KR101896847B1 - Composition for Inhibiting Gene Expression comprising Nuclease-Deactivated Cpf1 and Uses Thereof - Google Patents

Composition for Inhibiting Gene Expression comprising Nuclease-Deactivated Cpf1 and Uses Thereof Download PDF

Info

Publication number
KR101896847B1
KR101896847B1 KR1020170122653A KR20170122653A KR101896847B1 KR 101896847 B1 KR101896847 B1 KR 101896847B1 KR 1020170122653 A KR1020170122653 A KR 1020170122653A KR 20170122653 A KR20170122653 A KR 20170122653A KR 101896847 B1 KR101896847 B1 KR 101896847B1
Authority
KR
South Korea
Prior art keywords
crrna
dna
eedcpf1
artificial sequence
psecrvi
Prior art date
Application number
KR1020170122653A
Other languages
Korean (ko)
Inventor
이대희
이승구
김성근
우의전
박광현
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020170122653A priority Critical patent/KR101896847B1/en
Application granted granted Critical
Publication of KR101896847B1 publication Critical patent/KR101896847B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a composition for inhibiting gene expression, and specifically, to a composition for inhibiting gene expression comprising dCpf1. Since the composition for inhibiting gene expression according to the present invention can effectively suppress the expression of single or multiple genes, the composition can be used as a genetic tool in biotechnology, medical field and the like.

Description

DNA 절단 활성이 불활성화된 Cpf1을 포함하는 유전자 발현 억제용 조성물 및 그 용도{Composition for Inhibiting Gene Expression comprising Nuclease-Deactivated Cpf1 and Uses Thereof}[0001] The present invention relates to a composition for suppressing gene expression, which comprises Cpf1 in which DNA cleavage activity is inactivated, and a use thereof. [0002] Composition for Inhibiting Gene Expression [

본 발명은 유전자 발현 억제용 조성물에 관한 것으로, 구체적으로는, DNA 절단 활성이 제거된 Cpf1을 포함하는 유전자 발현 억제용 조성물에 관한 것이다.TECHNICAL FIELD The present invention relates to a composition for inhibiting gene expression, and more particularly, to a composition for suppressing gene expression comprising Cpf1 in which DNA-cleaving activity is removed.

짧은 회문구조 반복서열(Clustered regularly interspaced short palindromic repeats; CRISPR) 및 CRISPR-associated(Cas) 단백질은 진정세균(Eubacteria) 및 고세균(Archaea)에서 적응 면역 시스템(Adaptive immune system)에 관여한다. CRISPR-Cas 시스템은 인간을 비롯한 생물체에서 표적 유전자 편집 도구로 개발되어 사용되어 왔다.Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins are involved in the adaptive immune system in Eubacteria and Archaea. The CRISPR-Cas system has been developed and used as a target gene editing tool in human and other organisms.

표적 유전자 편집 대신 유전자의 발현 조절을 목적으로 CRISPR-Cas 시스템을 사용하기 위하여, DNA 절단 활성이 제거된 Cas9 단백질을 사용하는 CRISPR 간섭(CRISPR interference; CRISPRi) 기술이 개발되어 다양한 생명체에서 유전자 발현의 DNA 서열 특이적 조절을 위한 효율적인 도구로 사용되고 있다. CRISPR interference (CRISPR interference) technology using Cas9 protein with the DNA cleavage activity removed has been developed to use the CRISPR-Cas system for gene expression regulation instead of target gene editing, And is used as an efficient tool for sequence-specific regulation.

Type II CRISPR 시스템에서 유래된 Streptococcus pyogenes의 DNA 절단 활성이 제거된 Cas9(SpdCas9)은 CRISPRi에서 가장 많이 연구되고 가장 널리 사용되는 단백질이다. 상기 CRISPRi 시스템은 SpdCas9 단백질, CRISPR RNA(crRNA) 및 trans-activating RNA(tracrRNA)로 작동한다. SpCas9-crRNA-tracrRNA 복합체는 표적 DNA의 비주형(nontemplate) 가닥에 결합하여 RNA 중합효소(RNA polymerase)에 의한 전사를 억제한다. 또한, 표적 DNA의 절단 및 분해에 관여하는 Cas3 단백질의 결실을 요구하는 Type I CRISPR 시스템 유래의 다중(multimeric) CRISPRi 시스템 또한 보고되었다. Type I 및 II CRISPR 시스템 유래 상기 CRISPRi 시스템은 효율적, 가역적 및 다중으로 유전자 전사를 억제할 수 있으나, 특정한 프로토스페이서 인접 모티프(protospacer adjacent motif; PAM) 서열 및 crRNA 이외에 tracrRNA를 필요로 한다는 점에서 적용에 한계가 있다.Cas9 (SpdCas9), the DNA cleavage activity of Streptococcus pyogenes derived from the Type II CRISPR system, is the most widely studied and widely used protein in CRISPRi. The CRISPRi system works with SpdCas9 protein, CRISPR RNA (crRNA) and trans-activating RNA (tracrRNA). The SpCas9-crRNA-tracrRNA complex binds to the nontemplate strand of the target DNA and inhibits transcription by RNA polymerase. In addition, a multimeric CRISPRi system derived from the Type I CRISPR system, which requires deletion of the Cas3 protein involved in cleavage and degradation of the target DNA, has also been reported. The CRISPRi system derived from the Type I and II CRISPR systems can efficiently, reversibly, and multiplexly inhibit gene transcription, but it requires application of tracrRNA in addition to specific protospacer adjacent motif (PAM) sequences and crRNA There is a limit.

최근, Type V-A CRISPR 시스템이 인간 세포의 표적 게놈 편집 도구로 밝혀졌다. 이는 단일 Cpf1(CRISPR from Prevotella and Francisella 1) 단백질과 그 동족(cognate) crRNA로 구성되어 있으며 추가로 tracrRNA 필요 없이 작동한다. 표적 DNA의 하류(downstream)에 구아니딘이 풍부한(guanidine-rich) PAM 서열을 인식하는 Cas9과는 대조적으로, Cpf1은 표적 DNA의 상류(upstream)에 티미딘이 풍부한(thymidine-rich) PAM 서열을 인식한다. 또한, Cpf1은 표적 DNA를 절단하여 점착 말단(staggered end)을 생성하나, Cas9은 평활 말단(blunt end)을 만들므로, Cas 단백질 기반 시스템의 적용이 어려운 부분에서 사용이 가능하다.Recently, the Type VA CRISPR system has been identified as a target genome editing tool for human cells. It consists of a single Cpf1 (CRISPR from Prevotella and Francisella 1) protein and its cognate crRNA, which also works without additional tracrRNA. In contrast to Cas9, which recognizes a guanidine-rich PAM sequence downstream of the target DNA, Cpf1 recognizes a thymidine-rich PAM sequence upstream of the target DNA do. In addition, Cpf1 cleaves the target DNA to generate a staggered end, while Cas9 makes a blunt end, so it can be used in areas where Cas protein-based systems are difficult to apply.

Type V-A CRISPR-Cpf1은 Cas9 기반 게놈 편집 도구의 매력적인 대안으로, 현재까지 DNA 절단 활성이 제거된 Cpf1인 Francisella novicida U112(FndCpf1)의 PAM 서열과 DNA 결합 활성이 보고되었다. 단, 최근 공개 서열 데이터베이스를 검색하여 Cpf1 계열 단백질의 다양성이 연구되었으나, 소수 Cpf1 계열 단백질의 PAM 서열만이 확인되었으며, CRISPRi로 개발되지는 못했다. 대한민국 특허공개 제10-2015-0107739는 CRISPR 시스템을 이용한 유전자 산물의 발현 변경에 관한 것이나, Cas9 단백질을 이용하므로, 전술한 Cas 기반 시스템의 단점을 그대로 갖는다.Type VA CRISPR-Cpf1 is an attractive alternative to Cas9 based genome editing tools, which are currently the DNA cleavage activity to remove Cpf1 Francisella novicida The PAM sequence and DNA binding activity of U112 (FndCpf1) has been reported. However, recently, the diversity of Cpf1 family proteins was studied by searching the open sequence database, but only the PAM sequence of a few Cpf1 family proteins was identified and could not be developed as CRISPRi. Korean Patent Laid-Open No. 10-2015-0107739 relates to the expression modification of a gene product using the CRISPR system, but since it uses the Cas9 protein, it has disadvantages of the Cas-based system described above.

이에 본 발명자는 신규 유전자 조절방법을 개발하기 위하여 예의 연구 노력한 결과, Eubacterium eligens에서 유래한 DNA 절단 활성이 제거된 Cpf1(EedCpf1) 및 디자인된 crRNA를 사용하여 효율적으로 유전자의 발현을 조절할 수 있는 방법을 개발하여 본 발명을 완성하였다.Therefore, the present inventor has made extensive efforts to develop a novel gene regulating method and found that Eubacterium The present invention has been completed by developing a method for efficiently controlling gene expression using Cpf1 (EedCpf1) and designed crRNA from which DNA-cleaving activity derived from eligens has been eliminated.

대한민국 특허공개 제10-2015-0107739호Korean Patent Publication No. 10-2015-0107739

본 발명의 하나의 목적은 DNA 절단 활성이 불활성화된(nuclease-deactivated) Cpf1 단백질(dCpf1); 및 팔린드롬 서열(palindrome sequences)을 포함하는 제1절편 및 표적 DNA와 혼성화하는 폴리뉴클레오티드인 스페이서(spacer)를 포함하는 제2절편을 포함하는 crRNA를 포함하는 유전자 발현 억제용 조성물을 제공하는 것이다.One object of the present invention is to provide a nuclease-deactivated Cpf1 protein (dCpf1); And a second fragment comprising a first fragment comprising palindrome sequences and a spacer comprising a spacer that is a polynucleotide that hybridizes with the target DNA.

본 발명의 다른 목적은 DNA 절단 활성이 불활성화된(nuclease-deactivated) Cpf1 단백질(dCpf1)을 암호화하는 뉴클레오티드 서열; 팔린드롬 서열(palindrome sequences)을 포함하는 제1절편 및 표적 DNA와 혼성화하는 폴리뉴클레오티드인 스페이서(spacer)를 포함하는 제2절편을 포함하는 crRNA를 암호화하는 뉴클레오티드 서열; 및 상기 뉴클레오티드 서열에 작동가능하게 연결된 프로모터를 포함하는 재조합 발현벡터를 제공하는 것이다.Another object of the present invention is to provide a DNA sequence encoding a nucleotide sequence encoding a nuclease-deactivated Cpf1 protein (dCpf1); A nucleotide sequence encoding a crRNA comprising a first fragment comprising palindrome sequences and a second fragment comprising a spacer that is a polynucleotide that hybridizes to the target DNA; And a recombinant expression vector comprising a promoter operably linked to the nucleotide sequence.

본 발명의 일 양상은 DNA 절단 활성이 불활성화된(nuclease-deactivated) Cpf1 단백질(dCpf1); 및 팔린드롬 서열(palindrome sequences)을 포함하는 제1절편 및 표적 DNA와 혼성화하는 폴리뉴클레오티드인 스페이서(spacer)를 포함하는 제2절편을 포함하는 crRNA를 포함하는 유전자 발현 억제용 조성물을 제공한다.One aspect of the present invention is a DNA-cleaving (nuclease-deactivated) Cpf1 protein (dCpf1); And a second fragment comprising a first fragment comprising palindrome sequences and a spacer that is a polynucleotide that hybridizes with the target DNA.

본 명세서에서는 Type II CRISPR-Cas9 시스템을 활용한 유전자 발현 억제의 단점을 극복하기 위한 방법 중 하나로 Type V-A CRISPR system 단백질인 Cpf1(CRISPR from Prevotella and Francisella 1)을 사용하는 기술이 제공된다.In this specification, a technique using the Type VA CRISPR system protein Cpf1 (CRISPR from Prevotella and Francisella 1) is provided as one of the methods for overcoming the disadvantages of gene expression inhibition using the Type II CRISPR-Cas9 system.

본 발명에서 사용되는 용어, "팔린드롬 서열"은 염기배열이 역방향으로 반복됨으로써 왼쪽과 오른쪽 방향이 똑같이 읽히는 구조를 의미하며, 헤어핀(hairpin) 구조를 이룰 수 있다.As used herein, the term " palindrome sequence " means a structure in which the left and right directions are read in the same direction by repeating the base sequence in the reverse direction, and a hairpin structure can be achieved.

본 발명에서 사용되는 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)를 의미한다. 따라서, 본 용어는 단일-, 이중- 또는 다중-가닥 DNA 또는 RNA, 게놈 DNA, cDNA, DNA-RNA 하이브리드, 또는 퓨린 및 피리미딘 염기 또는 다른 천연, 화학적으로 또는 생화학적으로 변형된 비천연, 또는 유도된 뉴클레오티드를 포함하는 중합체를 포함하나, 이에 한정되지 않는다.As used herein, the term " polynucleotide " refers to a polymer of nucleotides in which a nucleotide monomer is linked in a long chain by covalent bonds. Thus, the term encompasses single-, double- or multi-stranded DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids, or purine and pyrimidine bases or other naturally occurring, chemically or biochemically modified non- But are not limited to, a polymer comprising a nucleotide derived from the nucleotide sequence of SEQ ID NO.

본 발명에서 사용되는 용어, "스페이서(spacer)"는 팔린드롬 서열 3' 말단에 존재하며, 표적 DNA와 혼성화하는 뉴클레오티드 서열을 의미한다.As used herein, the term " spacer " refers to a nucleotide sequence present at the terminal end of palindrom sequence 3, which hybridizes to the target DNA.

본 발명에서 사용되는 용어, "혼성화"는 하나 이상의 폴리뉴클레오티드가 반응하여, 복합체를 형성하고, 이 복합체는 뉴클레오티드 잔기의 염기 사이의 수소 결합을 통해 안정화되는 반응을 지칭한다.As used herein, the term " hybridization " refers to a reaction in which one or more polynucleotides react to form a complex, which complex is stabilized through hydrogen bonding between bases of the nucleotide residue.

본 발명에서 사용되는 용어, "발현"은 폴리뉴클레오티드가 DNA 주형으로부터(예를 들어, mRNA 또는 기타 RNA 전사물로) 전사되는 과정 및/또는 이후에 전사된 mRNA가 펩티드, 폴리펩티드 또는 단백질로 번역되는 과정을 지칭한다. 폴리뉴클레오티드가 게놈 DNA로부터 유래된다면, 발현은 진핵 세포에서의 mRNA의 스플라이싱을 포함할 수 있다.As used herein, the term " expression " refers to the process by which a polynucleotide is transcribed from a DNA template (e. G., Into mRNA or other RNA transcripts) and / or after the transcribed mRNA is translated into a peptide, Process. If the polynucleotide is derived from genomic DNA, expression may involve splicing of mRNA in eukaryotic cells.

본 발명에서 사용되는 용어, "절단"은 뉴클레오티드 분자의 공유 결합 백본(covalent backbone)의 파손(breakage)을 의미한다.As used herein, the term "truncation" refers to the breakage of the covalent backbone of a nucleotide molecule.

본 발명의 유전자 발현 억제용 조성물은 Cpf1을 암호화하는 DNA를 포함하는 재조합 벡터 및 crRNA를 암호화하는 DNA를 포함하는 재조합 벡터의 형태로 세포 또는 유기체에 도입되거나, Cpf1 단백질 및 crRNA를 포함하는 혼합물 또는 이들이 복합체를 이루는 리보핵산단백질 형태로 세포 또는 유기체에 도입될 수 있다.The composition for inhibiting gene expression of the present invention may be introduced into cells or organisms in the form of a recombinant vector comprising a recombinant vector comprising a DNA encoding Cpf1 and a DNA encoding a crRNA, or a mixture comprising a Cpf1 protein and a crRNA, Can be introduced into cells or organisms in the form of ribonucleic acid proteins which form the complex.

상기 crRNA는 표적 DNA와 혼성화될 수 있다.The crRNA may be hybridized with the target DNA.

본 발명에서 사용되는 용어, "가이드 RNA"는 표적 DNA에 특이적인 RNA로, 가이드 RNA는 Cas 단백질 또는 Cpf1 단백질과 복합체를 형성할 수 있고, Cas 단백질 또는 Cpf1 단백질을 표적 DNA에 가져올 수 있다.As used herein, the term " guide RNA " is RNA specific to target DNA. The guide RNA may form a complex with Cas protein or Cpf1 protein, and Cas protein or Cpf1 protein may be brought into target DNA.

본 발명에서, Cas 단백질과 함께 사용되는 가이드 RNA는 두 개의 RNA, 즉, CRISPR RNA(crRNA) 및 트랜스활성화 crRNA(transactivating crRNA, tracrRNA)로 이루어져 있는 것일 수 있고, 또는 crRNA 및 tracrRNA의 필수적 부분의 융합에 의해 생성된 단일 가이드 RNA(single-guide RNA, sgRNA)일 수 있으며, 상기 가이드 RNA는 crRNA 및 tracrRNA를 포함하는 이중RNA(dual RNA)일 수 있다. 반면, Cpf1 단백질과 함께 사용되는 가이드 RNA는 Cas 단백질과 함께 사용되는 가이드 RNA와 달리 tracrRNA를 필요로 하지 않는다. 즉, Cpf1 단백질은 하나의 crRNA로 작동하기 때문에 Cas9의 경우와 같이 crRNA와 trans-activating crRNA(tracrRNA)를 동시에 사용하거나 인위적으로 tracrRNA와 crRNA를 합친 single guide RNA(sgRNA)를 제작할 필요가 없다. In the present invention, the guide RNA used in conjunction with the Cas protein may consist of two RNAs, i.e., CRISPR RNA (crRNA) and transactivating crRNA (tracrRNA), or fusion of essential parts of crRNA and tracrRNA , And the guide RNA may be a dual RNA including a crRNA and a tracrRNA. On the other hand, the guide RNA used with the Cpf1 protein does not require tracrRNA, unlike the guide RNA used with the Cas protein. In other words, since Cpf1 protein acts as a single crRNA, it is not necessary to construct a single guide RNA (sgRNA) that combines both crRNA and trans-activating crRNA (tracrRNA) or artificially combines tracrRNA and crRNA as in Cas9.

상기 가이드 RNA의 구체적 서열은 Cas9 단백질 또는 Cpf1 단백질의 종류(유래 미생물)에 따라서 적절히 선택할 수 있다.The specific sequence of the guide RNA can be appropriately selected according to the type of Cas9 protein or Cpf1 protein (derived microorganism).

상기 Cas9 단백질 및 Cpf1 단백질 등의 엔도뉴클레아제는 미생물에서 분리된 것 또는 재조합적 방법 또는 합성적 방법으로 비자연적 생산된 것(non-naturally occurring)일 수 있다. 상기 엔도뉴클레아제는 진핵세포의 핵 내 전달을 위하여 통상적으로 사용되는 요소(예컨대, 핵위치신호(nuclear localization signal; NLS; 예컨대, PKKKRKV, KRPAATKKAGQAKKKK, 또는 이를 암호화하는 핵산 분자) 등)를 N-말단 또는 C-말단(또는 이를 암호화하는 핵산 분자의 5' 말단 또는 3' 말단)에 추가로 포함하는 것일 수 있으나, 이에 제한되지 않는다. 상기 엔도뉴클레아제 단백질은 정제된 단백질 형태로 사용되거나, 이를 암호화하는 DNA, 또는 상기 DNA를 포함하는 재조합 벡터의 형태로 사용될 수 있다.Endonuclease such as Cas9 protein and Cpf1 protein may be isolated from microorganisms or non-naturally occurring by recombinant or synthetic methods. The endonuclease may be an N-terminal nucleoside, such as a nuclear localization signal (NLS) (e.g., PKKKRKV, KRPAATKKAGQAKKKK, or a nucleic acid molecule encoding the same) End, or at the C-terminus (or at the 5 ' end or the 3 ' end of the nucleic acid molecule encoding it). The endonuclease protein can be used in the form of a purified protein, or can be used in the form of a DNA encoding it, or a recombinant vector containing the DNA.

본 발명의 유전자 발현 억제용 조성물은 진핵 유기체에 적용될 수 있다. 상기 진핵 유기체는 진핵 세포(예컨대, 효모 등의 균류, 진핵 동물 및/또는 진핵 식물 유래 세포(예컨대, 배아세포, 줄기세포, 체세포, 생식세포 등) 등), 진핵 동물(예컨대, 척추동물 또는 무척추동물, 보다 구체적으로, 인간, 원숭이 등의 영장류, 개, 돼지, 소, 양, 염소, 마우스, 래트 등을 포함하는 포유류 등), 및 진핵 식물(예컨대, 녹조류 등의 조류, 옥수수, 콩, 밀, 벼 등의 단자엽 또는 쌍자엽 식물 등)로 이루어진 군에서 선택된 것일 수 있다.The composition for suppressing gene expression of the present invention can be applied to eukaryotic organisms. Such eukaryotic organisms include eukaryotic cells such as fungi such as yeast, eukaryotic and / or eukaryotic plant derived cells such as embryonic cells, stem cells, somatic cells, germ cells, etc., eukaryotic animals such as vertebrates or invertebrates Animal, more specifically mammals including primates such as humans and monkeys, dogs, pigs, cows, sheep, goats, mice and rats) and eucaryotic plants (for example birds such as green algae, corn, soybean, wheat , A terminal leaf such as rice or a twin leaf plant, etc.).

본 발명의 일 구체예에 따르면, 상기 crRNA는 상기 스페이서의 하류(downstream)에 위치하며 RNA-결합(binding) 단백질과 결합할 수 있는 폴리뉴클레오티드를 포함하는 제3절편을 더 포함할 수 있다.According to one embodiment of the present invention, the crRNA may further include a third fragment located downstream of the spacer and including a polynucleotide capable of binding to an RNA-binding protein.

본 발명에서 사용되는 용어, "키메라(chimeric) crRNA"는 상이한 암호화 영역으로부터 유래한 뉴클레오티드 서열을 포함하는 crRNA를 의미하며, 스페이서의 3' 말단에 RNA-결합(binding) 단백질과 결합할 수 있는 뉴클레오티드가 인위적으로 융합된 crRNA를 포함한다. As used herein, the term " chimeric crRNA " means a crRNA comprising a nucleotide sequence derived from a different coding region, and includes a nucleotide capable of binding an RNA-binding protein at the 3 ' Lt; RTI ID = 0.0 > artificially fused < / RTI >

본 발명의 일 구체예에 따르면, 상기 Cpf1 단백질은 Eubacterium eligens 유래의 것일 수 있다.According to one embodiment of the present invention, the Cpf1 protein is selected from the group consisting of Eubacterium It can be derived from eligens .

본 발명의 일 구체예에 따르면, 상기 표적 DNA의 상류(upstream)에 TTTV 또는 TTV(V는 A, G 또는 C)로 이루어진 PAM(protospacer adjacent motif)을 더 포함할 수 있다.According to one embodiment of the present invention, a protospacer adjacent motif (PAM) composed of TTTV or TTV (V is A, G or C) may be further upstream of the target DNA.

Cpf1 시스템은 Cas9과 다르게 PAM이 표적 서열의 5' 위치에 존재하고, 표적을 결정하는 가이드 RNA의 길이도 Cas9 에 비해 짧기 때문에, 가이드 RNA인 crRNA를 제작하는 것 역시 Cas9와 비교하여 상대적으로 쉽다는 이점을 갖는다. Since the Cpf1 system is different from Cas9 in that PAM is present at the 5 'position of the target sequence and the length of the guide RNA that determines the target is shorter than that of Cas9, the production of the guide RNA, crRNA, .

본 발명에서 사용되는 용어, "상류(upstream)"는 염기 서열의 특정 위치를 기준으로, 5' 방향쪽에 위치하는 서열을 의미하며, "하류(downstream)"은 염기 서열의 특정 위치를 기준으로, 3' 방향쪽에 위치하는 서열을 의미한다.As used herein, the term " upstream " means a sequence located in the 5 'direction on the basis of a specific position of a nucleotide sequence, and " downstream " 3 ' direction.

본 발명의 일 구체예에 따르면, 상기 dCpf1 단백질은 Cpf1 단백질을 구성하는 880번 아미노산이 아스파르트산에서 알라닌으로 치환될 수 있다. 상기 880번 아미노산은 Cpf1 단백질을 구성하는 도메인 중 RuvC-유사 엔도뉴클레아제 도메인에 위치한다. 상기와 같은 아미노산의 치환에 의하여, Cpf1의 DNA 절단 활성은 완전히 상실될 수 있다.According to one embodiment of the present invention, the dCpf1 protein may be substituted with alanine in the aspartic acid at the 880th amino acid constituting the Cpf1 protein. The 880 amino acid is located in the RuvC-like endo-nuclease domain among the domains constituting the Cpf1 protein. By the substitution of the above amino acid, the DNA cleavage activity of Cpf1 can be completely lost.

본 발명의 일 구체예에 따르면, 상기 crRNA는 2 이상의 제1절편 및 제2절편이 순차적으로 반복되는 것으로서, 서로 다른 팔린드롬 서열 및 스페이서를 포함하며, 다중 유전자 발현을 동시에 억제할 수 있다.According to one embodiment of the present invention, the crRNA is a sequence in which two or more first and second fragments are sequentially repeated, and includes different palindromic sequences and spacers, and can simultaneously suppress multiple gene expression.

팔린드롬 서열(palindrome sequences)을 포함하는 제1절편과 표적 DNA와 혼성화하는 폴리뉴클레오티드인 스페이서(spacer)를 포함하는 제2절편을 반복적으로 연결하고, 각각의 팔린드롬 서열 및/또는 스페이서를 목적하는 유전자에 적합하도록 변형함에 따라 다중 유전자를 억제하는 crRNA를 제작할 수 있다.A second fragment comprising a first fragment comprising palindrome sequences and a spacer being a polynucleotide that hybridizes to the target DNA is repeatedly ligated and each palindrome sequence and / By modifying it to suit the gene, it is possible to produce a crRNA that suppresses multiple genes.

본 발명의 다른 양상은 DNA 절단 활성이 불활성화된(nuclease-deactivated) Cpf1 단백질(dCpf1)을 암호화하는 뉴클레오티드 서열; 팔린드롬 서열(palindrome sequences)을 포함하는 제1절편 및 표적 DNA와 혼성화하는 폴리뉴클레오티드인 스페이서(spacer)를 포함하는 제2절편을 포함하는 crRNA를 암호화하는 뉴클레오티드 서열; 및 상기 뉴클레오티드 서열에 작동가능하게 연결된 프로모터를 포함하는 재조합 발현벡터를 제공한다.Another aspect of the present invention is a DNA sequence encoding a nucleotide sequence encoding a nuclease-deactivated Cpf1 protein (dCpf1); A nucleotide sequence encoding a crRNA comprising a first fragment comprising palindrome sequences and a second fragment comprising a spacer that is a polynucleotide that hybridizes to the target DNA; And a recombinant expression vector comprising a promoter operably linked to the nucleotide sequence.

본 발명의 재조합 발현벡터에 있어서, 유전자 발현 억제용 조성물에서 전술한 것과 중복되는 부분은 전술한 의미와 동일한 의미로 사용될 수 있다.In the recombinant expression vector of the present invention, the parts overlapping with those described above in the composition for inhibiting gene expression may be used with the same meaning as described above.

본 발명에서 사용되는 용어, "프로모터"는 폴리머라아제와 결합되고, 다운스트림(3' 방향) 코딩 또는 비-코딩 서열의 전사를 개시할 수 있는 DNA 조절 영역이다.As used herein, the term " promoter " is a DNA regulatory region that is associated with a polymerase and is capable of initiating transcription of a downstream (3 'direction) coding or non-coding sequence.

본 발명에서 사용되는 용어, "작동가능하게 연결된"은 유전자 발현 조절 서열과 다른 뉴클레오티드 서열사이의 기능적인 결합(cis)을 의미한다. 상기 유전자 발현 조절 서열은 복제원점(replication origin), 프로모터, 전사 종결 서열(terminator) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.As used herein, the term " operably linked " refers to a functional association (cis) between a gene expression control sequence and another nucleotide sequence. The gene expression control sequence may be at least one selected from the group consisting of a replication origin, a promoter, and a transcription termination terminator.

상기 벡터는 crRNA를 암호화하는 DNA 및/또는 이와 작동 가능하게 연결된 프로모터 등의 전사조절서열을 포함하는 crRNA 발현 카세트를 포함하는 것일 수 있다.The vector may comprise a crRNA expression cassette comprising a transcriptional control sequence such as DNA encoding crRNA and / or a promoter operably linked thereto.

본 발명에서 사용되는 용어, "발현 카세트"는 프로모터에 작동가능하게 연결된 DNA 암호화 서열을 의미한다. As used herein, the term " expression cassette " means a DNA coding sequence operably linked to a promoter.

본 발명의 재조합 발현벡터를 세포(예컨대, 진핵 세포) 또는 유기체(예컨대, 진핵 유기체)에 전달하는 것은 국소주입법(예컨대, 병변 또는 표적 부위 직접 주입), 미세주입법(microinjection), 전기천공법(electroporation), 리포펙션(예컨대, 리포펙타민 사용) 등의 방법에 의할 수 있다. 전달 대상 세포가 식물 세포인 경우, 상기 식물 세포를 폴리에틸렌클리콜(polyethylene glycol; PEG) 등의 계면활성제와 혼합한 후 전달할 수 있다.The delivery of the recombinant expression vector of the present invention to a cell (e. G., Eukaryotic cell) or an organism (e. G., A eukaryotic organism) can be accomplished using a topical injection (e. G., Direct injection of a lesion or target site), microinjection, electroporation ), Lipofection (e.g., using lipofectamine), and the like. When the target cell is a plant cell, the plant cell may be mixed with a surfactant such as polyethylene glycol (PEG) and then delivered.

본 발명의 프로모터는 특정 유전자의 전사 개시를 조절하는 전사 조절 서열 중 하나로, 통상적으로 약 100bp 내지 약 2500bp 길이의 폴리뉴클레오티드 단편일 수 있다. The promoter of the present invention is one of the transcription regulatory sequences that regulate the transcription initiation of a specific gene, and may be a polynucleotide fragment, usually about 100 bp to about 2500 bp in length.

상기 프로모터는 세포, 예컨대, 진핵 세포(예컨대, 식물 세포, 또는 동물 세포(예컨대, 인간, 마우스 등의 포유류 세포 등) 등)에서 전사 개시를 조절할 수 있으면, 제한 없이 사용 가능하다. 예컨대, 상기 프로모터는 CMV 프로모터(cytomegalovirus promoter;(예컨대, 인간 또는 마우스 CMV immediate-early 프로모터), U6 프로모터, EF1-alpha(elongation factor 1-a) 프로모터, EF1-alpha short(EFS) 프로모터, SV40 프로모터, 아데노바이러스 프로모터(major late promoter), pL λ 프로모터, trp 프로모터, lac 프로모터, tac 프로모터, T7 프로모터, 백시니아 바이러스 7.5K 프로모터, HSV의 tk 프로모터, SV40E1 프로모터, 호흡기 세포융합 바이러스(Respiratory syncytial virus; RSV) 프로모터, 메탈로티오닌 프로모터(metallothionin promoter), β-액틴 프로모터, 유비퀴틴 C 프로모터, 인간 IL-2(human interleukin-2) 유전자 프로모터, 인간 림포톡신(human lymphotoxin) 유전자 프로모터, 인간 GM-CSF(human granulocyte-macrophage colony stimulating factor) 유전자 프로모터 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 일 예에서, 상기 프로모터는 CMV immediate-early 프로모터, U6 프로모터, EF1-alpha(elongation factor 1-a) 프로모터, EF1-alpha short(EFS) 프로모터 등으로 이루어진 군에서 선택된 것일 수 있다. 상기 전사 종결 서열은 폴리아데닐화 서열(pA) 등일 수 있다. 상기 복제 원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점, BBV 복제원점 등일 수 있다.The promoter can be used without limitation as long as the promoter can regulate transcription initiation in a cell such as a eukaryotic cell (e.g., a plant cell, or an animal cell (for example, a mammalian cell such as a human, a mouse, etc.)). For example, the promoter may be a CMV promoter (e.g., a human or mouse CMV immediate-early promoter), a U6 promoter, an EF1-alpha (elongation factor 1-a) promoter, an EF1-alpha short (EFS) promoter, an SV40 promoter Promoter, tac promoter, tac promoter, T7 promoter, vaccinia virus 7.5K promoter, HSV tk promoter, SV40E1 promoter, respiratory syncytial virus (HPV) promoter, trp promoter, lac promoter, (Human interleukin-2) gene promoter, human lymphotoxin gene promoter, human GM-CSF (human IL-2) gene promoter, (human granulocyte-macrophage colony stimulating factor) gene promoter, and the like, but is limited thereto The promoter may be selected from the group consisting of CMV immediate-early promoter, U6 promoter, EF1-alpha (elongation factor 1-a) promoter, EF1-alpha short (EFS) promoter, and the like. The transcription termination sequence may be a polyadenylation sequence (pA), etc. The replication origin may be f1 replication origin, SV40 replication origin, pMB1 replication origin, adeno replication origin, AAV replication origin, BBV replication origin, and the like.

본 발명의 벡터는 플라스미드 벡터, 코즈미드 벡터 및 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터와 같은 바이러스 벡터로 이루어진 군에서 선택된 것일 수 있다. 상기 재조합 벡터로 사용될 수 있는 벡터는 당업계에서 사용되는 플라스미드(예를 들면, pcDNA 시리즈, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈, pUC19 등), 파지(예를 들면, λgt4λB, λ-Charon, λΔz1, M13 등) 또는 바이러스 벡터(예를 들면, 아데노-연관 바이러스(AAV) 벡터 등) 등을 기본으로 하여 제작될 수 있으나, 이에 제한되는 것은 아니다.The vector of the present invention may be selected from the group consisting of a plasmid vector, a cosmid vector, and a viral vector such as a bacteriophage vector, an adenovirus vector, a retrovirus vector, and an adeno-associated viral vector. The vector that can be used as the recombinant vector may be a plasmid (for example, pcDNA series, pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1 (eg, λgt4λB, λ-Charon, λΔz1, M13, etc.) or viral vectors (eg, adeno-associated virus (AAV) vectors, etc.) But it is not limited thereto.

본 발명의 일 구체예에 따르면, 상기 프로모터는 L-람노오스-유도성 프로모터(L-rhamnose-inducible promoter)일 수 있다. 상기의 L-람노오스-유도성 프로모터에 의하여, L-람노오스 농도의 조절에 따른 유전자 발현 억제 정도의 조절이 가능하다.According to one embodiment of the present invention, the promoter may be an L-rhamnose-inducible promoter. By the above-mentioned L-laminose-inducible promoter, it is possible to control the degree of gene expression inhibition by controlling the L-rhamnose concentration.

본 발명에 따른 유전자 발현 억제용 조성물은 단일 또는 다중 유전자의 발현을 효과적으로 억제할 수 있으므로, 생명공학 및 의료분야 등에서 유전 도구로써 유용하게 활용할 수 있다.The composition for inhibiting gene expression according to the present invention can effectively suppress the expression of single or multiple genes, and thus can be usefully utilized as a genetic tool in biotechnology and medical fields.

도 1은 SpdCas9 및 EedCpf1의 작동 방식을 개략적으로 나타낸 그림이다.
도 2는 EedCpf1이 포함된 CRISPRi 플라스미드를 도식화하여 나타낸 것이다.
도 3은 crRNAR(T1) 및 crRNA(T1)를 도식화하여 나타낸 것이다.
도 4는 Eubacterium eligens ATCC 27750 게놈의 9개의 crRNA 정렬(alignment)을 나타낸 그림이다.
도 5는 RuvC-유사 엔도뉴클레아제 도메인에 위치하는 Cpf1 단백질을 구성하는 880번 아미노산이 아스파르트산에서 알라닌으로 치환된 EedCpf1의 DNA 절단 활성이 불활성화되었음을 확인한 것이다.
도 6은 SpdCas9이 포함된 CRISPRi 플라스미드를 도식화하여 나타낸 것이다.
도 7은 비주형 가닥을 표적화하는 결합 사이트를 갖는 리포터 플라스미드를 도식화하여 나타낸 것이다.
도 8은 EedCpf1-CRISPRi 및 SpdCas9-CRISPRi의 유전자 발현 억제 효율을 나타낸 그래프이다.
도 9는 주형 가닥을 표적화하는 결합 사이트를 갖는 리포터 플라스미드를 도식화하여 나타낸 것이다.
도 10은 주형(파란색 막대기) 또는 비주형(빨간색 막대기) 가닥을 표적화하는 CRISPRi의 유전자 발현 억제 효율을 나타낸 그래프이다.
도 11은 CRISPR-EedCpf1에 대한 스페이서의 길이에 따른 유전자 발현 억제 효율을 나타낸 그래프이다.
도 12는 SapI 위치가 절단된 pSECRVi 플라스미드에 스페이서 서열을 삽입하는 방법을 도식화하여 나타낸 것이다.
도 13은 주형 가닥 상의 MBP-GFP 융합 단백질을 암호화하는 서열에 있어서, 메티오닌 1(M1), 알라닌 206(A206) 또는 아스파라긴 372(N372) 뒤에 삽입된 crRNA(T1) 결합 사이트를 나타낸 그림이다.
도 14는 비주형 가닥 상의 MBP-GFP 융합 단백질을 암호화하는 서열에 있어서, 메티오닌 1(M1), 알라닌 206(A206) 또는 아스파라긴 372(N372) 뒤에 삽입된 crRNA(T1) 결합 사이트를 나타낸 그림이다.
도 15는 EedCpf1의 CRISPRi의 유전자 발현 억제 효율을 나타낸 그래프이다.
도 16은 SpdCas9의 CRISPRi의 유전자 발현 억제 효율을 나타낸 그래프이다.
도 17은 pREGFP(T1)의 PAM 서열을 구성하는 티미딘 숫자에 따른 EedCpf1의 유전자 발현 억제 효율을 나타낸 그래프이다.
도 18은 pREGFP(T1)의 5'-CNTTC-3' PAM 서열에 대한 EedCpf1의 유전자 발현 억제 효율을 나타낸 그래프이다.
도 19는 pREGFP(T1)의 5'-NTTTC-3' PAM 서열에 대한 EedCpf1의 유전자 발현 억제 효율을 나타낸 그래프이다.
도 20은 pREGFP(T1)의 5'-CTTTN-3' PAM 서열에 대한 EedCpf1의 유전자 발현 억제 효율을 나타낸 그래프이다.
도 21은 pREGFP3(P2T1) 플라스미드 상의 프로모터(P1 및 P2), 5'-UTR(T1) 및 CDS(C1, C2, C3, C4, C5, C6, C7 및 C8) 영역을 나타낸 그림이다.
도 22는 리포터 플라스미드를 사용한 유전자 발현 억제 효율을 나타낸 그래프이다.
도 23은 유도제로써 다양한 농도의 L-rhamnose를 사용한 E. coli 세포에서 EedCpf1의 유전자 발현 조절을 형광으로 측정한 것을 나타낸 그래프이다.
도 24는 유도제로써 L-rhamnose의 사용에 따른 E. coli 세포의 성장을 나타낸 그래프이다.
도 25는 8개의 결합 부위를 표적화하는 EedCpf1에 의한 유전자 발현의 억제분석(우측) 및 단일세포 유동세포계측법 형광분석(single-cell flow cytometry fluorescence assays)(좌측)을 나타낸 그래프이다.
도 26은 리포터 유전자(gfp)에서 C4 및/또는 C5 영역을 표적화하는 crRNA(C4C5)를 나타낸 그림이다.
도 27은 염색체 리포터 유전자(gfp)에서 C4 및/또는 C5 영역을 표적화하는 crRNA(C4C5)에 의한 유전자 발현의 억제분석(우측) 및 단일세포 유동세포계측법 형광분석(single-cell flow cytometry fluorescence assays)(좌측)을 나타낸 그래프이다.
도 28은 내인성 lacZ 유전자 및 외인성 gfp 유전자의 발현이 동시에 억제된 것을 나타낸 그림이다.
1 is a diagram schematically illustrating the operation of SpdCas9 and EedCpf1.
Figure 2 is a schematic representation of a CRISPRi plasmid containing EedCpf1.
Figure 3 is a schematic representation of crRNAR (T1) and crRNA (T1).
Figure 4 depicts the Eubacterium Figure 9 shows the alignment of nine crRNAs of the eligens ATCC 27750 genome.
FIG. 5 shows that the DNA cleaving activity of EedCpf1 in which 880 amino acids constituting the Cpf1 protein located in the RuvC-like endonuclease domain was replaced with alanine in aspartic acid was inactivated.
Figure 6 is a schematic representation of a CRISPRi plasmid containing SpdCas9.
Figure 7 is a schematic representation of a reporter plasmid having a binding site for targeting non-template strands.
8 is a graph showing the gene expression inhibition efficiency of EedCpf1-CRISPRi and SpdCas9-CRISPRi.
Figure 9 is a schematic representation of a reporter plasmid having binding sites for targeting template strands.
10 is a graph showing the gene expression inhibition efficiency of CRISPRi targeting a template (blue stick) or non-mold (red stick) strand.
11 is a graph showing the gene expression inhibition efficiency according to the length of the spacer for CRISPR-EedCpf1.
Figure 12 schematically illustrates the insertion of a spacer sequence into the pSECRVi plasmid in which the Sap I site is truncated.
FIG. 13 is a figure showing a crRNA (T1) binding site inserted after methionine 1 (M1), alanine 206 (A206) or asparagine 372 (N372) in the sequence encoding the MBP-GFP fusion protein on the template strand.
FIG. 14 is a view showing a crRNA (T1) binding site inserted after methionine 1 (M1), alanine 206 (A206) or asparagine 372 (N372) in a sequence encoding MBP-GFP fusion protein on a non-template strand.
15 is a graph showing the gene expression inhibition efficiency of CRISPRi of EedCpf1.
16 is a graph showing the gene expression inhibition efficiency of CRISPRi of SpdCas9.
17 is a graph showing the gene expression inhibition efficiency of EedCpf1 according to the number of thymidine constituting the PAM sequence of pREGFP (T1).
18 is a graph showing the gene expression inhibition efficiency of EedCpf1 against the 5'-CNTTC-3 'PAM sequence of pREGFP (T1).
19 is a graph showing the gene expression suppression efficiency of EedCpf1 against the 5'-NTTTC-3 'PAM sequence of pREGFP (T1).
20 is a graph showing the gene expression inhibition efficiency of EedCpf1 against the 5'-CTTTN-3 'PAM sequence of pREGFP (T1).
Figure 21 is a diagram showing the promoter (P1 and P2), 5'-UTR (T1) and CDS (C1, C2, C3, C4, C5, C6, C7 and C8) regions on the pREGFP3 (P2T1) plasmid.
22 is a graph showing gene expression inhibition efficiency using a reporter plasmid.
23 is a graph showing fluorescence measurement of EedCpf1 gene expression control in E. coli cells using various concentrations of L-rhamnose as an inducing agent.
24 is a graph showing the growth of E. coli cells using L-rhamnose as an inducing agent.
FIG. 25 is a graph showing inhibition of gene expression by EedCpf1 (right side) and single-cell flow cytometry fluorescence assays (left side) targeting eight binding sites. FIG.
26 is a diagram showing a crRNA (C4C5) targeting the C4 and / or C5 region in the reporter gene ( gfp ).
Figure 27 shows the inhibition of gene expression (right) and single-cell flow cytometry fluorescence assays by crRNA (C4C5) targeting C4 and / or C5 regions in the chromosomal reporter gene ( gfp ) (Left side).
Figure 28 shows the effect of the endogenous lacZ Lt; RTI ID = 0.0 > gfp < / RTI > gene.

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more embodiments will be described in more detail by way of examples. However, these embodiments are intended to illustrate one or more embodiments, and the scope of the present invention is not limited to these embodiments.

실시예Example 1. 유전자 발현 억제용 조성물의 제조 및 유전자 발현 분석 방법 1. Preparation of a gene expression inhibiting composition and gene expression analysis method

<1-1> 균주, 배지 및 시약<1-1> Strain, medium and reagent

클로닝 및 플라스미드 유지(maintenance)에 E. coli DH5α를 사용하였다. E. coli DH5α was used for cloning and plasmid maintenance.

균주의 배양에는 LB 배지(트립톤 10g/L, 효모 추출물 5g/L, 염화나트륨 5g/L)를 사용하였다. 형질전환 후 회복 배지(recovery media)로써, SOC 배지(트립톤 20g/L, 효모 추출물 5g/L, 염화나트륨 0.5g/L, 황산 마그네슘 2.4 g/L, 염화칼륨 186mg/L, 글루코스 4g/L)를 사용하였다. LB medium (10 g / L of tryptone, 5 g / L of yeast extract and 5 g / L of sodium chloride) was used for the culture of the strain. SOC medium (20 g / L of tryptone, 5 g / L of yeast extract, 0.5 g / L of sodium chloride, 2.4 g / L of magnesium sulfate, 186 mg / L of potassium chloride and 4 g / L of glucose) as recovery medium after transformation Respectively.

L-Rhamnose 및 항생제는 Sigma-Aldrich(St. Louis, MO)에서 구입하였다. 암피실린(ampicillin), 카나마이신(kanamycin) 및 클로람페니콜(chloramphenicol)을 각각 최종 농도 100㎍/㎖, 25㎍/㎖ 및 10㎍/㎖로 사용하였다. 중합효소연쇄반응(PCR)을 위하여, 고정확도(high fidelity) KOD-Plus-Neo 중합효소(Toyobo, Osaka, Japan)를 표준 프로토콜에 따라 사용하였다. 모든 제한효소(restriction enzyme) 및 변형효소(modification enzyme)는 New England BioLabs(NEB, Ipswich, MA)에서 구입하였다.L-Rhamnose and antibiotics were purchased from Sigma-Aldrich (St. Louis, MO). Ampicillin, kanamycin and chloramphenicol were used at final concentrations of 100 μg / ml, 25 μg / ml and 10 μg / ml, respectively. High-fidelity KOD-Plus-Neo polymerase (Toyobo, Osaka, Japan) was used according to standard protocols for polymerase chain reaction (PCR). All restriction enzymes and modification enzymes were purchased from New England BioLabs (NEB, Ipswich, Mass.).

<1-2> <1-2> 프라이머primer , 플라스미드 및 , Plasmids and crRNAcrRNA

본 발명에서 사용된 프라이머(표 1 및 표 2), 플라스미드(표 3 및 표 4) 및 crRNA(표 5)는 각각 하기의 표와 같다. 표 5의 굵은 글씨체로 나타낸 부분은 PAM 서열에 해당한다.The primers (Table 1 and Table 2), plasmids (Table 3 and Table 4) and crRNA (Table 5) used in the present invention are shown in the following table, respectively. The portion indicated in bold in Table 5 corresponds to the PAM sequence.

CRISPRi 플라스미드 프라이머CRISPRi plasmid primer 프라이머 염기서열(5'→3')The primer sequence (5 'to 3') 비고Remarks 서열번호SEQ ID NO: CRI(T1)-FCRI (T1) -F actagtattatacctaggacactagtattatacctaggac pSECRi(T1) plasmid constructionpSECRi (T1) plasmid construction 1One CRI(T1)-RCRI (T1) -R caccagaatcggcacaacgcgttttagagctagaaatagccaccagaatcggcacaacgcgttttagagctagaaatagc 22 dCpf1-VFdCpf1-VF ttccattcatatggtgatcctgctgaatttttccattcatatggtgatcctgctgaattt pSECRi-EedCpf1 plasmid constructionpSECRi-EedCpf1 plasmid construction 33 dCpf1-VRdCpf1-VR gtatgaataactcgagtaaggatctccagggtatgaataactcgagtaaggatctccagg 44 dCpf1-IFdCpf1-IF cttactcgagttattcataccttttattctcttactcgagttattcataccttttattct 55 dCpf1-IRdCpf1-IR ggatcaccatatgaatggaaatcgtagcatggatcaccatatgaatggaaatcgtagcat 66 crRNA-FcrRNA-F caaagtagaaattactagtattatacctaggaccaaagtagaaattactagtattatacctaggac pG-crRNA plasmid constructionpG-crRNA plasmid construction 77 crRNA-RcrRNA-R tagattgaagagcgacccggggcggccgcctcgtagattgaagagcgacccggggccggccgcctcg 88 crRNA(T1)-FcrRNA (T1) -F caaagtagaaattactagtattatacctaggaccaaagtagaaattactagtattatacctaggac pG-crRNA(T1) plasmid constructionpG-crRNA (T1) plasmid construction 99 crRNA(T1)-RThe crRNA (T1) -R tagatcaccagaatcggcacaacgctgaagagcgacccggggcggccgcctcgtagatcaccagaatcggcacaacgctgaagagcgacccggggcggccgcctcg 1010 crRNAR(T1)-FcrRNAR (T1) -F aatttctactttgtagattgaagagcgacccggggcggaatttctactttgtagattgaagagcgacccggggcgg pG-crRNAR(T1) plasmid constructionpG-crRNAR (T1) plasmid construction 1111 crRNAR(T1)-RcrRNAR (T1) -R atttaaggttattcaaacgcgttgtgccgattctggtgatttaaggttattcaaacgcgttgtgccgattctggtg 1212 ST-FST-F tattccgcttcctcggcgaccggttaaagatctttgacagtattccgcttcctcggcgaccggttaaagatctttgacag pSECRVi, pSECRVi(T1), pSECRVRi(T1) plasmid constructionpSECRVi, pSECRVi (T1), pSECRVRi (T1) plasmid construction 1313 ST-RST-R ggcccaagcttcctcgaggcggcccaagcttcctcgaggc 1414 crRNA(T1)-16-RcrRNA (T1) -16-R ggcggccgccccgggtcgctcttcatgtgccgattctggtgatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcatgtgccgattctggtgatctacaaagtagaaattactagtatta pSECRVi(T116bp) plasmid constructionpSECRVi (T1 16bp) plasmid construction 1515 crRNA(T1)-18-RcrRNA (T1) -18-R ggcggccgccccgggtcgctcttcagttgtgccgattctggtgatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcagttgtgccgattctggtgatctacaaagtagaaattactagtatta pSECRVi(T118bp) plasmid constructionpSECRVi (T1 18 bp ) plasmid construction 1616 crRNA(T1)-22-RcrRNA (T1) -22-R ggcggccgccccgggtcgctcttcacggcgttgtgccgattctggtgatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcacggcgttgtgccgattctggtgatctacaaagtagaaattactagtatta pSECRVi(T122bp) plasmid constructionpSECRVi (T1 22bp) plasmid construction 1717 crRNA(T1)-24-RcrRNA (T1) -24-R ggcggccgccccgggtcgctcttcaaccggcgttgtgccgattctggtgatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcaaccggcgttgtgccgattctggtgatctacaaagtagaaattactagtatta pSECRVi(T124bp) plasmid constructionpSECRVi (T1 24bp) plasmid construction 1818 crRNA(T1)-25-RThe crRNA (T1) -25-R ggcggccgccccgggtcgctcttcataccggcgttgtgccgattctggtgatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcataccggcgttgtgccgattctggtgatctacaaagtagaaattactagtatta pSECRVi(T125bp) plasmid constructionpSECRVi (T1 25 bp) plasmid construction 1919 crRNA(P1)-RcrRNA (P1) -R ggcggccgccccgggtcgctcttcacctaggactgagctagccgtatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcacctaggactgagctagccgtatctacaaagtagaaattactagtatta pSECRVi(P1) plasmid constructionpSECRVi (Pl) plasmid construction 2020 crRNA(P2)-RcrRNA (P2) -R ggcggccgccccgggtcgctcttcaagtcctaggtacagtgctagatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcaagtcctaggtacagtgctagatctacaaagtagaaattactagtatta pSECRVi(P2) plasmid constructionpSECRVi (P2) plasmid construction 2121 crRNA(C1)-RcrRNA (C1) -R ggcggccgccccgggtcgctcttcatcatatgtatatctccttctatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcatcatatgtatatctccttctatctacaaagtagaaattactagtatta pSECRVi(C1) plasmid constructionpSECRVi (C1) plasmid construction 2222 crRNA(C2)-RcrRNA (C2) -R ggcggccgccccgggtcgctcttcagaaggagatatacatatgagatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcagaaggagatatacatatgagatctacaaagtagaaattactagtatta pSECRVi(C2) plasmid constructionpSECRVi (C2) plasmid construction 2323 crRNA(C3)-RcrRNA (C3) -R ggcggccgccccgggtcgctcttcacaggtagttttccagtagtgatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcacaggtagttttccagtagtgatctacaaagtagaaattactagtatta pSECRVi(C3) plasmid constructionpSECRVi (C3) plasmid construction 2424 crRNA(C4)-RcrRNA (C4) -R ggcggccgccccgggtcgctcttcattgtagttcccgtcatctttatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcattgtagttcccgtcatctttatctacaaagtagaaattactagtatta pSECRVi(C4) plasmid constructionpSECRVi (C4) plasmid construction 2525 crRNA(C5)-RcrRNA (C5) -R ggcggccgccccgggtcgctcttcagcttttcgttgggatctttcatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcagcttttcgttgggatctttcatctacaaagtagaaattactagtatta pSECRVi(C5) plasmid constructionpSECRVi (C5) plasmid construction 2626 crRNA(C6)-RcrRNA (C6) -R ggcggccgccccgggtcgctcttcataaatttatttgcactactgatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcataaatttatttgcactactgatctacaaagtagaaattactagtatta pSECRVi(C6) plasmid constructionpSECRVi (C6) plasmid construction 2727 crRNA(C7)-RcrRNA (C7) -R ggcggccgccccgggtcgctcttcacaggaacgcactatatctttatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcacaggaacgcactatatctttatctacaaagtagaaattactagtatta pSECRVi(C7) plasmid constructionpSECRVi (C7) plasmid construction 2828 crRNA(C8)-RcrRNA (C8) -R ggcggccgccccgggtcgctcttcaccctttcgaaagatcccaacatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcaccctttcgaaagatcccaacatctacaaagtagaaattactagtatta pSECRVi(C8) plasmid constructionpSECRVi (C8) plasmid construction 2929 crRNA(lacZ)The crRNA (lacZ) ggcggccgccccgggtcgctcttcattttcccagtcacgacgttgatctacaaagtagaaattactagtattaggcggccgccccgggtcgctcttcattttcccagtcacgacgttgatctacaaagtagaaattactagtatta pSECRVi(lacZ) plasmid constructionpSECRVi (lacZ) plasmid construction 3030 Multi(C5)-FMulti (C5) -F ggcggccgccccgggtcgctcttcagcttttcgttgggatctttcatctacaaagtagaaattatttaagggcggccgccccgggtcgctcttcagcttttcgttgggatctttcatctacaaagtagaaattatttaag pSECRVi(C4C5) plasmid constructionpSECRVi (C4C5) plasmid construction 3131 Multi(C5)-RMulti (C5) -R ttgtagataaagatgacgggaactacaagtttgaataaccttaaataatttctactttgtagatgaaagttgtagataaagatgacgggaactacaagtttgaataaccttaaataatttctacttttgtagatgaaag 3232 Multi(lacZ)-FMulti (lacZ) -F ggcggccgccccgggtcgctcttcattttcccagtcacgacgttgatctacaaagtagaaattatttaagggcggccgccccgggtcgctcttcattttcccagtcacgacgttgatctacaaagtagaaattatttaag pSECRVi(C1lacZ) plasmid constructionpSECRVi (C1lacZ) plasmid construction 3333 Multi(lacZ)-RMulti (lacZ) -R ttgtagatagaaggagatatacatatgagtttgaataaccttaaataatttctactttgtagatcaacgttgtagatagaaggagatatacatatgagtttgaataaccttaaataatttctactttgtagatcaacg 3434

기타 플라스미드 프라이머Other plasmid primers 프라이머 염기서열(5'→3')The primer sequence (5 'to 3') 비고Remarks 서열번호SEQ ID NO: pR1-FpR1-F gcgttgtgccgattctggtggaaaataattttgtttaactttagcgttgtgccgattctggtggaaaataattttgtttaacttta pREGFP3(T1) plasmid constructionpREGFP3 (T1) plasmid construction 3535 pR1-RpR1-R cggtctagagggaaaccgttgtgcggtctagagggaaaccgttgtg 3636 pR2-FpR2-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag pREGFP3(NT1) plasmid constructionpREGFP3 (NT1) plasmid construction 3737 pR2-RpR2-R attctggtggaaaatctagagggaaaccgttgtgattctggtggaaaatctagagggaaaccgttgtg 3838 pR3-FpR3-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-CTTTC PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-CTTTC PAM sequence in a pREGFP3 (T1) plasmid 3939 pR3-RpR3-R attctggtggaaagtctagagggaaaccgttgtgattctggtggaaagtctagagggaaaccgttgtg 4040 pR4-FpR4-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-CCTTC PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-CCTTC PAM sequence in a pREGFP3 (T1) plasmid 4141 pR4-RpR4-R attctggtggaaggtctagagggaaaccgttgtgattctggtggaaggtctagagggaaaccgttgtg 4242 pR5-FpR5-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-CCCTC PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-CCCTC PAM sequence in a pREGFP3 (T1) plasmid 4343 pR5-RpR5-R attctggtggagggtctagagggaaaccgttgtgattctggtggagggtctagagggaaaccgttgtg 4444 pR6-FpR6-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-ATTTC PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-ATTTC PAM sequence in a pREGFP3 (T1) plasmid 4545 pR6-RpR6-R attctggtggaaattctagagggaaaccgttgtgattctggtggaaattctagagggaaaccgttgtg 4646 pR7-FpR7-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-GTTTC PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-GTTTC PAM sequence in a pREGFP3 (T1) plasmid 4747 pR7-RpR7-R attctggtggaaactctagagggaaaccgttgtgattctggtggaaactctagagggaaaccgttgtg 4848 pR8-FpR8-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-CATTC PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-CATTC PAM sequence in a pREGFP3 (T1) plasmid 4949 pR8-RpR8-R attctggtggaatgtctagagggaaaccgttgtgattctggtggaatgtctagagggaaaccgttgtg 5050 pR9-FpR9-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-CGTTC PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-CGTTC PAM sequence in a pREGFP3 (T1) plasmid 5151 pR9-RpR9-R attctggtggaacgtctagagggaaaccgttgtgattctggtggaacgtctagagggaaaccgttgtg 5252 pR10-FpR10-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-CTTTA PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-CTTTA PAM sequence in a pREGFP3 (T1) plasmid 5353 pR10-RpR10-R attctggtgtaaagtctagagggaaaccgttgtgattctggtgtaaagtctagagggaaaccgttgtg 5454 pR11-FpR11-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-CTTTT PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-CTTTT PAM sequence in a pREGFP3 (T1) plasmid 5555 pR11-RpR11-R attctggtgaaaagtctagagggaaaccgttgtgattctggtgaaaagtctagagggaaaccgttgtg 5656 pR12-FpR12-F cggcacaacgccggtaattttgtttaactttaagcggcacaacgccggtatattttgtttaactttaag Mutation to contain 5'-CTTTG PAM sequence in a pREGFP3(T1) plasmidMutation to contain 5'-CTTTG PAM sequence in a pREGFP3 (T1) plasmid 5757 pR12-RpR12-R attctggtgcaaagtctagagggaaaccgttgtgattctggtgcaaagtctagagggaaaccgttgtg 5858 Pt-FPt-F aaccacaacggtttccctctagattttccaaaccacaacggtttccctctagattttcca Mutation to contain crRNA(P2) binding site in a pREGFP3(T1) plasmidMutation to contain crRNA (P2) binding site in a pREGFP3 (T1) plasmid 5959 Pt-RPt-R tgctagcactgtacctaggactgagcttgctagcactgtacctaggactgagct 6060 Cm-FCm-F aataataaggtaccatggtaggtccatatgaatatcctccaataataaggtaccatggtaggtccatatgaatatcctcc pREGFP3C(P2T1) plasmid constructionpREGFP3C (P2T1) plasmid construction 6161 Cm-RCm-R tagtctagactagaggcctaggaatacggttagccatttgtagtctagagagaggcctaggaatacggttagccatttg 6262 Int-FInt-F actatttcctgtaagaattgactcatctggagcctatgattcaccgtcatcaccgaaacactatttcctgtaagaattgactcatctggagcctatgattcaccgtcatcaccgaaac GFP expression cassette integration into bglA locusGFP expression cassette integration into bgla locus 6363 Int-RInt-R gcaacaagtattgcatccggtacttcatcgacttaaagctggaatacggttagccatttggcaacaagtattgcatccggtacttcatcgacttaaagctggaatacggttagccatttg 6464 pM1-FpM1-F attctggtggaaaataaaactgaagaaggtaaactattctggtggaaaataaaactgaagaaggtaaact pMEGFP(NT1) plasmid constructionpMEGFP (NT1) plasmid construction 6565 pM1-RpM1-R cggcacaacgccggtcataatctatggtccttgttcggcacaacgccggtcataatctatggtccttgtt 6666 pM2-FpM2-F cggcacaacgccggtaaaactgaagaaggtaaactcggcacaacgccggtaaaactgaagaaggtaaact pMEGFP(T1) plasmid constructionpMEGFP (T1) plasmid construction 6767 pM2-RpM2-R attctggtggaaaatcataatctatggtccttgttattctggtggaaaatcataatctatggtccttgtt 6868 pM3-FpM3-F attctggtggaaaatgacaccgattactccatcgcattctggtggaaaatgacaccgattactccatcgc pMEGFP(NT2) plasmid constructionpMEGFP (NT2) plasmid construction 6969 pM3-RpM3-R cggcacaacgccggttgcattcatgtgtttgttttcggcacaacgccggttgcattcatgtgtttgtttt 7070 pM4-FpM4-F cggcacaacgccggtgacaccgattactccatcgccggcacaacgccggtgacaccgattactccatcgc pMEGFP(T2) plasmid constructionpMEGFP (T2) plasmid construction 7171 pM4-RpM4-R attctggtggaaaattgcattcatgtgtttgttttattctggtggaaaattgcattcatgtgtttgtttt 7272 pM5-FpM5-F attctggtggaaaataacaacaacaataacaataaattctggtggaaaataacaacaacaataacaa pMEGFP(NT3) plasmid constructionpMEGFP (NT3) plasmid construction 7373 pM5-RpM5-R cggcacaacgccggtgttcgagctcgaattagtctcggcacaacgccggtgttcgagctcgaattagtct 7474 pM6-FpM6-F cggcacaacgccggtaacaacaacaataacaataacggcacaacgccggtaacaacaacaataacaa pMEGFP(T3) plasmid constructionpMEGFP (T3) plasmid construction 7575 pM6-RpM6-R attctggtggaaaatgttcgagctcgaattagtctattctggtggaaaatgttcgagctcgaattagtct 7676

CRISPRi플라스미드CRISPRi plasmid 설명Explanation pSEVA221pSEVA221 3.8 kb, RK2 ori, Kmr 3.8 kb, RK2 ori, Km r pSECRipSECRi L-rhamnose inducible dCas9 and constitutive sgRNA expression in pSEVA221L-rhamnose inducible dCas9 and constitutive sgRNA expression in pSEVA221 pET-22b(+)pET-22b (+) 5.5 kb, pBR322 ori, Apr 5.5 kb, pBR322 ori, Ap r pET22b-EeCpf1pET22b-EeCpf1 PT7-EeCpf1:6x His tag in pET-22b(+)P T7 -EeCpf1: 6x His tag in pET-22b (+) pET22b-EedCpf1pET22b-EedCpf1 PT7-EedCpf1(D880A mutation):6x His tag in pET-22b(+)P T7 -EedCpf1 (D880A mutation): 6x His tag in pET-22b (+) pG-sgRNApG-sgRNA PJ23119-sgRNA in pGEM-B1P J23119- sgRNA in pGEM-B1 pSECRi(T1)pSECRi (T1) pSECRi expressing sgRNA(T1)pSECRi expressing sgRNA (T1) pSECRi-EedCpf1pSECRi-EedCpf1 L-rhamnose inducible EedCpf1 in pSEVA221L-rhamnose inducible EedCpf1 in pSEVA221 pG-crRNApG-crRNA PJ23119-crRNA in pGEM-B1P J23119- cRNA in pGEM-B1 pG-crRNA(T1)pG-crRNA (T1) PJ23119-crRNA(T1) in pGEM-B1P J23119- cRNA (T1) in pGEM-B1 pG-crRNAR(T1)pG-crRNAR (T1) PJ23119-crRNA(T1) with 3' repeat sequences in pGEM-B1P J23119 -cRNA (T1) with 3 'repeat sequences in pGEM-B1 pSECRVipSECRVi L-rhamnose inducible EedCpf1 and constitutive crRNA expression in pSEVA221L-rhamnose inducible EedCpf1 and constitutive crRNA expression in pSEVA221 pSECRVi(T1)pSECRVi (T1) pSECRVi expressing crRNA(T1)pSECRVi expressing crRNA (T1) pSECRVi(T116bp)pSECRVi (T1 16bp) pSECRVi expressing crRNA(T116bp)pSECRVi expressing crRNA (T1 16bp) pSECRVi(T118bp)pSECRVi (T1 18 bp ) pSECRVi expressing crRNA(T118bp)pSECRVi expressing crRNA (T1 18 bp ) pSECRVi(T122bp)pSECRVi (T1 22bp) pSECRVi expressing crRNA(T122bp)pSECRVi expressing crRNA (T1 22bp) pSECRVi(T124bp)pSECRVi (T1 24bp) pSECRVi expressing crRNA(T124bp)pSECRVi expressing crRNA (T1 24bp) pSECRVi(T125bp)pSECRVi (T1 25bp ) pSECRVi expressing crRNA(T125bp)pSECRVi expressing crRNA (T1 25 bp) pSECRVRi(T1)pSECRVRi (T1) pSECRVi expressing crRNA(T1) with 3' repeat sequencespSECRVi expressing crRNA (T1) with 3 'repeat sequences pSECRVi(P1)pSECRVi (P1) pSECRVi expressing crRNA(P1)pSECRVi expressing crRNA (P1) pSECRVi(P2)pSECRVi (P2) pSECRVi expressing crRNA(P2)pSECRVi expressing crRNA (P2) pSECRVi(C1)pSECRVi (C1) pSECRVi expressing crRNA(C1)pSECRVi expressing crRNA (C1) pSECRVi(C2)pSECRVi (C2) pSECRVi expressing crRNA(C2)pSECRVi expressing crRNA (C2) pSECRVi(C3)pSECRVi (C3) pSECRVi expressing crRNA(C3)pSECRVi expressing crRNA (C3) pSECRVi(C4)pSECRVi (C4) pSECRVi expressing crRNA(C4)pSECRVi expressing crRNA (C4) pSECRVi(C5)pSECRVi (C5) pSECRVi expressing crRNA(C5)pSECRVi expressing crRNA (C5) pSECRVi(C6)pSECRVi (C6) pSECRVi expressing crRNA(C6)pSECRVi expressing crRNA (C6) pSECRVi(C7)pSECRVi (C7) pSECRVi expressing crRNA(C7)pSECRVi expressing crRNA (C7) pSECRVi(C8)pSECRVi (C8) pSECRVi expressing crRNA(C8)pSECRVi expressing crRNA (C8) pSECRVi(1acZ)pSECRVi (1acZ) pSECRVi expressing crRNA(lacZ)pSECRVi expressing crRNA (lacZ) pSECRVi(C4C5)pSECRVi (C4C5) pSECRVi expressing crRNA(C4) and crRNA(C5)pSECRVi expressing crRNA (C4) and crRNA (C5) pSECRVi(C1lacZ)pSECRVi (C1lacZ) pSECRVi expressing crRNA(C1) and crRNA(lacZ)pSECRVi expressing crRNA (C1) and crRNA (lacZ)

기타 플라스미드Other Plasmids 설명Explanation pREGFP3pREGFP3 PJ23100-gfp in pMW7, Apr P J23100 - gfp in pMW7, Ap r pMEGFPpMEGFP Ptac-MBP:EGFP in pMAL-c2X, Apr P tac- MBP: EGFP in pMAL-c2X, Ap r pKD3/I-SceIpKD3 / I- Sce I pKD3, I-SceI endonuclease recognition site introduced at both side of the chloramphenicol resistance gene, Cmr pKD3, I- SceI endonuclease recognition site introduced at the side of the chloramphenicol resistance gene, Cm r pREGFP3(NT1)pREGFP3 (NT1) pREGFP3 containing non-template strand binding site of sgRNA(T1), crRNA(T1) in 5'-UTR of GFPpREGFP3 containing non-template strand binding site of sgRNA (T1), crRNA (T1) in 5'-UTR of GFP pREGFP3(T1)pREGFP3 (T1) pREGFP3 containing template strand binding site of sgRNA(T1), crRNA(T1) in 5'-UTR of GFPpREGFP3 containing template strand binding site of sgRNA (T1), crRNA (T1) in 5'-UTR of GFP pREGFP3(P2T1)pREGFP3 (P2T1) pREGFP3(T1) containing non-template strand binding site of crRNA(P2) in promoter of GFPpRGFP3 (T1) containing non-template strand binding site of crRNA (P2) in promoter of GFP pREGFP3C(P2T1)pREGFP3C (P2T1) pREGFP3(P2T1) containing chloramphenicol resistance gene behind GFP genepREGFP3 (P2T1) containing chloramphenicol resistance gene behind GFP gene pMEGFP(NT1)pMEGFP (NT1) pMEGFP containing non-template strand binding site of sgRNA(T1), crRNA(T1) behind methionine 1 residue of MBP-EGFP fusion proteinpMEGFP containing non-template strand binding site of sgRNA (T1), crRNA (T1) behind methionine 1 residue of MBP-EGFP fusion protein pMEGFP(T1)pMEGFP (T1) pMEGFP containing template strand binding site of sgRNA(T1), crRNA(T1) behind methionine 1 residue of MBP-EGFP fusion proteinpMEGFP containing template strand binding site of sgRNA (T1), crRNA (T1) behind methionine 1 residue of MBP-EGFP fusion protein pMEGFP(NT2)pMEGFP (NT2) pMEGFP containing non-template strand binding site of sgRNA(T1), crRNA(T1) behind alanine 206 residue of MBP-EGFP fusion proteinpMEGFP containing non-template strand binding site of sgRNA (T1), behind region of crRNA (T1) 206 residue of MBP-EGFP fusion protein pMEGFP(T2)pMEGFP (T2) pMEGFP containing template strand binding site of sgRNA(T1), crRNA(T1) behind alanine 206 residue of MBP-EGFP fusion proteinpMEGFP containing template strand binding site of sgRNA (T1), behind region of crRNA (T1) 206 residue of MBP-EGFP fusion protein pMEGFP(NT3)pMEGFP (NT3) pMEGFP containing non-template strand binding site of sgRNA(T1), crRNA(T1) behind asparagine 372 residue of MBP-EGFP fusion proteinpMEGFP containing non-template strand binding site of sgRNA (T1), crRNA (T1) behind asparagine 372 residue of MBP-EGFP fusion protein pMEGFP(T3)pMEGFP (T3) pMEGFP containing template strand binding site of sgRNA(T1), crRNA(T1) behind asparagine 372 residue of MBP-EGFP fusion proteinpMEGFP containing template strand binding site of sgRNA (T1), crRNA (T1) behind asparagine 372 residue of MBP-EGFP fusion protein

sgRNA/crRNA 이름sgRNA / crRNA name 표적 부위Target site 스페이서(5'→3')The spacer 5 'to 3' PAM 서열(5'→3')PAM sequence (5 '- &gt; 3') 서열번호SEQ ID NO: sgRNA(T1)sgRNA (T1) 5'-UTR of GFP5'-UTR of GFP caccagaatcggcacaacgccaccagaatcggcacaacgc CGGCGG 7777 crRNA(T1)The crRNA (T1) 5'-UTR of GFP5'-UTR of GFP caccagaatcggcacaacgccaccagaatcggcacaacgc TTTTN T TTTN 7878 crRNA(T116bp)The crRNA (T1 16bp ) 5'-UTR of GFP5'-UTR of GFP caccagaatcggcacacaccagaatcggcaca TTTTN T TTTN 7979 crRNA(T118bp)The crRNA (T1 18bp ) 5'-UTR of GFP5'-UTR of GFP caccagaatcggcacaaccaccagaatcggcacaac TTTTC T TTTC 8080 crRNA(T122bp)crRNA (T1 22bp) 5'-UTR of GFP5'-UTR of GFP caccagaatcggcacaacgccgcaccagaatcggcacaacgccg TTTTC T TTTC 8181 crRNA(T124bp)crRNA (T1 24bp) 5'-UTR of GFP5'-UTR of GFP caccagaatcggcacaacgccggtcaccagaatcggcacaacgccggt TTTTC T TTTC 8282 crRNA(T125bp)The crRNA (T1 25 bp) 5'-UTR of GFP5'-UTR of GFP caccagaatcggcacaacgccggtacaccagaatcggcacaacgccggta TTTTC T TTTC 8383 crRNA(P1)The crRNA (P1) Promoter of GFPPromoter of GFP acggctagctcagtcctaggacggctagctcagtcctagg ATTTG A TTTG 8484 crRNA(P2)The crRNA (P2) Promoter of GFPPromoter of GFP ctagcactgtacctaggactctagcactgtacctaggact GTTTG G TTTG 8585 crRNA(C1)The crRNA (C1) RBS, CDS of GFPRBS, CDS of GFP agaaggagatatacatatgaagaaggagatatacatatga CTTTA C TTTA 8686 crRNA(C2)The crRNA (C2) RBS, CDS of GFPRBS, CDS of GFP ctcatatgtatatctccttcctcatatgtatatctccttc CTTTA C TTTA 8787 crRNA(C3)crRNA (C3) CDS of GFPCDS of GFP cactactggaaaactacctgcactactggaaaactacctg ATTTG A TTTG 8888 crRNA(C4)The crRNA (C4) CDS of GFPCDS of GFP aaagatgacgggaactacaaaaagatgacgggaactacaa CTTTC C TTTC 8989 crRNA(C5)crRNA (C5) CDS of GFPCDS of GFP gaaagatcccaacgaaaagcgaaagatcccaacgaaaagc CTTTC C TTTC 9090 crRNA(C6)crRNA (C6) CDS of GFPCDS of GFP cagtagtgcaaataaatttacagtagtgcaaataaattta TTTTC T TTTC 9191 crRNA(C7)The crRNA (C7) CDS of GFPCDS of GFP aaagatatagtgcgttcctgaaagatatagtgcgttcctg CTTTG C TTTG 9292 crRNA(C8)The crRNA (C8) CDS of GFPCDS of GFP gttgggatctttcgaaaggggttggatctttcgaaaggg TTTTC T TTTC 9393 crRNA(lacZ)The crRNA (lacZ) CDS of LacZCDS of LacZ caacgtcgtgactgggaaaacaacgtcgtgactgggaaaa TTTTA T TTTA 9494

<1-3> 플라스미드 제작<1-3> Production of plasmid

<1-3-1> <1-3-1> pSECRipSECRi (T1) 플라스미드 제작(T1) plasmid production

pSECRi(T1) 플라스미드는 기존의 역PCR법(inverse PCR)을 사용하여 제작하였다. 구체적으로, SpdCas9-기반 CRISPRi 시스템의 sgRNA 영역을 변경하기 위하여, pSECRi 플라스미드 주형(template)과 함께 CRI(T1)-F 및 CRI(T1)-R 프라이머를 사용하였다. PCR 증폭 및 아가로즈 젤(agarose gel) 전기영동(electrophoresis) 후, Wizard SV Gel 및 PCR Clean-Up System(Promega, Madison, WI)을 사용하여 상기 젤로부터 정확한 크기의 DNA 단편을 정제한 다음, DpnI으로 처리하였다. T4 DNA 리가아제(ligase) 및 T4 폴리뉴클레오티드 키나아제(polynucleotide kinase)를 사용하여 제조사의 지시에 따라 digestion product를 연결(ligation)하여 pSECRi(T1) 플라스미드를 제작하였다.The pSECRi (T1) plasmid was constructed using the conventional inverse PCR method. Specifically, CRI (T1) -F and CRI (T1) -R primers were used with the pSECRi plasmid template to alter the sgRNA region of the SpdCas9-based CRISPRi system. After PCR amplification and agarose gel electrophoresis, the correct size DNA fragment was purified from the gel using Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI) Lt; / RTI &gt; PSECRi (T1) plasmid was prepared by ligating the digestion product according to the manufacturer's instructions using T4 DNA ligase and T4 polynucleotide kinase.

<1-3-2> <1-3-2> pSECRVipSECRVi 플라스미드 제작 Plasmid production

SpdCas9-mediated CRISPRi 시스템에 사용되는 기존의 pSECRi 플라스미드를 이용하여, L-rhamnose-유도 EedCpf1 단백질 및 constitutive BioBrick J23119 프로모터-구동(promoter-driven) crRNA 카세트를 암호화하는 pSECRVi 플라스미드(도 2)를 제작하였다. The pSECRVi plasmid (FIG. 2) encoding the L-rhamnose-induced EedCpf1 protein and the constitutive BioBrick J23119 promoter-driven crRNA cassette was constructed using the existing pSECRi plasmid used in the SpdCas9-mediated CRISPRi system.

구체적으로, 우선 pSECRi의 SpdCas9 유전자를 EedCpf1 유전자로 교체하였다. 이를 위해, dCpf1-IF 및 dCpf1-IR 프라이머를 사용하여 pET22b-EedCpf1 플라스미드로부터 EedCpf1을 증폭시켰다. 상기 증폭 단편은 E. eligens 유래 DNase-inactive Cpf1(D880A) coding DNA sequence(CDS)를 포함하도록 하였다. dCpf1-VF, dCpf1-VR 프라이머 및 pSECRi를 사용하여 벡터 백본(vector backbone)을 증폭시켰다. 상기와 같이 증폭된 두 단편을 제조사의 프로토콜(NEB)에 따라 깁슨 조립 방법(Gibson assembly method)으로 조립하여 pSECRi-EedCpf1 플라스미드를 제조하였다. Specifically, the SpdCas9 gene of pSECRi was replaced with the EedCpf1 gene. For this, EedCpf1 was amplified from the pET22b-EedCpf1 plasmid using dCpf1-IF and dCpf1-IR primers. The amplified fragment was isolated from E. eligens (D880A) coding DNA sequence (CDS). The vector backbone was amplified using dCpf1-VF, dCpf1-VR primer and pSECRi. The pSECRi-EedCpf1 plasmid was prepared by assembling the two amplified fragments according to the manufacturer's protocol (NEB) using the Gibson assembly method.

역PCR법을 사용하여, 도 3에 나타낸 바와 같이 crRNA 발현 카세트(expression cassette)를 제조하였다.Using the reverse PCR method, a crRNA expression cassette was prepared as shown in Fig.

이때, 특정 crRNA 카세트를 디자인하기 위하여, E. eligens의 9개의 crRNA 서열로부터 추론된 5'-mature repeat sequence(도 4), 20-nt 스페이서, 3'-repeat sequence 및 터미네이터를 사용하여 crRNAR(T1)(도 3)을 제조하였으며, 전사 후, crRNA는 EedCpf1의 RNase 활성에 의해 추가로 가공되어 native crRNA를 생성한다.At this time, in order to design a specific crRNA cassette, a 5'-mature repeat sequence deduced from nine crRNA sequences of E. eligens (FIG. 4), a 20-nt spacer, a 3'- ) (Fig. 3) were prepared. After transcription, the crRNA was further processed by RNase activity of EedCpf1 to produce native crRNA.

이후, crRNA-F 및 crRNA-R 프라이머를 사용하여 pG-sgRNA 플라스미드로부터 전영역을 증폭시켰다. 증폭 및 전기영동 후, 정확한 크기의 DNA 단편을 정제한 다음, DpnI으로 처리하였다. T4 DNA 리가아제(ligase) 및 T4 폴리뉴클레오티드 키나아제(polynucleotide kinase)를 사용하여 상기 절단된 단편들을 연결(ligation)시켜 pG-crRNA를 제조하였다. Thereafter, the entire region was amplified from the pG-sgRNA plasmid using the crRNA-F and the crRNA-R primer. After amplification and electrophoresis, DNA fragments of the correct size were purified and then treated with DpnI. The digested fragments were ligated using T4 DNA ligase and T4 polynucleotide kinase to prepare pG-crRNA.

<1-3-3> <1-3-3> pSECRVipSECRVi , , pSECRVipSECRVi (T1) 및 (T1) and pSECRVRipSECRVRi (T1) 플라스미드 제작(T1) plasmid production

상기 실시예 1-3-2의 방법으로, pG-sgRNA와 함께 crRNA(T1)-F 및 crRNA(T1)-R을 사용하여 pG-crRNA(T1) 플라스미드를 제작하였고, pG-crRNA(T1)과 함께 crRNAR(T1)-F 및 crRNAR(T1)-R 프라이머를 사용하여 pG-crRNAR(T1)을 제작하였다. 이후, ST-F 및 ST-R 프라이머를 사용하여 pG-crRNA, pG-crRNA(T1) 또는 pG-crRNAR(T1)으로부터 3개의 crRNA 카세트를 증폭시켰으며, 상기와 같이 증폭된 단편들을 AgeI/NotI로 pSECRi-EedCpf1을 절단하여 생성된 선형 벡터 단편과 각각 조립하여 pSECRVi, pSECRVi(T1) 및 pSECRVRi(T1) 플라스미드를 제작하였다.The pG-crRNA (T1) plasmid was constructed using the crRNA (T1) -F and the crRNA (T1) -R together with the pG-sgRNA in the method of Example 1-3-2. (T1) -F and crRNAR (T1) -R primers were used to construct pG-crRNAR (T1). Three CRNA cassettes were amplified from pG-crRNA, pG-crRNA (T1) or pG-crRNAR (T1) using ST-F and ST-R primers, and the amplified fragments were amplified using AgeI / PSECRVi (T1) and pSECRVRi (T1) plasmids were assembled with the linear vector fragments generated by digesting pSECRi-EedCpf1.

다양한 스페이서를 pSECRVi에 삽입하기 위하여, single stranded oligonucleotide-mediated assembly 방법을 사용하였다. pSECRVi를 Type IIS 제한효소인 SapI으로 선형화시킨 후, 제조사의 프로토콜에 따라 NEBuilder HiFi DNA Assembly Master Mix를 사용하여 SapI 위치가 분해된 플라스미드에 20bp 스페이서를 함유하는 단일 가닥 올리고뉴클레오티드를 결합하였다.A single stranded oligonucleotide-mediated assembly method was used to insert various spacers into pSECRVi. pSECRVi was linearized with the Type IIS restriction enzyme Sap I and single strand oligonucleotides containing a 20 bp spacer were ligated to the plasmid in which the Sap I site was digested using NEBuilder HiFi DNA Assembly Master Mix according to the manufacturer's protocol.

<1-3-4> <1-3-4> pREGFP3pREGFP3 -기반 및 - Based and pMEGFPpMEGFP -기반 리포터 플라스미드 제작- based reporter plasmid production

pREGFP3-기반 리포터(reporter) 플라스미드 및 pMEGFP-기반 리포터(reporter) 플라스미드를 제작하기 위하여, pREGFP3 또는 pMEGFP에 CRISPRi 결합 부위를 역PCR법을 사용하여 삽입하였다. To construct a pREGFP3-based reporter plasmid and a pMEGFP-based reporter plasmid, the CRISPRi binding site was inserted into pREGFP3 or pMEGFP using reverse PCR.

<1-3-5> <1-3-5> pSECRVipSECRVi (( C4C5C4C5 ) 플라스미드 제작) Plasmid production

pSECRVi(C4)를 SapI으로 선형화시킨 다음 NEBuilder HiFi DNA Assembly Master Mix를 사용하여 2개의 Multi(C5)-F 및 Multi(C5)-R 올리고뉴클레오티드를 선형화된 상기 pSECRVi(C4)에 조립하여 pSECRVi(C4C5) 플라스미드를 제작하였다.by assembling the pSECRVi (C4) to the pSECRVi (C4) was linearized with the Sap I then raised NEBuilder HiFi DNA Master Mix 2 Assembly of Multi (C5) -F and Multi (C5) -R using the linearized nucleotide pSECRVi ( C4C5) plasmid.

<1-3-6> <1-3-6> pSECRVipSECRVi (( C1LacZC1LacZ ) 플라스미드 제작) Plasmid production

NEBuilder HiFi DNA Assembly Master Mix를 사용하여, SapI-linearized pSECRVi(C1)과 2개의 Multi(LacZ)-F 및 Multi(LacZ)-R 올리고뉴클레오티드를 조립하여 pSECRVi(C1LacZ) 플라스미드를 제작하였다.The pSECRVi (C1LacZ) plasmid was constructed by assembling Sap I-linearized pSECRVi (C1) and two Multi (LacZ) -F and Multi (LacZ) -R oligonucleotides using NEBuilder HiFi DNA Assembly Master Mix.

<1-4> 리포터 균주(Reporter Strain) 제작<1-4> Production of reporter strain

리포터 카세트를 E. coli DH5α 염색체에 삽입시키기 위하여, 기질 균주 선택을 위한 클로람페니콜 내성 유전자를 포함하는 pREGFP3C(P2T1) 플라스미드를 제작하였다. To insert the reporter cassette into the E. coli DH5a chromosome, a pREGFP3C (P2T1) plasmid containing the chloramphenicol resistance gene for substrate selection was prepared.

구체적으로, 클로람페니콜 내성 카세트를 Cm-F 및 Cm-R 프라이머를 사용하여 pKD3/I-SceI 플라스미드로부터 증폭시켰다. 상기와 같이 증폭된 단편을 pREGFP3(P2T1)의 HindIII 위치의 절단에 의해 생성된 선형 단편에 깁슨 조립(Gibson assembly)을 통하여 삽입시켰다. 그 후, gfp 유전자 및 클로람페니콜 발현 카세트를 pREGFP3C(P2T1)로부터 Int-F 및 Int-R 프라이머를 사용하여 증폭시킨 다음, λ Red-mediated homologous recombination을 통하여 E. coli DH5α의 bglA 게놈 자리에 삽입시켰다.Specifically, the chloramphenicol resistant cassette was amplified from pKD3 / I-SceI plasmids using Cm-F and Cm-R primers. The amplified fragment was inserted into a linear fragment generated by cleavage of Hind III site of pREGFP3 (P2T1) through Gibson assembly. Then, the gfp gene and the chloramphenicol expression cassette were amplified from pREGFP3C (P2T1) using Int-F and Int-R primers and inserted into the bglA genomic site of E. coli DH5α through λ Red-mediated homologous recombination.

<1-5> <1-5> EeCpf1EeCpf1  And EedCpf1의EedCpf1's 정제 refine

Cpf1을 암호화하는 유전자(WP_012739647.1)를 E. eligens(ATCC 27750)의 게놈 DNA로부터 PCR로 증폭한 후, 변형된 pET-22b(+) 플라스미드에 연결시켜 C-말단에 6xHis-tag를 갖는 단백질을 생성시켰다. 상기와 같이 생성된 pET22b-EeCpf1 플라스미드를 E. coli BL21-CodonPlus(DE3)-RIL 균주(Agilent Technologies)로 형질전환시켰다. 형질 전환 세포를 암피실린을 포함하는 LB 배지에서 OD600=0.6이 되도록 배양한 다음, 1mM IPTG를 첨가하고, 18℃에서 20시간 동안 배양하였다. 세포를 원심분리(8000g, 30분)로 수집하고, lysis buffer(30mM Tris-HCl pH 7.5, 140mM NaCl, 5mM β-머캅토에탄올, 10% 글리세롤) 400㎖에 재현탁한 후, 얼음용기(ice bath) 안에서 초음파로 파쇄시켰다(VC-600 sonicator; Sonics & Materials, Newtown, CT). 상등액을 원심분리(10,000g, 30min, 4℃)를 통하여 정제한 후, HisTrap HP, Heparin HP 및 Superdex 200pg columns(GE Healthcare Life Sciences)을 사용하여, AKTA FPLC system(GE Healthcare Life Sciences, Chicago, IL) 및 elution buffer(30mM Tris-HCl pH 7.5, 100mM NaCl, 5mM β-머캅토에탄올, 10% 글리세롤)로 단백질을 정제하였다.The gene encoding Cpf1 (WP_012739647.1) was amplified by PCR from the genomic DNA of E. eligens (ATCC 27750) and ligated to the modified pET-22b (+) plasmid to generate a protein having a 6xHis-tag at the C- &Lt; / RTI &gt; The resulting pET22b-EeCpf1 plasmid was transformed into E. coli BL21-CodonPlus (DE3) -RIL strain (Agilent Technologies). The transformed cells were cultured in LB medium containing ampicillin to an OD 600 of 0.6, then 1 mM IPTG was added and cultured at 18 ° C for 20 hours. Cells were collected by centrifugation (8000 g, 30 min), resuspended in 400 mL of lysis buffer (30 mM Tris-HCl pH 7.5, 140 mM NaCl, 5 mM β-mercaptoethanol, 10% glycerol) (VC-600 sonicator, Sonics & Materials, Newtown, Conn.). The supernatant was purified through centrifugation (10,000 g, 30 min, 4 캜) and then purified on an AKTA FPLC system (GE Healthcare Life Sciences, Chicago, IL) using HisTrap HP, Heparin HP and Superdex 200 pg columns (GE Healthcare Life Sciences) ) And elution buffer (30 mM Tris-HCl pH 7.5, 100 mM NaCl, 5 mM? -Mercaptoethanol, 10% glycerol).

<1-6> In vitro DNA 절단 활성 분석<1-6> In vitro DNA cleavage activity assay

37-mer crRNA(UAAUUUCUACUUUGUAGAUAAGUUCUGCUAUGUGGCG, 서열번호 95)를 합성하였다(Integrated DNA Technologies). pUC19의 표적 dsDNA를 Enzynomics으로부터 구매하였다. 정제된 EeCpf1 또는 EedCpf1(160nM)과 상기 crRNA(7.6μM)를 MgSO4가 5mM 첨가된 reaction buffer(1x PBS)에서 5분 동안 37℃에서 방치하였다. 표적 dsDNA(10nM)의 첨가에 의해 반응이 개시된 후, 37℃에서 20분 동안 방치한 다음, 6x DNA 로딩 다이(Fermentas)를 첨가하여 퀀치(quench)한 후, 1% 아가로즈 젤에서 분석하였다.37-mer crRNA (UAAUUUCUACUUUGUAGAUAAGUUCUGCUAUGUGGCG, SEQ ID NO: 95) was synthesized (Integrated DNA Technologies). Target dsDNA of pUC19 was purchased from Enzynomics. Purified EeCpf1 or EedCpf1 (160 nM) and the above crRNA (7.6 μM) were left at 37 ° C. for 5 minutes in reaction buffer (1 × PBS) containing 5 mM MgSO 4 . After the reaction was initiated by the addition of the target dsDNA (10 nM), it was left at 37 ° C for 20 minutes and then quenched by addition of 6x DNA loading die (Fermentas) and analyzed on 1% agarose gel.

<1-7> 형광분석<1-7> Fluorescence analysis

리포터 플라스미드 및 CRISPRi 플라스미드를 보유하는 단일 E. coli 콜로니를 적절한 항생제가 함유된 LB 배지에 개별적으로 접종하고, 밤새 37℃, 200 rpm으로 배양하였다. 그 후, 배양액을 적절한 항생제가 첨가된 새로운 LB 배지로 희석(1:99)한 다음, pREGFP3 리포터 플라스미드에 대해서는 8시간 동안, pMEGFP 리포터 플라스미드 및 염색체 리포터 균주에 대해서는 12시간 동안 37℃ 및 200 rpm으로 배양하였다. EedCpf1 또는 SpdCas9 단백질 발현 유도를 위하여, 특별히 명시하지 않는 한 배양 배지에 1mM L-rhamnose를 추가하여 사용하였다. 배양 후, 세포를 phosphate-buffered saline으로 1회 세척한 후, 상기 buffer에 재현탁시켰다. 형광 및 OD600측정은 black-walled 96-well 폴리스티렌 플레이트(polystyrene plate)를 사용하여 Victor X multilabel plate reader(PerkinElmer, Waltham, MA)로 수행하였다.A single E. coli colony harboring the reporter plasmid and the CRISPRi plasmid was separately inoculated into LB medium containing the appropriate antibiotic and incubated overnight at 37 ° C and 200 rpm. The culture was then diluted (1:99) with fresh LB medium supplemented with the appropriate antibiotics, followed by 8 hours for the pREGFP3 reporter plasmid, 12 hours for the pMEGFP reporter plasmid and chromosome reporter strain at 37 ° C and 200 rpm Lt; / RTI &gt; For the induction of EedCpf1 or SpdCas9 protein expression, 1 mM L-rhamnose was added to the culture medium unless otherwise specified. After incubation, cells were washed once with phosphate-buffered saline and resuspended in the buffer. Fluorescence and OD 600 measurements were performed on a Victor X multilabel plate reader (PerkinElmer, Waltham, Mass.) Using a black-walled 96-well polystyrene plate.

단일 세포 형광 분석은 FACSCalibur(BD Bioscience, Franklin Lakes, NJ)를 사용하여 수행하였다. 형광의 시간경과 모니터링을 위하여, pREGFP3(P2T1) 및 pSECRVi(C1)를 보유하는 세 개의 단일 E. coli 콜로니를 적합한 항생제 및 1mM L-rhamnose를 함유하는 LB 배지에 접종한 후, 37℃에서 200 rpm으로 밤새 배양하였다. 그 후, 배양액을 적절한 항생제와 다양한 농도의 L-rhamnose가 포함된 새로운 LB 배지로 희석하여(1:99) black-walled 96-well 폴리스티렌 플레이트에 넣었다. 세포 성장 및 형광은 Infinite 200 PRO microplate reader(Tecan, Mannedorf, Switzerland)를 사용하여 측정하였다.Single cell fluorescence assays were performed using FACSCalibur (BD Bioscience, Franklin Lakes, NJ). For the time course of fluorescence, three single E. coli colonies carrying pREGFP3 (P2T1) and pSECRVi (C1) were inoculated into LB medium containing the appropriate antibiotic and 1 mM L-rhamnose, Lt; / RTI &gt; overnight. The culture was then diluted (1:99) into a black-walled 96-well polystyrene plate with fresh LB medium containing appropriate antibiotics and various concentrations of L-rhamnose. Cell growth and fluorescence were measured using an Infinite 200 PRO microplate reader (Tecan, Mannedorf, Switzerland).

실시예Example 2. deactivated- 2. Deactivated- EedCpf1(EedCpf1)의EedCpf1 (EedCpf1) 제조 Produce

유전자 발현 조절을 위한 dCpf1-기반 CRISPRi 시스템의 타당성을 연구하기 위하여, 먼저, wild-type(WT) EeCpf1에서 DNase 활성과 관련된 핵심 아미노산에 돌연변이를 도입함으로써 불활성화된(deactivated) EedCpf1(EedCpf1)을 제조하였다.To study the validity of the dCpf1-based CRISPRi system for gene expression regulation, we first deactivated EedCpf1 (EedCpf1) by introducing a mutation in the core amino acid related to DNase activity in wild-type (WT) EeCpf1 Respectively.

구체적으로, Cpf1 단백질은 Cas9과 유사한 RuvC-유사 엔도뉴클레아제 도메인(RuvC-like endonuclease domain)을 갖고, 적어도 3개의 필수 촉매 잔기(D917, E1006 및 D1255)를 포함하므로, FnCpf1 및 EeCpf1의 아미노산 서열 정렬(alignment)에 기초하여, EedCpf1을 생성하기 위해 EeCpf1에서 3개의 필수 촉매 잔기(D880, E965 및 D1233) 중 하나인 880번 아스파르트산을 알라닌으로 치환시켜 돌연변이를 생성하였다. Specifically, the Cpf1 protein has a RuvC-like endonuclease domain similar to Cas9 and contains at least three essential catalytic residues (D917, E1006 and D1255), so that the amino acid sequence of FnCpf1 and EeCpf1 Based on the alignment, one of three essential catalytic residues (D880, E965 and D1233) in EeCpf1 was replaced with alanine at position 880 to generate EedCpf1, generating mutations.

그 결과, D880A 돌연변이에 의하여 EeCpf1의 DNA 절단 활성은 완전히 상실되었다. WT EeCpf1은 Mn2 +존재하에 초나선(supercoiled) 표적 DNA를 crRNA 의존적으로 절단할 수 있었던 반면, EedCpf1은 EeCpf1의 RuvC-유사 도메인이 표적 DNA의 두 가닥을 절단하는 것과 같은 핵산 분해 활성을 나타내지 않았다(도 5).As a result, DNA cleavage activity of EeCpf1 was completely lost by the D880A mutation. WT EeCpf1 was able to cleave the supercoiled target DNA in a crRNA-dependent manner in the presence of Mn 2 + , whereas EedCpf1 did not show a nucleic acid degrading activity such as that the RuvC-like domain of EeCpf1 cleaves two strands of the target DNA (Fig. 5).

즉, 상기 결과를 통하여, SpCas9과는 달리, RuvC 또는 HNH 도메인의 불활성화에 의해 DNA 이중 가닥을 절단하는 능력이 상실됨을 확인하였다.That is, through the above results, it was confirmed that, unlike SpCas9, the ability to cleave DNA double strand was lost by inactivation of RuvC or HNH domain.

실시예Example 3. pre- 3. pre- crRNAcrRNA 가공의 필수  Required processing 잔기Residue 확인 Confirm

FnCpf1은 DNA 핵산 분해 활성과는 독립적인 기능으로써, pre-crRNA를 crRNA로 가공하며, pre-crRNA의 가공에 있어서 4개 잔기(H843, K852, K869 및 F873)가 필수적이므로, FnCpf1 및 EeCpf1의 아미노산 서열 정렬(alignment)에 기초하여 EeCpf1의 대응잔기를 확인하였다.Since FnCpf1 is a function independent of the DNA nucleolytic activity, the pre-crRNA is processed into crRNA and four residues (H843, K852, K869 and F873) are required in the processing of pre-crRNA, so the amino acids of FnCpf1 and EeCpf1 The corresponding residues of EeCpf1 were identified based on sequence alignment.

그 결과, pre-crRNA의 가공에 있어서, EeCpf1의 필수적인 잔기는 각각 H765, K774, K833 및 Y837에 해당함을 확인하였다(도 5). As a result, it was confirmed that, in the processing of pre-crRNA, essential residues of EeCpf1 correspond to H765, K774, K833 and Y837, respectively (FIG. 5).

실시예Example 4. 유전자  4. Genes 억제에 있어서In suppression , , EedCpf1EedCpf1 3'-말단 334-bp 서열의 영향 여부 Effect of 3'-terminal 334-bp sequence

<4-1> 3'-반복서열이 결실된 &Lt; 4-1 > crRNA(T1)의of the crRNA (T1) 합성 및 억제효율 비교 방법 Comparison of synthesis and inhibition efficiency

crRNAR(T1)의 스페이서 3'-말단에 존재하는 여분의 334-bp 서열이 억제 효율에 미치는 영향을 조사하기 위하여, crRNAR(T1)의 3'-반복서열(repeat sequence)이 결실된 crRNA(T1)을 합성하였다(도 3). In order to investigate the effect of the extra 334-bp sequence at the 3'-terminal of the spacer of crRNAR (T1) on the inhibitory efficiency, a 3'-repeat sequence of crRNAR (T1) ) Were synthesized (Fig. 3).

또한, E. coli DH5α에서 SpdCas9 및 EedCpf1의 CRISPRi 효율을 비교하였으며, 이를 위하여, pSECRi 플라스미드(도 6)를 사용하였고, constitutive BioBrick J23100 프로모터와 gfp 유전자 사이의 비주형 가닥상에 스페이서와 상보적인 20-nt 서열(5'-GCGTTGTGCCGATTCTGGTG-3', 서열번호 96)과 PAM 서열(5'-CCG-3' for SpdCas9; 5'-GAAAA-3' for EedCpf1)이 삽입된 리포터 플라스미드인 pREGFP3(NT1)을 사용하였다(도 7). In addition, the CRISPRi efficiencies of SpdCas9 and EedCpf1 in E. coli DH5α were compared using the pSECRi plasmid (Fig. 6), and the 20-fold mutation of the spacer, on the non-template strand between the constitutive BioBrick J23100 promoter and the gfp gene, (NT1), which is a reporter plasmid in which the nucleotide sequence (5'-GCGTTGTGCCGATTCTGGTG-3 ', SEQ ID NO: 96) and the PAM sequence (5'-CCG-3' for SpdCas9; 5'- GAAAA- 3 'for EedCpf1) (Fig. 7).

<4-2> <4-2> SpdCas9SpdCas9  And EedCpf1에On EedCpf1 의한 발현율 계산 방법 Calculation method

SpdCas9(pSECRi 유래) 및 EedCpf1(pSECRVi 유래)의 발현은 1mM L-rhamnose에 의해 유도되었다.Expression of SpdCas9 (derived from pSECRi) and EedCpf1 (derived from pSECRVi) was induced by 1 mM L-rhamnose.

발현율은 하기의 수학식 1에 의해 계산되었다.The expression rate was calculated by the following equation (1).

Figure 112017092872819-pat00001
Figure 112017092872819-pat00001

상기 수학식에서, RFU 및 OD는 각각 600nm에서의 상대적인 형광단위 및 광학밀도이고, 아래 첨자 xv는 pSECRi 또는 pSECRVi 플라스미드(L-rhamnose의 존재하에 있음)를 보유하고 있는 시험된 세포를 나타내며, null은 빈 벡터(empty-vector) 대조군(L-rhamnose의 존재하에서)을 나타낸다. 주로 two-tailed t-tests를 통하여 평균 발현수준을 비교하였다.In the above equation, RFU and OD are the relative fluorescence units and optical density at 600 nm, respectively, and the subscript xv represents the tested cell carrying the pSECRi or pSECRVi plasmid (in the presence of L-rhamnose) Vector (empty-vector) control (in the presence of L-rhamnose). The mean expression levels were compared mainly through two-tailed t-tests.

<4-3> <4-3> 비주형Non-mold 가닥에서,  On the strand, EedCpf1의EedCpf1's 유전자 발현 억제효과 여부 확인 Confirmation of gene expression inhibition effect

결합 서열을 비주형 가닥에 배치한 pREGFP3(NT1)를 사용하여, SpdCas9 및 EedCpf1의 유전자 발현 억제효과를 상기 실시예 <4-2>의 방법으로 측정하였다.The effect of suppressing gene expression of SpdCas9 and EedCpf1 was measured by the method of Example < 4-2 > using pREGFP3 (NT1) in which the binding sequence was arranged on a non-template strand.

그 결과, CRISPR-SpdCas9는 pREGFP3(NT1)에서 대조군 대비 약 2.8%까지 gfp 발현을 억제하였으며(도 8), 이는 이전에 보고된 SpdCas9-mediated CRISPRi의 효율과 유사한 것임을 확인하였다.As a result, CRISPR-SpdCas9 inhibited the expression of gfp from pREGFP3 (NT1) to about 2.8% of the control (Fig. 8), confirming that this was similar to that of the previously reported SpdCas9-mediated CRISPRi.

한편, CRISPR-EedCpf1은 유의적인 억제효과를 나타내지 않았다(약 80%의 gfp 발현). On the other hand, CRISPR-EedCpf1 showed no significant inhibitory effect (about 80% of gfp expression).

<4-4> 주형 가닥에서, <4-4> In the mold strand, EedCpf1의EedCpf1's 유전자 발현 억제효과 확인 Confirming gene expression inhibitory effect

주형 가닥에서, EedCpf1의 유전자 발현 억제효과를 확인하기 위하여, pREGFP3(NT1)에서 CRISPRi 결합 서열을 주형 가닥에 재배치한 리포터 플라스미드인 pREGFP3(T1)을 제조하여(도 9) 억제효율을 상기 실시예 <4-2>의 방법으로 측정하였다. In order to confirm the effect of suppressing the gene expression of EedCpf1 in the template strand, a reporter plasmid pREGFP3 (T1), in which the CRISPRi binding sequence was relocated to the template strand in pREGFP3 (NT1) (FIG. 9) 4-2>.

그 결과, 주형 가닥을 표적으로 할 때, CRISPR-EedCpf1은 GFP의 발현을 13.3%로 감소시켰으며, 비주형 가닥 표적화(73.4%)에서 관찰된 것보다 억제효율이 향상되었음을 확인하였다(도 10). 이러한 억제효율은 주형 가닥을 표적화한 SpdCas9(13.8%)에 의한 것과 유사하였다.As a result, CRISPR-EedCpf1 reduced expression of GFP to 13.3% when targeting the template strand and confirmed that the inhibition efficiency was improved than that observed in non-template targeting (73.4%) (Figure 10) . This inhibition efficiency was similar to that of SpdCas9 (13.8%) which targeted the template strand.

한편, SpdCas9이 5'-UTR에서 비주형 가닥을 표적화할 때, 가장 높은 억제효율(2.4%)을 나타냈는데, 카세트 crRNA(T1) 및 crRNAR(T1)에서 이와 유사한 억제 효율이 나타남을 확인하였다(각각 crRNA(T1) 및 crRNAR(T1)에서 13.3% 및 14%)(도 10). On the other hand, when SpdCas9 targeted non-dominant strands in the 5'-UTR, it showed the highest inhibitory efficiency (2.4%), with similar inhibitory efficiencies in cassette crRNA (T1) and crRNAR (T1) 13.3% and 14% for crRNA (T1) and crRNAR (T1), respectively (FIG. 10).

즉, 상기 결과를 통하여, EedCpf1의 3'-말단의 334-bp 서열은 억제 효율에 영항을 미치지 않기 때문에, 다른 RNA-binding 단백질과 결합(recruit)할 수 있는 서열을 스페이서 3'-말단에 융합하여 새로운 기능을 부여한 신규 키메라 crRNAs를 제조하는 것이 가능함을 확인하였다.That is, through the above results, since the 334-bp sequence at the 3'-end of EedCpf1 does not affect the inhibition efficiency, a sequence capable of recycling with other RNA-binding proteins is fused to the 3'- It is possible to produce novel chimeric crRNAs to which a novel function has been imparted.

실시예5Example 5 . . CRISPRCRISPR -- EedCpf1에On EedCpf1 대한  About 스페이서의Spacer 유효길이 확인 Check valid length

Cpf1 패밀리 단백질에 대한 WT 스페이서는 25-nt이므로, CRISPR-EedCpf1을 통한 유전자 억제에 있어서 유효한 스페이서의 길이를 조사하였다.Since the WT spacer for the Cpf1 family protein is 25-nt, the length of the spacer effective for gene suppression through CRISPR-EedCpf1 was investigated.

그 결과, 20-nt 내지 25-nt 길이의 스페이서는 현저한 효율의 차이가 나타나지는 않았으나, 20-nt보다 짧은 스페이서에서는 효율의 감소가 나타나기 시작하였다(도 11). As a result, the spacers having a length of 20-nt to 25-nt did not exhibit a significant difference in efficiency, but a decrease in efficiency began to appear in spacers shorter than 20-nt (Fig. 11).

즉, CRISPR-EedCpf1에 대한 스페이서의 유효길이는 SpdCas9의 스페이서의 길이(최소 16-nt 내지 17-nt)와 유사하며, 상기 결과를 통하여, CRISPR-EedCpf1이 유전자 발현 조절을 위한 매우 특이적인 도구로서 사용될 수 있음을 확인하였다.That is, the effective length of the spacer for CRISPR-EedCpf1 is similar to the length of the spacer (at least 16-nt to 17-nt) of SpdCas9 and, as a result, CRISPR-EedCpf1 is a very specific tool for gene expression regulation Can be used.

또한, Type IIS 제한 효소를 사용한 oligonucleotide-mediated ligation 클로닝 방법을 사용시 3'-반복서열이 결실된 스페이서 서열이 3'-반복서열을 갖는 스페이서 서열을 클로닝하는 것보다 비용이 저렴하므로, 후속 실시예에서는 전자의 방법을 사용하였다(도 12). In addition, in the case of using the oligonucleotide-mediated ligation cloning method using Type IIS restriction enzyme, since the spacer sequence in which the 3'-repeat sequence is deleted is less expensive than the spacer sequence in which the 3'-repeat sequence is cloned, The former method was used (Fig. 12).

실시예Example 6.  6. EedCpf1의EedCpf1's 유전자 발현 억제 및 위치 경향성 Gene Expression Suppression and Locational Tendency

<6-1> <6-1> EedCpf1EedCpf1 -- crRNAcrRNA 복합체의 결합 효율 및 위치 경향성 확인 Confirmation of binding efficiency and positional tendency of composite

유전자의 다양한 위치에 crRNA(T1) 결합 사이트를 삽입하여 유전자 발현의 억제에 대한 EedCpf1-crRNA 복합체의 결합 효율 및 위치 경향성(bias)을 조사하였다. Binding efficiency and positional biases of EedCpf1-crRNA complexes for inhibition of gene expression were examined by inserting a crRNA (T1) binding site at various positions of the gene.

구체적으로, enhanced GFP가 융합된 C-말단을 갖는 maltose-binding protein(MBP-EGFP)을 포함하는 리포터 플라스미드를 이용하였다. 즉, MBP-EGFP의 다양한 암호화 영역(different coding regions)에 주형(T1)(도 13) 또는 비주형(NT1) DNA 가닥(도 14) 중 어느 하나에 crRNA(T1)가 결합하도록 여섯 개의 추가 리포터 플라스미드를 제작하였다. MBP-EGFP 융합 단백질의 3개의 상이한 코돈(메티오닌 1(M1), 알라닌 206(A206) 및 아스파라긴 372(N372)) 뒤에, crRNA(T1) 결합 사이트인, 20-bp(5'-CACCAGAATCGGCACAACGC-3', 서열번호 97) 서열이 5'-ATTTTC-3'(for EedCpf1) 및 5'-CGGT-3'(for SpdCas9)의 사이에 위치하도록 구성되는 in-frame 30-bp 서열을 삽입하였다. Specifically, reporter plasmids containing maltose-binding protein (MBP-EGFP) with C-terminal fused enhanced GFP were used. That is, six additional reporters were added to the different coding regions of MBP-EGFP so that crRNA (T1) was bound to either template (T1) (Figure 13) or non-template (NTl) DNA strand (Figure 14) To prepare a plasmid. Bp (5'-CACCAGAATCGGCACAACGC-3 '), which is a crRNA (T1) binding site, is followed by three different codons of the MBP-EGFP fusion protein (methionine 1 (M1), alanine 206 (A206) and asparagine 372 (N372) , SEQ ID NO: 97) was inserted between the 5'-ATTTTC-3 '(for EedCpf1) and the 5'-CGGT-3' (for SpdCas9).

그 결과, 모든 경우(M1, A206 및 N372)에서, 5'-UTR(도 10)을 표적으로 한 실시예 <4-4>의 결과와 동일하게, EedCpf1-crRNA에 의한 MBP-EGFP 발현의 억제는 비주형 가닥을 표적으로 할 때보다 주형 가닥을 표적으로 할 때 더욱 효과적이었다(도 15). 이는 Type II CRISPR dCas9의 비주형 경향성과 상반된다(도 16). As a result, inhibition of MBP-EGFP expression by EedCpf1-crRNA was observed in all cases (M1, A206 and N372) in the same manner as in Example <4-4> targeting 5'-UTR Was more effective when targeting template strands than when targeting non-template strands (Figure 15). This is in contrast to the non-dominant tendency of Type II CRISPR dCas9 (Figure 16).

즉, 상기 결과를 통하여, 5'-UTR 및 암호화 영역을 표적으로 하여 유전자의 발현을 억제할 수 있으며, EedCpf1의 주형 가닥에 대한 일관된 경향성을 확인하였다.That is, through the above results, the expression of the gene can be inhibited by targeting the 5'-UTR and the coding region, and the consistent tendency of the template strand of EedCpf1 was confirmed.

<6-2> <6-2> 유전자 상에서Gene EedCpf1EedCpf1 -- crRNAcrRNA 복합체의 결합 위치에 따른 유전자 발현 억제 효율 확인 Confirmation of gene expression inhibition efficiency according to binding site of complex

유전자의 다양한 위치에 crRNA(T1) 결합 사이트를 삽입하여, EedCpf1-crRNA 복합체의 결합 위치에 따른 유전자 발현 억제 효율을 측정하였다.The effect of inhibiting gene expression by binding sites of EedCpf1-crRNA complex was measured by inserting a crRNA (T1) binding site at various positions of the gene.

그 결과, 결합 위치가 MBP-EGFP의 전사 시작 사이트에서 더 멀어지면 주형 가닥을 표적으로 하는 EedCpf1-crRNA의 억제 효율은 약간 감소하였다(도 15). pMEGFP(NT1) 플라스미드에 의해 암호화된 MBP-EGFP의 발현은 극히 낮았기 때문에 실험에서 제외하였다. As a result, when the binding site further moved away from the transcription start site of MBP-EGFP, the inhibitory efficiency of the EedCpf1-crRNA targeting the template strand was slightly reduced (Fig. 15). Expression of MBP-EGFP encoded by the pMEGFP (NT1) plasmid was extremely low and therefore excluded from the experiment.

즉, 상기 결과를 통하여, Type V-A CRISPR-EedCpf1이 5'-UTR 또는 CDS에 결합함으로써 RNAP의 전사 신장 활성을 잠재적으로 차단할 수 있음을 확인하였다.That is, through the above results, it was confirmed that Type V-A CRISPR-EedCpf1 could bind to 5'-UTR or CDS to potentially block the transcriptional elongation activity of RNAP.

실시예Example 7.  7. EedCpf1에On EedCpf1 대한 PAM 서열 확인 Identification of PAM sequence

EedCpf1에 의해 우선적으로 사용되는 PAM 서열에 대한 확인은 인공 억제제(artificial repressor)의 다양한 적용을 가능하게 하는 스페이서의 설계에 필수적이다. 다양한 Cpf1 패밀리 단백질은 티미딘이 풍부한 PAM 서열을 인식하나, EeCpf1에 대한 PAM 서열은 아직 밝혀지지 않았다. Confirmation of the PAM sequence, which is preferentially used by EedCpf1, is essential for the design of the spacer to enable various applications of the artificial repressor. The various Cpf1 family proteins recognize a thymidine-rich PAM sequence, but the PAM sequence for EeCpf1 is not yet known.

따라서, EedCpf1에 대한 PAM 서열을 확인하기 위하여, pREGFP3(T1)의 프로토스페이서의 상류에 위치하는 5'-TTTTC-3' PAM 서열을 변형시켜 3종의 PAM, 5'-CTTTC-3', 5'-CCTTC-3' 및 5'-CCCTC-3'를 디자인 및 합성하였다. Therefore, in order to confirm the PAM sequence for EedCpf1, the 5'-TTTTC-3 'PAM sequence located upstream of the prototype spacer of pREGFP3 (T1) was modified to give three kinds of PAM, 5'-CTTTC-3' '-CCTTC-3' and 5'-CCCTC-3 'were designed and synthesized.

그 결과, 도 17에 나타낸 바와 같이, 5'-CTTTC-3'(15.5%) PAM은 5'-TTTTC-3' PAM(11.4%)에 의해 유도된 것과 유사한 수준으로 gfp 발현을 억제하였으나, 5'-CCTTC-3'(66.1%) 및 5'-CCCTC-3'(88.3%) PAM 서열에 대한 전사 억제 활성은 낮았다. As a result, as shown in FIG. 17, 5'-CTTTC-3 '(15.5%) PAM inhibited gfp expression at a level similar to that induced by 5'-TTTTC-3' PAM (11.4% The transcriptional repressor activity of the '-CCTTC-3' (66.1%) and 5'-CCCTC-3 '(88.3%) PAM sequences was low.

즉, 상기 결과를 통하여, 최소 3개의 티미딘 뉴클레오티드가 EedCpf1-CRISPRi 시스템에 의한 유전자 전사의 효율적인 억제에 필요하다는 것을 확인하였다. That is, it was confirmed from the above results that at least three thymidine nucleotides are necessary for efficient suppression of gene transcription by the EedCpf1-CRISPRi system.

한편, 추가로 디자인된 5'-NTTTC-3', 5'-CNTTC-3' 및 5'-CTTTN-3' PAM 서열(N: 임의의 뉴클레오티드)을 사용하여 EedCpf1 PAM 서열의 특징을 확인하였다.On the other hand, the features of the EedCpf1 PAM sequence were confirmed using the further designed 5'-NTTTC-3 ', 5'-CNTTC-3' and 5'-CTTTN-3 'PAM sequences (N: any nucleotide).

그 결과, 5'-CTTTC-3'을 제외하고는 5'-CNTTC-3' PAM 서열의 전사 억제 활성은 낮았으며, 3개의 티미딘 뉴클레오티드를 포함해야 함을 확인하였다(도 18). As a result, it was confirmed that the 5'-CNTTC-3 'PAM sequence had a low transcriptional repression inhibitory activity except for 5'-CTTTC-3' and contained 3 nucleotides of the thymidine nucleotide (FIG. 18).

또한, 모든 5'-NTTTC-3' PAM 서열은 20% 미만의 잔류 gfp 발현으로 높은 억제 효율을 나타내었으나(도 19), 5'-CTTTT-3'은 다른 5'-CTTTN-3' PAM 서열보다는 낮은 억제 활성(40.9%)을 보였다(도 20). In addition, all of the 5'-NTTTC-3 'PAM sequences showed high inhibition efficiency due to the expression of residual gfp of less than 20% (Figure 19), but 5'-CTTTT-3' (40.9%) (Fig. 20).

즉, 상기 결과를 통하여, 5'-TTTV-3'(V = A, G 또는 C) PAM 서열이 EedCpf1-CRISPRi에 의해 선호된다는 것을 확인하였다. That is, it was confirmed from the above results that the 5'-TTTV-3 '(V = A, G or C) PAM sequence was favored by EedCpf1-CRISPRi.

실시예Example 8. 표적 부위에 따른 억제효율 비교 8. Comparison of inhibition efficiency by target site

multimeric CRISPRi 시스템이 프로모터 영역을 우선적으로 표적화하기 때문에, promoter, 5'-UTR 및 CDS를 표적으로 하는 EedCpf1-CRISPRi의 억제 효율을 비교하였다. Since the multimeric CRISPRi system preferentially targets the promoter region, the inhibitory efficiency of EedCpf1-CRISPRi targeting the promoter, 5'-UTR and CDS was compared.

구체적으로, 5'-UTR(T1)을 표적화하는 미리 디자인한 pSECRVi 플라스미드(도 21) 외에도, BioBrick J23100 프로모터(P1 and P2) 및 gfp CDS(주형 가닥을 표적화하는 C1, C3, C4, C5 및 비주형 가닥을 표적화하는 C2, C6, C7, C8)를 표적화하기 위한 10개의 pSECRVi 플라스미드를 single-stranded DNA oligonucleotide-mediated DNA assembly method(도 12)에 의해 제조하였다. Specifically, in addition to the pre-designed pSECRVi plasmid (Figure 21) targeting 5'-UTR (T1), the BioBrick J23100 promoter (P1 and P2) and gfp CDS (C1, C3, C4, Ten pSECRVi plasmids for targeting C2, C6, C7, and C8 targeting template strands were prepared by the single-stranded DNA oligonucleotide-mediated DNA assembly method (Figure 12).

그 결과, 주형 가닥을 표적으로 하는 모든 EedCpf1의 상기 구성 요소는 pREGFP3(P2T1)에서 gfp 발현을 효과적으로 억제하였다(도 22). 프로모터 영역을 표적화하는 비주형 가닥 또한 Type I CRISPR로부터 유도된 multimeric CRISPRi 시스템과 동등한 수준의 전사 개시(P2: 7.6%) 억제 효과를 나타내었다. As a result, all of the constituents of EedCpf1 targeting template strands effectively inhibited gfp expression in pREGFP3 (P2T1) (Fig. 22). The non-haplotype strand targeting the promoter region also exhibited a transcriptional initiation (P2: 7.6%) inhibitory effect equivalent to that of the multimeric CRISPRi system derived from Type I CRISPR.

또한, gfp CDS의 비주형 가닥을 표적화하는 EedCpf1은 발현을 거의 억제하지 않았으며(C2: 98.2%; C6: 96.5%; C7: 98.1%; C8: 92.9%), gfp 발현의 억제는 프로모터로부터 결합 부위의 거리가 증가함에 따라 약간 감소되었다(C1, 리보솜 결합 부위 및 ATG 개시 코돈을 포함함: 9.3% 발현; C3, 시작 코돈으로부터 138bp 하류: 12.2% 발현; C4, 개시 코돈으로부터 295bp 하류: 21.3% 발현; C5, 618bp 출발 코돈으로부터 하류, 18% 발현).In addition, EedCpf1, which targets the non-dominant strand of gfp CDS, did not substantially inhibit expression (C2: 98.2%; C6: 96.5%; C7: 98.1%; C8: 92.9%); inhibition of gfp expression (C1, ribosome binding site and ATG initiation codon expression: 9.3% expression; C3, 138bp downstream: 12.2% expression; C4, 295bp downstream from initiation codon: 21.3% Expression; downstream from the C5, 618 bp start codon, 18% expression).

즉, 상기 결과를 통하여, 프로모터 영역에서 5'-TTTV-3' PAM 서열의 발생 빈도가 낮아 프로모터를 식별하는 것이 어렵다는 점을 고려할 때, EedCpf1-mediated CRISPRi의 표적 서열은 CDS의 번역 개시 사이트 중심부에 가까운 주형 가닥을 표적화하도록 디자인되어야 함을 확인하였다.That is, considering that the frequency of 5'-TTTV-3 'PAM sequences in the promoter region is low and it is difficult to identify the promoter, the target sequence of EedCpf1-mediated CRISPRi is located at the center of translation initiation site of CDS It should be designed to target the nearest mold strand.

실시예Example 9. L- 9. L- rhamnose에on rhamnose 의한  by EedCpf1의EedCpf1's 유전자 발현 조절  Gene expression regulation

L-rhamnose 유도제(inducer)에 의한 EedCpf1 조절 유전자 발현의 조절 가능성을 조사하였다. The possibility of controlling the expression of EedCpf1 regulatory gene by L-rhamnose inducer was investigated.

구체적으로, gfp CDS에서 C1을 표적으로하는 리포터 플라스미드 pREGFP3(P2T1) 및 pSECRVi(C1) 플라스미드를 보유하는 E. coli 세포를 1mM L-rhamnose를 함유하는 Luria-Bertani(LB) 배지에서 배양하여 EedCpf1 발현을 유도한 후, 예비 유도된 세포를 다양한 L-rhamnose 농도(0~1000μM)를 함유하는 LB 배지에 희석시켰다(1:99). EedCpf1 유전자 전사의 orthogonal 조절을 위해 RhaS 및 RhaR 조절자와 함께 L-rhamnose-유도성 프로모터를 사용하였는데, 상기 L-rhamnose-유도성 프로모터는 이종 유전자의 균일(homogeneous) 및 rheostatic 전사 조절이 가능하며, L-rhamnose가 없는 경우 발현되지 않는다.Specifically, E. coli cells harboring reporter plasmids pREGFP3 (P2T1) and pSECRVi (C1) plasmids targeting C1 in gfp CDS were cultured in Luria-Bertani (LB) medium containing 1 mM L-rhamnose to express EedCpf1 , Pre-induced cells were diluted (1: 99) in LB medium containing various concentrations of L-rhamnose (0-1000 μM). An L-rhamnose-inducible promoter was used in conjunction with RhaS and RhaR regulators for orthogonal control of EedCpf1 gene transcription. The L-rhamnose-inducible promoter is capable of homogeneous and rheostatic transcriptional control of the heterologous gene, It is not expressed in the absence of L-rhamnose.

그 결과, 200분의 배양 후, 세포 형광은 최종 L- rhamnose 농도에 반비례하였다(도 23). 실험 종료시(750분 후), L-rhamnose를 처리하지 않은 세포 대비 gfp 발현 수준(대장균에 의해 생성된 형광의 양상)은 15%(1000μM L-rhamnose), 37%(250μM L-rhamnose), 66%(64μM L-rhamnose), 91%(16μM L-rhamnose), 99%(4μM L-rhamnose)로 측정되었다.As a result, after 200 minutes of culture, cell fluorescence was inversely proportional to the final L-rhamnose concentration (Fig. 23). At the end of the experiment (after 750 min), the level of gfp expression (the fluorescence pattern produced by E. coli) was 15% (1000 μM L-rhamnose), 37% (250 μM L-rhamnose) % (64 μM L-rhamnose), 91% (16 μM L-rhamnose), and 99% (4 μM L-rhamnose).

이는 더 높은 농도의 L-rhamnose가 gfp 발현의 더 강한 억제를 초래한다는 것을 의미하며, 상기 조건에서의 세포 성장은 사실상 동일하였다(도 24). This meant that higher concentrations of L-rhamnose resulted in stronger inhibition of gfp expression, and cell growth under these conditions was virtually identical (Figure 24).

즉, 상기 결과를 통하여, EedCpf1이 필수 또는 독성 유전자를 표적화하여 세포 성장 또는 대사 산물 수확량을 제어할 수 있도록 광범위한 범위의 유전자 발현을 조정하는데 사용될 수 있음을 확인하였다.That is, the above results confirm that EedCpf1 can be used to regulate a wide range of gene expression so that essential or toxic genes can be targeted to control cell growth or metabolic yield.

실시예Example 10. 다중 유전자 발현 조절 가능성 확인 10. Identification of the possibility of regulating multiple gene expression

<10-1> 염색체 유전자의 발현 억제효율 및 가닥 경향성 확인<10-1> Confirmation of chromosome gene expression inhibition efficiency and strand tendency

EedCpf1-mediated CRISPRi 시스템이 염색체에 삽입된 리포터 유전자의 발현을 조절하는 능력을 평가하였다. The EedCpf1-mediated CRISPRi system was evaluated for its ability to regulate the expression of the reporter gene inserted into the chromosome.

구체적으로, 클로람페니콜 내성 유전자를 리포터 카세트인 pREGFP3(P2T1)에 도입하여 리포터 균주를 선택할 수 있도록 하였고, 리포터 카세트를 λ Red-mediated 상동성 재조합을 사용하여 E. coli DH5α의 염색체에 있는 bglA 유전자에 삽입하였다.Specifically, the reporter cassette was introduced into the reporter cassette pREGFP3 (P2T1) so that the reporter cassette could be selected, and the reporter cassette was introduced into E. coli using λ Red-mediated homologous recombination And inserted into the bglA gene on the chromosome of DH5α.

그 결과, 에피소말(episomal) 플라스미드 리포터를 사용하여 얻은 결과와 유사하게, gfp 유전자의 프로모터 부위에 대한 EedCpf1-crRNA 복합체의 표적화는 결합 DNA 가닥과 무관하게 유전자를 효율적으로 억제하였다(P1: 3.2%, P2: 4.3%)(도 25, 우측). 또한, gfp CDS의 주형 가닥이 표적화 될 때, C1 결합 부위는 가장 높은 gfp 억제를 나타냈으며(2.0% 발현), 번역 시작 부위(C3: 6.7%, C4: 16.5%, C5: 23%)로부터 거리가 멀어짐에 따라 억제 효율은 점차적으로 감소하였는데, 이는 상기 실시예 <6-2>의 MBP-EGFP 융합 단백질을 사용하여 얻은 결과와 유사함을 확인하였다. gfp CDS를 표적으로 한 비주형 가닥은 거의 억제되지 않았다(C2: 93.7%). As a result, targeting of the EedCpf1-crRNA complex to the promoter region of the gfp gene efficiently inhibited the gene regardless of the binding DNA strand, similar to the results obtained using an episomal plasmid reporter (P1: 3.2% , P2: 4.3%) (Fig. 25, right). In addition, when the template strand of gfp CDS was targeted, the C1 binding site exhibited the highest gfp inhibition (2.0% expression) and the distance from the translation initiation site (C3: 6.7%, C4: 16.5%, C5: 23% As a result, the inhibitory efficiency was gradually decreased, confirming that the result was similar to that obtained using the MBP-EGFP fusion protein of Example <6-2>. Gfp CDS-targeted nonspecific strand was hardly inhibited (C2: 93.7%).

또한, 상기 실시예 <1-7>의 단일 세포 형광 분석 결과, EedCpf1-CRISPRi를 이용한 유전자 억제가 all-or-none expression phenotype없이 균질한 단일세포 집단을 생성함을 확인하였다(도 25, 좌측). Single-cell fluorescence analysis of Example <1-7> also confirmed that gene suppression using EedCpf1-CRISPRi produced a homogeneous single cell population without an all-or-none expression phenotype (Fig. 25, left) .

<10-2> <10-2> crRNA(C4C5)에To the crRNA (C4C5) 의한 다중 발현 억제 효과 확인 Confirming the effect of suppressing multiple expression by

C4 및 C5 결합 부위의 낮은 억제 효율을 고려하여, 새롭게 설계된 crRNA(C4C5)(도 26)에 의한 다중 억제를 시험한 결과, C4 또는 C5의 단일 사이트 표적화보다 더 효과적임을 확인하였다(도 27). 즉, 상기 결과를 통하여, 다중 억제 접근법에서 EedCpf1의 적용 가능성을 확인하였다. Multiple inhibition by the newly designed crRNA (C4C5) (Fig. 26) was tested, taking into account the low inhibition efficiency of C4 and C5 binding sites, and was found to be more effective than single site targeting of C4 or C5 (Fig. 27). That is, through the above results, applicability of EedCpf1 was confirmed in the multiple suppression approach.

<10-3> <10-3> lacZlacZ And gfpgfp on 대한  About EedCpf1의EedCpf1's 다중 억제 효과 확인Identify multiple inhibitory effects

EedCpf1-기반 다중 억제의 일반적인 적용 가능성을 테스트하기 위하여, 서로 다른 유전자인 lacZ gfp를 억제하기 위한 crRNA를 설계하였다. To test the general applicability of EedCpf1-based multiplex suppression, we designed a crRNA to inhibit the different genes lacZ and gfp .

구체적으로, crRNA(lacZ)는 E. coli K-12 MG1655의 내인성(endogenous) lacZ 유전자를 억제하기 위해 설계하였고, crRNA(C1lacZ)는 MG1655의 내인성 lacZ 유전자 및 pREGFP3(P2T1) 플라스미드의 외인성(exogenous) gfp 유전자를 억제하기 위해 설계하였다.Specifically, crRNA (lacZ) is E. coli K-12 MG1655 intrinsic (endogenous) of the lacZ Gene, and the crRNA (C1lacZ) was designed to inhibit the endogenous lacZ of MG1655 Gene and the exogenous gfp gene of the pREGFP3 (P2T1) plasmid.

그 결과, crRNA(C1) 및 crRNA(C1lacZ)는 pREGFP3(P2T1)에서 gfp 발현을 효과적으로 억제하는 반면, crRNA(lacZ)는 gfp 발현을 거의 억제하지 못하였다(도 28, 좌측). lacZ 억제의 경우, crRNA(lacZ) 및 crRNA(C1lacZ)는 lacZ 발현을 강력하게 억제하는 반면, crRNA(C1)는 0.5mM isopropyl β-D-1-thiogalactopyranoside(IPTG) 및 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside(X-Gal) 80㎍/㎖를 함유하는 LB 고체 배지에서 자란 E. coli K-12 MG1655에서는 lacZ 발현을 억제하지 못하였다(도 28, 우측). As a result, crRNA (C1) and crRNA (C1lacZ) effectively suppressed gfp expression in pREGFP3 (P2T1), while crRNA (lacZ) scarcely suppressed gfp expression (Fig. 28, left). lacZ For inhibition, crRNA (lacZ) and crRNA (C1lacZ) is lacZ (Cr) (C1) was detected in the presence of 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside in ㎍ / ㎖ E. coli K-12 MG1655 grown in LB solid medium containing lacZ (Fig. 28, right).

즉, 상기 결과를 통하여, crRNA(C1lacZ)는 E. coli K-12 MG1655에서 외인성 플라스미드 유래의 gfp 및 염색체에 있는 내인성 lacZ를 동시에 억제하므로, 이를 통하여 CRISPR-EedCpf1이 여러 유전자를 동시에 조절할 수 있음을 확인하였다. In other words, through the above results, it was concluded that CRISPR-EedCpf1 can regulate several genes at the same time, since the crRNA (C1lacZ) simultaneously inhibits the gfp derived from the exogenous plasmid and the endogenous lacZ on the chromosome in E. coli K-12 MG1655 Respectively.

이제까지 본 발명에 대하여 그 바람직한 실시예를 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described above with reference to preferred embodiments thereof. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. The disclosed embodiments should, therefore, be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

<110> Korea Research Institute of Bioscience and Biotechnology <120> Composition for Inhibiting Gene Expression comprising Nuclease-Deactivated Cpf1 and Uses Thereof <130> PN170156 <160> 97 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRI(T1)-F <400> 1 actagtatta tacctaggac 20 <210> 2 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CRI(T1)-R <400> 2 caccagaatc ggcacaacgc gttttagagc tagaaatagc 40 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dCpf1-VF <400> 3 ttccattcat atggtgatcc tgctgaattt 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dCpf1-VR <400> 4 gtatgaataa ctcgagtaag gatctccagg 30 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dCpf1-IF <400> 5 cttactcgag ttattcatac cttttattct 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dCpf1-IR <400> 6 ggatcaccat atgaatggaa atcgtagcat 30 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> crRNA-F <400> 7 caaagtagaa attactagta ttatacctag gac 33 <210> 8 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> crRNA-R <400> 8 tagattgaag agcgacccgg ggcggccgcc tcg 33 <210> 9 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1)-F <400> 9 caaagtagaa attactagta ttatacctag gac 33 <210> 10 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1)-R <400> 10 tagatcacca gaatcggcac aacgctgaag agcgacccgg ggcggccgcc tcg 53 <210> 11 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> crRNAR(T1)-F <400> 11 aatttctact ttgtagattg aagagcgacc cggggcgg 38 <210> 12 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> crRNAR(T1)-R <400> 12 atttaaggtt attcaaacgc gttgtgccga ttctggtg 38 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ST-F <400> 13 tattccgctt cctcggcgac cggttaaaga tctttgacag 40 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ST-R <400> 14 ggcccaagct tcctcgaggc 20 <210> 15 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1)-16-R <400> 15 ggcggccgcc ccgggtcgct cttcatgtgc cgattctggt gatctacaaa gtagaaatta 60 ctagtatta 69 <210> 16 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1)-18-R <400> 16 ggcggccgcc ccgggtcgct cttcagttgt gccgattctg gtgatctaca aagtagaaat 60 tactagtatt a 71 <210> 17 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1)-22-R <400> 17 ggcggccgcc ccgggtcgct cttcacggcg ttgtgccgat tctggtgatc tacaaagtag 60 aaattactag tatta 75 <210> 18 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1)-24-R <400> 18 ggcggccgcc ccgggtcgct cttcaaccgg cgttgtgccg attctggtga tctacaaagt 60 agaaattact agtatta 77 <210> 19 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1)-25-R <400> 19 ggcggccgcc ccgggtcgct cttcataccg gcgttgtgcc gattctggtg atctacaaag 60 tagaaattac tagtatta 78 <210> 20 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(P1)-R <400> 20 ggcggccgcc ccgggtcgct cttcacctag gactgagcta gccgtatcta caaagtagaa 60 attactagta tta 73 <210> 21 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(P2)-R <400> 21 ggcggccgcc ccgggtcgct cttcaagtcc taggtacagt gctagatcta caaagtagaa 60 attactagta tta 73 <210> 22 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C1)-R <400> 22 ggcggccgcc ccgggtcgct cttcatcata tgtatatctc cttctatcta caaagtagaa 60 attactagta tta 73 <210> 23 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C2)-R <400> 23 ggcggccgcc ccgggtcgct cttcagaagg agatatacat atgagatcta caaagtagaa 60 attactagta tta 73 <210> 24 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C3)-R <400> 24 ggcggccgcc ccgggtcgct cttcacaggt agttttccag tagtgatcta caaagtagaa 60 attactagta tta 73 <210> 25 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C4)-R <400> 25 ggcggccgcc ccgggtcgct cttcattgta gttcccgtca tctttatcta caaagtagaa 60 attactagta tta 73 <210> 26 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C5)-R <400> 26 ggcggccgcc ccgggtcgct cttcagcttt tcgttgggat ctttcatcta caaagtagaa 60 attactagta tta 73 <210> 27 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C6)-R <400> 27 ggcggccgcc ccgggtcgct cttcataaat ttatttgcac tactgatcta caaagtagaa 60 attactagta tta 73 <210> 28 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C7)-R <400> 28 ggcggccgcc ccgggtcgct cttcacagga acgcactata tctttatcta caaagtagaa 60 attactagta tta 73 <210> 29 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C8)-R <400> 29 ggcggccgcc ccgggtcgct cttcaccctt tcgaaagatc ccaacatcta caaagtagaa 60 attactagta tta 73 <210> 30 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA(lacZ) <400> 30 ggcggccgcc ccgggtcgct cttcattttc ccagtcacga cgttgatcta caaagtagaa 60 attactagta tta 73 <210> 31 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Multi(C5)-F <400> 31 ggcggccgcc ccgggtcgct cttcagcttt tcgttgggat ctttcatcta caaagtagaa 60 attatttaag 70 <210> 32 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Multi(C5)-R <400> 32 ttgtagataa agatgacggg aactacaagt ttgaataacc ttaaataatt tctactttgt 60 agatgaaag 69 <210> 33 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Multi(lacZ)-F <400> 33 ggcggccgcc ccgggtcgct cttcattttc ccagtcacga cgttgatcta caaagtagaa 60 attatttaag 70 <210> 34 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Multi(lacZ)-R <400> 34 ttgtagatag aaggagatat acatatgagt ttgaataacc ttaaataatt tctactttgt 60 agatcaacg 69 <210> 35 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> pR1-F <400> 35 gcgttgtgcc gattctggtg gaaaataatt ttgtttaact tta 43 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> pR1-R <400> 36 cggtctagag ggaaaccgtt gtg 23 <210> 37 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR2-F <400> 37 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 38 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR2-R <400> 38 attctggtgg aaaatctaga gggaaaccgt tgtg 34 <210> 39 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR3-F <400> 39 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 40 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR3-R <400> 40 attctggtgg aaagtctaga gggaaaccgt tgtg 34 <210> 41 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR4-F <400> 41 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 42 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR4-R <400> 42 attctggtgg aaggtctaga gggaaaccgt tgtg 34 <210> 43 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR5-F <400> 43 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 44 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR5-R <400> 44 attctggtgg agggtctaga gggaaaccgt tgtg 34 <210> 45 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR6-F <400> 45 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 46 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR6-R <400> 46 attctggtgg aaattctaga gggaaaccgt tgtg 34 <210> 47 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR7-F <400> 47 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 48 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR7-R <400> 48 attctggtgg aaactctaga gggaaaccgt tgtg 34 <210> 49 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR8-F <400> 49 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 50 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR8-R <400> 50 attctggtgg aatgtctaga gggaaaccgt tgtg 34 <210> 51 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR9-F <400> 51 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 52 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR9-R <400> 52 attctggtgg aacgtctaga gggaaaccgt tgtg 34 <210> 53 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR10-F <400> 53 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 54 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR10-R <400> 54 attctggtgt aaagtctaga gggaaaccgt tgtg 34 <210> 55 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR11-F <400> 55 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 56 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR11-R <400> 56 attctggtga aaagtctaga gggaaaccgt tgtg 34 <210> 57 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR12-F <400> 57 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 58 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR12-R <400> 58 attctggtgc aaagtctaga gggaaaccgt tgtg 34 <210> 59 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Pt-F <400> 59 aaccacaacg gtttccctct agattttcca 30 <210> 60 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Pt-R <400> 60 tgctagcact gtacctagga ctgagct 27 <210> 61 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cm-F <400> 61 aataataagg taccatggta ggtccatatg aatatcctcc 40 <210> 62 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cm-R <400> 62 tagtctagac tagaggccta ggaatacggt tagccatttg 40 <210> 63 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Int-F <400> 63 actatttcct gtaagaattg actcatctgg agcctatgat tcaccgtcat caccgaaac 59 <210> 64 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Int-R <400> 64 gcaacaagta ttgcatccgg tacttcatcg acttaaagct ggaatacggt tagccatttg 60 60 <210> 65 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM1-F <400> 65 attctggtgg aaaataaaac tgaagaaggt aaact 35 <210> 66 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM1-R <400> 66 cggcacaacg ccggtcataa tctatggtcc ttgtt 35 <210> 67 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM2-F <400> 67 cggcacaacg ccggtaaaac tgaagaaggt aaact 35 <210> 68 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM2-R <400> 68 attctggtgg aaaatcataa tctatggtcc ttgtt 35 <210> 69 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM3-F <400> 69 attctggtgg aaaatgacac cgattactcc atcgc 35 <210> 70 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM3-R <400> 70 cggcacaacg ccggttgcat tcatgtgttt gtttt 35 <210> 71 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM4-F <400> 71 cggcacaacg ccggtgacac cgattactcc atcgc 35 <210> 72 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM4-R <400> 72 attctggtgg aaaattgcat tcatgtgttt gtttt 35 <210> 73 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM5-F <400> 73 attctggtgg aaaataacaa caacaataac aataa 35 <210> 74 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM5-R <400> 74 cggcacaacg ccggtgttcg agctcgaatt agtct 35 <210> 75 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM6-F <400> 75 cggcacaacg ccggtaacaa caacaataac aataa 35 <210> 76 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM6-R <400> 76 attctggtgg aaaatgttcg agctcgaatt agtct 35 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> sgRNA(T1) <400> 77 caccagaatc ggcacaacgc 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1) <400> 78 caccagaatc ggcacaacgc 20 <210> 79 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1 16bp) <400> 79 caccagaatc ggcaca 16 <210> 80 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1 18bp) <400> 80 caccagaatc ggcacaac 18 <210> 81 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1 22bp) <400> 81 caccagaatc ggcacaacgc cg 22 <210> 82 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1 24bp) <400> 82 caccagaatc ggcacaacgc cggt 24 <210> 83 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> crRNA(T1 25bp) <400> 83 caccagaatc ggcacaacgc cggta 25 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(P1) <400> 84 acggctagct cagtcctagg 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(P2) <400> 85 ctagcactgt acctaggact 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C1) <400> 86 agaaggagat atacatatga 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C2) <400> 87 ctcatatgta tatctccttc 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C3) <400> 88 cactactgga aaactacctg 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C4) <400> 89 aaagatgacg ggaactacaa 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C5) <400> 90 gaaagatccc aacgaaaagc 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C6) <400> 91 cagtagtgca aataaattta 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C7) <400> 92 aaagatatag tgcgttcctg 20 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(C8) <400> 93 gttgggatct ttcgaaaggg 20 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA(lacZ) <400> 94 caacgtcgtg actgggaaaa 20 <210> 95 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> 37-mer crRNA <400> 95 uaauuucuac uuuguagaua aguucugcua uguggcg 37 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 20-nt sequence <400> 96 gcgttgtgcc gattctggtg 20 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 20-bp sequence <400> 97 caccagaatc ggcacaacgc 20 <110> Korea Research Institute of Bioscience and Biotechnology <120> Composition for Inhibiting Gene Expression          Nuclease-Deactivated Cpf1 and Uses Thereof <130> PN170156 <160> 97 <170> KoPatentin 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CRI (T1) -F <400> 1 actagtatta tacctaggac 20 <210> 2 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CRI (T1) -R <400> 2 caccagaatc ggcacaacgc gttttagagc tagaaatagc 40 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dCpf1-VF <400> 3 ttccattcat atggtgatcc tgctgaattt 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dCpf1-VR <400> 4 gtatgaataa ctcgagtaag gatctccagg 30 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dCpf1-IF <400> 5 cttactcgag ttattcatac cttttattct 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dCpf1-IR <400> 6 ggatcaccat atgaatggaa atcgtagcat 30 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> CrRNA-F <400> 7 caaagtagaa attactagta ttatacctag gac 33 <210> 8 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> cRNA-R <400> 8 tagattgaag agcgacccgg ggcggccgcc tcg 33 <210> 9 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (T1) -F <400> 9 caaagtagaa attactagta ttatacctag gac 33 <210> 10 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> crRNA (T1) -R <400> 10 tagatcacca gaatcggcac aacgctgaag agcgacccgg ggcggccgcc tcg 53 <210> 11 <211> 38 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > CrRNAR (T1) -F <400> 11 aatttctact ttgtagattg aagagcgacc cggggcgg 38 <210> 12 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> crRNAR (T1) -R <400> 12 atttaaggtt attcaaacgc gttgtgccga ttctggtg 38 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ST-F <400> 13 tattccgctt cctcggcgac cggttaaaga tctttgacag 40 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ST-R <400> 14 ggcccaagct tcctcgaggc 20 <210> 15 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (T1) -16-R <400> 15 ggcggccgcc ccgggtcgct cttcatgtgc cgattctggt gatctacaaa gtagaaatta 60 ctagtatta 69 <210> 16 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> cRNA (T1) -18-R <400> 16 ggcggccgcc ccgggtcgct cttcagttgt gccgattctg gtgatctaca aagtagaaat 60 tactagtatt a 71 <210> 17 <211> 75 <212> DNA <213> Artificial Sequence <220> <223> cRNA (T1) -22-R <400> 17 ggcggccgcc ccgggtcgct cttcacggcg ttgtgccgat tctggtgatc tacaaagtag 60 aaattactag tatta 75 <210> 18 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (T1) -24-R <400> 18 ggcggccgcc ccgggtcgct cttcaaccgg cgttgtgccg attctggtga tctacaaagt 60 agaaattact agtatta 77 <210> 19 <211> 78 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (T1) -25-R <400> 19 ggcggccgcc ccgggtcgct cttcataccg gcgttgtgcc gattctggtg atctacaaag 60 tagaaattac tagtatta 78 <210> 20 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (P1) -R <400> 20 ggcggccgcc ccgggtcgct cttcacctag gactgagcta gccgtatcta caaagtagaa 60 attactagta tta 73 <210> 21 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (P2) -R <400> 21 ggcggccgcc ccgggtcgct cttcaagtcc taggtacagt gctagatcta caaagtagaa 60 attactagta tta 73 <210> 22 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C1) -R <400> 22 ggcggccgcc ccgggtcgct cttcatcata tgtatatctc cttctatcta caaagtagaa 60 attactagta tta 73 <210> 23 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C2) -R <400> 23 ggcggccgcc ccgggtcgct cttcagaagg agatatacat atgagatcta caaagtagaa 60 attactagta tta 73 <210> 24 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C3) -R <400> 24 ggcggccgcc ccgggtcgct cttcacaggt agttttccag tagtgatcta caaagtagaa 60 attactagta tta 73 <210> 25 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C4) -R <400> 25 ggcggccgcc ccgggtcgct cttcattgta gttcccgtca tctttatcta caaagtagaa 60 attactagta tta 73 <210> 26 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C5) -R <400> 26 ggcggccgcc ccgggtcgct cttcagcttt tcgttgggat ctttcatcta caaagtagaa 60 attactagta tta 73 <210> 27 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C6) -R <400> 27 ggcggccgcc ccgggtcgct cttcataaat ttatttgcac tactgatcta caaagtagaa 60 attactagta tta 73 <210> 28 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C7) -R <400> 28 ggcggccgcc ccgggtcgct cttcacagga acgcactata tctttatcta caaagtagaa 60 attactagta tta 73 <210> 29 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C8) -R <400> 29 ggcggccgcc ccgggtcgct cttcaccctt tcgaaagatc ccaacatcta caaagtagaa 60 attactagta tta 73 <210> 30 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (lacZ) <400> 30 ggcggccgcc ccgggtcgct cttcattttc ccagtcacga cgttgatcta caaagtagaa 60 attactagta tta 73 <210> 31 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Multi (C5) -F <400> 31 ggcggccgcc ccgggtcgct cttcagcttt tcgttgggat ctttcatcta caaagtagaa 60 attatttaag 70 <210> 32 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Multi (C5) -R <400> 32 ttgtagataa agatgacggg aactacaagt ttgaataacc ttaaataatt tctactttgt 60 agatgaaag 69 <210> 33 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Multi (lacZ) -F <400> 33 ggcggccgcc ccgggtcgct cttcattttc ccagtcacga cgttgatcta caaagtagaa 60 attatttaag 70 <210> 34 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> Multi (lacZ) -R <400> 34 ttgtagatag aaggagatat acatatgagt ttgaataacc ttaaataatt tctactttgt 60 agatcaacg 69 <210> 35 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> pR1-F <400> 35 gcgttgtgcc gattctggtg gaaaataatt ttgtttaact tta 43 <210> 36 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> pR1-R <400> 36 cggtctagag ggaaaccgtt gtg 23 <210> 37 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR2-F <400> 37 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 38 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR2-R <400> 38 attctggtgg aaaatctaga gggaaaccgt tgtg 34 <210> 39 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR3-F <400> 39 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 40 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR3-R <400> 40 attctggtgg aaagtctaga gggaaaccgt tgtg 34 <210> 41 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR4-F <400> 41 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 42 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR4-R <400> 42 attctggtgg aaggtctaga gggaaaccgt tgtg 34 <210> 43 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR5-F <400> 43 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 44 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR5-R <400> 44 attctggtgg agggtctaga gggaaaccgt tgtg 34 <210> 45 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR6-F <400> 45 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 46 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR6-R <400> 46 attctggtgg aaattctaga gggaaaccgt tgtg 34 <210> 47 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR7-F <400> 47 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 48 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR7-R <400> 48 attctggtgg aaactctaga gggaaaccgt tgtg 34 <210> 49 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR8-F <400> 49 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 50 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR8-R <400> 50 attctggtgg aatgtctaga gggaaaccgt tgtg 34 <210> 51 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR9-F <400> 51 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 52 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR9-R <400> 52 attctggtgg aacgtctaga gggaaaccgt tgtg 34 <210> 53 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR10-F <400> 53 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 54 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR10-R <400> 54 attctggtgt aaagtctaga gggaaaccgt tgtg 34 <210> 55 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR11-F <400> 55 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 56 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR11-R <400> 56 attctggtga aaagtctaga gggaaaccgt tgtg 34 <210> 57 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR12-F <400> 57 cggcacaacg ccggtaattt tgtttaactt taag 34 <210> 58 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pR12-R <400> 58 attctggtgc aaagtctaga gggaaaccgt tgtg 34 <210> 59 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Pt-F <400> 59 aaccacaacg gtttccctct agattttcca 30 <210> 60 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Pt-R <400> 60 tgctagcact gtacctagga ctgagct 27 <210> 61 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cm-F <400> 61 aataataagg taccatggta ggtccatatg aatatcctcc 40 <210> 62 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Cm-R <400> 62 tagtctagac tagaggccta ggaatacggt tagccatttg 40 <210> 63 <211> 59 <212> DNA <213> Artificial Sequence <220> <223> Int-F <400> 63 actatttcct gtaagaattg actcatctgg agcctatgat tcaccgtcat caccgaaac 59 <210> 64 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Int-R <400> 64 gcaacaagta ttgcatccgg tacttcatcg acttaaagct ggaatacggt tagccatttg 60                                                                           60 <210> 65 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM1-F <400> 65 attctggtgg aaaataaaac tgaagaaggt aaact 35 <210> 66 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM1-R <400> 66 cggcacaacg ccggtcataa tctatggtcc ttgtt 35 <210> 67 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM2-F <400> 67 cggcacaacg ccggtaaaac tgaagaaggt aaact 35 <210> 68 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM2-R <400> 68 attctggtgg aaaatcataa tctatggtcc ttgtt 35 <210> 69 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM3-F <400> 69 attctggtgg aaaatgacac cgattactcc atcgc 35 <210> 70 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM3-R <400> 70 cggcacaacg ccggttgcat tcatgtgttt gtttt 35 <210> 71 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM4-F <400> 71 cggcacaacg ccggtgacac cgattactcc atcgc 35 <210> 72 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM4-R <400> 72 attctggtgg aaaattgcat tcatgtgttt gtttt 35 <210> 73 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM5-F <400> 73 attctggtgg aaaataacaa caacaataac aataa 35 <210> 74 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM5-R <400> 74 cggcacaacg ccggtgttcg agctcgaatt agtct 35 <210> 75 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM6-F <400> 75 cggcacaacg ccggtaacaa caacaataac aataa 35 <210> 76 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> pM6-R <400> 76 attctggtgg aaaatgttcg agctcgaatt agtct 35 <210> 77 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> sgRNA (T1) <400> 77 caccagaatc ggcacaacgc 20 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (T1) <400> 78 caccagaatc ggcacaacgc 20 <210> 79 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> crRNA (T1 16 bp) <400> 79 caccagaatc ggcaca 16 <210> 80 <211> 18 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > CrRNA (T1 18bp) <400> 80 caccagaatc ggcacaac 18 <210> 81 <211> 22 <212> DNA <213> Artificial Sequence <220> The <223> crRNA (T1 22bp) <400> 81 caccagaatc ggcacaacgc cg 22 <210> 82 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (T1 24bp) <400> 82 caccagaatc ggcacaacgc cggt 24 <210> 83 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (T1 25 bp) <400> 83 caccagaatc ggcacaacgc cggta 25 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > CrRNA (P1) <400> 84 acggctagct cagtcctagg 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (P2) <400> 85 ctagcactgt acctaggact 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA (Cl) <400> 86 agaaggagat atacatatga 20 <210> 87 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C2) <400> 87 ctcatatgta tatctccttc 20 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C3) <400> 88 cactactgga aaactacctg 20 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> crRNA (C4) <400> 89 aaagatgacg ggaactacaa 20 <210> 90 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (C5) <400> 90 gaaagatccc aacgaaaagc 20 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > CrRNA (C6) <400> 91 cagtagtgca aataaattta 20 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (C7) <400> 92 aaagatatag tgcgttcctg 20 <210> 93 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (C8) <400> 93 gttgggatct ttcgaaaggg 20 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CrRNA (lacZ) <400> 94 caacgtcgtg actgggaaaa 20 <210> 95 <211> 37 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > 37-mer crRNA <400> 95 uaauuucuac uuuguagaua aguucugcua uguggcg 37 <210> 96 <211> 20 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > 20-nt sequence <400> 96 gcgttgtgcc gattctggtg 20 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 20-bp sequence <400> 97 caccagaatc ggcacaacgc 20

Claims (13)

Eubacterium eligens 유래의 DNA 절단 활성이 불활성화된(nuclease-deactivated) Cpf1 단백질(EedCpf1); 및
팔린드롬 서열(palindrome sequences)을 포함하는 제1절편 및 표적 DNA와 혼성화하는 폴리뉴클레오티드인 스페이서(spacer)를 포함하는 제2절편을 포함하는 crRNA
를 포함하는 유전자 발현 억제용 조성물.
A nuclease-deactivated Cpf1 protein (EedCpf1) derived from Eubacterium eligens ; And
A first fragment comprising palindrome sequences and a second fragment comprising a spacer that is a polynucleotide that hybridizes to the target DNA.
Wherein the gene expression-suppressing activity of the gene expression-inhibiting composition is at least 10%
제 1항에 있어서, 상기 crRNA는 상기 스페이서의 하류(downstream)에 위치하며 RNA-결합(binding) 단백질과 결합할 수 있는 폴리뉴클레오티드를 포함하는 제3절편을 더 포함하는 것인 유전자 발현 억제용 조성물.The composition according to claim 1, wherein the crRNA further comprises a third fragment located downstream of the spacer and comprising a polynucleotide capable of binding to an RNA-binding protein . 삭제delete 제 1항에 있어서, 상기 표적 DNA의 상류(upstream)에 TTTV 또는 TTV(V는 A, G 또는 C)로 이루어진 PAM(protospacer adjacent motif)을 더 포함하는 것인 유전자 발현 억제용 조성물.The composition for inhibiting gene expression according to claim 1, further comprising a PAM (protospacer adjacent motif) consisting of TTTV or TTV (V is A, G or C) upstream of the target DNA. 제 1항에 있어서, 상기 EedCpf1 단백질은 Cpf1 단백질을 구성하는 880번 아미노산이 아스파르트산에서 알라닌으로 치환된 것인 유전자 발현 억제용 조성물. The composition for suppressing gene expression according to claim 1, wherein the EedCpf1 protein is an 880th amino acid that constitutes the Cpf1 protein is substituted with alanine in aspartic acid. 제 1항에 있어서, 상기 crRNA는 2 이상의 제1절편 및 제2절편이 순차적으로 반복되는 것으로서, 서로 다른 팔린드롬 서열 및 스페이서를 포함하며, 다중 유전자 발현을 동시에 억제할 수 있는 것인 유전자 발현 억제용 조성물.[Claim 2] The method according to claim 1, wherein the crRNA comprises at least two first and second fragments, wherein the first fragment and the second fragment are sequenced and contain different palindromic sequences and spacers, / RTI &gt; Eubacterium eligens 유래의 DNA 절단 활성이 불활성화된(nuclease-deactivated) Cpf1 단백질(EedCpf1)을 암호화하는 뉴클레오티드 서열;
팔린드롬 서열(palindrome sequences)을 포함하는 제1절편 및 표적 DNA와 혼성화하는 폴리뉴클레오티드인 스페이서(spacer)를 포함하는 제2절편을 포함하는 crRNA를 암호화하는 뉴클레오티드 서열; 및
상기 뉴클레오티드 서열에 작동가능하게 연결된 프로모터
를 포함하는 재조합 발현벡터.
A nucleotide sequence encoding a nuclease-deactivated Cpf1 protein (EedCpf1) derived from Eubacterium eligens ;
A nucleotide sequence encoding a crRNA comprising a first fragment comprising palindrome sequences and a second fragment comprising a spacer that is a polynucleotide that hybridizes to the target DNA; And
A promoter operably linked to the nucleotide sequence
&Lt; / RTI &gt;
제 7항에 있어서, 상기 crRNA를 암호화하는 뉴클레오티드 서열은 상기 스페이서의 하류(downstream)에 위치하며 RNA-결합(binding) 단백질과 결합할 수 있는 폴리뉴클레오티드를 포함하는 제3절편을 더 포함하는 것인 재조합 발현벡터.8. The method of claim 7, wherein the nucleotide sequence encoding the crRNA further comprises a third fragment located downstream of the spacer and comprising a polynucleotide capable of binding an RNA-binding protein Recombinant expression vector. 삭제delete 제 7항에 있어서, 상기 표적 DNA의 상류(upstream)에 TTTV 또는 TTV(V는 A, G 또는 C)로 이루어진 PAM(protospacer adjacent motif)을 더 포함하는 것인 재조합 발현벡터.8. The recombinant expression vector according to claim 7, further comprising a PAM (protospacer adjacent motif) consisting of TTTV or TTV (V is A, G or C) upstream of the target DNA. 제 7항에 있어서, 상기 EedCpf1 단백질은 Cpf1 단백질을 구성하는 880번 아미노산이 아스파르트산에서 알라닌으로 치환된 것인 재조합 발현벡터. [Claim 7] The recombinant expression vector according to claim 7, wherein the EedCpf1 protein is an 880th amino acid constituting the Cpf1 protein, which is substituted with alanine in aspartic acid. 제 7항에 있어서, 상기 프로모터는 L-람노오스-유도성 프로모터(L-rhamnose-inducible promoter)인 것인 재조합 발현벡터.8. The recombinant expression vector according to claim 7, wherein the promoter is an L-rhamnose-inducible promoter. 제 7항에 있어서, 상기 crRNA는 2 이상의 제1절편 및 제2절편이 순차적으로 반복되는 것으로서, 서로 다른 팔린드롬 서열 및 스페이서를 포함하며, 다중 유전자 발현을 동시에 억제할 수 있는 것인 재조합 발현벡터.
[Claim 7] The method according to claim 7, wherein the crRNA is a recombinant expression vector having two or more first fragments and second fragments sequentially and comprising different palindromic sequences and spacers, .
KR1020170122653A 2017-09-22 2017-09-22 Composition for Inhibiting Gene Expression comprising Nuclease-Deactivated Cpf1 and Uses Thereof KR101896847B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170122653A KR101896847B1 (en) 2017-09-22 2017-09-22 Composition for Inhibiting Gene Expression comprising Nuclease-Deactivated Cpf1 and Uses Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170122653A KR101896847B1 (en) 2017-09-22 2017-09-22 Composition for Inhibiting Gene Expression comprising Nuclease-Deactivated Cpf1 and Uses Thereof

Publications (1)

Publication Number Publication Date
KR101896847B1 true KR101896847B1 (en) 2018-09-07

Family

ID=63595026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170122653A KR101896847B1 (en) 2017-09-22 2017-09-22 Composition for Inhibiting Gene Expression comprising Nuclease-Deactivated Cpf1 and Uses Thereof

Country Status (1)

Country Link
KR (1) KR101896847B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102244489B1 (en) * 2020-07-17 2021-04-27 광주과학기술원 Genomic editing vector for Eubacterium callanderi, Method for editing genome of Eubacterium callanderi using the same, and Transgenic Eubacterium callanderi strains using the same
KR20210055374A (en) * 2019-11-07 2021-05-17 씨제이제일제당 (주) Polynucleotides to enhance expression of a desired polypeptide and their uses
KR20210075889A (en) * 2019-12-13 2021-06-23 한국생명공학연구원 Immunodeficient Animal Model Mutated IL2Rg Gene by EeCpf1 and Method for Producing the same
WO2021125840A1 (en) * 2019-12-18 2021-06-24 한국생명공학연구원 Composition for editing gene or inhibiting expression thereof, comprising cpf1 and chimeric dna-rna guide
KR20210078894A (en) * 2019-12-19 2021-06-29 성균관대학교산학협력단 Compositon for inhibiting gene expression using CRISPRi
WO2022065867A1 (en) * 2020-09-22 2022-03-31 (주)지플러스생명과학 Modified cas12a protein and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150107739A (en) 2012-12-12 2015-09-23 더 브로드 인스티튜트, 인코퍼레이티드 Crispr-cas systems and methods for altering expression of gene products
US20170028083A1 (en) * 2014-04-08 2017-02-02 North Carolina State University Methods and Compositions for RNA-Directed Repression of Transcription Using CRISPR-Associated Genes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150107739A (en) 2012-12-12 2015-09-23 더 브로드 인스티튜트, 인코퍼레이티드 Crispr-cas systems and methods for altering expression of gene products
US20170028083A1 (en) * 2014-04-08 2017-02-02 North Carolina State University Methods and Compositions for RNA-Directed Repression of Transcription Using CRISPR-Associated Genes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210055374A (en) * 2019-11-07 2021-05-17 씨제이제일제당 (주) Polynucleotides to enhance expression of a desired polypeptide and their uses
KR102342635B1 (en) 2019-11-07 2021-12-23 씨제이제일제당 주식회사 Polynucleotides to enhance expression of a desired polypeptide and their uses
KR20210075889A (en) * 2019-12-13 2021-06-23 한국생명공학연구원 Immunodeficient Animal Model Mutated IL2Rg Gene by EeCpf1 and Method for Producing the same
KR102493904B1 (en) * 2019-12-13 2023-01-31 한국생명공학연구원 Immunodeficient Animal Model Mutated IL2Rg Gene by EeCpf1 and Method for Producing the same
WO2021125840A1 (en) * 2019-12-18 2021-06-24 한국생명공학연구원 Composition for editing gene or inhibiting expression thereof, comprising cpf1 and chimeric dna-rna guide
KR20210078894A (en) * 2019-12-19 2021-06-29 성균관대학교산학협력단 Compositon for inhibiting gene expression using CRISPRi
KR102302827B1 (en) * 2019-12-19 2021-09-14 성균관대학교산학협력단 Compositon for inhibiting gene expression using CRISPRi
KR102244489B1 (en) * 2020-07-17 2021-04-27 광주과학기술원 Genomic editing vector for Eubacterium callanderi, Method for editing genome of Eubacterium callanderi using the same, and Transgenic Eubacterium callanderi strains using the same
WO2022065867A1 (en) * 2020-09-22 2022-03-31 (주)지플러스생명과학 Modified cas12a protein and use thereof

Similar Documents

Publication Publication Date Title
KR101896847B1 (en) Composition for Inhibiting Gene Expression comprising Nuclease-Deactivated Cpf1 and Uses Thereof
KR102623312B1 (en) Enzyme with RUVC domain
TWI608100B (en) Cas9 expression plasmid, gene editing system of escherichia coli and method thereof
US10913941B2 (en) Enzymes with RuvC domains
CN111836894B (en) Compositions for genome editing using CRISPR/Cpf1 systems and uses thereof
AU740336B2 (en) Heteroduplex mutational vectors and use thereof in bacteria
EP2828386B1 (en) RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US20240209332A1 (en) Enzymes with ruvc domains
US11453874B2 (en) Enhancement of CRISPR gene editing or target destruction by co-expression of heterologous DNA repair protein
US20220298494A1 (en) Enzymes with ruvc domains
US20220220460A1 (en) Enzymes with ruvc domains
KR20210137928A (en) Method for Single Base Editing Based on CRISPR/Cpf1 System and Uses Thereof
WO2021226369A1 (en) Enzymes with ruvc domains
RU2791447C1 (en) DNA CUTTER BASED ON THE ScCas12a PROTEIN FROM THE BACTERIUM SEDIMENTISPHAERA CYANOBACTERIORUM
JP7125727B1 (en) Compositions for modifying nucleic acid sequences and methods for modifying target sites in nucleic acid sequences
CN116262927B (en) Method for regulating gene expression based on CRISPR/Cas system and application thereof
US20220017896A1 (en) Dna cutting means based on cas9 protein from defluviimonas sp.
GB2617659A (en) Enzymes with RUVC domains
KR20220008130A (en) Composition for preparing transformant having multi-copy genes and method for preparing thereof
CN117701561A (en) Optimized guide RNA, CRISPR/AcC2C9 gene editing system and gene editing method
Tischler et al. American Journal of Current Microbiology
BHATT et al. MICROBES IN GENE TECHNOLOGY
US20070178490A1 (en) Hega endonuclease

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant