KR101889086B1 - A treatment method of a used lithium battery and a resource recycling system used therefor - Google Patents
A treatment method of a used lithium battery and a resource recycling system used therefor Download PDFInfo
- Publication number
- KR101889086B1 KR101889086B1 KR1020160166388A KR20160166388A KR101889086B1 KR 101889086 B1 KR101889086 B1 KR 101889086B1 KR 1020160166388 A KR1020160166388 A KR 1020160166388A KR 20160166388 A KR20160166388 A KR 20160166388A KR 101889086 B1 KR101889086 B1 KR 101889086B1
- Authority
- KR
- South Korea
- Prior art keywords
- lithium battery
- active material
- electrode active
- carbon
- powder
- Prior art date
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000004064 recycling Methods 0.000 title description 6
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 34
- 239000000843 powder Substances 0.000 claims abstract description 32
- 239000007772 electrode material Substances 0.000 claims abstract description 26
- 239000002699 waste material Substances 0.000 claims abstract description 12
- 238000009792 diffusion process Methods 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 238000010304 firing Methods 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 9
- 239000010439 graphite Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 4
- 229910001416 lithium ion Inorganic materials 0.000 claims description 4
- 229910021385 hard carbon Inorganic materials 0.000 claims description 3
- 229910021384 soft carbon Inorganic materials 0.000 claims description 3
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 238000010298 pulverizing process Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 abstract description 12
- 238000000926 separation method Methods 0.000 abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000007770 graphite material Substances 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 239000006183 anode active material Substances 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010926 waste battery Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000572 Lithium Nickel Cobalt Manganese Oxide (NCM) Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- NDPGDHBNXZOBJS-UHFFFAOYSA-N aluminum lithium cobalt(2+) nickel(2+) oxygen(2-) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Al+3].[Co++].[Ni++] NDPGDHBNXZOBJS-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
본 발명은 폐리튬전지의 처리방법 및 재활용 시스템에 관한 것으로, 보다 구체적으로 진공상태에서 분체확산 기술을 이용하여 폐리튬전지의 전극활물질 분말로부터 카본계 물질을 회수하는 방법에 관한 것으로, 본 발명에 따라 회수공정을 진행하는 경우 친환경적이고 안정적으로 카본계 물질을 회수하는 것이 가능하며, 분리에 소요되는 시간과 에너지가 대폭 절감시키고 회수율을 높여 자원의 효율적 이용을 도모할 수 있다.More particularly, the present invention relates to a method for recovering a carbonaceous material from an electrode active material powder of a spent lithium battery using a powder diffusion technique in a vacuum state, and more particularly, to a method for treating a waste lithium battery, Accordingly, it is possible to recover the carbon-based material in an environmentally friendly and stable manner, and it is possible to greatly reduce the time and energy required for separation and increase the recovery rate, thereby making efficient use of resources.
Description
본 발명은 폐리튬전지의 처리방법 및 자원재활용 시스템에 관한 것으로, 보다 구체적으로 진공 분체확산 기술을 이용하여 폐리튬전지로부터 카본(Carbon)계 물질을 고순도로 용이하게 분리하는 방법 및 이에 이용되는 시스템에 관한 것이다. The present invention relates to a method for treating a waste lithium battery and a resource recycling system, and more particularly, to a method for easily separating a carbonaceous material from a waste lithium battery into a high purity by using a vacuum powder diffusion technique, .
리튬전지(Lithium battery)는 이차 전지의 일종으로서, 방전 과정에서 리튬 이온이 음극에서 양극으로 이동하는 전지이다. 리튬전지는 충전 및 재사용이 가능한 전지로, 에너지 밀도가 높고 기억 효과가 없으며, 사용하지 않을 때에도 자가방전이 일어나는 정도가 작기 때문에 시중의 휴대용 전자 기기들에 많이 사용되고 있다. 이 외에도 에너지밀도가 높은 특성을 이용하여 방산업이나 자동화시스템, 전기자동차 산업 그리고 항공산업 분야에서도 점점 그 사용 빈도가 증가하는 추세이다.A lithium battery is a type of secondary battery, in which lithium ions move from a cathode to an anode during a discharge process. A lithium battery is a battery that can be charged and reused, has a high energy density, has no memory effect, and has a low self-discharge even when not in use, and thus is widely used in portable electronic devices in the market. In addition, the frequency of use is gradually increasing in the fields of automobiles, automobiles, electric vehicles, and the aviation industry.
이러한 리튬전지는 충방전이 가능하고, 비교적 수명이 길기는 하지만, 수명이 대략 6개월 내지 2년 정도인 소모품이기 때문에 사용량의 증가와 함께 폐기량도 증가하고 있다.Such a lithium battery can be charged and discharged and has a relatively long service life. However, since it is a consumable having a lifetime of about 6 months to 2 years, the amount of waste increases along with an increase in usage amount.
리튬전지는 크게 양극, 음극, 전해질의 세 부분으로 나눌 수 있는데, 다양한 종류의 물질들이 이용될 수 있다. 양극활물질로는 리튬니켈코발트망간 산화물(NCM), 리튬니켈코발트알루미늄 산화물(NCA), 리튬코발트산화물(LCO), 리튬망간 산화물(LMO)의 전이 금속 산화물 등을 사용하고 있으며, 음극활물질로는 일반적으로 카본(Carbon)계 물질을 사용하고 있다. Lithium batteries can be roughly divided into three parts: anodes, cathodes, and electrolytes. A wide variety of materials can be used. As the cathode active material, lithium nickel cobalt manganese oxide (NCM), lithium nickel cobalt aluminum oxide (NCA), lithium cobalt oxide (LCO), lithium manganese oxide (LMO) transition metal oxide and the like are used. Carbon-based materials are used.
그 중, 카본계 물질은 다양한 종류의 동소체를 가지고 있는데, 이들 중 일부는 리튬이 가역적으로 삽입/탈리될 수 있어 리튬전지의 음극으로 사용될 수 있다. 리튬전지의 음극으로 사용되는 카본 소재는 흑연계(graphitic)와 비흑연계(non-graphitic)로 나눌 수 있으며, 흑연계 물질로는 흑연(graphite), 탄소섬유(carbon fiber), 전도성 흑연(conductive graphite), 탄소 나노튜브(carbon nanotube) 등이 있고 비흑연계 물질로는 하드 카본(hard carbon)과 소프트 카본(soft carbon) 등이 있다. 최근 높은 출력 특성을 요구하는 분야에서는 음극 소재로서 비흑연계에 해당하는 하드 카본(hard carbon) 또는 소프트 카본(soft carbon)을 이용하고 있으나, 현재까지 대부분의 리튬전지에는 흑연계 물질인 흑연(graphite)이 사용되고 있으며, 리튬전지내 구성은 제조사와 모별로 다르나 대략적으로 10 내지 12%가 흑연과 같은 카본계 물질로 이루어져 있다.Among them, the carbonaceous material has various kinds of isomers, and some of them can be reversibly inserted / desorbed and can be used as a negative electrode of a lithium battery. The carbon material used as the cathode of a lithium battery can be divided into graphitic and non-graphitic materials. Graphite, carbon fiber, and conductive graphite ), Carbon nanotubes and the like. Examples of the graphite materials include hard carbon and soft carbon. Recently, in the fields requiring high output characteristics, hard carbon or soft carbon, which is a non-graphite material, is used as a negative electrode material. However, graphite, which is a graphite material, And the composition of the lithium battery is different from that of the manufacturer, but approximately 10 to 12% is composed of a carbon-based material such as graphite.
한편, 음극활물질의 원재료인 흑연은 크게 천연흑연과 인조흑연으로 구분되는데 천연흑연은 광산에서 추출되며 주로 중국에서 생산된다. 인조흑연은 탄소로 된 해탄(코크스)을 2800℃ 이상의 고온에서 처리해 합성하는데, 인조흑연은 천연흑연 대비 충방전 성능이 좋고 수명이 2~3배 길다는 장점이 있어 전기차용 배터리 음극활물질 소재로 수요가 늘어나고 있다.On the other hand, graphite, which is the raw material of anode active material, is divided into natural graphite and artificial graphite. Natural graphite is extracted from mine and mainly produced in China. Artificial graphite is synthesized by treating carbonaceous coke (coke) at a high temperature of 2800 ℃ or higher. Artificial graphite has better charge / discharge performance than natural graphite and has a lifetime of 2 ~ 3 times longer than natural graphite. Is increasing.
인조흑연의 리튬전지내 원가 비중은 13% 수준으로 국내 시장의 경우 인조흑연의 거의 전량을 일본 업체에 의존하고 있으며, KDB산업은행 2014년 보고서에 따르면 음극활물질 소재의 국산화율은 2%에 불과하여, 수입에 의한 의존량을 줄이기 위해서는 이들 흑연 소재의 국산화뿐만 아니라 폐리튬전지로부터 흑연을 회수하여 재활용하는 방안이 요구된다.According to the report of KDB Industrial Bank of Korea in 2014, the localization ratio of anode active material is only 2%, and the cost of lithium ion battery is 13% In order to reduce dependence on imports, it is necessary to recover graphite from waste lithium batteries and recycle them as well as to localize these graphite materials.
그러나, 기존의 폐리튬전지의 재활용 방법에 대한 연구는 대부분 고가의 유가금속인 리튬과 코발트의 재활용에 중점을 두고 있을 뿐, 폐리튬전지에 포함된 카본계 물질의 재활용 방법에 대한 연구는 미비한 실정이다.However, research on the recycling method of existing lithium batteries has mainly focused on the recycling of lithium and cobalt, which are high-priced valuable metals. However, there is no research on recycling methods of carbon-based materials contained in the spent lithium battery to be.
또한, 기존의 폐리튬전지의 재활용 방법은 유기용매나 첨가제 등을 사용하여 분리에 소요되는 시간과 에너지의 소모가 크다.In addition, the conventional recycling method of the spent lithium battery requires a long time and energy consumption for separation using an organic solvent or an additive.
이에, 본 발명자들은 상기와 같은 문제를 해결하기 위해 폐리튬전지로부터 카본계 물질을 회수하기 위한 방법을 연구하던 중, 진공상태에서 분체확산 기술을 이용하여 전극활물질로부터 카본계 물질의 회수공정을 진행하는 경우 친환경적이고 안정적으로 이들 물질을 회수하는 것이 가능하며, 분리에 소요되는 시간과 에너지가 대폭 절감되며 회수율 또한 우수하다는 것을 발견하고, 본 발명을 완성하게 되었다.In order to solve the above problems, the present inventors have studied a method for recovering a carbonaceous material from a spent lithium battery, and have conducted a recovery process of a carbonaceous material from an electrode active material using a powder diffusion technique in a vacuum state , It is possible to recover these substances in an environmentally friendly and stable manner, and the time and energy required for separation are greatly reduced, and the recovery rate is also excellent. Thus, the present invention has been completed.
본 발명의 하나의 목적은 폐리튬전지로부터 카본계 물질을 회수하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for recovering a carbonaceous material from a spent lithium battery.
상기 기술적 과제를 해결하기 위하여, 본 발명은 진공상태에서 분체확산 기술을 이용하여 폐리튬전지의 전극활물질 분말로부터 카본계 물질을 회수하는 방법을 제공한다.According to an aspect of the present invention, there is provided a method for recovering a carbonaceous material from an electrode active material powder of a spent lithium battery using a powder diffusion technique in a vacuum state.
본 발명의 하나의 구체적인 실시예로, 하기 단계를 포함하는 것을 특징으로 하는 폐리튬전지의 처리방법을 제공한다:In one specific embodiment of the present invention, there is provided a method of treating a spent lithium battery, comprising the steps of:
(S1) 폐리튬전지를 방전시키는 단계;(S1) discharging the spent lithium battery;
(S2) 방전된 폐리튬전지를 분파쇄하여 전극활물질을 수득하는 단계;(S2) pulverizing the discharged spent lithium battery to obtain an electrode active material;
(S3) 수득된 전극활물질을 700 내지 1,000℃로 소성로에서 100 내지 140분 동안 소성하는 단계;(S3) firing the obtained electrode active material at 700 to 1,000 DEG C for 100 to 140 minutes in a firing furnace;
(S4) 소성물을 분파쇄한 다음 스크린을 이용하여 전극활물질 분말을 분리하는 단계; 및(S4) a step of crushing the sintered material and then separating the electrode active material powder using a screen; And
(S5) 전극활물질 분말을 진공상태에서 분체 확산시킨 후 카본계 물질을 회수하는 단계. (S5) Powder diffusion of the electrode active material powder in a vacuum state and recovering the carbonaceous material.
본 발명의 전극활물질 분말은 양극활물질 분말과 음극활물질 분말이 혼합되어 있는 분말을 의미한다.The electrode active material powder of the present invention means a powder in which the cathode active material powder and the anode active material powder are mixed.
본 발명의 상기 (S1) 단계는 회수공정에서 발생할 수 있는 폐리튬전지의 폭발을 방지하기 위한 것으로, 하나의 구체적인 양태로 방전기를 이용하여 폐리튬전지를 방전시킬 수 있다.The step (S1) of the present invention is for preventing the explosion of the waste lithium battery that may occur in the recovery process. In one specific embodiment, the waste lithium battery can be discharged using the discharger.
본 발명의 (S2) 단계는 방전된 폐리튬전지를 파쇄하여 플라스틱부를 제거하고 전극활물질을 분말을 수득하는 단계로, 하나의 구체적인 양태로 방전된 폐리튬전지를 분파쇄한 다음 자석 등을 이용하여 철을 제거하고 금속 시트나 분리막은 스크린 등을 이용하여 걸러낼 수 있다. The step (S2) of the present invention is a step of disposing a discharged lithium battery to remove a plastic part and obtaining an electrode active material powder. In a specific embodiment, the discharged lithium battery is pulverized, The iron can be removed and the metal sheet or separator can be screened using a screen or the like.
본 발명의 상기 (S3) 단계는 상기 (S2) 단계의 전극활물질 분파쇄물을 소성로에서 100 내지 140분 동안, 700 내지 1,000℃로 소성하는 단계로, (S2) 단계의 전극활물질 분말에 포함된 전해질과 유기물을 제거하기 위한 단계이다.In the step (S3) of the present invention, the powder of the electrode active material in the step (S2) is fired at 700 to 1,000 ° C. for 100 to 140 minutes in the firing furnace, and the electrolyte contained in the electrode active material powder of the step And organic matter.
상기 소성공정이 100분 미만이거나, 700℃ 미만인 경우 전해질과 유기물을 제거가 잘 이루어지지 않으며, 140분을 초과하거나 1,000℃를 초과하는 경우 전해질과 유기물을 제거 효율이 낮아 공정시간과 비용 측면에서 좋지 않다. 상기 소성공정은 120분 동안 800℃로 진행하는 것이 바람직하다.If the firing process is performed for less than 100 minutes or less than 700 ° C, the removal of the electrolyte and the organic material is not performed well. If the firing process is performed for more than 140 minutes or more than 1,000 ° C, the removal efficiency of the electrolyte and the organic material is low, not. It is preferable that the firing process proceeds to 800 DEG C for 120 minutes.
본 발명의 상기 (S4) 단계는 상기 (S3) 단계의 소성물을 분파쇄 후 스크린을 이용하여 전극활물질 분말만을 분리하는 단계로, 하나의 구체적인 양태로 상기 분리는 진동 스크린 장치를 이용할 수 있다.The step (S4) of the present invention is a step of separating only the electrode active material powder using a screen after crushing the sintered product in the step (S3). In one specific embodiment, the separation screen may be a vibration screen device.
상기 스크린은 200 내지 400 메쉬(mesh) 인 것이 바람직하며, 보다 바람직하게는 300 메쉬인 것이 바람직하다.The screen is preferably 200 to 400 mesh, more preferably 300 mesh.
본 발명의 상기 (S5) 단계는 스크린으로 분리된 전극활물질 분말을 진공분리기내에서 분체 확산시킨 후 분체 확산된 전극활물질로부터 카본계 물질을 분리하는 단계로, 하나의 구체적인 양태로 상기 분말은 블로워 펌프(blower pump)가 연결된 진공 주입장치를 이용하여 진공분리기내로 주입할 수 있다.In the step (S5) of the present invention, the electrode active material powder separated by the screen is powder-diffused in the vacuum separator, and then the carbon-based material is separated from the powder-diffused electrode active material. In one specific embodiment, a blower pump may be connected to the vacuum separator.
상기 (S5) 단계에서 진공분리기에 주입된 전극활물질 분말 입자의 질량에 따른 확산 속도의 차이를 이용하여 분말을 구성 물질별로 분리할 수 있다. In the step (S5), the powder may be separated into constituent materials by using the difference in diffusion speed depending on the mass of the electrode active material powder particles injected into the vacuum separator.
상기 (S5) 단계에서 블로워 펌프의 용량은 50 내지 200 CMM(Cubic Meter per Minute)인 것이 바람직하다. 상기 용량이 50 CMM 미만인 경우 분체의 확산이 충분히 이루어지지 않을 수 있고 상기 용량이 200 CMM을 초과하는 경우 전극활물질 분말 입자의 분리가 이루어지지 않을 수 있다. In the step S5, the capacity of the blower pump is preferably 50 to 200 CMM (Cubic Meter per Minute). When the capacity is less than 50 CMM, the powder may not be sufficiently diffused, and when the capacity exceeds 200 CMM, separation of the electrode active material powder particles may not be performed.
상기 (S5) 단계에서 진공기 내부의 온도는 15 내지 50 ℃인 것이 바람직하며, 주입되는 공기의 습도는 3% 미만인 건조 상태인 것이 바람직하다.In step (S5), the inside temperature of the compressed air is preferably 15 to 50 DEG C, and the humidity of the air to be injected is preferably less than 3% in a dry state.
하나의 구체적인 실시양태로, 분체 확산된 전극활물질 중 카본계 물질에 비하여 질량이 큰 코발트, 니켈, 구리, 리튬, 알루미늄 및 이들의 염 등은 진공분리기 하부로 낙하시켜 분리하고 이들에 비하여 상대적으로 질량이 작은 카본계 물질만을 회수할 수 있다. In one specific embodiment, cobalt, nickel, copper, lithium, aluminum, and salts thereof, which are larger in mass than the carbon-based material, are dropped into the lower part of the vacuum separator to separate out the mass Only this small carbon-based material can be recovered.
하나의 구체적인 실시양태로, 진공기 내부로 주입된 공기는 백필터(back filter)를 거쳐 빠져나가며, 이때, 200 내지 300 미크론(μ)의 카본계 물질이 포집된다.In one specific embodiment, the air injected into the purge air escapes through a back filter, wherein 200-300 microns (μ) of carbonaceous material is collected.
상기 (S5) 단계는 분리 수득된 카본계 물질의 순도 및 회수율을 높이기 위하여 1 내지 3회 실시하는 것이 바람직하다. The step (S5) is preferably performed one to three times in order to increase the purity and the recovery rate of the obtained carbonaceous material.
상기한 바와 같이, 본 발명은 진공상태에서 분체확산 기술을 이용하여 폐리튬전지로부터 카본계 물질의 회수공정을 진행하는 경우 친환경적이고 안정적으로 카본계 물질을 회수하는 것이 가능하며, 분리에 소요되는 시간과 에너지가 대폭 절감시키고 회수율을 높여 자원의 효율적 이용을 도모할 수 있다.As described above, the present invention can recover the carbon-based material in an environmentally friendly and stable manner when the recovery process of the carbon-based material is carried out from the spent lithium battery using the powder diffusion technique in a vacuum state, And the energy can be greatly reduced and the recovery rate can be increased, so that the efficient use of resources can be achieved.
도 1은 본 발명의 폐전지로부터 카본계 물질을 회수하는 방법을 순서도로 나타낸 것이다.
도 2는 본 발명의 진공분리기 내에서의 카본계 물질의 분리 회수과정을 개략적으로 나타낸 것이다. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing a method for recovering a carbonaceous material from a waste battery according to the present invention.
FIG. 2 is a schematic view showing the separation and recovery process of the carbonaceous material in the vacuum separator of the present invention.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail to facilitate understanding of the present invention. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the following embodiments. Embodiments of the invention are provided to more fully describe the present invention to those skilled in the art.
본 발명의 개략적인 폐전지로부터 카본계 물질의 회수공정을 도 1에 그림으로 나타내었다.The recovery process of the carbonaceous material from the schematic waste battery of the present invention is shown in Fig.
실시예Example 1 : One : 폐리튬전지로부터From a waste lithium battery 카본계Carbon system 물질의 회수 Recovery of material
폐리튬전지를 방전기를 이용하여 완전히 방전시킨 후 공기 중에서 30 동안 150℃로 열처리한 다음 0.5 내지 1cm가 되도록 절단하였다. 스크린을 이용하여 플라스틱 조각, 금속 시트 및 분리막을 제거하고 전극활물질을 회수하여 분파쇄한 다음 자석을 이용하여 철을 제거하였다.The waste lithium battery was completely discharged by using a discharger, and then heat-treated at 150 ° C for 30 hours in the air and then cut to 0.5 to 1 cm. The plastic piece, the metal sheet and the separator were removed using a screen, the electrode active material was recovered and pulverized, and then the iron was removed using a magnet.
상기 분파쇄된 전극활물질을 소성로에 투입하고 800℃의 온도로 120분 동안 소성하여 유기물과 같은 불순물을 제거하였다.The pulverized electrode active material was charged into a firing furnace and fired at a temperature of 800 ° C for 120 minutes to remove impurities such as organic substances.
상기 소성물을 다시 분파쇄한 분말을 300 메쉬의 스크린으로 분리하여 전극활물질 분말을 수득하였다. 수득된 전극활물질 분말을 진공주입기를 이용하여 진공분리기내로 주입하였으며, 50 CMM 용량의 블로워 펌프를 이용하여 분체 확산시킨 후 카본계 물질을 회수하였다. 도 2는 본 발명의 진공분리기 내에서의 카본계 물질의 분리 회수과정을 개략적으로 나타낸 것이다. The sintered material was pulverized again and the powder was separated by a screen of 300 mesh to obtain an electrode active material powder. The obtained electrode active material powder was injected into a vacuum separator using a vacuum injector, powder was diffused by using a blower pump having a capacity of 50 CMM, and the carbonaceous material was recovered. FIG. 2 is a schematic view showing the separation and recovery process of the carbonaceous material in the vacuum separator of the present invention.
시험예Test Example 1: One: 폐리튬전지Waste lithium battery 전극활물질Electrode active material 분말의 조성비 Composition ratio of powder
상기 실시예 1에서 소성 후 분파쇄한 다음 300 메쉬의 스크린으로 분리한 전극활물질 분말(100g) 중 카본계 물질의 함량을 유도결합플라즈마 질량분석기(ICP-MS: Inductively Coupled Plasma Mass Spectroscopy, Thermo사 Xseries II)를 이용하여 측정 후 중량%를 계산하였다. 상기 흑연의 중량%는 3개의 시료를 취하여 측정하였다. 상기 측정값에 대한 결과를 하기 표 1에 나타내었다.The content of the carbon-based material in the electrode active material powder (100 g) separated by sieving and crushing in Example 1 and then separated by a 300-mesh screen was measured by inductively coupled plasma mass spectrometry (ICP-MS, II) was used to calculate weight percent after measurement. The weight percent of the graphite was measured by taking three samples. The results of the measurement are shown in Table 1 below.
시험예Test Example 2: 2: 폐리튬전지로부터From a waste lithium battery 카본계Carbon system 물질의 순도 측정 Purity measurement of material
실시예 1에서 최종적으로 회수한 카본계 물질으로부터 시료를 취하여 유도결합플라즈마 질량분석기(ICP-MS, Thermo사 Xseries II)를 이용하여 순도를 측정하였다. 상기 카본계 물질의 순도는 3개의 시료를 각각 10g씩 취하여 측정하였다.Samples were taken from the carbon material finally recovered in Example 1 and the purity was measured using an inductively coupled plasma mass spectrometer (ICP-MS, Thermo Xseries II). The purity of the carbon-based material was measured by taking 10 g of each of the three samples.
하기 표 2에 나타난 바와 같이 본 발명의 카본계 물질 회수방법을 따를 경우 회수된 카본계 물질 순도가 매우 높음을 알 수 있었다.As shown in the following Table 2, when the carbon-based material recovery method of the present invention was followed, it was found that the purity of the recovered carbon-based material was very high.
Claims (3)
(S1) 폐리튬전지를 방전시키는 단계;
(S2) 방전된 폐리튬전지를 분파쇄하여 전극활물질을 수득하는 단계;
(S3) 수득된 전극활물질을 700 내지 1,000℃로 소성로에서 100 내지 140분 동안 소성하는 단계;
(S4) 소성물을 분파쇄한 다음 스크린을 이용하여 전극활물질 분말을 분리하는 단계; 및
(S5) 전극활물질 분말을 진공기 내부의 온도가 5 내지 50℃인 진공상태에서 분체 확산시킨 후 카본계 물질을 회수하는 단계. A method for treating a waste lithium battery, comprising the steps of:
(S1) discharging the spent lithium battery;
(S2) pulverizing the discharged spent lithium battery to obtain an electrode active material;
(S3) firing the obtained electrode active material at 700 to 1,000 DEG C for 100 to 140 minutes in a firing furnace;
(S4) a step of crushing the sintered material and then separating the electrode active material powder using a screen; And
(S5) Powder diffusion of the electrode active material powder in a vacuum state at a temperature of 5 to 50 DEG C in the inside of the compressed air, and then recovering the carbonaceous material.
상기 카본계 물질은 흑연(graphite), 탄소섬유(carbon fiber), 전도성 흑연(conductive graphite), 탄소 나노튜브(carbon nanotube), 하드 카본(hard carbon) 및 소프트 카본(soft carbon)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 폐리튬전지의 처리방법.The method according to claim 1,
The carbon-based material may be selected from the group consisting of graphite, carbon fiber, conductive graphite, carbon nanotube, hard carbon, and soft carbon. Wherein the at least one lithium ion battery is at least one type of lithium ion battery.
상기 (S5) 단계를 1 내지 3회 반복 실시하는 것을 특징으로 하는 폐리튬전지의 처리방법.3. The method according to claim 1 or 2,
Wherein the step (S5) is repeatedly performed one to three times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160166388A KR101889086B1 (en) | 2016-12-08 | 2016-12-08 | A treatment method of a used lithium battery and a resource recycling system used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160166388A KR101889086B1 (en) | 2016-12-08 | 2016-12-08 | A treatment method of a used lithium battery and a resource recycling system used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180065471A KR20180065471A (en) | 2018-06-18 |
KR101889086B1 true KR101889086B1 (en) | 2018-08-17 |
Family
ID=62768050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160166388A KR101889086B1 (en) | 2016-12-08 | 2016-12-08 | A treatment method of a used lithium battery and a resource recycling system used therefor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101889086B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102209517B1 (en) | 2019-11-08 | 2021-01-28 | 안효수 | Waste Secondary Battery Recycling System for Vehicle and Method |
WO2024136237A1 (en) * | 2022-12-21 | 2024-06-27 | 포스코홀딩스 주식회사 | Method for disposal of waste battery |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102096341B1 (en) * | 2018-08-09 | 2020-04-02 | 기주현 | Method for recovering base materials from waste battery |
KR20210117575A (en) * | 2020-03-19 | 2021-09-29 | 에스케이이노베이션 주식회사 | Classifier for cathode active material and method of regenerating lithium precursor used the same |
CN112086703B (en) * | 2020-09-10 | 2021-08-06 | 中南大学 | Resource treatment method for carbon residue of retired battery |
KR102440213B1 (en) * | 2020-10-13 | 2022-09-07 | 구현철 | Electromagnetic wave shielding concrete and its manufacturing method using waste carbon nanotube and waste anode materials |
KR102493675B1 (en) * | 2020-10-13 | 2023-02-22 | 주식회사 남평산업 | Exothermic water permeable concrete and its manufacturing method using waste anode materials |
KR102493676B1 (en) * | 2020-10-13 | 2023-02-07 | 주식회사 남평산업 | Exothermic concrete and its manufacturing method using waste carbon nanotube and waste anode materials |
KR102493674B1 (en) * | 2020-10-13 | 2023-02-07 | 주식회사 남평산업 | Exothermic asphalt mixture with mixed waste anode materials and construction method of pavement structure |
KR102430803B1 (en) * | 2021-04-28 | 2022-08-09 | (주)엔에이치리사이텍컴퍼니 | A treatment method of used electric vehicle battery module and a resource recycling system using therefor |
KR20230071868A (en) * | 2021-11-16 | 2023-05-24 | 주식회사 포스코 | Mobile apparatus and method of Battery module |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3069306B2 (en) * | 1997-02-10 | 2000-07-24 | アサカ理研工業株式会社 | Method for inactivating a used lithium-cobalt secondary battery and a method for recovering cobalt from a used lithium-cobalt secondary battery using the same |
-
2016
- 2016-12-08 KR KR1020160166388A patent/KR101889086B1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102209517B1 (en) | 2019-11-08 | 2021-01-28 | 안효수 | Waste Secondary Battery Recycling System for Vehicle and Method |
WO2024136237A1 (en) * | 2022-12-21 | 2024-06-27 | 포스코홀딩스 주식회사 | Method for disposal of waste battery |
Also Published As
Publication number | Publication date |
---|---|
KR20180065471A (en) | 2018-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101889086B1 (en) | A treatment method of a used lithium battery and a resource recycling system used therefor | |
KR101328585B1 (en) | Fabricating method of cathode for lithium ion secondary battery by recycling cathode active material and a lithium ion secondary battery fabricated thereby | |
Du et al. | A unique co-recovery strategy of cathode and anode from spent LiFePO4 battery | |
KR101800842B1 (en) | A method for recycling a used lithium ion battery | |
KR20180042641A (en) | Continuous recovery apparatus and recovery method using the positive electrode active material for a rechargeable lithium battery | |
CN110690519B (en) | Method for recycling lithium ion battery negative electrode material | |
CN110759341B (en) | Method for recycling graphite material based on aluminum-graphite double-ion battery | |
TWI474528B (en) | Method for cycling lithium ion battery having sulfur based composite | |
WO2013051305A1 (en) | Method for recovering valuable materials from lithium ion secondary cells | |
CN106605321A (en) | Anodes for lithium-ion devices | |
CN112110432B (en) | Recovery and regeneration method of lithium iron phosphate anode material of lithium ion battery | |
CN110828887A (en) | Method for recycling waste lithium iron phosphate positive electrode material and obtained lithium iron phosphate positive electrode material | |
KR20130138523A (en) | Recycling method of electrode active material of metal oxide, electrode active material of metal oxide for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery fabricated thereby | |
CN106636649A (en) | Method for recovering lithium iron phosphate cathode material from waste lithium batteries | |
CN110808430A (en) | Separation and purification method of lithium ion battery anode material and obtained lithium ion battery anode material | |
CN105355998A (en) | Recovery method of LiFePO4 positive electrode material | |
KR20210042124A (en) | Sulfur-based positive electrode active material for solid state batteries and its manufacturing method and application | |
CN103311518A (en) | Hard-carbon negative electrode material for lithium ion secondary battery and preparation method thereof | |
CN115784223B (en) | High-sulfur Jiao Ji quick-charging graphite active material, preparation thereof and application thereof in lithium ion battery | |
CN112658000A (en) | Method for recycling leftover materials of positive plate of lithium iron phosphate battery | |
WO2012161168A1 (en) | Method for recovering valuable material from positive electrode in lithium-ion secondary battery | |
CN115007614A (en) | Sorting method for broken materials of positive and negative pole pieces of waste lithium ion battery | |
KR102563893B1 (en) | Manufacturing methods of composite cathode material for sodium ions secondary batteries and composite cathode material thereby | |
CN112599772A (en) | Method for recycling negative electrode material of lithium ion power battery | |
CN110268562B (en) | Method for producing negative electrode material for lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |