality, VR) 등 다양한 기기에 탑재가 가능하다.
도 1은 본 발명의 일 실시예에 따른 근적외선 분광기의 개략적인 평면도이다.
도 2는 본 발명의 일 실시예에 따른 근적외선 분광기의 CCD 센서의 확대 평면도이다.
도 3은 본 발명의 일 실시예에 따른 근적외선 분광기의 개략적인 사시도이다.
도 4는 본 발명의 일 실시예에 따른 근적외선 분광기의 단면도이다.
도 5는 본 발명의 일 실시예에 따른 근적외선 분광기의 메쉬 부재, 필터부재 및 CCD 셀의 대응 관계를 도시한 평면도이다.
도 6 내지 도 8은 본 발명의 일 실시예에 따른 근적외선 분광기의 메쉬 부재의 제조 단계를 순서대로 도시한 단면도이다.
도 9는 본 발명의 일 실시예에 따른 근적외선 분광기의 제조 방법의 일 단계로서, 메쉬 부재에 나노 양자 잉크를 적하시켜 필터 부재를 형성하는 단계를 도시한 사시도이다.
도 10은 메쉬 부재에 필터 부재가 채워진 단계를 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 근적외선 분광기의 CCD 센서의 확대 평면도이다.
도 3은 본 발명의 일 실시예에 따른 근적외선 분광기의 개략적인 사시도이다.
도 4는 본 발명의 일 실시예에 따른 근적외선 분광기의 단면도이다.
도 5는 본 발명의 일 실시예에 따른 근적외선 분광기의 메쉬 부재, 필터부재 및 CCD 셀의 대응 관계를 도시한 평면도이다.
도 6 내지 도 8은 본 발명의 일 실시예에 따른 근적외선 분광기의 메쉬 부재의 제조 단계를 순서대로 도시한 단면도이다.
도 9는 본 발명의 일 실시예에 따른 근적외선 분광기의 제조 방법의 일 단계로서, 메쉬 부재에 나노 양자 잉크를 적하시켜 필터 부재를 형성하는 단계를 도시한 사시도이다.
도 10은 메쉬 부재에 필터 부재가 채워진 단계를 도시한 단면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
그러면 본 발명의 일 실시예에 따른 근적외선 분광기에 대하여 도 1 내지 도4를 참고로 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 근전외선 분광기의 개략적인 평면도이고, 도 2는 본 발명의 일 실시예에 따른 근전외선 분광기의 CCD 센서의 확대 평면도이며, 도 3은 본 발명의 일 실시예에 따른 근 적외선 분광기의 개략적인 사시도이고, 도 4는 본 발명의 일 실시예에 따른 근 적외선 분광기의 단면도이다.
도 1에 도시한 바와 같이, 인쇄 회로 기판(PCB)에 부착된 구동 칩(CHIP)은 본 발명의 일 실시예에 따른 근 적외선 분광기(100, 200)를 포함할 수 있다.
근 적외선 분광기(100, 200)는 CCD 센서(100), CCD 센서(100)와 이격되어 CCD 센서(100)를 덮는 윈도우(200)를 포함할 수 있다.
도 2 내지 도 4에 도시한 바와 같이, 본 발명의 일 실시예에 따른 근적외선 분광기는 기판(PCB), 기판(PCB) 위에 위치하는 CCD 센서(100), CCD 센서(100)와 이격되어 위치하는 윈도우(200), 윈도우(200)에 위치하는 메쉬 부재(210), 메쉬 부재(210)에 위치하는 복수개의 필터 부재(220), 그리고, 기판(PCB)의 가장자리와 윈도우(200)의 가장자리 사이에 위치하는 밀봉재(300)를 포함한다.
기판(PCB)은 유리, 석영, 세라믹, 플라스틱 등으로 이루어진 절연성 기판으로 형성될 수 있으며, 인쇄 회로 기판과 같이 복수개의 도전 배선과 절연층이 적층된 구조일 수 있다.
CCD 센서(100)는 가시 광을 검출하는 복수개의 CCD 셀(10)을 포함할 수 있다. CCD 센서(100)는 해상도를 결정하는 미소한 단위 소자인 복수개의 CCD 셀(10)을 포함하며, CCD 셀(10)의 크기가 CCD 센서(100)의 해상도를 결정한다. CCD 센서(100)의 측정 가능한 파장 범위는 400 nm 내지 1400 nm 에 해당한다.
윈도우(200)는 투명한 유리 기판일 수 있다. 윈도우(200)는 CCD 센서(100) 위에 위치하여 자외선을 차단하고 CCD 셀(10)을 보호할 수 있다.
메쉬 부재(210)는 복수개의 CCD 셀(10)에 대응하는 복수개의 메쉬 개구부(21)를 가질 수 있다. 메쉬 부재(210)는 금속, 폴리머, 절연체 등으로 이루어질 수 있다.
필터 부재(220)는 복수개의 메쉬 개구부(21)에 채워질 수 있다. 이러한 메쉬 부재(210) 및 필터 부재(220)는 윈도우(200)와 CCD 센서(100) 사이에 위치할 수 있다.
복수개의 필터 부재(220)는 근적외선의 흡광도 및 형광도가 서로 다른 복수개의 나노 양자 물질을 포함할 수 있다.
나노 양자 물질은 용액 상태에서 10 nm 이하의 크기를 가지는 나노 입자로 이루어진다. 나노 양자 물질은 동일한 원소로 이루어진 경우에도 나노 입자의 크기에 따라 양자구속 효과에 의하여 반도체의 특성인 밴드갭이 변화된다. 따라서, 나노 양자 물질의 흡광 특성과 형광 특성이 변화될 수 있다.
나노 양자 물질은 PbS, PbSe, HgTe, Ag2S, Ag2Se, CuInS2, CuInSe2, perovskite에서 선택된 어느 하나를 포함할 수 있다. 나노 양자 물질은 코어 및 이를 둘러싸는 코어 쉘 형상일 수 있다.
이러한 나노 양자 물질은 그 종류에 따라 근적외선 영역인 800 nm 내지 1600 nm의 밴드갭을 가질 수 있다. 따라서, 나노 양자 물질의 종류에 따라 이를 포함하는 필터 부재(220)의 근적외선의 흡광도가 달라질 수 있다.
나노 양자 물질은 밴드갭이 서로 다른 나노 입자들을 사용하여 근적외선 파장의 종류를 구분하여 CCD 센서(100)로 입사시킨다. 이 때, 구분하기 위한 근적외선 파장의 해상도를 고려하여 나노 양자 물질의 종류의 개수를 선정한다. 즉, 10가지의 파장의 구분하기 위해서는 10가지 종류의 나노 양자 물질을 사용하여 10가지 필터 부재(220)를 형성한다.
이와 같이, CCD 센서(100)와 대향하는 윈도우(200)에 나노 양자 물질을 포함하는 필터 부재(220)를 위치시킴으로써, 가시광 영역 및 근적외선 영역의 광을 흡수하고 다시 근적외선 영역의 광을 발광하는 나노 양자 물질에 의해 근적외선 영역에서 스펙트럼을 분석할 수 있다.
근적외선 영역의 광이 필터 부재(220)에 조사되면 필터 부재(220)에 의하여 흡수되고 다시 형광이 발산되므로 CCD 센서(100)의 각 CCD 셀(10)에서 측정되는 전기 신호가 각각 다르게 측정된다. 이렇게 측정된 데이터를 이용하여 근적외선 영역의 파장에 따른 CCD 셀(10)의 전기 신호 패턴 분석을 수행하고 신호분석을 수행할 수 있다. 따라서, CCD 셀(10)로 입사되는 근적외선 영역의 스펙트럼을 분석할 수 있어 기존의 CCD 센서(100)를 사용하여 용이하게 소형의 근적외선 분광기를 제조할 수 있다.
또한, 가시광을 검출하기 위한 기존의 CCD 센서(100)를 이용하므로 근적외선 분광기의 제조 비용이 절감된다.
한편, 적어도 하나 이상의 CCD 셀(10)이 하나의 필터 부재(220)에 대응한다.
이에 대해 도 5를 참조하여 상세히 설명한다.
도 5는 본 발명의 일 실시예에 따른 근적외선 분광기의 메쉬 부재, 필터부재 및 CCD 셀의 대응 관계를 도시한 평면도이다.
도 5에 도시한 바와 같이, 하나의 필터 부재(220)는 하나의 메쉬 부재(210)에 대응한다. 그리고, 하나의 필터 부재(220)는 4개의 CCD 셀(10)에 대응할 수 있다. 도 5에는 하나의 CCD 셀(10)에 대응하는 부분을 A로 표시하였다. 따라서, 4개의 CCD 셀(10)을 이용하여 한 종류의 근적외선 파장을 분석할 수 있다.
그러나, 하나의 필터 부재(220)가 1개의 CCD 셀(10)에 대응할 수도 있다. 이 경우 1개의 CCD 셀(10)을 이용하여 한 종류의 근적외선 파장을 분석할 수 있으므로, 분석할 수 있는 근적외선 파장의 분해능을 높일 수 있다.
이와 같이, 하나의 필터 부재(220)에 대응하는 CCD 셀(10)의 개수가 작아질수록 CCD 셀(10)의 신호 분석을 통해 근적외선 파장의 분광 분석의 분해능을 높일 수 있다.
이하에서, 본 발명의 일 실시예에 따른 근적외선 분광기의 제조 방법에 대해 도면을 참고로 상세히 설명한다.
도 6 내지 도 8은 본 발명의 일 실시예에 따른 근 적외선 분광기의 메쉬 부재의 제조 단계를 순서대로 도시한 단면도이고, 도 9는 본 발명의 일 실시예에 따른 근적외선 분광기의 제조 방법의 일 단계로서, 메쉬 부재에 나노 양자 잉크를 적하시켜 필터 부재를 형성하는 단계를 도시한 사시도이며, 도 10은 메쉬 부재에 필터 부재가 채워진 단계를 도시한 단면도이다.
본 발명의 일 실시예에 따른 근 적외선 분광기의 제조 방법은 우선, 기판(PCB) 위에 복수개의 CCD 셀(10)을 포함하는 CCD 센서(100)를 형성한다.
다음으로, 도 6 내지 도 8에 도시한 바와 같이, 윈도우(200) 위에 상기 복수개의 CCD 셀(10)에 대응하는 복수개의 메쉬 개구부(21)를 가지는 메쉬 부재(210)를 형성한다. 구체적으로 설명하면, 도 6에 도시한 바와 같이, 윈도우(200) 위에 감광막(PR)을 형성하고, UV와 같은 광을 노광하여 감광막(PR)에 메쉬 패턴(H)을 형성한다. 그리고, 도 7에 도시한 바와 같이, 감광막(PR)의 메쉬 패턴(H)에 금속 등의 물질을 채운다. 그리고, 도 8에 도시한 바와 같이, 감광막(PR)을 제거하여 메쉬 부재(210)를 완성한다. 따라서, 감광막(PR)이 제거된 위치에 메쉬 개구부(21)가 형성된다.
다음으로, 도 9에 도시한 바와 같이, 복수개의 메쉬 개구부(21)에 근적외선의 흡광도가 서로 다른 복수개의 나노 양자 잉크(2)를 각각 적하시킨다. 메쉬 부재(210)는 용액 상태로 도포되는 나노 양자 잉크(2)가 메쉬 개구부(21) 내에 담지되도록 하는 역할을 한다. 따라서, 다른 종류의 나노 양자 잉크(2)가 순차적으로 적하되어도 서로 섞이지 않게 된다.
나노 양자 잉크(2)는 30cP 내지 1000cP의 점도를 가질 수 있다. 따라서, 나노 양자 잉크(2)는 메쉬 부재(210)와 접촉하여 메쉬 개구부(21) 내에 도포될 수 있다.
나노 양자 잉크(2)의 용매제(solvent)는 다이메틸폼아마이드(dimethylformamide, DMF), 프로필렌카보네이트(propylene carbonate, PC), N-메틸포름아미드(n-methylformamide, NMF) 등의 극성 용매(polar solvent)일 수 있다.
나노 양자 잉크(2)는 도포 장치(20)를 이용하여 메쉬 개구부(21) 내에 선택적으로 도포할 수 있다. 도포 장치(20)는 잉크젯, 전기수력학적 잉크젯(electrohydrodynamic inkjet, EHD inkjet), 스프레이(spray), 디스펜싱 펌프(dispensing pump) 등에서 선택된 어느 하나를 이용할 수 있다.
그리고, 저진공 챔버에서 100도 내지 200도의 온도로 열처리 공정을 진행하여 도포된 나노 양자 잉크(2)의 용매제를 증발시킨다.
따라서, 도 10에 도시한 바와 같이, 복수개의 필터 부재(220)가 윈도우(200) 위에 형성된다.
다음으로, 도 4에 도시한 바와 같이, 윈도우(200)를 기판(PCB)에 대향시키고, 기판(PCB)의 가장자리에 밀봉재(300)를 형성하여 기판(PCB)과 윈도우(200) 사이에 위치하는 필터 부재(220)와 메쉬 부재(210)를 밀봉시킨다. 이 때, CCD 센서(100)의 CCD 셀(10)은 필터 부재(220)와 대응하는 위치에 위치시킨다.
본 발명을 앞서 기재한 바에 따라 바람직한 실시예를 통해 설명하였지만, 본 발명은 이에 한정되지 않으며 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.
PCB: 기판 100: CCD 센서
200: 윈도우 210: 메쉬 부재
220: 필터 부재 300: 밀봉재
21: 메쉬 개구부 20: 도포 장치
2: 나노 양자 잉크
200: 윈도우 210: 메쉬 부재
220: 필터 부재 300: 밀봉재
21: 메쉬 개구부 20: 도포 장치
2: 나노 양자 잉크
Claims (11)
- 기판,
상기 기판 위에 위치하며 가시 광을 검출하는 복수개의 CCD 셀을 포함하는 CCD 센서,
상기 CCD 센서와 이격되어 위치하는 윈도우,
상기 윈도우에 위치하며 상기 복수개의 CCD 셀에 대응하는 복수개의 메쉬 개구부를 가지는 메쉬 부재,
상기 복수개의 메쉬 개구부를 각각 채우는 복수개의 필터 부재
를 포함하고,
상기 복수개의 필터 부재는 근적외선의 흡광도가 서로 다른 복수개의 나노 양자 물질을 포함하고,
상기 윈도우는 상기 복수개의 필터 부재를 동시에 덮는 일체형 구조인 근적외선 분광기. - 제1항에서,
상기 필터 부재는 적어도 하나 이상의 CCD 셀에 대응하는 근적외선 분광기. - 제1항에서,
상기 메쉬 부재 및 필터 부재는 상기 윈도우와 상기 CCD 센서 사이에 위치하는 근적외선 분광기. - 제1항에서,
상기 기판의 가장자리와 상기 윈도우의 가장자리 사이에 위치하는 밀봉재를 더 포함하는 근적외선 분광기. - 제1항에서,
상기 나노 양자 물질은 800 nm 내지 1600 nm의 밴드갭을 가지는 근적외선 분광기. - 제1항에서,
상기 나노 양자 물질은 PbS, PbSe, HgTe, Ag2S, Ag2Se, CuInS2, CuInSe2, perovskite에서 선택된 어느 하나를 포함하는 근적외선 분광기. - 기판 위에 복수개의 CCD 셀을 포함하는 CCD 센서를 형성하는 단계,
윈도우 위에 상기 복수개의 CCD 셀에 대응하는 복수개의 메쉬 개구부를 가지는 메쉬 부재를 형성하는 단계,
상기 복수개의 메쉬 개구부에 근적외선의 흡광도가 다른 복수개의 나노 양자 잉크를 각각 적하시켜 복수개의 필터 부재를 형성하는 단계, 그리고
상기 윈도우를 상기 기판에 대향시키는 단계
를 포함하는 근적외선 분광기의 제조 방법. - 제7항에서,
상기 기판의 가장자리에 밀봉재를 형성하는 단계를 더 포함하는 근적외선 분광기의 제조 방법. - 제7항에서,
상기 메쉬 부재를 형성하는 단계는
상기 윈도우 위에 감광막을 형성하는 단계,
상기 감광막에 메쉬 패턴을 형성하는 단계,
상기 메쉬 패턴에 금속을 채우는 단계, 그리고
상기 감광막을 제거하여 메쉬 부재를 완성하는 단계를 포함하는 근적외선 분광기의 제조 방법. - 제7항에서,
상기 나노 양자 잉크는 800 nm 내지 1600 nm의 밴드갭을 가지는 근적외선 분광기의 제조 방법. - 제7항에서,
상기 나노 양자 잉크는 30cP 내지 10,000cP의 점도를 가지는 근적외선 분광기의 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170049252A KR101905840B1 (ko) | 2017-04-17 | 2017-04-17 | 근적외선 분광기 및 그 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170049252A KR101905840B1 (ko) | 2017-04-17 | 2017-04-17 | 근적외선 분광기 및 그 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101905840B1 true KR101905840B1 (ko) | 2018-10-08 |
Family
ID=63864141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170049252A KR101905840B1 (ko) | 2017-04-17 | 2017-04-17 | 근적외선 분광기 및 그 제조 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101905840B1 (ko) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016138789A (ja) * | 2015-01-27 | 2016-08-04 | 地方独立行政法人北海道立総合研究機構 | 分光イメージングシステム |
-
2017
- 2017-04-17 KR KR1020170049252A patent/KR101905840B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016138789A (ja) * | 2015-01-27 | 2016-08-04 | 地方独立行政法人北海道立総合研究機構 | 分光イメージングシステム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6818067B2 (ja) | 光学フィルタおよび分光計 | |
Bao et al. | A colloidal quantum dot spectrometer | |
US8405832B2 (en) | Light scattering measurement system based on flexible sensor array | |
US8854624B2 (en) | Photonic crystal spectrometer | |
DE69636884T2 (de) | Optischer Modulator mit Mikrolinsen für Ein- und Ausgangsstrahl | |
EP3642577B1 (en) | Compact spectrometer modules | |
KR101169067B1 (ko) | 분광을 위한 집적 회로, 집적 회로 형성 방법, 및 분광 방법 | |
CN110823845B (zh) | 光谱仪及其制作方法 | |
Cai et al. | Compact angle-resolved metasurface spectrometer | |
CN103913836B (zh) | 波长可变干涉滤波器及制造方法、光学模块以及电子设备 | |
KR20180032726A (ko) | 표시 장치 및 그 제조 방법 | |
US20100040865A1 (en) | Optical filter and method for manufacturing same | |
KR101905840B1 (ko) | 근적외선 분광기 및 그 제조 방법 | |
US20150138547A1 (en) | Apparatus for selectively transmitting the spectrum of electromagnetic radiation within a predefined wavelength range | |
CN109708756A (zh) | 基于衍射效应的成像光谱仪及高空间分辨率光谱成像方法 | |
KR102049088B1 (ko) | 근적외선 분광기 | |
US20040113089A1 (en) | Apparatus and process for measuring light intensities | |
CN220380613U (zh) | 光谱模组 | |
US20220099488A1 (en) | Multi-channel array type optical sensing device and manufacturing method thereof | |
WO2023032146A1 (ja) | 分光機能付き撮像素子及びその製造方法、並びにピクセル化光フィルタアレイの製造方法及び分光機能付き撮像素子を備えた製品。 | |
KR101963965B1 (ko) | 이색성 물질을 이용한 자외선 검출기 | |
US20200073032A1 (en) | Light filter and spectrometer including the light filter | |
KR20190076912A (ko) | 표면 플라스몬을 이용한 분광기 | |
KR20230094809A (ko) | 이미지 센서 시스템 | |
CN114242711A (zh) | 一种高光谱光电探测器的制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GRNT | Written decision to grant |