KR101898556B1 - Method for manufacturing Conductive powder with enhanced Heat-resistant - Google Patents

Method for manufacturing Conductive powder with enhanced Heat-resistant Download PDF

Info

Publication number
KR101898556B1
KR101898556B1 KR1020170143313A KR20170143313A KR101898556B1 KR 101898556 B1 KR101898556 B1 KR 101898556B1 KR 1020170143313 A KR1020170143313 A KR 1020170143313A KR 20170143313 A KR20170143313 A KR 20170143313A KR 101898556 B1 KR101898556 B1 KR 101898556B1
Authority
KR
South Korea
Prior art keywords
silver
powder
surface treatment
parts
copper powder
Prior art date
Application number
KR1020170143313A
Other languages
Korean (ko)
Inventor
이종섭
Original Assignee
주식회사 엠엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠엠에스 filed Critical 주식회사 엠엠에스
Priority to KR1020170143313A priority Critical patent/KR101898556B1/en
Application granted granted Critical
Publication of KR101898556B1 publication Critical patent/KR101898556B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • B22F1/02
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemically Coating (AREA)

Abstract

The present invention relates to a method for producing a conductive powder with improved heat resistant properties, a conductive powder produced by the method, and a conductor including the conductive powder. The method comprises: an electroless silver plating step of coating silver on a copper powder inside a treating tank; a primary surface treating step of inserting a primary surface treating agent for water repellent coating into a plating solution of the treating tank, and stacking a water repellent coating layer on the surface of a silver coating copper powder; a secondary surface treating step of washing the treated product after the primary surface treating step, mixing the treated material with an organic solvent, and then inserting and stirring a secondary surface treating agent for forming an oxidation resistant layer, thereby stacking an oxidation resistant layer on the surface of the water repellent coating layer; and a washing step of removing a residual liquid on the surface of the treated material after the secondary surface treating step is completed. The conductive powder having improved heat resistant properties and the conductor including the conductive powder according to the present invention include an organic film coating layer having a multi-layered structure. Thus, heat resistant properties are good, and an oxidation reaction due to heat does not occur. Thus, electrical conductivity is not deteriorated when an electronic component is mounted using a reflow or a thermosetting system. Accordingly, excellent reliability is secured. In addition, by means of an organic film coating layer having a water repellent capability, acid resistance and corrosion resistance are secured. Thus, moisture is prevented, and oxidization due to salty water or the like is also prevented. Accordingly, excellent durability and long lifespan are secured.

Description

내열특성이 강화된 전도성 분말 제조방법{Method for manufacturing Conductive powder with enhanced Heat-resistant}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a conductive powder,

본 발명은 내열성을 갖는 전도성 분말에 관한 것으로서, 보다 상세하게는 코어쉘(Core-shell) 구조를 갖는 전도성 분말에 내열특성을 부여함으로써, 균일하고 신뢰성 있는 전도성 분말을 제공하는 내열특성이 강화된 전도성 분말 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive powder having heat resistance, and more particularly, to a conductive powder having a core-shell structure by providing a heat-resistant property to a conductive powder having a core- And a method for producing the powder.

절연성인 고분자수지에 전기 전도성을 부여하여 전도성 소재로 개질시키는 방법이 오래전부터 알려져 왔다. 이러한 방법에는, 가령, 그라파이트를 이용하는 것이나, 아세틸렌블랙의 효과를 응용하는 것에서부터, 카본블랙이나 그라파이트 분말섬유 또는 금속 분말섬유와 같은 전도성 부여제를 합성수지 내에 분산시키는 것에 이르기까지 다양하다.A method of imparting electrical conductivity to an insulating polymeric resin to modify it with a conductive material has been known for a long time. Such methods range from using graphite or applying the effect of acetylene black to dispersing a conductivity imparting agent such as carbon black or graphite powder fiber or metal powder fiber in a synthetic resin.

상기 전도성 부여제로서, 분말상태의, 금, 은, 구리, 알루미늄, 니켈, 아연, 주석, 마그네슘, 전도성폴리머 등이 알려져 있다. 그런데, 금이나 은은 전기 전도성이 뛰어나기는 하지만 그 자체가 비싸다는 단점이 있어, 대부분의 경우 금이나 은 보다 저렴한 구리분말에 은을 코팅하여 사용하고 있다. As the conductivity-imparting agent, gold, silver, copper, aluminum, nickel, zinc, tin, magnesium, a conductive polymer and the like in a powder state are known. However, although gold or silver is excellent in electric conductivity, it has a disadvantage in that it is expensive in itself. In most cases, silver is coated on copper powder which is cheaper than gold or silver.

한편, 전자제품의 경박 단소화의 추세에 맞추어, 또한, 제조 공정의 간소화를 목적으로, 최근에는 리플로우(Reflow) 및 열경화 시스템을 이용한 전자부품 실장 방법이 확대되고 있다. 또한, 이 때, 전도성 부여 물질로서 순수 은분말(Silver powder 99.99%Ag) 보다 저렴한 코어쉘(Core-shell)구조의 전도성 분말을 사용하는 경우가 많다. Recently, electronic parts mounting methods using a reflow and a thermosetting system have been expanded in order to meet the trend of shortening the length and width of electronic products and simplifying the manufacturing process. At this time, conductive powder having a core-shell structure which is cheaper than pure silver powder (99.99% Ag) is often used as a conductive material.

코어쉘구조의 전도성분말에는, 은코팅구리분말(Silver coated copper powder), 은코팅알루미늄분말(Silver coated aluminum powder), 은코팅니켈분말(Silver coated nickel powder), 니켈코팅그라파이트분말(Silver coated graphite powder) 등이 있으며, 이 중에서 제품가격 대비 형상이 다양하고, 전기전도특성이 가장 우수한 은코팅구리분말이 주로 사용되고 있다.The core-shell conductive powder includes silver coated copper powder, silver coated aluminum powder, silver coated nickel powder, and silver coated graphite powder. Among them, silver-coated copper powder having a variety of shapes compared with the product price and having the best electric conduction characteristic is mainly used.

하지만, 상기 은코팅구리분말은, 열에 취약하여, 리플로우(Reflow) 공정시의 가열온도 또는 열경화 시스템의 발열온도 범위에서 전기전도특성이 감소된다는 단점을 갖는다. 즉, 내열성이 좋지 않아, 열을 가하면 표면이 급격히 산화되어 전기 전도성이 떨어지는 것이다. However, the silver-coated copper powder is vulnerable to heat and has a disadvantage in that the electric conduction characteristic is reduced in the heating temperature in the reflow process or in the heating temperature range of the heat curing system. That is, the heat resistance is not good, and when the heat is applied, the surface is rapidly oxidized and the electrical conductivity is poor.

이와 같은 은코팅구리분말의 단점을 보완하기 위한 방법으로, 은의 코팅 두께를 두껍게 형성하는 것을 생각할 수 있으나, 은 코팅층을 두껍게 하는 것은 제품 가격을 상승시킨다는 요인이 된다. 은코팅층의 두께가 얇으면서도 내열성이 좋은 은코팅구리분말의 개발이 시급한 것이다.As a method for compensating for the disadvantages of the silver coated copper powder, it is conceivable to form the silver coating thickness thicker, but thickening the silver coating layer increases the product price. It is urgent to develop a silver-coated copper powder having a thin coating layer and good heat resistance.

등록특허공보 제10-0628031호 (팽창흑연과 탄소나노튜브의 혼합카본을 이용한 고열전도성 카본시트)No. 10-0628031 (high thermal conductivity carbon sheet using mixed carbon of expanded graphite and carbon nanotubes) 특허공고공보 93-005895 (분산 강화된 비소결 분말 금속 복합체 및 그 제조방법)Patent Publication No. 93-005895 (Dispersion Enhanced Unsintered Powder Metal Complex and Method for Manufacturing the Same)

본 발명은, 내열특성이 양호하여 열에 의한 산화반응이 일어나지 않아, 리플로우(Reflow)나 열경화 시스템을 이용한 전자부품 실장시 전기전도성의 저하가 없어, 신뢰성이 뛰어난 내열특성이 강화된 전도성 분말 제조방법을 제공함에 목적이 있다.The present invention provides a conductive powder having excellent heat resistance and excellent reliability without deterioration of electrical conductivity when electronic components are mounted using a reflow or a thermosetting system since the heat resistance is good and oxidation reaction by heat does not occur. It is an object to provide a method.

상기 목적을 달성하기 위한 본 발명의 내열특성이 강화된 전도성 분말 제조방법은, pH 1 내지 pH 2의 환경이 조성된 처리조내에서 진행되는 산성도금단계로서, 처리조내에 도금액과 구리분말을 투입하여 무전해도금방식을 통해 구리분말 표면에 은을 코팅하되, 구리분말 100 중량부 당 은(Ag) 10 내지 20 중량부를 코팅하여 은코팅구리분말을 얻는 무전해 은도금단계와; 상기 무전해 은도금단계가 진행되는 처리조 내에서, 무전해 은도금단계에 연속하여 진행되는 과정으로서, 상기 은코팅구리분말을 포함하고 있는 도금후잔류액 내에 발수코팅용 1차표면처리제인, 스테아르산칼슘(Calcium-Stearate), 스테아르산칼륨(Potassium-Stearate), 스테아르산마그네슘(Magnesium-Stearate), 스테아르산나트륨(Sodium-Stearate) 중 어느 하나 또는 말레산(Maleic acid)을 투입하되, 상기 은코팅구리분말 100 중량부 당 0.5 내지 3 중량부 만큼 투입한 후 5분 내지 15분 간 교반하여, 상기 은코팅구리분말 표면에 발수코팅층을 적층하는 1차표면처리단계와; 상기 1차표면처리단계를 마친 처리물을 여과 후 수세하여 처리물 표면의 잔류액을 제거하는 과정으로서, 상기 처리물을 여과장치를 통해 걸러낸 후 초순수로 세척하여 산도를 pH 6.7 내지 7.0으로 맞추어 중성화 시키는 1차여과 및 수세단계와; 상기 1차여과 및 수세단계를 마친 처리물을, 메틸알콜 또는 에틸알콜 또는 이소프로필알콜을 포함하는 유기용매가 수용되어 있는 2차처리조내에 투입하되, 처리물 100중량부 당 유기용매 300중량부의 비율로 투입하여 혼합하는 유기용매혼합단계와; 상기 2차처리조 내의 유기용매혼합물에, 내산화막 형성용 2차표면처리제를 투입 교반하여, 상기 발수코팅층의 표면에 내산화층을 적층시키는 2차표면처리단계와; 상기 2차표면처리단계의 완료 후 처리물 표면의 잔류액을 제거하는 2차여과 및 수세단계와; 상기 2차여과 및 수세단계가 완료된 내열전도성분말을 건조시키는 건조단계를 포함한다.
또한, 상기 2차표면처리단계시 가해지는 2차표면처리제는; 알콕시실란, 비닐실란, 에폭시실란, 메타크리로시실란, 아크릴로시실란, 아미노실란, 클로로프로필실란, 메르캅탄실란, 설파이드실란, 이소이시아네이트실란 중 어느 하나이고, 상기 2차표면처리제의 투입량은, 은코팅구리분말 100g 중량부 당, 0.1 내지 5 중량부인 것을 특징으로 한다.
In order to achieve the above object, the present invention provides a method for producing a conductive powder having enhanced heat resistance, comprising the steps of: (1) introducing a plating solution and copper powder into a treatment tank in an acid plating step proceeding in a treatment bath having an environment of pH 1 to pH 2 An electroless silver plating step of coating silver on the surface of the copper powder by an electroless plating method, wherein 10 to 20 parts by weight of silver (Ag) is coated per 100 parts by weight of the copper powder to obtain silver coated copper powder; Wherein the step of continuously conducting the electroless silver plating step in the treatment tank in which the electroless silver plating step is carried out is characterized in that in the residual plating liquid after the plating containing the silver-coated copper powder, the first surface treatment agent for water- The method according to claim 1, wherein the silver coating is formed by adding any one of calcium-stearate, potassium-stearate, magnesium-stearate, sodium-stearate or maleic acid, 0.5 to 3 parts by weight per 100 parts by weight of copper powder and stirring for 5 to 15 minutes to form a water-repellent coating layer on the surface of the silver-coated copper powder; Filtering the treated material after the primary surface treatment step to remove the residual liquid on the surface of the treated material, filtering the treated material through a filtration apparatus, washing the treated material with ultrapure water, adjusting the acidity to pH 6.7 to 7.0 A primary filtration and washing step to neutralize; The treated product after the primary filtration and washing step is placed in a secondary treatment tank containing an organic solvent containing methyl alcohol or ethyl alcohol or isopropyl alcohol, and 300 parts by weight of an organic solvent per 100 parts by weight of the treated product Mixing the organic solvent and the organic solvent; A secondary surface treatment step in which an oxidation resistant layer is deposited on the surface of the water repellent coating layer by stirring and stirring a secondary surface treatment agent for forming an oxidation resistant film into the organic solvent mixture in the secondary treatment tank; A secondary filtration and washing step of removing the residual liquid on the surface of the treated water after the completion of the secondary surface treatment step; And a drying step of drying the heat-resistant conductive powder having completed the secondary filtration and washing steps.
Further, the secondary surface treatment agent applied in the secondary surface treatment step may include: Wherein the amount of the second surface treatment agent is one of alkoxysilane, vinylsilane, epoxysilane, methacrylosilane, acrylosilane, aminosilane, chloropropylsilane, mercaptansilane, sulfidosilane and isocyanate silane, Is 0.1 to 5 parts by weight per 100 parts by weight of the silver-coated copper powder.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

상기와 같이 이루어지는 본 발명의 내열특성이 강화된 전도성 분말은, 다층구조를 이루는 유기막 코팅층을 구비하여, 내열특성이 양호하여 열에 의한 산화반응이 일어나지 않으므로, 리플로우(Reflow)나 열경화 시스템을 이용한 전자부품 실장시 전기전도성의 저하가 없어 신뢰성이 뛰어나다.The conductive powder with enhanced heat resistance characteristics of the present invention as described above has an organic coating layer having a multilayer structure and has good heat resistance properties and does not cause an oxidation reaction due to heat so that a reflow or thermal curing system There is no deterioration of the electric conductivity when the electronic component is used and the reliability is excellent.

또한, 발수능력을 갖는 유기막 코팅층으로 인해, 내산성 및 내식성이 확보되므로, 습기는 물론 소금물 등에 의한 산화가 방지되어 내구성이 탁월하고 그만큼 수명이 길다.Further, since the organic film coating layer having water-repellent ability secures acid resistance and corrosion resistance, it is prevented from being oxidized by salt water or the like as well as being excellent in durability and life span.

도 1은 본 발명의 일 실시예에 따른 내열특성이 강화된 전도성 분말 제조방법을 설명하기 위한 순서도이다.
도 2는 상기 도 1에 도시한 제조방법을 도식적으로 나타내 보인 도면이다.
도 3은 상기 도 1을 통해 설명한 제조방법으로 제조된 내열 전도성 분말의 내부 구성을 나타내 보인 단면도이다.
도 4a 및 4b는 상기 도 3의 내열 전도성 분말을 함유한 전도체의 일 예를 도시한 도면이다.
1 is a flowchart illustrating a method of manufacturing a conductive powder having enhanced heat resistance characteristics according to an embodiment of the present invention.
Fig. 2 is a diagram schematically showing the manufacturing method shown in Fig. 1. Fig.
FIG. 3 is a cross-sectional view showing the internal structure of the heat-resistant conductive powder produced by the manufacturing method described with reference to FIG.
4A and 4B are views showing an example of a conductor containing the heat-resistant conductive powder of FIG.

이하, 본 발명에 따른 하나의 실시예를 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다.Hereinafter, one embodiment according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 내열특성이 강화된 전도성 분말 제조방법을 설명하기 위한 순서도이고, 도 2는 상기 도 1에 도시한 제조방법을 도식적으로 나타내 보인 도면이다.FIG. 1 is a flow chart for explaining a method of manufacturing a conductive powder having enhanced heat resistance characteristics according to an embodiment of the present invention, and FIG. 2 is a diagram schematically illustrating the manufacturing method shown in FIG.

도시한 바와 같이, 본 실시예에 따른 내열특성이 강화된 전도성 분말 제조방법은, 무전해 은도금단계(101), 1차표면처리단계(102), 1차 여과 및 수세단계(105), 유기용매혼합단계(107), 2차표면처리단계(109), 2차 여과 및 수세단계(111), 건조단계(113)를 포함한다.As shown in the drawing, the method for manufacturing a conductive powder having enhanced heat resistance characteristics according to this embodiment includes an electroless silver plating step 101, a primary surface treatment step 102, a primary filtration and washing step 105, A mixing step 107, a secondary surface treatment step 109, a secondary filtration and washing step 111, and a drying step 113.

상기한 제조방법은, 도 3에 도시한 타입의 내열전도성분말(도 3의 53)을 제작하기 위한 과정이다. 아울러, 후술하는 바와 같이, 상기 내열전도성분말(53)은 레진 등의 합성수지와 혼합된 후 필요한 형태, 가령 도 4a와 같이 전도체(41)로, 또는 도5의 전도체(47)로 제작 사용될 수 있다. 상기 내열전도성분말(53)이 상기 전도체(41,47)의 내부에 분포되어 전도성을 부여하는 것임은 물론이다.The above-described manufacturing method is a process for manufacturing the heat-resistant conductive powder of the type shown in Fig. 3 (53 in Fig. 3). As will be described later, the heat-resistant conductive powder 53 may be mixed with a synthetic resin such as resin and then used in a required form, for example, as a conductor 41 as shown in FIG. 4A or as a conductor 47 shown in FIG. . The heat-resistant conductive powder 53 is distributed inside the conductors 41 and 47 to impart conductivity.

먼저, 상기 무전해 은도금단계(101)는, pH 1 내지 pH 2 의 환경에서 진행되는 산성도금단계로서, 처리조(11)의 내부에 도금액(15)과 코어분말(13), 즉, 구리분말을 투입하여 진행된다. 이 때 사용되는 은의 함량은 코어분말(13) 100 중량부당, 10 내지 20 중량부가 적당하다. 은의 함량이 높으면 제품의 가격이 상승하여 바람직하지 못하다.First, the electroless silver plating step 101 is an acid plating step performed in an environment of pH 1 to pH 2, in which the plating solution 15 and the core powder 13, that is, the copper powder . The amount of silver used is preferably 10 to 20 parts by weight per 100 parts by weight of the core powder (13). If the content of silver is high, the price of the product rises, which is undesirable.

아울러, 상기 무전해 도금단계(101)의 도금방법은, 질산은(AgNO3), 청화은(AgCN), 청화은가리(KAgCN2), 산성논시안 도금 방법을 적용할 수 있다. 그러나, 상기 무전해 도금단계(101)를 위해 적용되는 도금방법에는 제한이 없다. In addition, the electroless plating step 101 may be performed by a plating method of silver nitrate (AgNO 3 ), silver chelating silver (AgCN), silver blue germanium (KAgCN 2 ), and acidic non-cyan plating method. However, there is no limitation on the plating method applied for the electroless plating step (101).

참고로, 제조공정이 보다 간단하고 제조비용이 적게 소요될 수 있는 방법을 고려한다면, 질산은 도금방법 또는 청화은 도금방법을 적용할 수 있고, 환경적인 부분을 고려한다면 질산은 도금방법이 보다 바람직하다.For reference, a silver nitrate plating method or a silver chelating silver plating method can be applied, considering a simpler manufacturing process and a manufacturing cost that can be lowered.

상기 무전해 은도금단계(101)의 진행이 어느 정도 완료되어 더 이상 의미 있는 반응이 일어나지 않는다면, 상기 처리조(11) 내부에 1차표면처리제(21)를 투입 및 교반하는 1차표면처리단계(103)를 수행한다. If the process of the electroless silver plating step 101 is completed to some extent and a meaningful reaction no longer occurs, a first surface treatment step (step (1)) of injecting and stirring the first surface treatment agent 21 into the treatment tank 11 103).

상기 1차표면처리제(21)는, 처리조(11) 내부의 도금후잔류액(17) 및 코어쉘분말(19)과 혼합된다. 도금후잔류액(17)은, 애초 도금액(15)내의 은이 거의 다 환원되어 가령 도금촉매제나 첨가제 정도만 남아 있는 상태의 액체이다. 또한, 상기 코어쉘분말(19)은 상기 코어분말(13)의 표면에 은이 도금된 상태의 분말이다. The primary surface treatment agent 21 is mixed with the post-plating residual solution 17 and the core shell powder 19 in the treatment tank 11. The residual plating liquid 17 after plating is a liquid in which almost all the silver in the plating liquid 15 is reduced and only the plating catalyst and additives remain. The core shell powder (19) is a powder in the state that the surface of the core powder (13) is plated with silver.

여하튼 상기 무전해 은도금단계(101)가 마무리 되었다면 1차표면처리단계(103)를 수행한다. 상기 1차표면처리단계(103)는 상기 처리조(도 2b의 11)내에 1차표면처리제(21)를 투입하고 교반장치(23)를 이용해 교반하는 과정이다. 상기 1차표면처리제(21)는 스테아르산염 계열의 지방산으로서, 코어쉘분말(19)의 표면에 적층되어 발수성을 부여하는 역할을 한다.In any case, if the electroless silver plating step 101 has been completed, then the primary surface treatment step 103 is performed. The primary surface treatment step 103 is a step of putting the primary surface treatment agent 21 in the treatment tank 11 (FIG. 2B) and stirring using the stirring device 23. The primary surface treatment agent 21 is a stearate fatty acid, and is laminated on the surface of the core shell powder 19 to impart water repellency.

상기 1차표면처리제(21)의 투입량은 은코팅구리분말, 즉, 코어쉘분말(19) 100중량부 당, 0.1 내지 10 중량부, 보다 바람직하게는 0.5 중량부 내지 3 중량부일 수 있다. 코팅량이 0.1 중량부 보다 적으면 발수효과가 떨어지고, 10 중량부보다 많아지면 재료비 상승의 부담이 있다.The amount of the first surface treatment agent 21 may be 0.1 to 10 parts by weight, more preferably 0.5 to 3 parts by weight per 100 parts by weight of the silver-coated copper powder, that is, the core shell powder 19. When the coating amount is less than 0.1 part by weight, the water repellency effect is lowered, and when it is more than 10 parts by weight, the material cost is increased.

또한, 상기 교반시간은 코어쉘분말의 부피에 따라 달라지지만, 1분 내지 30분 정도, 보다 바람직하게는 5분 내지 15분 정도면 좋다. The agitation time may vary depending on the volume of the core shell powder, but it may be about 1 minute to 30 minutes, more preferably 5 minutes to 15 minutes.

아울러, 상기 1차표면처리제(21)로서, 스테아르산칼슘(Calcium-Stearate), 스테아르산칼륨(Potassium-Stearate), 스테아르산마그네슘(Magnesium-Stearate), 스테아르산나트륨(Sodium-Stearate), 중 어느 하나, 또는 말레산(Maleic acid)을 사용할 수 있다. The first surface treatment agent 21 may be at least one selected from the group consisting of calcium-stearate, potassium-stearate, magnesium-stearate, and sodium-stearate. One or maleic acid can be used.

하지만, 이에 국한되지 않고, 상기 코어쉘분말(19)의 표면에 적층된 상태로 발수효과를 구현할 수 있는 한, 다른 종류의 발수코팅제를 사용할 수도 있다. However, the present invention is not limited to this, and other types of water repellent coating agents may be used as long as the water repellent effect can be realized in a state of being laminated on the surface of the core shell powder 19. [

상기 1차표면처리단계(103)를 통해 코어쉘분말(19)의 표면에 발수성 1차코팅층(도 3의53c)이 적층된 처리물, 즉 1차코팅분말(도 2c의 27)을 얻었다면, 1차 여과 및 수세단계(105)를 이어간다.2C) obtained by laminating the water repellent primary coating layer (53c in FIG. 3) on the surface of the core shell powder 19 through the primary surface treatment step 103, that is, the primary coating powder , Followed by primary filtration and washing (105).

상기 1차 여과 및 수세단계(105)는, 상기 1차코팅분말(27)을 여과장치(29)를 통해 걸려 낸 후 초순수로 세척하여, 1차코팅분말(27)을 중성화 하는 과정이다. 즉, 1차코팅분말(27)의 표면에 잔류하고 있는 산성 잔류액, 이를테면 도금액을 씻어내는 것이다. 상기 여과 및 수세단계(105)를 통해 1차코팅분말(27)의 산도를 pH 6.7 내지 7.0 정도로 맞춘다.The primary filtration and washing step 105 is a process of suspending the primary coating powder 27 through the filtration device 29 and washing the primary coating powder 27 with ultrapure water to neutralize the primary coating powder 27. That is, the acidic residual liquid remaining on the surface of the primary coating powder 27, such as the plating liquid, is washed away. The pH of the primary coating powder 27 is adjusted to about 6.7 to 7.0 through the filtration and washing step 105.

이어서, 유기용매혼합단계(107)를 수행한다. 상기 유기용매혼합단계(107)는, 유기용매(33)가 담겨있는 2차처리조(도 2d의 30)내에 1차코팅분말(27)을 투입하여 혼합하는 과정이다. 이 때의 혼합비는 1차코팅분말 100중량부 당 유기용매 300중량부이다. Then, an organic solvent mixing step 107 is carried out. The organic solvent mixing step 107 is a step of mixing and mixing the primary coating powder 27 in the secondary treatment tank 30 (FIG. 2 (d)) in which the organic solvent 33 is contained. The mixing ratio at this time is 300 parts by weight of the organic solvent per 100 parts by weight of the primary coating powder.

상기 유기용매에는, 메틸알콜, 에틸알콜, 이소프로필알콜이 포함될 수 있으며, 유기용매의 종류는 작업공정이나 환경에 맞추어 적절히 선택 가능하다.The organic solvent may include methyl alcohol, ethyl alcohol, and isopropyl alcohol. The type of the organic solvent may be appropriately selected according to the work process and the environment.

상기 유기용매혼합단계(107)가 완료된 후 2차표면처리단계(109)가 이어진다. 상기 2차표면처리단계(109)는, 상기 유기용매(33)와 1차코팅분말(27)의 혼합액(35) 내부에 2차표면처리제(31)를 투입 및 교반하는 과정이다. 2차표면처리단계(109)를 통해 최종 목표하는 내열전도성분말(53)을 얻게 된다.After the organic solvent mixing step 107 is completed, a second surface treatment step 109 is carried out. The secondary surface treatment step 109 is a step of injecting and stirring the secondary surface treatment agent 31 into the mixed solution 35 of the organic solvent 33 and the primary coating powder 27. The final target heat-resistant conductive powder 53 is obtained through the secondary surface treatment step 109. [

이 때 사용되는 2차표면처리제(31)의 투입량은, 상기 1차코팅분말(27) 100 중량부 당 0.1 내지 5 중량부이다. 상기 투입량이 0.1 중량부 보다 적다면 내식성과 내산화성이 개선되지 않아 최종 제품인 내열전도성분말(53)의 전기 전도 특성이 좋지 못하고, 5 중량부 보다 많다면 제품의 가격을 상승시킨다. 또한 상기 2차표면처리단계(109)의 진행시간은 5분 내지 30분이 바람직하다.The amount of the secondary surface treatment agent (31) used is 0.1 to 5 parts by weight per 100 parts by weight of the primary coating powder (27). If the amount is less than 0.1 parts by weight, corrosion resistance and oxidation resistance are not improved, and the electrical conductivity of the heat-resistant conductive powder 53 as a final product is poor. If the amount is more than 5 parts by weight, the product price is increased. Further, it is preferable that the progressing time of the secondary surface treatment step 109 is from 5 minutes to 30 minutes.

여하튼, 상기 2차처리조(30)의 내부에 2차표면처리제(31)를 투입 및 교반하면, 상기 1차코팅층(도 3의 53c) 외표면에 2차코팅층(53d)이 적층된다. 상기 2차코팅층(53d)은 내열특성을 강화시키는 내산화층이다. Anyway, when the secondary surface treatment agent 31 is injected into and agitated in the secondary treatment tank 30, a secondary coating layer 53d is laminated on the outer surface of the primary coating layer 53c (FIG. 3). The secondary coating layer 53d is an oxidation resistant layer for enhancing the heat resistance characteristic.

상기 2차표면처리제(31)로서, 알콕시실란, 비닐실란, 에폭시실란, 메타크리로시실란, 아크릴로시실란, 아미노실란, 클로로프로필실란, 메르캅탄실란, 설파이드실란, 이소이시아네이트실란 등의 관능기를 갖는 실란을 사용할 수 있다. 상기한 실란은 내수성, 내식성, 내산화성을 개선하여 전기적인 성질을 향상시키는 역할을 한다.As the second surface treatment agent 31, there may be used a surface treatment agent such as an alkoxysilane, vinylsilane, epoxysilane, methacrylosilane, acrylosilane, aminosilane, chloropropylsilane, mercaptansilane, sulfide silane, isocyanate silane and the like A silane having a functional group can be used. The above-mentioned silane improves the water resistance, corrosion resistance and oxidation resistance to improve the electrical properties.

참고로, 경우에 따라, 준비된 2차처리조(30) 내부에 1차코팅분말(27), 유기용매(33), 2차표면처리제(31)를 상기한 비율로 함께 투입 교반할 수도 있다.For reference, the primary coating powder 27, the organic solvent 33 and the secondary surface treatment agent 31 may be mixed and stirred together in the above-mentioned ratio in the prepared secondary treatment tank 30 as occasion demands.

여하튼, 상기 2차표면처리단계(109)가 완료되었다면, 여액분리과정을 통해 상기 내열전도성분말(53)을 분리한 후 수세하는 2차 여과 및 수세단계(111)를 수행한다. 2차 여과 및 수세단계(111)의 방식은 1차 여과 및 수세단계(105)와 같은 방식으로 진행할 수 있다.In any case, if the secondary surface treatment step 109 is completed, secondary filtration and washing step 111 for separating and washing the heat-resistant conductive powder 53 through the filtrate separation process are performed. The mode of the secondary filtration and the water washing step 111 can proceed in the same manner as the primary filtration and the water washing step 105.

이어서 건조단계(113)를 수행한다. 상기 건조단계(113)는, 수세가 완료된 내열전도성분말(53)을 건조시켜 습기를 제거하는 과정이다. Followed by a drying step (113). The drying step 113 is a step of drying the water-repellent heat-resistant conductive powder 53 to remove moisture.

도 3은 상기 도 1을 통해 설명한 제조방법으로 제조된 내열 전도성분말(53)의 내부 구성을 나타내 보인 단면도이다.FIG. 3 is a cross-sectional view showing the internal construction of the heat-resistant conductive powder 53 manufactured by the manufacturing method described with reference to FIG.

도시한 바와 같이, 코어쉘분말(19)의 표면에 1차코팅층(53c)과 2차코팅층(53d)이 차례로 적층되어 있다. 상기 코어쉘분말(19)은, 구리로 이루어진 코어(53a)와, 은 코팅층인 쉘(53b)이다.As shown in the figure, a primary coating layer 53c and a secondary coating layer 53d are laminated in order on the surface of the core shell powder 19. The core shell powder 19 is a core 53a made of copper and a shell 53b made of a silver coating layer.

아울러 상기 1차코팅층(53c)은 상기 1차표면처리단계(103)를 통해 적층 형성된 것으로서, 스테아르산염 계열의 지방산 또는 말레산(Maleic acid)일 수 있다. 상기 스테아르산염 계열의 지방산은, 스테아르산칼슘(Calcium-Stearate), 스테아르산칼륨(Potassium-Stearate), 스테아르산마그네슘(Magnesium-Stearate), 스테아르산나트륨(Sodium-Stearate), 중 어느 하나를 포함한다.In addition, the primary coating layer 53c may be a stearate fatty acid or a maleic acid, which is laminated through the primary surface treatment step 103. The fatty acid of the stearate series includes any one of Calcium-Stearate, Potassium-Stearate, Magnesium-Stearate, and Sodium-Stearate .

또한 2차코팅층(53d)은, 상기한 2차표면처리단계(109)를 통해 형성된 층으로서, 알콕시실란, 비닐실란, 에폭시실란, 메타크리로시실란, 아크릴로시실란, 아미노실란, 클로로프로필실란, 메르캅탄실란, 설파이드실란, 이소이시아네이트실란 등의 관능기를 갖는 실란이 적층된 코팅층이다.The secondary coating layer 53d is a layer formed through the secondary surface treatment step 109 as described above and may be formed of a material such as alkoxysilane, vinylsilane, epoxysilane, methacrylosilane, acrylosilane, aminosilane, And a silane having functional groups such as silane, mercaptansilane, sulfide silane and isocyanate silane.

상기 구조를 갖는 내열전도성분말(53)은 1,2차코팅층(53c,53d)의 작용에 의해 내열성이 양호하여, 가령 전도성분말(53)에 열이 가해지더라도 전도성이 저하하지 않는다. 이를테면, 내열전도성분말(53)을 발열이 심한 전기회로의 접속용 부재로 사용하더라도, 양호한 전기 전도성을 유지하는 것이다.The heat-resistant conductive powder 53 having the above structure has good heat resistance due to the action of the first and second coating layers 53c and 53d, and even if heat is applied to the conductive powder 53, the conductivity does not decrease. For example, even when the heat-resistant conductive powder 53 is used as a connection member of an electric circuit with a high heat generation, good electrical conductivity is maintained.

도 4a 및 4b는 상기 도 3의 전도성 분말을 함유한 전도체(41,47)의 일예를 도시한 도면이다.4A and 4B are diagrams showing examples of conductors 41 and 47 containing the conductive powder of FIG.

상기 전도체(41,47)는, 필요한 회로패턴으로 재단되거나 또는 성형된 상태로, 전기회로에 열융착되는 전도성 부재로서, 그 내부에 상기 내열전도성분말(53)이 고르게 퍼져 있다.The conductors 41 and 47 are conductive members that are thermally fused to an electric circuit in a state in which they are cut or molded in a required circuit pattern and the heat conductive conductive powder 53 is spread evenly therein.

말하자면, 상기 전도체(41,47)는, 페이스트 상태의 합성수지본체 내부에 내열전도성분말(53)을 투입한 후 고르게 혼합하여, 내열전도성분말(53)이 고르게 분포하게 만든 재료이다. 내열전도성분말(53)이 전체적으로 고른 밀도로 분포되므로 전도체(41,47) 자체가 하나의 도체를 이루는 것이다. In other words, the conductors 41 and 47 are materials in which the heat-resistant conductive powder 53 is put into the paste-like synthetic resin body and then mixed evenly to uniformly distribute the heat-resistant conductive powder 53. Since the heat-resistant conductive powder 53 is distributed with a uniform density as a whole, the conductors 41 and 47 themselves constitute one conductor.

상기 합성수지본체의 종류는, 내열전도성분말(53)을 그 내부에 고르게 분산시킬 수 있는 한 다양하게 적용될 수 있다. 가령 상기한 레진 뿐 아니라 폴리우레탄폼 또는 열경화성 실리콘 수지도 사용할 수 있는 것이다.The kind of the synthetic resin main body can be variously applied as long as it can uniformly disperse the heat-resistant conductive powder 53 therein. For example, polyurethane foams or thermosetting silicone resins as well as the above-mentioned resins can be used.

도 4a의 경우, 전도체(41)가 일정두께를 갖는 시트의 형태를 취한다. 상기 시트형 전도체(41)는 회로기판(51)에 형성되어 있는 회로에 접속되어 회로가 작동하게 한다. In the case of Fig. 4A, the conductor 41 takes the form of a sheet having a certain thickness. The sheet-like conductor 41 is connected to a circuit formed on the circuit board 51 to allow the circuit to operate.

특히 회로의 특성상 많은 열이 발생한다 하더라도, 전도체(41)의 특성 변화가 발생하지 않는다. 코어쉘분말(19)의 1,2차코팅층(53c,53d)이 내열 능력을 가지기 때문이다. 더욱이 회로기판(51) 상에 전도체(41)를 열융착 방식으로 직접 고정할 수 있다. 굳이 접착제 등을 사용할 필요가 없는 것이다.Particularly, even if a lot of heat is generated due to the characteristics of the circuit, the characteristic change of the conductor 41 does not occur. This is because the first and second coating layers 53c and 53d of the core shell powder 19 have heat resistance. Further, the conductor 41 can be directly fixed on the circuit board 51 by a heat fusion method. It is not necessary to use an adhesive or the like.

또한, 상기 합성수지본체로서 폴리우레탄폼을 사용한 경우, 전도체(41)가 전기전도성 이외에도 충격흡수성을 겸비하므로, 회로에 가해지는 충격을 흡수하고 전자파를 차폐하는 기능을 동시에 제공하게 된다.Further, when the polyurethane foam is used as the synthetic resin main body, since the conductor 41 has impact absorbability in addition to electrical conductivity, it also provides a function of absorbing impact applied to the circuit and shielding electromagnetic waves.

도 4b를 참조하면, 상호 이격되어 있는 회로기판(51)의 사이에 전도체(47)가 적용되어 있다. 상기 전도체(47)는 탄성력을 갖는 실리콘바디(48)의 상면에 도포된 상태로, 상하부의 회로기판(51)을 통전시킨다.Referring to FIG. 4B, a conductor 47 is applied between the circuit boards 51 which are spaced apart from each other. The conductor 47 is applied to the upper surface of the silicon body 48 having an elastic force and energizes the upper and lower circuit boards 51.

특히 상기 전도체(47)는 회로기판(51)에 대해 리플로우방식으로 실장됨에도 불구하고 전기적 특성의 변화가 없다. 말하자면 전도체(47)의 저항이 증가하지 않는 것이다. 전도체(47)에 포함되어 있는 내열전도성분말의 열 산화가 발생하지 않아 저항이 커지지 않는 것임은 물론이다. Particularly, although the conductor 47 is mounted on the circuit board 51 in a reflow manner, there is no change in electrical characteristics. That is to say, the resistance of the conductor 47 does not increase. It is needless to say that the thermal resistance of the heat-resistant conductive powder contained in the conductor 47 does not increase.

(실시예) 내열특성이 강화된 은코팅구리분말의 제조(Example) Preparation of Silver Coated Copper Powder with Enhanced Heat Resistance

질산은(AgNO3)을 이용한 무전해도금방법으로, 구리 코어의 표면에 은(Ag)을 코팅하였다. 이 때 구리코어 100중량부 당 은을 15중량부 사용하였다. The surface of the copper core was coated with silver (Ag) by an electroless plating method using silver nitrate (AgNO 3 ). At this time, 15 parts by weight of silver was used per 100 parts by weight of the copper core.

상기 과정을 통해 제작된 은코팅구리분말의 1차표면처리를 위하여, 은코팅분말을 스테아르산나트륨(Sodium-Stearate)에 넣고 10분간 추가 교반 후 표면처리가 여액분리를 하였다. 상기 스테아르산나트륨은, 은코팅구리분말 100 중량부 당, 0.1 내지 10 중량부 사용하였다.For the first surface treatment of the silver-coated copper powder prepared by the above procedure, the silver-coated powder was added to sodium-stearate and further stirred for 10 minutes, followed by surface treatment and filtration. The sodium stearate was used in an amount of 0.1 to 10 parts by weight per 100 parts by weight of the silver-coated copper powder.

이후, 상기 여액분리되 처리물을, 유기용매(메틸알콜) 300g과 혼합하고 또한 메라캅토실란(momentive社, A-189)을 1vol% 투입 후 15분간 반응시켜 2차 표면처리가 완료된 은코팅구리분말을 여액분리 후 건조하였다..Thereafter, the filtrate-separated product was mixed with 300 g of an organic solvent (methyl alcohol), 1 mol% of melacaptosilane (Momentive, A-189) was added and reacted for 15 minutes to obtain silver coated copper The powder was separated by filtration and dried.

(비교예) 내열특성 강화를 위한 표면처리를 하지 않은 은코팅구리분말의 제조(Comparative Example) Production of silver-coated copper powder without surface treatment for heat resistance

질산은(AgNO3)을 이용한 무전해도금방법으로, 구리 코어의 표면에 은(Ag)을 코팅한 후 건조하였다. 이 때 구리코어 100중량부 당 은을 15중량부 사용하였고, 추가적인 코팅작업은 하지 않았다.The electroless plating method using silver nitrate (AgNO 3 ) was used to coat the surface of the copper core with silver (Ag) and then dried. At this time, 15 parts by weight of silver was used per 100 parts by weight of the copper core, and no additional coating operation was performed.

상기 (실시예) 및 (비교예)를 통해 제작된 은코팅구리분말과, 국내외경쟁사(A,B)에서 생산한 은코팅구리분말의, 열에 의한 전기전도특성의 변화는 아래 표1과 같다.Table 1 shows changes in the electrical conductivity characteristics of the silver-coated copper powder prepared by the above Examples and Comparative Examples and the silver-coated copper powder produced by competitors A and B at home and abroad.

제조사manufacturer 열경화실리콘수지 배합 건조 후 면저항Heat-cured silicone resin formulation After drying, sheet resistance 250℃ x 10분 후 면저항After 250 ° C x 10 minutes, the sheet resistance (실시예)(Example) 5mΩ/□5mΩ / □ 8mΩ/□8mΩ / □ (비교예)(Comparative Example) 7mΩ/□7mΩ / □ 20Ω/□20Ω / □ 국내경쟁사(A)Domestic competitors (A) 6mΩ/□6mΩ / □ 1Ω/□1Ω / □ 해외경쟁사(B)Overseas competitors (B) 5mΩ/□5mΩ / □ 20mΩ/□20mΩ / □

위의 표1에 나타난 바와 같이, (실시예)의 경우, 가열을 하지 않았을 때의 면저항값에 비해, 250℃의 온도로 10분간 가열했을 때의 저항값이 그다지 크게 증가하지 않았다. As shown in Table 1 above, in the case of (Example), the resistance value at the time of heating for 10 minutes at a temperature of 250 占 폚 did not significantly increase as compared with the sheet resistance value at the time of not heating.

이는, (비교예), 국내경쟁사(A), 국내경쟁사(B)의 경우, 7mΩ/□에서 20Ω/□로, 6mΩ/□에서 1Ω/□로, 5mΩ/□에서 20mΩ/□로 크게 증가한 것에 비하면 매우 의미 있는 결과이다.This is because, in the case of domestic competitors (A) and domestic competitors (B), a large increase from 20 mΩ / □ to 20 mΩ / □, from 6 mΩ / □ to 1 Ω / □ from 7 mΩ / This is a very meaningful result.

이상, 본 발명을 구체적인 실시예를 통하여 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정하지 않고, 본 발명의 기술적 사상의 범위내에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

11:처리조 13:코어분말 15:도금액
17:도금후잔류액 19:코어쉘분말 21:1차표면처리제
23:교반장치 27:1차코팅분말 29:여과장치
30:2차처리조 31:2차표면처리제 33:유기용매
35:혼합액 41:전도체
47:전도체 48:실리콘바디
51:회로기판 53:내열전도성분말 53a:코어
53b:쉘 53c:1차코팅층 53d:2차코팅층
11: Treatment tank 13: Core powder 15: Plating solution
17: residue after plating 19: core shell powder 21: primary surface treatment agent
23: stirring device 27: primary coating powder 29: filtration device
30: Second treatment tank 31: Second surface treatment agent 33: Organic solvent
35: mixture liquid 41: conductor
47: conductor 48: silicon body
51: circuit board 53: heat-resistant conductive powder 53a: core
53b: shell 53c: primary coating layer 53d: secondary coating layer

Claims (11)

pH 1 내지 pH 2의 환경이 조성된 처리조내에서 진행되는 산성도금단계로서, 처리조내에 도금액과 구리분말을 투입하여 무전해도금방식을 통해 구리분말 표면에 은을 코팅하되, 구리분말 100 중량부 당 은(Ag) 10 내지 20 중량부를 코팅하여 은코팅구리분말을 얻는 무전해 은도금단계와;
상기 무전해 은도금단계가 진행되는 처리조 내에서, 무전해 은도금단계에 연속하여 진행되는 과정으로서, 상기 은코팅구리분말을 포함하고 있는 도금후잔류액 내에 발수코팅용 1차표면처리제인, 스테아르산칼슘(Calcium-Stearate), 스테아르산칼륨(Potassium-Stearate), 스테아르산마그네슘(Magnesium-Stearate), 스테아르산나트륨(Sodium-Stearate) 중 어느 하나 또는 말레산(Maleic acid)을 투입하되, 상기 은코팅구리분말 100 중량부 당 0.5 내지 3 중량부 만큼 투입한 후 5분 내지 15분 간 교반하여, 상기 은코팅구리분말 표면에 발수코팅층을 적층하는 1차표면처리단계와;
상기 1차표면처리단계를 마친 처리물을 여과 후 수세하여 처리물 표면의 잔류액을 제거하는 과정으로서, 상기 처리물을 여과장치를 통해 걸러낸 후 초순수로 세척하여 산도를 pH 6.7 내지 7.0으로 맞추어 중성화 시키는 1차여과 및 수세단계와;
상기 1차여과 및 수세단계를 마친 처리물을, 메틸알콜 또는 에틸알콜 또는 이소프로필알콜을 포함하는 유기용매가 수용되어 있는 2차처리조내에 투입하되, 처리물 100중량부 당 유기용매 300중량부의 비율로 투입하여 혼합하는 유기용매혼합단계와;
상기 2차처리조 내의 유기용매혼합물에, 내산화막 형성용 2차표면처리제를 투입 교반하여, 상기 발수코팅층의 표면에 내산화층을 적층시키는 2차표면처리단계와;
상기 2차표면처리단계의 완료 후 처리물 표면의 잔류액을 제거하는 2차여과 및 수세단계와;
상기 2차여과 및 수세단계가 완료된 내열전도성분말을 건조시키는 건조단계를 포함하는 것을 특징으로 하는 내열특성이 강화된 전도성 분말 제조방법.
A plating solution and a copper powder are put in a treating tank and coated with silver on the surface of the copper powder through an electroless plating method, wherein 100 parts by weight of copper powder An electroless silver plating step of coating 10 to 20 parts by weight of silver (Ag) with silver to obtain a silver-coated copper powder;
Wherein the step of continuously conducting the electroless silver plating step in the treatment tank in which the electroless silver plating step is carried out is characterized in that in the residual plating liquid after the plating containing the silver-coated copper powder, the first surface treatment agent for water- The method according to claim 1, wherein the silver coating is formed by adding any one of calcium-stearate, potassium-stearate, magnesium-stearate, sodium-stearate or maleic acid, 0.5 to 3 parts by weight per 100 parts by weight of copper powder and stirring for 5 to 15 minutes to form a water-repellent coating layer on the surface of the silver-coated copper powder;
Filtering the treated material after the primary surface treatment step to remove the residual liquid on the surface of the treated material, filtering the treated material through a filtration apparatus, washing the treated material with ultrapure water, adjusting the acidity to pH 6.7 to 7.0 A primary filtration and washing step to neutralize;
The treated product after the primary filtration and washing step is placed in a secondary treatment tank containing an organic solvent containing methyl alcohol or ethyl alcohol or isopropyl alcohol, and 300 parts by weight of an organic solvent per 100 parts by weight of the treated product Mixing the organic solvent and the organic solvent;
A secondary surface treatment step in which an oxidation resistant layer is deposited on the surface of the water repellent coating layer by stirring and stirring a secondary surface treatment agent for forming an oxidation resistant film into the organic solvent mixture in the secondary treatment tank;
A secondary filtration and washing step of removing the residual liquid on the surface of the treated water after the completion of the secondary surface treatment step;
And a drying step of drying the heat-resistant conductive powder after completion of the secondary filtration and washing steps.
삭제delete 삭제delete 제1항에 있어서,
상기 2차표면처리단계시 가해지는 2차표면처리제는;
알콕시실란, 비닐실란, 에폭시실란, 메타크리로시실란, 아크릴로시실란, 아미노실란, 클로로프로필실란, 메르캅탄실란, 설파이드실란, 이소이시아네이트실란 중 어느 하나이고,
상기 2차표면처리제의 투입량은, 은코팅구리분말 100g 중량부 당, 0.1 내지 5 중량부인 것을 특징으로 하는 내열특성이 강화된 전도성 분말 제조방법.
The method according to claim 1,
Wherein the secondary surface treatment agent applied in the secondary surface treatment step comprises:
Wherein the silane coupling agent is any one of alkoxysilane, vinylsilane, epoxysilane, methacrylosilane, acrylosilane, aminosilane, chloropropylsilane, mercaptansilane, sulfide silane and isocyanate silane,
Wherein the amount of the secondary surface treatment agent is 0.1 to 5 parts by weight per 100 parts by weight of the silver-coated copper powder.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020170143313A 2017-10-31 2017-10-31 Method for manufacturing Conductive powder with enhanced Heat-resistant KR101898556B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170143313A KR101898556B1 (en) 2017-10-31 2017-10-31 Method for manufacturing Conductive powder with enhanced Heat-resistant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170143313A KR101898556B1 (en) 2017-10-31 2017-10-31 Method for manufacturing Conductive powder with enhanced Heat-resistant

Publications (1)

Publication Number Publication Date
KR101898556B1 true KR101898556B1 (en) 2018-09-13

Family

ID=63593493

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170143313A KR101898556B1 (en) 2017-10-31 2017-10-31 Method for manufacturing Conductive powder with enhanced Heat-resistant

Country Status (1)

Country Link
KR (1) KR101898556B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200049348A (en) * 2018-10-31 2020-05-08 (주)마잘 Method for treating the surface of silver coated powder for electrically conductive paste
KR20200113461A (en) * 2019-03-25 2020-10-07 주식회사 엠엠에스 Method for manufacturing low specific gravity conductive powder and Low specific gravity conductive powder
KR20200136114A (en) * 2019-05-27 2020-12-07 주식회사 엠엠에스 Method for producing multi-functional multi-layered powder composed of silver-copper-graphite and Multi-functional multi-layered powder by the method
CN114985730A (en) * 2022-04-28 2022-09-02 中科铜都粉体新材料股份有限公司 Preparation method of antioxidant copper powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083905A (en) * 2002-08-07 2004-03-18 Dow Corning Toray Silicone Co Ltd Thermally conductive filler, thermally conductive silicone elastomer composition and semiconductor device
JP2015026519A (en) * 2013-07-26 2015-02-05 京セラケミカル株式会社 Conductive resin composition and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083905A (en) * 2002-08-07 2004-03-18 Dow Corning Toray Silicone Co Ltd Thermally conductive filler, thermally conductive silicone elastomer composition and semiconductor device
JP2015026519A (en) * 2013-07-26 2015-02-05 京セラケミカル株式会社 Conductive resin composition and semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200049348A (en) * 2018-10-31 2020-05-08 (주)마잘 Method for treating the surface of silver coated powder for electrically conductive paste
KR102197711B1 (en) 2018-10-31 2021-01-04 (주)마잘 Method for treating the surface of silver coated powder for electrically conductive paste
KR20200113461A (en) * 2019-03-25 2020-10-07 주식회사 엠엠에스 Method for manufacturing low specific gravity conductive powder and Low specific gravity conductive powder
KR102225688B1 (en) * 2019-03-25 2021-03-12 주식회사 엠엠에스 Method for manufacturing low specific gravity conductive powder and Low specific gravity conductive powder
KR20200136114A (en) * 2019-05-27 2020-12-07 주식회사 엠엠에스 Method for producing multi-functional multi-layered powder composed of silver-copper-graphite and Multi-functional multi-layered powder by the method
KR102208197B1 (en) * 2019-05-27 2021-01-27 주식회사 엠엠에스 Method for producing multi-functional multi-layered powder composed of silver-copper-graphite and Multi-functional multi-layered powder by the method
CN114985730A (en) * 2022-04-28 2022-09-02 中科铜都粉体新材料股份有限公司 Preparation method of antioxidant copper powder
CN114985730B (en) * 2022-04-28 2024-04-30 中科铜都粉体新材料股份有限公司 Preparation method of antioxidant copper powder

Similar Documents

Publication Publication Date Title
KR101898556B1 (en) Method for manufacturing Conductive powder with enhanced Heat-resistant
KR102598365B1 (en) Silver-coated resin particles, method for manufacturing same, and electroconductive paste using same
US6947012B2 (en) Low cost electrical cable connector housings and cable heads manufactured from conductive loaded resin-based materials
EP2737495B1 (en) Carbon-based substrate conductor
TWI488280B (en) Electromagnetic wave shielding structure and method for fabricating the same
US3576723A (en) Method of making shielded flat cable
KR101297156B1 (en) High performance emi/rfi shielding polymer composite
CN101085842A (en) Method for preparing electromagnetic shielding plastic master batch and composite plastic
CN102870166A (en) Voltage switchable dielectric material containing conductor-on-conductor core shelled particles
US8816205B2 (en) Conductive elastomer and method of applying a conductive coating to a cable
CN1957426A (en) Flexible flat cable
CN104781998B (en) Insulator with shielding cross
US20060128895A1 (en) Electriplast thermoset wet mix material and method of manufacture
TW201944884A (en) Electromagnetic shielding film and method manufacturing same
WO2018041007A1 (en) Macromolecular material and metal composite material and preparation method therefor
CN109104851B (en) Preparation method of electromagnetic shielding film
Geetha et al. Conducting fabric-reinforced polyaniline film using p-chlorophenol as secondary dopant for the control of electromagnetic radiations
CN111269452B (en) Preparation method of carboxyl nitrile rubber composite film for electromagnetic shielding
CN109251514A (en) A kind of APU-Al high frequency high-dielectric and low-loss material and preparation method thereof
JP2008004275A (en) Two-core parallel coaxial cable
CN113192665A (en) Electronic device and manufacturing method thereof
KR20140110175A (en) Nfc loop antenna printed on electromagnetic wave absorber using printed electronics technology and method for manufacturing the same
CN117567891A (en) Acid and alkali corrosion resistant electromagnetic shielding coating and preparation method thereof
CN109401126A (en) A kind of high performance communication cable sheath material
JPH1018080A (en) Formation of metallic conductive layer on surface of fluorine plastic body

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant