KR101902727B1 - Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same - Google Patents

Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same Download PDF

Info

Publication number
KR101902727B1
KR101902727B1 KR1020180000339A KR20180000339A KR101902727B1 KR 101902727 B1 KR101902727 B1 KR 101902727B1 KR 1020180000339 A KR1020180000339 A KR 1020180000339A KR 20180000339 A KR20180000339 A KR 20180000339A KR 101902727 B1 KR101902727 B1 KR 101902727B1
Authority
KR
South Korea
Prior art keywords
thermally conductive
silicone resin
graphite
natural graphite
conductive grease
Prior art date
Application number
KR1020180000339A
Other languages
Korean (ko)
Other versions
KR20180033142A (en
Inventor
오원태
최현명
Original Assignee
동의대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동의대학교 산학협력단 filed Critical 동의대학교 산학협력단
Priority to KR1020180000339A priority Critical patent/KR101902727B1/en
Publication of KR20180033142A publication Critical patent/KR20180033142A/en
Application granted granted Critical
Publication of KR101902727B1 publication Critical patent/KR101902727B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • C10N2250/10

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)

Abstract

본 발명은 고점도 실리콘 수지, 초음파 파쇄 천연흑연 및 질화알루미늄을 포함하는 열전도성 구리스 및 이의 제조방법에 관한 것으로, 본 발명에 따른 열전도성 구리스는 실리콘 수지 및 열전도성 필러로서 천연흑연 및 질화알루미늄(AlN)을 포함하고, 상기 실리콘 수지의 점도는 900-1100 cSt이며, 상기 천연흑연은 400-500Hz 세기로 25-35분간 초음파 파쇄 처리함에 따라서 방열 특성이 향상되는 효과가 있고, 나아가 카본파이버를 추가로 포함할 경우 방열 특성이 더욱 향상되는 효과가 있다.TECHNICAL FIELD The present invention relates to a thermally conductive grease containing high viscosity silicone resin, ultrasonic crushed natural graphite and aluminum nitride and a method for producing the same, and the thermally conductive grease according to the present invention is a silicone resin and a thermally conductive filler, ), The silicone resin has a viscosity of 900-1100 cSt, and the natural graphite has an effect of improving heat radiation characteristics by ultrasonic disintegration for 25-35 minutes at a frequency of 400-500 Hz, and furthermore, a carbon fiber is further added There is an effect that the heat dissipation property is further improved.

Description

천연흑연 및 질화알루미늄을 포함하는 실리콘 복합조성물 및 이를 사용한 열전도 구리스 제조방법 {Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same}[0001] The present invention relates to a silicon composite composition including natural graphite and aluminum nitride, and a method of manufacturing a heat conductive grease using the same,

본 발명은 고점도 실리콘 수지, 초음파 파쇄 천연흑연 및 질화알루미늄을 포함하는 열전도성 구리스(grease) 및 이의 제조방법에 관한 것이다.The present invention relates to a thermoconductive grease comprising a high viscosity silicone resin, ultrasonic crushed natural graphite and aluminum nitride and a process for its preparation.

최근 LED 조명을 포함한 전자기기의 고성능화, 소형화 및 고기능화로 인해 전자부품 회로에서의 발열량이 증가되고 이로 인해 기기의 내부온도가 상승하여 반도체 소자의 오작동, 저항체 부품의 특성변화 및 부품의 수명이 저하되는 문제점들이 발생하고 있다. 따라서 이러한 문제점을 해결하기 위한 방열대책으로 다양한 기술이 개발되고 있다.Recently, due to the high performance, miniaturization and high performance of electronic devices including LED lighting, the amount of heat generated by the electronic components circuit is increased. As a result, the internal temperature of the device rises and malfunctions of the semiconductor devices, characteristics of the resistor components, Problems are occurring. Accordingly, various technologies have been developed as heat dissipation measures for solving such problems.

**

그중 LED는 입력된 에너지를 빛과 열에너지로 변환하게 되며, 변환된 열에 의하여 발광부 온도가 상승하게 된다. LED의 고유한 장점인 고효율, 장수명 특성은 발광부 온도를 효과적으로 낮추는 방열 기술이 뒷받침되었을 때 비로소 우수한 특성이 나타나므로 고효율 방열 시스템 개발을 위한 핵심 기술이 필요하다.Among them, the LED converts the input energy into light and thermal energy, and the temperature of the light emitting part rises due to the converted heat. The high efficiency and long life characteristics, which are inherent advantages of LED, are required to develop core technology for high efficiency heat dissipation system because excellent characteristics can be obtained when the heat dissipation technology that effectively reduces the temperature of the light emitting part is supported.

PCB기판 또는 방열판과 같이 두 개의 고체 표면이 서로 접촉할 때 거친 계면 때문에 실제 접촉면적은 매우 작다. 이러한 계면 사이의 공극은 열전도가 낮은 공기로 채워지고 계면을 통한 열의 전도에 악영향을 주게 된다. 이를 해결하고자 열전도 특성을 개선시킬 수 있는 복합조성물을 사용한 열전도성 충진제 TIM (Thermal interface material)이 개발되고 있다.The actual contact area is very small due to the rough interface when two solid surfaces touch each other, such as a PCB substrate or a heat sink. The pores between these interfaces are filled with air with low thermal conductivity and adversely affect the conduction of heat through the interface. To solve this problem, a thermal interface material (TIM) using a composite composition capable of improving thermal conductivity has been developed.

하지만, 열전도성 복합조성물을 사용한 구리스(grease) 제품이 시판되고 있으나 낮을 열전도율(~1W/mK)로 시장 확대에 어려움이 있다. 일부 업체들에서 구리스 개발이 진행 중에 있지만 아직 상품화되지는 않은 것으로 보인다.However, although a grease product using a thermoconductive composite composition is commercially available, it is difficult to expand the market with a low thermal conductivity (~ 1 W / mK). Some companies are in the process of developing the grease but it is not yet commercialized.

방열소재 개발 관련하여 여러 방면으로 연구개발이 진행 중에 있지만 일본과의 기술격차를 줄이지 못하고 있는 상황이며, 실제로 높은 열전도도를 지니는 방열소재 응용 제품은 시장에서 찾아보기 힘든 상황이다. 일부 기술 중 은(Ag) 소재를 첨가하여 고열전도특성을 확보한 방열소재도 있으나 고가의 제품으로 상용화되기에는 어려움이 예상되며, 높은 열전도성에 비해 낮은 열방사율로 고출력 LED에 적용하기에는 기술적으로 적합하지 않다.Although research and development is underway for development of heat dissipation materials, the technology gap with Japan has not been reduced. In fact, heat dissipation application products with high thermal conductivity are hard to find in the market. Some of the technologies include a heat dissipation material that has high thermal conductivity characteristics by adding silver (Ag) material, but it is expected to be difficult to commercialize as an expensive product, and it is technically suitable for application to a high output LED with a low thermal emissivity not.

이에, 본 발명자들은 방열 특성이 우수한 열전도성 구리스에 대하여 연구하던 중, 실리콘 수지; 및 열전도성 필러로서 천연흑연 및 질화알루미늄(AlN);을 포함하고, 상기 실리콘 수지의 점도는 900-1100 cSt이며, 상기 천연흑연은 400-500Hz 세기로 25-35분간 초음파 파쇄 처리한 것을 특징으로 하는 열전도성 구리스의 방열 특성이 향상되고, 특히 열전도성 필러에 카본파이버를 더 포함할 경우 방열 특성이 더욱 향상됨을 알아내고 본 발명을 완성하였다.Accordingly, the inventors of the present invention have been studying a thermally conductive grease having excellent heat dissipation properties. And natural graphite and aluminum nitride (AlN) as thermally conductive fillers, wherein the silicone resin has a viscosity of 900-1100 cSt and the natural graphite is subjected to ultrasonic disintegration treatment at 400-500 Hz for 25-35 minutes The present invention has been accomplished on the basis of the finding that the heat radiation properties of the thermally conductive grease are improved and that the heat radiation properties are further improved when the thermally conductive filler further contains carbon fibers.

한국공개특허 10-2014-0182293호Korean Patent Publication No. 10-2014-0182293

본 발명의 목적은 열전도성 구리스를 제공하는 것이다.An object of the present invention is to provide a thermally conductive grease.

본 발명의 다른 목적은 상기 열전도성 구리스의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the thermally conductive grease.

본 발명의 또 다른 목적은 상기 열전도성 구리스를 포함하는 방열 구조물을 제공하는 것이다.It is still another object of the present invention to provide a heat dissipation structure including the thermally conductive grease.

본 발명의 다른 목적은 상기 열전도성 구리스를 포함하는 방열판을 제공하는 것이다.Another object of the present invention is to provide a heat sink comprising the thermally conductive grease.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 실리콘 수지; 및 열전도성 필러로서 천연흑연 및 질화알루미늄(AlN);을 포함하고,The present invention relates to a silicone resin; And natural graphite and aluminum nitride (AlN) as thermally conductive fillers,

상기 실리콘 수지의 점도는 900-1100 cSt이며,The viscosity of the silicone resin is 900-1100 cSt,

상기 천연흑연은 400-500Hz 세기로 25-35분간 초음파 파쇄 처리한 것을 특징으로 하는 열전도성 구리스를 제공한다.The natural graphite is ultrasonically pulverized at a frequency of 400 to 500 Hz for 25 to 35 minutes.

또한, 본 발명은 열전도성 필러로서 천연흑연 및 질화알루미늄(AlN) 분말을 고속믹싱을 통해 450-550rpm(45-75초), 650-750rpm(45-75초) 및 950-1050rpm(15-45초) 조건을 순차적으로 실시하여 혼합하는 단계(단계 1);The present invention also relates to a process for the production of natural graphite and aluminum nitride (AlN) powders as thermally conductive fillers at 450-550 rpm (45-75 seconds), 650-750 rpm (45-75 seconds) and 950-1050 rpm Second) conditions (step 1);

혼합된 분말에 실리콘 수지를 첨가한 후 고속믹싱을 통해 450-550rpm(45-75초), 650-750rpm(45-75초) 및 950-1050rpm(15-45초) 조건을 순차적으로 실시하여 혼합하는 단계(단계 2);Silicone resin was added to the mixed powder, and the mixture was subjected to high speed mixing at 450-550 rpm (45-75 seconds), 650-750 rpm (45-75 seconds) and 950-1050 rpm (15-45 seconds) (Step 2);

를 포함하는 상기 열전도성 구리스의 제조방법을 제공한다.The present invention also provides a method for producing the thermally conductive grease.

나아가, 본 발명은 상기 열전도성 구리스를 포함하는 방열 구조물을 제공한다.Furthermore, the present invention provides a heat dissipating structure including the thermally conductive grease.

또한, 본 발명은 상기 열전도성 구리스를 포함하는 방열판을 제공한다.The present invention also provides a heat sink comprising the thermally conductive grease.

본 발명에 따른 열전도성 구리스는 실리콘 수지 및 열전도성 필러로서 천연흑연 및 질화알루미늄(AlN)을 포함하고, 상기 실리콘 수지의 점도는 900-1100 cSt이며, 상기 천연흑연은 400-500Hz 세기로 25-35분간 초음파 파쇄 처리함에 따라서 방열 특성이 향상되는 효과가 있고, 나아가 카본파이버를 추가로 포함할 경우 방열 특성이 더욱 향상되는 효과가 있다.The thermally conductive grease according to the present invention comprises natural graphite and aluminum nitride (AlN) as a silicone resin and thermally conductive filler, the viscosity of the silicone resin is 900-1100 cSt, the natural graphite has a 25- The heat dissipation property is improved by ultrasonic disintegration treatment for 35 minutes, and furthermore, when the carbon fiber is further included, the heat dissipation property is further improved.

도 1은 상기 표 6 및 표 8의 초음파 파쇄 조건에 따른 열전도도 결과를 나타낸 그래프이다.
도 2는 방열온도 평가를 위한 실험모델의 개략도이다.
도 3은 카본파이버가 수직 열전도도에 미치는 영향을 나타낸 개략도이다.
1 is a graph showing the results of thermal conduction according to the ultrasonic breaking conditions of Tables 6 and 8.
2 is a schematic diagram of an experimental model for evaluating the heat radiation temperature.
3 is a schematic view showing the effect of the carbon fibers on the vertical thermal conductivity.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 하기의 정의를 가지며 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미에 부합된다. 또한, 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다. Unless defined otherwise, all technical terms used in the present invention have the following definitions and are consistent with the meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. In addition, preferred methods or samples are described in this specification, but similar or equivalent ones are also included in the scope of the present invention. The contents of all publications referred to herein are incorporated herein by reference.

용어 "약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.The term "about" is used herein to refer to a reference quantity, a level, a value, a number, a frequency, a percent, a dimension, a size, a quantity, a weight, or a length of 30, 25, 20, 25, 10, 9, 8, 7, Level, value, number, frequency, percent, dimension, size, quantity, weight or length of a variable, such as 4, 3, 2 or 1%.

본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군을 포함하나, 임의의 다른 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.Throughout this specification, the words "comprises" and "comprising ", unless the context requires otherwise, include the steps or components, or groups of steps or elements, Steps, or groups of elements are not excluded.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

열전도성 구리스Thermally conductive grease

본 발명은 실리콘 수지; 및 열전도성 필러로서 천연흑연 및 질화알루미늄(AlN);을 포함하고,The present invention relates to a silicone resin; And natural graphite and aluminum nitride (AlN) as thermally conductive fillers,

상기 실리콘 수지의 점도는 900-1100 cSt이며,The viscosity of the silicone resin is 900-1100 cSt,

상기 천연흑연은 400-500Hz 세기로 25-35분간 초음파 파쇄 처리한 것을 특징으로 하는 열전도성 구리스를 제공한다.The natural graphite is ultrasonically pulverized at a frequency of 400 to 500 Hz for 25 to 35 minutes.

*바람직하게, 열전도성 필러로서 카본파이버(carbon fiber, CF)를 더 포함할 수 있다.Preferably, carbon fiber (CF) may be further included as the thermally conductive filler.

본 발명에 따른 열전도성 구리스에 있어서, 상기 실리콘 수지의 점도는 900-1100 cSt, 바람직하게는 950-1050 cSt, 특히 바람직하게는 1000 cSt일 수 있다. 만약, 상기 실리콘 수지의 점도가 900 cSt 미만일 경우에는 방열 특성이 저하되는 문제가 있을 수 있고, 1100 cSt를 초과할 경우에는 구리스의 점도가 너무 높아져 발림성 및 필러의 분산성이 저하되어, 용매를 추가로 사용하여야 하는 문제가 있을 수 있다(실험예 1 참조).In the thermally conductive grease according to the present invention, the viscosity of the silicone resin may be 900-1100 cSt, preferably 950-1050 cSt, and particularly preferably 1000 cSt. If the viscosity of the silicone resin is less than 900 cSt, the heat dissipation characteristics may be deteriorated. If the viscosity exceeds 1100 cSt, the viscosity of the grease becomes too high, and the spreadability and dispersibility of the filler are lowered. (See Experimental Example 1).

본 발명에 따른 열전도성 구리스에 있어서, 상기 천연흑연은 400-500Hz 세기로 25-35분, 바람직하게는 425-475Hz 세기로 28-32분, 특히 바람직하게는 450Hz 세기로 30분간 초음파 파쇄 처리할 수 있다. 만약, 초음파 파쇄처리 세기 400-500Hz 및 처리시간 25-35분 범위를 벗어날 경우 방열 특성이 저하되는 문제가 있을 수 있다(실험예 2 참조).In the thermally conductive grease according to the present invention, the natural graphite is ultrasonically pulverized for 30 to 30 minutes at a frequency of 25 to 35 minutes, preferably 425 to 475 Hz, at a frequency of 400 to 500 Hz, particularly preferably at a frequency of 450 Hz . If the ultrasonic wave breaking strength is out of the range of 400-500 Hz and the processing time is 25-35 minutes, the heat radiation characteristic may be deteriorated (see Experimental Example 2).

본 발명에 따른 열전도성 구리스에 있어서, 상기 실리콘 수지는 폴리(디메틸실록산), 폴리(메틸페닐실록산), 폴리(디메틸실록산-co-디페닐실록산), 폴리(디메틸실록산-co-메틸페닐실록산), 폴리(디메틸실록산-co-메틸하이드로실록산), 폴리페닐-메틸실록산 등을 사용할 수 있고, 본 발명에서는 일례로 폴리(디메틸실록산) (MW ≥28,000)을 사용하였다.In the thermally conductive grease according to the present invention, the silicone resin may be selected from the group consisting of poly (dimethylsiloxane), poly (methylphenylsiloxane), poly (dimethylsiloxane-co-diphenylsiloxane) (Dimethylsiloxane-co-methylhydroxylsiloxane), polyphenyl-methylsiloxane, and the like. In the present invention, poly (dimethylsiloxane) (MW? 28,000) is used.

본 발명에 따른 열전도성 구리스에 있어서, 상기 천연흑연은 평균 입도가 40-50㎛, 바람직하게는 43-47㎛, 특히 바람직하게는 45㎛이고,In the thermally conductive grease according to the present invention, the natural graphite has an average particle size of 40-50 탆, preferably 43-47 탆, particularly preferably 45 탆,

상기 질화알루미늄(AlN)은 평균 입도가 4-6㎛, 특히 바람직하게는 5㎛이고,The aluminum nitride (AlN) has an average particle size of 4-6 탆, particularly preferably 5 탆,

상기 카본파이버(CF)는 평균 길이가 145-155㎛, 바람직하게는 148-152㎛, 특히 바람직하게는 150㎛일 수 있다. 상기 카본파이버(CF)의 직경은 5-10㎛, 바람직하게는 6-9㎛, 더욱 바람직하게는 7-8㎛일 수 있다.The carbon fibers CF may have an average length of 145 to 155 占 퐉, preferably 148 to 152 占 퐉, particularly preferably 150 占 퐉. The diameter of the carbon fibers CF may be 5-10 占 퐉, preferably 6-9 占 퐉, more preferably 7-8 占 퐉.

본 발명에 따른 열전도성 구리스에 있어서, 상기 열전도성 구리스 총 중량에서 열전도성 필러의 함량은 75-85 중량%, 바람직하게는 80-85 중량%일 수 있다. 만약, 열전도성 필러의 함량이 75 중량% 미만일 경우에는 방열 특성이 저하되는 문제가 있을 수 있고, 85 중량%를 초과할 경우 구리스로서의 물성이 저하되는 문제가 있다.In the thermally conductive grease according to the present invention, the content of the thermally conductive filler in the total weight of the thermally conductive grease may be 75-85 wt%, preferably 80-85 wt%. If the content of the thermally conductive filler is less than 75% by weight, the heat radiation property may be deteriorated. If the content is more than 85% by weight, there is a problem that the physical properties as a grease deteriorates.

본 발명에 따른 열전도성 구리스의 일례에 있어서, 실리콘 수지 15-25 중량%(바람직하게는 18-22 중량%, 특히 바람직하게는 20.4 중량%); 및 열전도성 필러로서 천연흑연 1.5-4.5 중량%(바람직하게는 2-4 중량%, 특히 바람직하게는 3.1 중량%) 및 질화알루미늄(AlN) 71.5-81.5중량%(바람직하게는 74-78 중량%, 특히 바람직하게는 76.5 중량%)를 포함할 수 있다.In one example of the thermally conductive grease according to the present invention, 15-25 wt% (preferably 18-22 wt%, particularly preferably 20.4 wt%) of a silicone resin; (Preferably 74 to 78 wt.%) Of natural graphite as thermally conductive filler, 1.5 to 4.5 wt% (preferably 2-4 wt%, particularly preferably 3.1 wt%) and aluminum nitride (AlN) , Particularly preferably 76.5% by weight).

본 발명에 따른 열전도성 구리스의 다른 일례에 있어서, 실리콘 수지 15-25 중량%(바람직하게는 18-22 중량%, 특히 바람직하게는 20.4 중량%); 및 열전도성 필러로서 천연흑연 0.5-2.5 중량%(바람직하게는 1-2 중량%, 특히 바람직하게는 1.55 중량%), 질화알루미늄(AlN) 71.5-81.5중량%(바람직하게는 74-78 중량%, 특히 바람직하게는 76.5 중량%) 및 카본파이버(CF) 0.5-2.5 중량%(바람직하게는 1-2 중량%, 특히 바람직하게는 1.55 중량%)를 포함할 수 있다.In another example of the thermally conductive grease according to the present invention, 15-25 wt% (preferably 18-22 wt%, particularly preferably 20.4 wt%) of a silicone resin; (Preferably 1-24% by weight, particularly preferably 1.55% by weight), aluminum nitride (AlN) 71.5-81.5% by weight (preferably 74-78% by weight) of natural graphite as thermally conductive filler, By weight, particularly preferably 76.5% by weight) and 0.5-2.5% by weight (preferably 1-2% by weight, particularly preferably 1.55% by weight) of carbon fibers (CF).

열전도성 구리스의 제조방법Manufacturing Method of Thermally Conductive Grease

본 발명은 열전도성 필러로서 천연흑연 및 질화알루미늄(AlN) 분말을 고속믹싱을 통해 450-550rpm(45-75초), 650-750rpm(45-75초) 및 950-1050rpm(15-45초) 조건을 순차적으로 실시하여 혼합하는 단계(단계 1);(45-75 seconds), 650-750 rpm (45-75 seconds) and 950-1050 rpm (15-45 seconds) through high-speed mixing as natural graphite and aluminum nitride (AlN) powders as thermally conductive fillers, (Step 1);

혼합된 분말에 실리콘 수지를 첨가한 후 고속믹싱을 통해 450-550rpm(45-75초), 650-750rpm(45-75초) 및 950-1050rpm(15-45초) 조건을 순차적으로 실시하여 혼합하는 단계(단계 2);Silicone resin was added to the mixed powder, and the mixture was subjected to high speed mixing at 450-550 rpm (45-75 seconds), 650-750 rpm (45-75 seconds) and 950-1050 rpm (15-45 seconds) (Step 2);

를 포함하는 상기 열전도성 구리스의 제조방법을 제공한다.The present invention also provides a method for producing the thermally conductive grease.

본 발명에 따른 제조방법에 있어서, 상기 단계 1의 열전도성 필러로서 카본파이버(carbon fiber, CF)를 더 포함할 수 있다.In the manufacturing method according to the present invention, carbon fiber (CF) may further be included as the thermally conductive filler in the step 1.

본 발명에 따른 제조방법에 있어서, 상기 단계 1의 천연흑연은 초음파 파쇄처리된 것을 특징으로 하며, 초음파 파쇄처리 방법은 다음과 같다.In the manufacturing method according to the present invention, the natural graphite in the step 1 is characterized in that it is subjected to an ultrasonic wave breaking treatment, and the ultrasonic wave breaking treatment method is as follows.

구체적으로, 천연흑연 분말을 톨루엔 등의 유기용매에 기계적 교반을 이용하여 분산시키고, 분산된 용액에 초음파를 조사하여 파쇄한다. 다음으로, 초음파 처리된 용액을 진공필터에 걸러 내리고, 건조 오븐에서 건조하여, 초음파 파쇄처리한 천연흑연을 얻을 수 있다.Specifically, the natural graphite powder is dispersed in an organic solvent such as toluene using mechanical stirring, and the dispersion solution is irradiated with ultrasonic waves to be crushed. Next, the ultrasound-treated solution is filtered through a vacuum filter and dried in a drying oven to obtain a natural graphite which has been ultrasonically pulverized.

방열 구조물 및 방열판Heat dissipation structure and heat sink

또한, 본 발명은 상기 열전도성 구리스를 포함하는 방열 구조물을 제공한다.The present invention also provides a heat dissipating structure including the thermally conductive grease.

나아가, 본 발명은 상기 열전도성 구리스를 포함하는 방열판을 제공한다.Further, the present invention provides a heat sink including the thermally conductive grease.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

*열전도성 구리스 샘플의 제조방법 Method of manufacturing a thermally conductive grease sample

흑연분말, 무기필러 등의 분말을 고속믹싱(PM-500D)을 통해 500rpm(1min), 700rpm(1min), 1000rpm(30sec) 조건을 순차적으로 실시하여 혼합하는 단계(단계 1);(Step 1) of performing powders such as graphite powder, inorganic filler and the like in succession at 500 rpm (1 min), 700 rpm (1 min) and 1000 rpm (30 sec) through high-speed mixing (PM-500D).

혼합된 분말에 실리콘 수지로서 폴리(디메틸실록산)을 첨가한 후 고속믹싱을 통해 500rpm(1min), 700rpm(1min), 1000rpm(30sec) 조건을 순차적으로 실시하여 혼합하는 단계(단계 2);를 포함하여 제조하였다.(Step 2) in which poly (dimethylsiloxane) is added as a silicone resin to the mixed powder, and then the mixture is subjected to high speed mixing at 500 rpm (1 min), 700 rpm (1 min) and 1000 rpm .

이때, 보다 균일한 혼합을 위해 고속믹싱과 핸드믹싱을 번갈아 가면 실시하였다.At this time, high-speed mixing and hand mixing were alternately performed for more uniform mixing.

<실험예 1> 실리콘 수지 점도에 따른 방열 특성평가EXPERIMENTAL EXAMPLE 1 Evaluation of Heat Release Characteristics According to Silicone Resin Viscosity

실리콘수지 점도에 따른 수직 방열 특성을 평가하기 위하여, 500cSt와 1000cSt 점도의 실리콘 수지에 다양한 흑연분말을 혼합하여 하기 표 1 및 표 2의 조성으로 열전도성 구리스 샘플을 준비하여 평가하였다.In order to evaluate the vertical heat radiation characteristics according to the viscosity of the silicone resin, various graphite powders were mixed with a silicone resin having a viscosity of 500 cSt and a viscosity of 1000 cSt, and a thermally conductive grease sample was prepared and evaluated according to the compositions shown in Tables 1 and 2 below.

구체적으로, Laser flash 법에 기반을 둔 열확산도 분석 장비(LFA467, Netzsch, Germany)를 사용하여 시료의 열확산도 측정하였다. 또한, 시료의 비열 분석 장비(DSC- 214, Netzsch, Germany)를 사용하여 비열을 측정하였다. 그리고 밀도(ρ)는 ISO2811 규격에 따라 측정하였으며 재현성 비교를 위하여 샘플당 10회 이상 반복 실험하여 표준 편차를 계산하였다. 얻어진 열확산도, 밀도, 비열 값과 함께 하기 수학식 1로 계산하여 얻을 수 있다. 그 결과를 하기 표 3 및 4에 나타내었다.Specifically, the thermal diffusivity of the sample was measured using a thermal diffusivity analyzer (LFA467, Netzsch, Germany) based on the laser flash method. In addition, specific heat was measured using a specific heat analyzer (DSC-214, Netzsch, Germany). The density (ρ) was measured according to the ISO 2811 standard, and the standard deviation was calculated by repeatedly testing at least 10 times per sample for comparison of reproducibility. The obtained thermal diffusivity, density and specific heat value can be obtained by the following formula (1). The results are shown in Tables 3 and 4.

Figure 112018000437322-pat00001
Figure 112018000437322-pat00001

샘플Sample 실리콘 수지Silicone resin
(500cSt)(500 cSt)
흑연분말Graphite powder
1One 10g10g 0g0g 22 10g10g 천연흑연 45㎛Natural graphite 45㎛ 6.7g6.7 g 33 10g10g 천연흑연 15㎛Natural graphite 15㎛ 6.7g6.7 g 44 10g10g 천연흑연 6㎛Natural graphite 6 ㎛ 6.7g6.7 g 55 10g10g 전도성흑연 5㎛Conductive graphite 5㎛ 6.7g6.7 g 66 10g10g 인조흑연 3㎛Artificial graphite 3 μm 6.7g6.7 g

샘플Sample 실리콘 수지Silicone resin
(1000cSt)(1000 cSt)
흑연분말Graphite powder
77 10g10g 0g0g 88 10g10g 천연흑연 45㎛Natural graphite 45㎛ 6.7g6.7 g 99 10g10g 천연흑연 15㎛Natural graphite 15㎛ 6.7g6.7 g 1010 10g10g 천연흑연 6㎛Natural graphite 6 ㎛ 6.7g6.7 g 1111 10g10g 전도성흑연 5㎛Conductive graphite 5㎛ 6.7g6.7 g 1212 10g10g 인조흑연 3㎛Artificial graphite 3 μm 6.7g6.7 g

샘플Sample 열확산도Thermal diffusivity (m(m 22 /s)/ s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
1One 0.1000.100 1.7021.702 0.9700.970 0.1650.165 22 0.6600.660 1.6471.647 1.2301.230 1.3371.337 33 0.5600.560 1.4571.457 1.3661.366 1.1151.115 44 0.4000.400 1.5961.596 1.3771.377 0.8790.879 55 0.4200.420 1.3961.396 1.3271.327 0.7780.778 66 0.4080.408 1.5191.519 1.1191.119 0.6940.694

샘플Sample 열확산도Thermal diffusivity (m^2/s)(m ^ 2 / s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
77 0.1690.169 1.8161.816 0.9700.970 0.2980.298 88 0.6780.678 1.7271.727 1.2621.262 1.4781.478 99 0.6350.635 1.5261.526 1.3631.363 1.3211.321 1010 0.4690.469 1.6641.664 1.4141.414 1.1041.104 1111 0.5040.504 1.3961.396 1.3561.356 0.9540.954 1212 0.4090.409 1.5871.587 1.1551.155 0.7500.750

상기 표 3 및 4에 나타난 바와 같이, 실리콘 수지의 점도가 높은 샘플의 열전도도가 높아지는 것을 알 수 있었고, 또한 흑연 분말의 입도가 커질수록 열전도도가 향상되는 것을 알 수 있었다.As shown in Tables 3 and 4, it was found that the thermal conductivity of the sample having a high viscosity of the silicone resin was increased, and that the larger the particle size of the graphite powder, the higher the thermal conductivity.

<실험예 2> 흑연의 초음파 파쇄처리에 따른 방열 특성평가&Lt; Experimental Example 2 > Evaluation of heat radiation characteristics by ultrasonic disintegration treatment of graphite

흑연의 초음파 파쇄처리 조건에 따른 수직 방열 특성을 평가하기 위하여, 하기 표 5의 조성에 따라 열전도성 구리스 샘플을 준비하고 열전도도를 평가하였다. 여기서, 사용한 흑연은 TG80-GT(팽창흑연, 평균 입도 180㎛)이다.In order to evaluate the vertical heat dissipation characteristics of graphite according to the ultrasonic disintegration treatment conditions, a thermally conductive grease sample was prepared according to the composition shown in the following Table 5 and the thermal conductivity was evaluated. Here, the graphite used is TG80-GT (expanded graphite, average grain size of 180 mu m).

흑연 분말의 파쇄 방법은 흑연분말을 톨루엔 용매에 기계적 교반을 이용하여 분산시키고, 분산된 용액에 초음파를 조사하여 파쇄하였다. 다음으로, 초음파 처리된 용액을 진공필터에 걸러 내리고, 120℃ 건조 오븐에서 건조하였다.The graphite powder was crushed by dispersing the graphite powder in a toluene solvent by mechanical stirring and irradiating the dispersed solution with ultrasonic waves. Next, the ultrasonic treated solution was filtered through a vacuum filter and dried in a drying oven at 120 캜.

샘플Sample 실리콘 수지Silicone resin
(1000cSt)(1000 cSt)
흑연분말Graphite powder
(TG80-GT)(TG80-GT)
파쇄시간Shred time 초음파파쇄Ultrasonic shredding
파워Power
1313 10g10g 4.3g4.3 g 5h5h 450Hz450Hz 1414 10g10g 4.3g4.3 g 1h1h 450Hz450Hz 1515 10g10g 4.3g4.3 g 30min30min 450Hz450Hz

샘플Sample 열확산도(m^2/s)Thermal diffusivity (m ^ 2 / s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
1313 0.3010.301 1.7241.724 1.3521.352 0.7020.702 1414 0.3200.320 1.7241.724 1.4251.425 0.7860.786 1515 0.5060.506 1.7241.724 1.4981.498 1.3071.307

샘플Sample 실리콘 수지Silicone resin
(1000cSt)(1000 cSt)
흑연분말Graphite powder
(TG80-GT)(TG80-GT)
파쇄시간Shred time 초음파파쇄Ultrasonic shredding
파워Power
1616 10g10g 4.3g4.3 g 30min30min 150Hz150Hz 1717 10g10g 4.3g4.3 g 30min30min 300Hz300Hz 1818 10g10g 4.3g4.3 g 30min30min 450Hz450Hz 1919 10g10g 4.3g4.3 g 30min30min 600Hz600Hz

샘플Sample 열확산도(m^2/s)Thermal diffusivity (m ^ 2 / s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
1616 0.4130.413 1.7241.724 1.1971.197 0.8550.855 1717 0.4350.435 1.7241.724 1.2781.278 0.9580.958 1818 0.5060.506 1.7241.724 1.4981.498 1.3071.307 1919 0.4510.451 1.7241.724 1.5131.513 1.1761.176

도 1은 상기 표 6 및 표 8의 초음파 파쇄 조건에 따른 열전도도 결과를 나타낸 그래프이다.1 is a graph showing the results of thermal conduction according to the ultrasonic breaking conditions of Tables 6 and 8.

상기 표 6, 표 8 및 도 1에 나타난 바와 같이, 표 6에서 초음파 파쇄 시간은 30분에서 열전도도가 가장 우수한 것을 알 수 있었고, 표 8에서 파쇄 시간을 30분으로 고정하고 초음파파쇄 파워는 450Hz에서 열전도도가 가장 우수한 것을 알 수 있었다. 본 실험결과에 따라서, 흑연의 초음파 파쇄 처리 조건은 450Hz 세기로 30분간 처리하는 것이 가장 바람직함을 알 수 있었다.As shown in Table 6, Table 8 and FIG. 1, in Table 6, it was found that the ultrasonic breaking time was the best in 30 minutes. In Table 8, the breaking time was fixed to 30 minutes and the ultrasonic breaking power was 450 Hz The highest thermal conductivity was obtained. According to the results of this experiment, it was found that it is most preferable to treat graphite with ultrasound at 450 Hz for 30 minutes.

흑연의 초음파 파쇄 처리 조건을 450Hz 세기로 30분간 처리하여 하기 표 9의 조성으로 열전도성 구리스를 제조하고, 이의 열전도도를 확인하였다(표 10).The conditions of ultrasonic disintegration treatment of graphite were treated for 30 minutes at a frequency of 450 Hz to prepare a thermoconductive grease having the composition shown in Table 9, and its thermal conductivity was confirmed (Table 10).

샘플Sample 실리콘 수지Silicone resin
(1000cSt)(1000 cSt)
파쇄흑연분말Crushed graphite powder
2020 10g10g 천연흑연 45㎛Natural graphite 45㎛ 6.7g6.7 g 2121 10g10g 천연흑연 15㎛Natural graphite 15㎛ 6.7g6.7 g 2222 10g10g 천연흑연 6㎛Natural graphite 6 ㎛ 6.7g6.7 g 2323 10g10g 전도성흑연 5㎛Conductive graphite 5㎛ 6.7g6.7 g 2424 10g10g 인조흑연 3㎛Artificial graphite 3 μm 6.7g6.7 g

샘플Sample 열확산도(mThermal diffusivity m 22 /s)/ s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
2020 1.3091.309 1.5101.510 1.0021.002 1.9811.981 2121 0.9140.914 1.4301.430 1.2241.224 1.6001.600 2222 0.5930.593 1.5961.596 1.3771.377 1.1751.175 2323 0.6370.637 1.3961.396 1.3271.327 1.1421.142 2424 0.5310.531 1.5191.519 1.1191.119 0.8820.882

표 10에 나타난 바와 같이, 실험예 1의 결과와 유사하게 흑연의 입도가 클수록 열확산도 및 열전도도가 향상됨을 알 수 있었다. 또한, 상기 표 10의 결과와 표 4의 결과를 비교하여 보면 아무런 처리를 하지 않은 흑연에 비해 초음파 파쇄 처리한 흑연을 사용할 경우 열전도도가 0.1-0.5 (W/m*K) 향상됨을 알 수 있었다.As shown in Table 10, similar to the results of Experimental Example 1, the larger the particle size of graphite, the higher the thermal diffusivity and the thermal conductivity. In addition, when the results of Table 10 are compared with those of Table 4, it can be seen that the thermal conductivity is improved by 0.1-0.5 (W / m * K) when graphite treated with ultrasonic waves is used as compared with graphite without any treatment .

<실험예 3> 무기필러의 종류에 따른 방열 특성 평가&Lt; Experimental Example 3 > Evaluation of heat radiation characteristics according to kinds of inorganic fillers

실험예 1(흑연) 및 실험예 2(파쇄흑연)에서 제조한 열전도성 구리스 샘플은 점착성, 밀착성, 이형성 등에 있어서 TIM(Thermal Interface Material)으로 적용하기에 약간의 결함이 있다 판단하였다. 이는 흑연에 의해 점착성 및 밀착성이 저하되기 때문으로, 흑연의 함량을 줄이되 열전도성은 향상시키는 것을 목표로 하였다. 이를 위해, 열전도성 필러로 AlN 또는 Al2O3를 추가하여 하기 표 11의 조성으로 열전도성 구리스 샘플을 제조하였고, 이의 방열 특성을 표 12에 나타내었다.The thermally conductive grease samples prepared in Experimental Example 1 (graphite) and Experimental Example 2 (crushed graphite) were judged to have some defects in application to TIM (Thermal Interface Material) in terms of adhesiveness, adhesion, releasability and the like. This is because the adhesion and adhesiveness are deteriorated by graphite, so that the content of graphite is reduced and the thermal conductivity is improved. To this end, a thermally conductive grease sample was prepared by adding AlN or Al 2 O 3 as a thermally conductive filler to the composition shown in Table 11 below, and its heat radiation characteristics are shown in Table 12.

샘플Sample 실리콘 수지Silicone resin
(1000cSt)(1000 cSt)
흑연black smoke AlNAlN
(5㎛)(5 탆)
AlAl 22 00 33
(3㎛)(3 탆)
총필러함량Total filler content
2525 10g10g 천연흑연 45㎛Natural graphite 45㎛ 21.5g21.5g -- 70wt%70wt% 2.5g2.5 g 2626 10g10g 천연흑연 15㎛Natural graphite 15㎛ 21.5g21.5g -- 70wt%70wt% 2.5g2.5 g 2727 10g10g 천연흑연 12㎛Natural graphite 12 ㎛ 21.5g21.5g -- 70wt%70wt% 2.5g2.5 g 2828 10g10g 천연흑연 45㎛Natural graphite 45㎛ -- 37.5g37.5g 80wt%80wt% 2.5g2.5 g 2929 10g10g 천연흑연 15㎛Natural graphite 15㎛ -- 37.5g37.5g 80wt%80wt% 2.5g2.5 g 3030 10g10g 천연흑연 12㎛Natural graphite 12 ㎛ -- 37.5g37.5g 80wt%80wt% 2.5g2.5 g

구분division 열확산도(mThermal diffusivity m 22 /s)/ s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
2525 0.8780.878 1.2001.200 1.9141.914 2.0162.016 2626 0.6310.631 1.1641.164 1.9371.937 1.4231.423 2727 0.4720.472 1.1401.140 1.9711.971 1.0611.061 2828 0.8540.854 1.0151.015 2.4942.494 2.1622.162 2929 0.7620.762 0.9990.999 2.5242.524 1.9211.921 3030 0.7330.733 0.9840.984 2.4702.470 1.7811.781

상기 표 12에 나타난 바와 같이, 실험예 1, 2의 샘플 보다 흑연 함량을 줄여, 점착성, 밀착성, 이형성 등 물리적 특성이 개선되었다. 흑연을 감량한 대신에 AlN 또는 Al2O3를 첨가하여 열전도도는 오히려 상승하는 것으로 나타났다. 한편, 본 실험예 3의 결과에서도 흑연의 입도는 클수록 열전도도에 유리한 것을 알 수 있었다.As shown in Table 12, the graphite content was reduced as compared with the samples of Experimental Examples 1 and 2, and physical properties such as adhesiveness, adhesion and releasability were improved. By the addition of AlN or Al 2 O 3 in place of the loss of thermal conductivity of graphite it is rather shown to rise. On the other hand, also in the result of Experimental Example 3, it was found that the larger the grain size of graphite, the more favorable the thermal conductivity.

<실험예 4> 파쇄흑연 및 무기필러 포함 열전도성 구리스의 방열 특성 평가<Experimental Example 4> Evaluation of heat radiation characteristics of thermally conductive grease containing crushed graphite and inorganic filler

실험예 2에서 파쇄흑연을 사용할 경우 열전도도가 상승함을 확인하였다. 이에, 하기 표 13 및 14의 조성으로 열전도성 구리스에 일반 흑연 및 파쇄흑연을 각각 첨가한 샘플을 제조하였고, 이의 방열특성을 평가하여 표 15에 나타내었다.In case of using crushed graphite in Experimental Example 2, it was confirmed that the thermal conductivity was increased. Thus, samples in which normal graphite and crushed graphite were respectively added to the thermoconductive grease with the compositions shown in Tables 13 and 14 were prepared, and their heat radiation characteristics were evaluated and shown in Table 15.

샘플Sample 실리콘 수지Silicone resin
(1000cSt)(1000 cSt)
흑연black smoke AlNAlN
(5㎛)(5 탆)
AlAl 22 00 33
(3㎛)(3 탆)
필러함량Filler content
3131 10g10g 천연흑연 45㎛Natural graphite 45㎛ 21.5g21.5g -- 70wt%70wt% 2.5g2.5 g 3232 10g10g 천연흑연 45㎛Natural graphite 45㎛ -- 54.5g54.5g 85wt%85wt% 2.5g2.5 g

샘플Sample 실리콘 수지Silicone resin
(1000cSt)(1000 cSt)
파쇄흑연Crushed graphite AlNAlN
(5㎛)(5 탆)
AlAl 22 00 33
(3㎛)(3 탆)
필러함량Filler content
3333 10g10g 천연흑연 45㎛Natural graphite 45㎛ 21.5g21.5g -- 70wt%70wt% 2.5g2.5 g 3434 10g10g 천연흑연 45㎛Natural graphite 45㎛ -- 54.5g54.5g 85wt%85wt% 2.5g2.5 g

샘플Sample 열확산도(mThermal diffusivity m 22 /s)/ s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
3131 0.8780.878 1.2001.200 1.9141.914 2.0162.016 3232 0.8540.854 1.0151.015 2.4942.494 2.1622.162 3333 0.9730.973 1.2001.200 1.8851.885 2.2012.201 3434 1.4411.441 1.0151.015 2.2782.278 3.3323.332

상기 표 15에 나타난 바와 같이, 일반 흑연을 사용한 경우(샘플 31, 32)에 비해 파쇄흑연을 사용한 경우(샘플 33, 34)에 열전도도가 향상되는 것을 알 수 있었다. As shown in Table 15, it was found that the thermal conductivity was improved in the case of using crushed graphite (Samples 33 and 34) as compared with the case of using ordinary graphite (Samples 31 and 32).

또한, 상기에서 준비한 샘플 32 및 34의 방열온도를 도 2와 같은 실험모델로 평가하였다. 구체적으로, 핫플레이트 표면 온도는 T1, 알루미늄판층의 표면 온도는 T2, 방열 온도는 T3으로 표기하고, 표면온도를 100℃로 맞추어 실험을 진행하였다. 실험결과를 하기 표 16에 나타내었다.In addition, the heat radiation temperatures of the samples 32 and 34 prepared above were evaluated by an experimental model as shown in Fig. Specifically, the test was performed by setting the surface temperature of the hot plate to T 1 , the surface temperature of the aluminum plate layer to T 2 , and the heat radiation temperature to T 3 , and the surface temperature to 100 ° C. The experimental results are shown in Table 16 below.

도 2는 방열온도 평가를 위한 실험모델의 개략도이다.2 is a schematic diagram of an experimental model for evaluating the heat radiation temperature.

샘플 32Sample 32 샘플 34Sample 34 Al plate (1)Al plate (1) Gr(45㎛)+AlGr (45 mu m) + Al 22 OO 33
[85wt%](2)[85 wt%] (2)
(S)―Gr(45㎛)+Al(S) -Gr (45 mu m) + Al 22 OO 33
[85wt%](3)[85 wt%] (3)
평균Average 평균Average 평균Average T1 (℃)T 1 (° C) 101.7±0.2101.7 ± 0.2 101.5±0.2101.5 ± 0.2 101.7±0.1101.7 ± 0.1 T2 (℃)T 2 (° C) 97.8±0.397.8 ± 0.3 94.5±0.194.5 ± 0.1 90.5±0.290.5 ± 0.2 T3 (℃)T 3 (° C) 46.6±0.146.6 ± 0.1 47.7±0.247.7 ± 0.2 49.7±0.249.7 ± 0.2

상기 표 16에 나타난 바와 같이, 샘플 32 또는 34를 알루미늄판층 사이에 적용할 경우 방열온도가 증가하는 것을 알 수 있었고, 특히 파쇄흑연을 사용한 샘플 34의 방열 특성이 일반 흑연을 사용한 샘플 32에 비해 우수한 것을 알 수 있었다.As shown in Table 16, when the sample 32 or 34 was applied between the aluminum plate layers, it was found that the heat radiation temperature was increased. Particularly, the sample 34 using the crushed graphite was superior in heat radiation characteristics to the sample 32 using the ordinary graphite .

<실험예 5> 카본파이버(CF) 첨가에 따른 방열 특성 평가&Lt; Experimental Example 5 > Evaluation of heat radiation characteristics by addition of carbon fiber (CF)

흑연분말의 구조가 판상이므로 수직방향의 열전달에 있어서 효과적이지 않을 것으로 예상하여, 이를 보완하기 위해 카본파이버(CF)를 추가로 첨가할 경우의 방열 특성에 대하여 평가하였다. 구체적으로, 하기 표 17의 조성으로 열전도성 구리스 샘플을 제조하였고, 이의 방열 특성을 표 18에 나타내었다.Since the structure of the graphite powder is plate-like, it is expected that it will not be effective for heat transfer in the vertical direction. To compensate for this, the heat radiation characteristic when carbon fiber (CF) is further added is evaluated. Specifically, a thermally conductive grease sample was prepared with the composition shown in Table 17 below, and the heat radiation characteristics thereof are shown in Table 18.

샘플Sample 실리콘수지Silicone resin
(1000cSt)(1000 cSt)
파쇄흑연Crushed graphite CFCF
(150㎛)(150 탆)
AlAl 22 OO 33
(3㎛)(3 탆)
총필러함량Total filler content
3535 10g10g 천연흑연 45㎛
4.3g
Natural graphite 45㎛
4.3 g
-- 19.7g19.7 g 70wt%70wt%
3636 10g10g 천연흑연 45㎛
2.15g
Natural graphite 45㎛
2.15 g
2.15g2.15 g 19.7g19.7 g 70wt%70wt%
3737 10g10g 천연흑연 15㎛
4.3g
Natural graphite 15㎛
4.3 g
-- 35.7g35.7 g 80wt%80wt%
3838 10g10g 천연흑연 15㎛
2.15g
Natural graphite 15㎛
2.15 g
2.15g2.15 g 35.7g35.7 g 80wt%80wt%

샘플Sample 열확산도(mThermal diffusivity m 22 /s)/ s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
3535 1.0231.023 1.2161.216 1.9201.920 2.3882.388 3636 1.1381.138 1.1771.177 1.8531.853 2.4822.482 3737 0.7690.769 1.0611.061 2.4042.404 1.9611.961 3838 1.3121.312 1.0521.052 2.1322.132 2.9432.943

도 3은 카본파이버가 수직 열전도도에 미치는 영향을 나타낸 개략도이다.3 is a schematic view showing the effect of the carbon fibers on the vertical thermal conductivity.

상기 표 18에 나타난 바와 같이, 흑연 함량을 감소한 만큼 카본파이버를 추가로 첨가한 샘플 36 및 38에서 수직 열전도도가 향상되는 결과를 확인할 수 있었다.As shown in Table 18, it was confirmed that the vertical thermal conductivity was improved in the samples 36 and 38 in which the carbon fiber was further added as the graphite content was decreased.

<실험예 6> 무기필러 혼합비율에 따른 방열 특성 평가&Lt; Experimental Example 6 > Evaluation of heat radiation characteristics according to the mixing ratio of inorganic filler

최적의 방열 특성을 나타내는 무기필러(AlN 또는 Al2O3)의 혼합비를 알아보기 위하여, 흑연 분말을 첨가하지 않고 하기 표 19의 조성으로 열전도성 구리스 샘플을 제조하였고, 이의 방열 특성을 표 20에 나타내었다.In order to determine the mixing ratio of the inorganic filler (AlN or Al 2 O 3 ) exhibiting the optimum heat dissipation characteristics, a thermally conductive grease sample was prepared with the composition shown in the following Table 19 without adding graphite powder, Respectively.

샘플Sample 실리콘수지Silicone resin
(1000cSt)(1000 cSt)
FillerFiller AlAl 22 OO 33 /AlN비율/ AlN ratio
AlAl 22 OO 33 AlNAlN 3939 10g10g 3㎛3 탆 12g12g 5㎛5 탆 28g28g 3:73: 7 4040 10g10g 5㎛5 탆 12g12g 5㎛5 탆 28g28g 3:73: 7 4141 10g10g 3㎛3 탆 20g20g 5㎛5 탆 20g20g 5:55: 5 4242 10g10g 5㎛5 탆 20g20g 5㎛5 탆 20g20g 5:55: 5 4343 10g10g 3㎛3 탆 28g28g 5㎛5 탆 12g12g 7:37: 3 4444 10g10g 5㎛5 탆 28g28g 5㎛5 탆 12g12g 7:37: 3

샘플Sample 열확산도(mThermal diffusivity m 22 /s)/ s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
3939 0.7210.721 1.0571.057 2.2212.221 1.6931.693 4040 0.5660.566 1.0451.045 2.3462.346 1.3871.387 4141 0.6800.680 1.0521.052 2.1342.134 1.5271.527 4242 0.5170.517 1.0321.032 2.2862.286 1.2191.219 4343 0.7560.756 1.0471.047 2.1632.163 1.7121.712 4444 0.4950.495 1.0191.019 2.3222.322 1.1721.172

상기 표 20에 나타난 바와 같이, Al2O3의 평균 입도 크기 및 AlN과의 혼합비를 달리 제조한 샘플의 열전도도를 비교하여 본 결과, Al2O3 및 AlN의 평균 입도 크기가 서로 상이한 샘플에서 열전도도가 향상되는 경향을 확인할 수 있었고, Al2O3/AlN의 최적화된 조성비는 7:3임을 알 수 있었다.As shown in Table 20, Al 2 O 3 Average particle size and the result to the mixture ratio of the AlN comparing the thermal conductivity of a sample produced otherwise, Al 2 O 3 and an average particle size of the AlN in the different samples from each other of And the optimum composition ratio of Al 2 O 3 / AlN was found to be 7: 3.

< 실험예 7> 본 발명에 따른 실시예 1-6에서 제조한 열전도성 구리스의 열 특성 평가 < Experimental Example 7> The thermal conductivity obtained in Examples 1-6 according to the present invention Room thermal properties of grease Rating

본 발명에 따른 실시예 1-6에서 제조한 열전도성 구리스의 구성(하기 표 21)은 상술한 실험예 1-6의 실험결과로부터 도출한 것으로서, 실험예 1-6에서 제조한 샘플 1-44과 방열 특성을 직접 비교하여 보기 위하여 방열 특성을 평가한 결과를 하기 표 22에 나타내었다. 여기서, 실시예 1-6에서 사용한 실리콘 수지는 점도 1000cSt를 사용하였고(실험예 1 참조), 파쇄흑연은 450Hz 세기로 30분간 파쇄한 것을 사용하였다(실험예 2 참조).The composition of the thermally conductive grease prepared in Example 1-6 according to the present invention (Table 21 below) was obtained from the results of the above Experimental Example 1-6, and the samples 1-44 prepared in Experimental Example 1-6 And the heat dissipation characteristics were evaluated in order to directly compare the heat dissipation characteristics. The results are shown in Table 22 below. Here, the silicone resin used in Example 1-6 used a viscosity of 1000 cSt (see Experimental Example 1), and crushed graphite was crushed at 450 Hz for 30 minutes (see Experimental Example 2).

실시예Example 실리콘수지Silicone resin
(1000cSt)(1000 cSt)
파쇄처리한 Shredded
천연흑연Natural graphite
(45㎛)(45 탆)
AlNAlN
(5㎛)(5 탆)
CFCF
(150㎛)(150 탆)
총필러Total filler
함량content
1One 10g10g 1.5g1.5 g 37.5g37.5g -- 80wt%80wt% 22 10g10g 0.75g0.75 g 37.5g37.5g 0.75g0.75 g 80wt%80wt% 33 10g10g 2.02.0 27.5g27.5g -- 75wt%75wt% 44 10g10g 1g1g 27.5g27.5g 1g1g 75wt%75wt% 55 10g10g 2.5g2.5 g 21.5g21.5g -- 70wt%70wt% 66 10g10g 1.25g1.25 g 21.5g21.5g 1.25g1.25 g 70wt%70wt%

실시예Example 열확산도(mThermal diffusivity m 22 /s)/ s) 비열(J/g/K)Specific heat (J / g / K) 밀도(g/cm³)Density (g / cm³) 열전도도Thermal conductivity
(수직방향)(Vertical direction)
(W/m*K)(W / m * K)
1One 1.4191.419 1.0971.097 2.2112.211 3.4423.442 22 1.6341.634 1.0801.080 2.1252.125 3.7503.750 33 1.1691.169 1.1521.152 2.0542.054 2.7662.766 44 1.3351.335 1.1301.130 1.9811.981 2.9882.988 55 0.9730.973 1.2001.200 1.8851.885 2.2012.201 66 1.1351.135 1.1751.175 1.7211.721 2.2952.295

상기 표 22에 나타난 바와 같이, 실시예 1-6에서 제조한 열전도성 구리스의 방열 특성이 향상됨을 알 수 있었다. 특히, 실시예 1-2의 열전도성 구리스의 방열 특성이 현저히 우수함을 알 수 있었다.As shown in Table 22, it was found that the heat radiation properties of the thermally conductive grease prepared in Examples 1-6 were improved. In particular, it was found that the heat-dissipating property of the thermoconductive grease of Example 1-2 was remarkably excellent.

Claims (11)

950-1050 cSt 점도의 실리콘 수지;
천연흑연 분말을 유기용매에 기계적 교반을 이용하여 분산시키고 분산된 용액에 초음파를 425-475Hz 세기로 28-32분간 조사하여 파쇄한 다음 초음파 처리된 용액을 진공필터에 걸러 내리고 건조한 것을 특징으로 하는, 열전도성 필러로서 표면처리 흑연; 및
열전도성 필러로서 질화알루미늄(AlN);
을 포함하는 열전도성 구리스.
950-1050 cSt silicone resin;
Characterized in that the natural graphite powder is dispersed in an organic solvent by mechanical stirring, the ultrasonic wave is irradiated at 425 to 475 Hz for 28 to 32 minutes to disintegrate the dispersed solution, and the ultrasonic treated solution is filtered by a vacuum filter and dried. Surface treated graphite as thermally conductive filler; And
Aluminum nitride (AlN) as thermally conductive filler;
/ RTI &gt;
제1항에 있어서,
열전도성 필러로서 카본파이버(carbon fiber, CF)를 더 포함하는 것을 특징으로 하는 열전도성 구리스.
The method according to claim 1,
The thermally conductive grease further comprises carbon fiber (CF) as the thermally conductive filler.
제1항에 있어서,
상기 실리콘 수지는 폴리(디메틸실록산), 폴리(메틸페닐실록산), 폴리(디메틸실록산-co-디페닐실록산), 폴리(디메틸실록산-co-메틸페닐실록산), 폴리(디메틸실록산-co-메틸하이드로실록산) 및 폴리페닐-메틸실록산으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 열전도성 구리스.
The method according to claim 1,
The silicone resin may be selected from the group consisting of poly (dimethylsiloxane), poly (methylphenylsiloxane), poly (dimethylsiloxane-co-diphenylsiloxane), poly (dimethylsiloxane-co-methylphenylsiloxane) And polyphenyl-methylsiloxane. &Lt; Desc / Clms Page number 24 &gt;
제2항에 있어서,
상기 표면처리 흑연은 평균 입도가 40-50㎛이고,
상기 질화알루미늄(AlN)은 평균 입도가 4-6㎛이고,
상기 카본파이버(CF)는 평균 길이가 145-155㎛이고, 평균직경이 5-10㎛인 것을 특징으로 하는 열전도성 구리스.
3. The method of claim 2,
The surface-treated graphite has an average particle size of 40-50 탆,
The aluminum nitride (AlN) has an average particle size of 4-6 占 퐉,
Wherein the carbon fibers (CF) have an average length of 145 to 155 占 퐉 and an average diameter of 5 to 10 占 퐉.
제1항 또는 제2항에 있어서,
상기 열전도성 구리스 총 중량에서 열전도성 필러의 함량은 75-85 중량%인 것을 특징으로 하는 열전도성 구리스.
3. The method according to claim 1 or 2,
Wherein the content of the thermally conductive filler in the total weight of the thermally conductive grease is 75-85 wt%.
제1항에 있어서,
실리콘 수지 15-25 중량%; 및 열전도성 필러로서 표면처리 흑연 1.5-4.5 중량% 및 질화알루미늄(AlN) 71.5-81.5중량%;을 포함하는 열전도성 구리스.
The method according to claim 1,
15-25% by weight of silicone resin; And 1.5 to 4.5% by weight of surface-treated graphite and 71.5 to 81.5% by weight of aluminum nitride (AlN) as thermally conductive fillers.
제2항에 있어서,
실리콘 수지 15-25 중량%; 및 열전도성 필러로서 표면처리 흑연 0.5-2.5 중량%, 질화알루미늄(AlN) 71.5-81.5 중량% 및 카본파이버(CF) 0.5-2.5 중량%;을 포함하는 열전도성 구리스.
3. The method of claim 2,
15-25% by weight of silicone resin; And thermoconductive filler comprising 0.5-2.5 wt% of surface-treated graphite, 71.5-81.5 wt% of aluminum nitride (AlN), and 0.5-2.5 wt% of carbon fiber (CF).
천연흑연 분말을 유기용매에 기계적 교반을 이용하여 분산시키고 분산된 용액에 초음파를 425-475Hz 세기로 28-32분간 조사하여 파쇄한 다음 초음파 처리된 용액을 진공필터에 걸러 내리고 건조하여, 표면처리 흑연을 준비하는 단계(단계 1);
열전도성 필러로서 상기 단계 1에서 준비한 표면처리 흑연 및 질화알루미늄(AlN) 분말을 고속믹싱을 통해 450-550rpm에서 45-75초, 650-750rpm에서 45-75초 및 950-1050rpm에서 15-45초 조건을 순차적으로 실시하여 혼합하는 단계(단계 2); 및
혼합된 분말에 실리콘 수지를 첨가한 후 고속믹싱을 통해 450-550rpm에서 45-75초, 650-750rpm에서 45-75초 및 950-1050rpm에서 15-45초 조건을 순차적으로 실시하여 혼합하는 단계(단계 3);
를 포함하는 제1항의 열전도성 구리스의 제조방법.
The natural graphite powder was dispersed in an organic solvent using mechanical stirring. The dispersed solution was ultrasonically irradiated at 425 to 475 Hz for 28 to 32 minutes to be crushed, and then the ultrasonic treated solution was filtered through a vacuum filter and dried. (Step 1);
As the thermally conductive filler, the surface-treated graphite and aluminum nitride (AlN) powders prepared in step 1 above were pulverized at 45-575 seconds at 450-550 rpm, 45-75 seconds at 650-750 rpm and 15-45 seconds at 950-1050 rpm (Step 2); And
Adding the silicone resin to the mixed powder and then performing the mixing at 450-550 rpm for 45-75 seconds, 650-750 rpm for 45-75 seconds, and 950-1050 rpm for 15-45 seconds by high speed mixing Step 3);
The method of manufacturing a thermally conductive grease according to claim 1,
제8항에 있어서,
상기 단계 1의 열전도성 필러로서 카본파이버(carbon fiber, CF)를 더 포함하는 것을 특징으로 하는 제조방법.
9. The method of claim 8,
Wherein the thermally conductive filler of step 1 further comprises a carbon fiber (CF).
제1항의 열전도성 구리스를 포함하는 방열 구조물.
A heat dissipation structure comprising the thermally conductive grease of claim 1.
제1항의 열전도성 구리스를 포함하는 방열판.A heat sink comprising the thermally conductive grease of claim 1.
KR1020180000339A 2018-01-02 2018-01-02 Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same KR101902727B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180000339A KR101902727B1 (en) 2018-01-02 2018-01-02 Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180000339A KR101902727B1 (en) 2018-01-02 2018-01-02 Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160122315 Division 2016-09-23

Publications (2)

Publication Number Publication Date
KR20180033142A KR20180033142A (en) 2018-04-02
KR101902727B1 true KR101902727B1 (en) 2018-09-28

Family

ID=61976198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180000339A KR101902727B1 (en) 2018-01-02 2018-01-02 Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same

Country Status (1)

Country Link
KR (1) KR101902727B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001638A (en) * 2010-06-17 2012-01-05 Sony Chemical & Information Device Corp Heat-conductive sheet and process for producing heat-conductive sheet

Also Published As

Publication number Publication date
KR20180033142A (en) 2018-04-02

Similar Documents

Publication Publication Date Title
CN108463882B (en) Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipating member, and semiconductor device
EP3221392B1 (en) Melt processible fluoropolymer composition with excellent heat conductivity, molded product manufactured from the composition and manufacturing method
KR101872199B1 (en) Silicone composite composition comprising natural graphite, alumina and aluminum nitride, and preparation method of thermal conductive grease comprising the same
TWI715648B (en) Insulated heat sink
Chen et al. Properties and application of polyimide‐based composites by blending surface functionalized boron nitride nanoplates
US9631067B2 (en) Carbon fiber composite coated with silicon carbide and production method for same
KR102111551B1 (en) Material for radiating Heat and Method of forming the same
JPWO2020153377A1 (en) Thermally conductive resin sheet
CN115584038B (en) Flexible aramid nanofiber/MXene high-heat-conductivity flame-retardant composite film and preparation method and application thereof
TW202100716A (en) Thermally conductive resin sheet, layered thermal radiation sheet, heat-dissipating circuit base board, and power semiconductor device
KR20200075513A (en) Method for manufacturing multiple structure and high-heat radiation parts by controling packing density of carbon material, and multiple structure and high-heat radiation parts by manufactured thereof
Chao et al. Improved thermal conductivity and mechanical property of PTFE reinforced with Al2O3
Permal et al. Controlled High Filler Loading of Functionalized Al 2 O 3-Filled Epoxy Composites for LED Thermal Management
KR101902727B1 (en) Silicone composite composition comprising natural graphite and aluminium nitride, and preparation method of thermal conductive grease comprising the same
KR101923341B1 (en) Silicone composite composition comprising natural graphite and alumina, and preparation method of thermal conductive grease comprising the same
JP5323432B2 (en) Molded body for heat conduction
KR101919654B1 (en) Heat radiation sheet having heat and ultrasonic treated expanded graphite, preparation method thereof and structure of radiant heat
JP2002299534A (en) Heat radiation material and manufacturing method therefor
CN116200053A (en) Inorganic material coated liquid metal particles and liquid metal/elastomer composite material
CN114106560A (en) Preparation method and product of heat-conducting silica gel
JP2021176931A (en) Method for producing insulated heat radiation sheet
KR102180205B1 (en) Thermal conductive polymer composites comprising alumina and carbon material and their application of heat dissipation products
CN111621139B (en) Wave-absorbing heat-conducting flexible composite material and preparation method thereof
KR102177818B1 (en) Thermal conductive adhesive film using carbon fillers
CN114573988A (en) Interface heat management material and preparation method thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
R401 Registration of restoration