KR101888797B1 - Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same - Google Patents
Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same Download PDFInfo
- Publication number
- KR101888797B1 KR101888797B1 KR1020170169447A KR20170169447A KR101888797B1 KR 101888797 B1 KR101888797 B1 KR 101888797B1 KR 1020170169447 A KR1020170169447 A KR 1020170169447A KR 20170169447 A KR20170169447 A KR 20170169447A KR 101888797 B1 KR101888797 B1 KR 101888797B1
- Authority
- KR
- South Korea
- Prior art keywords
- seq
- gene
- gene described
- dna
- acidified
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
- C40B40/06—Libraries containing nucleotides or polynucleotides, or derivatives thereof
- C40B40/08—Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2561/00—Nucleic acid detection characterised by assay method
- C12Q2561/113—Real time assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/107—Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/142—Toxicological screening, e.g. expression profiles which identify toxicity
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 해수의 산성도 변화에 대응하는 큰수지맨드라미(Dendronephthya gigantea) 유래 유전자 및 이를 이용한 해양 생태계 진단 방법에 관한 것으로, 구체적으로 큰수지맨드라미로부터 유래한 특정 유전자군은 해양 산성화 변화에 대응하여 특이적인 발현 변화를 나타내므로, 이들을 생체지표로 이용함으로써 해수의 산성도 변화에 의한 산성화된 해수에 대한 노출 여부를 확인할 수 있는 마이크로어레이 및 키트로 유용하게 이용될 수 있다.The present invention relates to a gene derived from Dendronephthya gigantea corresponding to a change in acidity of seawater and a method for diagnosing a marine ecosystem using the same. Particularly, Therefore, they can be usefully used as microarrays and kits which can confirm exposure to acidified sea water by changing the acidity of seawater by using them as biomarkers.
Description
본 발명은 해양 산성화에 대응하는 큰수지맨드라미(Dendronephthya gigantea) 유전자 및 이를 이용한 해양 생태계의 산성화를 진단하는 방법에 관한 것이다.The present invention relates to a Dendronephthya gigantea gene corresponding to ocean acidification and a method for diagnosing acidification of marine ecosystems using the same.
산업혁명 이후 인간 활동에 의해 대기 중 이산화탄소 농도가 100 ppm 이상 증가하였으며, 해양은 이렇게 대기로 추가 방출된 이산화탄소의 약 1/4 가량을 흡수하는 매우 중요한 이산화탄소의 흡수원 역할을 수행하고 있다. 해양으로 흡수된 이산화탄소는 해수 내에서 탄산(H2CO3)을 형성하게 되며, 추가적으로 흡수된 이산화탄소는 해수의 산성도를 증가시키고 있다.Since the Industrial Revolution, the concentration of carbon dioxide in the atmosphere has increased by more than 100 ppm due to human activities, and the ocean is playing a very important carbon dioxide sink, absorbing about a quarter of the additional carbon dioxide released into the atmosphere. Carbon dioxide absorbed into the ocean forms carbonic acid (H 2 CO 3 ) in sea water, and the additionally absorbed carbon dioxide increases the acidity of sea water.
해양 산성화로 인해 해수의 산성도(수소이온농도)가 증가하면 탄산이온(CO3 2-)의 농도가 감소하기 때문에 탄산계 골격으로 이루어진 해양생물에 큰 영향을 미치게 된다. 미래에 해양 산성화로 인해 표층해수의 탄산이온 농도가 지속적으로 감소하여 탄산염 불포화 상태에 이르게 되면, 탄산염 골격을 이용하는 생물종들은 더 이상의 생명활동을 지속하지 못하고 멸종할 가능성이 있다When the acidity (hydrogen ion concentration) of seawater increases due to ocean acidification, the concentration of carbonate ions (CO 3 2- ) decreases, which has a great influence on marine organisms composed of a carbonic acid skeleton. In the future, if the concentration of carbonate ions in the surface seawater continues to decrease due to ocean acidification and reaches a state of carbonate unsaturation, species using the carbonate skeleton may no longer sustain life activities and may become extinct.
전 해양에서 해양생물들의 산성화 영향은 다양하게 감지되고 있으며, 이러한 추세로 가면 몇 세기 내에 열대 해양에서는 산성화로 인해 산호류가 사라질 것이며, 대부분의 극지해역에서는 석회화 생물의 골격 형성이 어려워질 것으로 예측된다. The effect of acidification of marine organisms in the entire ocean has been detected in various ways, and it is predicted that if this trend goes along, corals will disappear due to acidification in tropical oceans within a few centuries, and the formation of skeletons of calcified organisms will be difficult in most polar seas.
작년 한 해 동안 인류가 배출한 이산화탄소 양은 316억 톤으로 2010년과 비교하여 약 10억 톤 증가하였으며, 이산화탄소 양이 생태계 임계점을 넘어서면 생태계는 다시 돌아올 수 없는 심각한 변화를 가져온다. 최근에 우리나라 동해에서도 산업혁명 이후에 급속한 산성화가 진행되고 있다고 보고되었다. 이는 한국 근해에서도 해양 산성화가 심각하게 진행되고 있으며, 이는 앞으로 탄산칼슘을 골격으로 하는 생물상의 서식지가 줄어들 수 있음을 암시한다. 따라서 지역적인 규모에서 생태계 변화를 사전에 감지할 수 있는 생물학적 예보 시스템을 개발하는 것이 시급하다. In the past year, the amount of carbon dioxide emitted by humans was 31.6 billion tons, an increase of about 1 billion tons compared to 2010, and when the amount of carbon dioxide exceeds the critical point of the ecosystem, the ecosystem will bring about a serious change that cannot be returned. Recently, it has been reported that the East Sea of Korea also undergoes rapid acidification after the Industrial Revolution. This suggests that marine acidification is progressing seriously in the coastal waters of Korea, and this suggests that the habitat of biota based on calcium carbonate may decrease in the future. Therefore, it is urgent to develop a biological forecasting system that can detect ecosystem changes in advance on a regional scale.
산호류는 다양한 해양생물들의 서식처로 이용되는 등 요람과 같은 역할을 하고 있으나, 기후 변화로 인한 해수온 상승 및 산성화에 따라 종 다양성 및 개체군이 급격히 감소하고 있으며, 인간 간섭으로 인한 서식지 파괴가 급격히 진행 중에 있어 산호류를 보전하기 위한 생태적인 모니터링과 더불어 분자생물학적 수준에서의 연구 접근이 필요하다.Corals are used as a habitat for various marine organisms and play a role like a cradle, but species diversity and populations are rapidly decreasing due to the increase in sea water temperature and acidification due to climate change, and habitat destruction due to human interference is rapidly progressing. Therefore, a research approach at the molecular biological level is needed along with ecological monitoring to conserve corals.
큰수지맨드라미(학명: Dendronephthya gigantea)는 분류학적으로 자포동물문, 산호충강, 해계두목, 곤봉바다맨드라미과에 속하고, 제주 연안해역에 널리 분포하고 있는 연산호류의 일종이다. 수심 5 m 전후의 암반 조하대에서 주로 발견되고, 해류의 흐름이 다소 강한 곳을 선호하여 서식한다. 군체의 색상에는 변이가 많아서 자주색, 붉은색 및 분홍색 등 다양한 색상의 군체들이 발견되며, 성장하면 최대 높이 30cm 이상이 되기도 하여 연안의 해양생물 다양성 유지에 큰 역할을 하고 있다. 본 산호종은 환경부 고시목록(고시종)에 의해 법정관리동물로 지정되어 있으며, 국외반출승인대상 생물자원이다.In terms of taxonomically, the large resin manscabin (scientific name: Dendronephthya gigantea ) belongs to the family of decapitated animals, coral reefs, sea snails, and club sea snails. It is mainly found in the subtidal zone of rock around 5 m deep, and prefers to live in a place with a somewhat strong current. Colonies of various colors such as purple, red, and pink are found due to many variations in color of colonies, and when they grow, they can reach a maximum height of 30cm or more, playing a large role in maintaining marine biodiversity along the coast. This coral species is designated as a legally managed animal by the Ministry of Environment's notification list (notified species), and is a biological resource subject to approval for overseas export.
국내의 산호 연구는 1970년대 분류학적 연구를 시작으로 계통·진화/공생·생활사/증식·보전 등의 연구가 진행되어 왔으나, 해양 산성화나 기후 변화와 관련된 연구는 아직 시작단계이다.Research on corals in Korea started with taxonomic studies in the 1970s, followed by studies on systemic evolution, symbiosis, life history, propagation, and conservation, but studies related to ocean acidification and climate change are still in the beginning.
유전자 발현변화를 이용한 생태계 건강성 평가방법은 환경 내 다양한 변화요인에 대하여 분자생물학적 기술의 접목으로 매우 빠른 속도로 발전하고 있는 유전체적인 기술을 대입시켜 외부 환경 스트레스에 대한 생물 내 반응을 분자수준에서 진단하여 위해도 또는 건강도 등을 평가하는 방법이다. The method of evaluating the health of the ecosystem using changes in gene expression diagnoses the reaction in organisms to external environmental stress at the molecular level by substituting a genomic technology that is developing at a very fast pace through the application of molecular biology technology to various factors of change in the environment. This is a method of evaluating risk or health.
생물을 이용하여 유해성의 여부를 가늠하는 기존의 방법들(돌연변이 여부, 행동이상, 사망률 및 효소활성도 등)은 스트레스 물질에 이미 노출된 생물에 나타난 결과를 측정하는 방법들로써, 노출된 자극의 정도가 상당히 높은 수준이어야 측정이 가능하다는 약점을 가지고 있다. 한편 유전자 발현변화를 이용한 평가방법은 외부 자극을 받고 난 후 유전자 정보가 단백질로 넘어가는 전사 수준에서 나타나는 변화를 이용하여 생물이 받고 있는 스트레스 수준을 평가하는 방법으로써, 매우 작은 외부의 자극까지도 감지해 낼 수 있다는 장점을 가지고 있어 적은 양의 환경 변화 또는 외부 자극에 장기간 노출되었을 때의 생물반응의 결과까지도 예측해 볼 수 있다. 이러한 유전자발현변화를 이용한 평가방법에 사용되는 유전자 바이오마커는 그 특이성을 통해 외부자극의 존재 여부 및 연관성을 말해 줄 수 있고, 생태계의 다양한 환경 변화에 대한 장기적 영향 및 그 환경 내 생물의 건강성까지 평가가 가능하도록 해주는 장점이 있으나, 현재까지 큰수지맨드라미를 이용한 해양 산성화 정도를 파악하는 방법에 대해서는 알려진 바 없다.Existing methods (mutation, behavioral abnormalities, mortality, enzyme activity, etc.) that use organisms to determine whether they are harmful are methods of measuring the results of organisms already exposed to stress substances. It has a weakness that it can be measured only at a fairly high level. On the other hand, the evaluation method using the change in gene expression is a method of evaluating the stress level that an organism is receiving by using the change that appears in the transcriptional level, where the gene information passes to the protein after receiving an external stimulus, and detects even a very small external stimulus. Since it has the advantage of being able to produce a small amount of environmental changes or long-term exposure to external stimuli, it can predict the results of the bioreaction. The genetic biomarkers used in the evaluation method using such gene expression changes can tell the existence and association of external stimuli through their specificity, and the long-term effects of various environmental changes in the ecosystem and the health of living organisms in the environment. It has the advantage of enabling evaluation, but until now, there is no known method for determining the degree of ocean acidification using a large resin cockscomb.
이에, 본 발명자들은 해양 산성화를 감지할 수 있는 생체지표를 발굴하던 중, 해양 생물다양성 유지에 큰 역할을 하고 있는 큰수지맨드라미에서 해양 산성화에 의한 특정 유전자의 발현량 변화를 규명하였고, 상기 규명한 유전자를 이용하여 큰수지맨드라미의 건강진단 및 해양 산성화 정도를 파악할 수 있음을 확인함으로써, 본 발명을 완성하였다. Accordingly, the present inventors investigated the change in the expression level of a specific gene due to ocean acidification in the large resin mansrel, which plays a large role in maintaining marine biodiversity, while discovering a biomarker capable of detecting ocean acidification. The present invention was completed by confirming that it is possible to determine the degree of marine acidification and health diagnosis of the mandrel, using the gene.
본 발명의 목적은 해양산성화에 대응하는 큰수지맨드라미(Dendronephthya gigantea) 유래의 유전자 및 이를 이용한 해양 생태계 산성화 여부 확인 방법 또는 해양 생태계의 환경 변화 진단 방법을 제공하는 것이다.An object of the present invention is to provide a gene derived from Dendronephthya gigantea corresponding to ocean acidification, and a method for confirming whether or not the marine ecosystem is acidified using the same, or a method for diagnosing environmental changes in marine ecosystems.
상기 목적을 달성하기 위하여, 본 발명은 하기의 군으로부터 선택되는 어느 하나 이상의 유전자의 핵산 서열의 올리고뉴클레오티드 또는 그의 상보가닥 분자가 집적된 산성화된 해수에 대한 노출 여부 확인용 마이크로어레이(microarray)를 제공한다:In order to achieve the above object, the present invention provides a microarray for confirming exposure to acidified seawater in which an oligonucleotide of a nucleic acid sequence of one or more genes selected from the following group or its complementary strand molecules are integrated do:
서열번호 1로 기재되는 유전자(Acetyl-CoA hydrolase), 서열번호 2로 기재되는 유전자(L-Asparaginase), 서열번호 3으로 기재되는 유전자(Cadherin EGF LAG seven-pass G-type receptor), 서열번호 4로 기재되는 유전자(Calpain small subunit 1), 서열번호 5로 기재되는 유전자(DNA-directed RNA polymerase III subunit), 서열번호 6으로 기재되는 유전자(Dynactin subunit 1), 서열번호 7로 기재되는 유전자(FAD-dependent oxidoreductase), 서열번호 8로 기재되는 유전자(Ficolin), 서열번호 9로 기재되는 유전자(Myosin light polypeptide 6), 서열번호 10으로 기재되는 유전자(Phosphoenolpyruvate carboxykinase), 서열번호 11로 기재되는 유전자(Phosphoserine aminotransferase), 서열번호 12로 기재되는 유전자(polyketide synthase), 서열번호 13으로 기재되는 유전자(Protein phosphatase 1 regulatory subunit 12A), 서열번호 14로 기재되는 유전자(Pyrroline-5-carboxylate reductase), 서열번호 15로 기재되는 유전자(Transferrin receptor protein 2), 서열번호 16으로 기재되는 유전자(Alcohol dehydrogenase 1), 서열번호 17로 기재되는 유전자(Aquaporin TIP2-3), 서열번호 18로 기재되는 유전자(Deoxyribose-phosphate aldolase), 서열번호 19로 기재되는 유전자(Guanidinoacetate N-methyltransferase) 또는 서열번호 20으로 기재되는 유전자(Protein tyrosine phosphatase type IV A3).The gene shown in SEQ ID NO: 1 (Acetyl-CoA hydrolase), the gene shown in SEQ ID NO: 2 (L-Asparaginase), the gene shown in SEQ ID NO: 3 (Cadherin EGF LAG seven-pass G-type receptor), SEQ ID NO: 4 The gene described by (Calpain small subunit 1), the gene described by SEQ ID NO: 5 (DNA-directed RNA polymerase III subunit), the gene described by SEQ ID NO: 6 (Dynactin subunit 1), the gene described by SEQ ID NO: 7 (FAD -dependent oxidoreductase), the gene shown in SEQ ID NO: 8 (Ficolin), the gene shown in SEQ ID NO: 9 (Myosin light polypeptide 6), the gene shown in SEQ ID NO: 10 (Phosphoenolpyruvate carboxykinase), the gene shown in SEQ ID NO: 11 ( Phosphoserine aminotransferase), the gene shown in SEQ ID NO: 12 (polyketide synthase), the gene shown in SEQ ID NO: 13 (Protein phosphatase 1 regulatory subunit 12A), the gene shown in SEQ ID NO: 14 (Pyrroline-5-carboxylate reductase), SEQ ID NO The gene of 15 (Transferrin receptor protein 2), the gene of SEQ ID NO: 16 (Alcohol dehydrogenase 1), the gene of SEQ ID NO: 17 (Aquaporin TIP2-3), the gene of SEQ ID NO: 18 (Deoxyribose-phosphate aldolase), a gene represented by SEQ ID NO: 19 (Guanidinoacetate N-methyltransferase) or a gene represented by SEQ ID NO: 20 (Protein tyrosine phosphatase type IV A3).
또한, 본 발명은 하기의 단계를 포함하는 산성화된 해수에 대한 노출 여부 확인 방법을 제공한다:In addition, the present invention provides a method for confirming exposure to acidified seawater comprising the following steps:
1) 산성화된 해수에 노출된 실험군인 큰수지맨드라미(Dendronephthya gigantea)와 대조군인 큰수지맨드라미에서 각각 RNA를 분리하는 단계; 1) separating RNA from each of the experimental group Dendronephthya gigantea and the control group, Dendronephthya gigantea, exposed to acidified seawater;
2) 단계 1)의 실험군 및 대조군의 RNA로부터 cDNA를 합성하면서 실험군과 대조군을 각기 다른 형광물질로 표지하는 단계;2) labeling the experimental group and the control group with different fluorescent substances while synthesizing cDNA from RNA of the experimental group and the control group of step 1);
3) 단계 2)의 각각 다른 형광물질로 표지된 cDNA를 본 발명의 마이크로어레이와 혼성화시키는 단계;3) hybridizing the cDNAs labeled with different fluorescent materials in step 2) with the microarray of the present invention;
4) 반응한 마이크로어레이를 분석하는 단계; 및4) analyzing the reacted microarray; And
5) 분석한 데이터에서 본 발명의 마이크로어레이에 집적된 유전자 발현정도를 대조군과 비교하여 확인하는 단계.5) Checking the level of expression of the genes accumulated in the microarray of the present invention from the analyzed data compared with the control group.
또한, 본 발명은 본 발명에 따른 상기 마이크로어레이를 포함하는 산성화된 해수에 대한 노출 여부 확인용 키트를 제공한다.In addition, the present invention provides a kit for confirming exposure to acidified seawater comprising the microarray according to the present invention.
아울러, 본 발명은 본 발명에 따른 상기 유전자들에 대해서 각 유전자에 상보적이고 유전자 증폭이 가능한 프라이머 쌍을 포함하는 산성화된 해수에 대한 노출 여부 확인용 키트를 제공한다.In addition, the present invention provides a kit for confirming exposure to acidified seawater comprising a primer pair that is complementary to each gene and capable of gene amplification for the genes according to the present invention.
본 발명은 해수의 산성도 변화에 대응하는 큰수지맨드라미(Dendronephthya gigantea) 유래 유전자 및 이를 이용한 해양 생태계 진단 방법에 관한 것으로, 구체적으로 큰수지맨드라미로부터 유래한 특정 유전자군은 해양 산성화 변화에 대응하여 특이적인 발현 변화를 나타내므로, 이들을 생체지표로 이용함으로써 해수의 산성도 변화에 의한 산성화된 해수에 대한 노출 여부를 확인할 수 있는 마이크로어레이 및 키트로 유용하게 이용될 수 있다.The present invention relates to a gene derived from Dendronephthya gigantea corresponding to changes in seawater acidity and a marine ecosystem diagnosis method using the same. Since they show a change in expression, they can be usefully used as microarrays and kits that can confirm exposure to acidified seawater due to changes in the acidity of seawater by using them as biomarkers.
도 1은 대조군(pH 8.0) 및 실험군(pH 6.5, 7.0 및 7.5)으로 마이크로어레이 실험 결과, 2배 이상 차등 발현한 유전자들 중 공통 유전자를 그룹화한 도이다.1 is a diagram showing a group of common genes among genes differentially expressed more than twice as a result of microarray experiments in a control group (pH 8.0) and an experimental group (pH 6.5, 7.0, and 7.5).
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명자들은 산성화된 해수에 대응하여 발현이 변화하는 큰수지맨드라미(Dendronephthya gigantea) 유래의 유전자를 발굴하였다. 따라서, 해수의 산성도 변화에 대응하여 발현량이 변화하는 상기 큰수지맨드라미 유래 유전자를 집적한 마이크로어레이를 산성화된 해수 노출 여부 검출 및 해양 생태계의 건강 상태를 진단하는 용도로 이용할 수 있다.The present inventors discovered a gene derived from Dendronephthya gigantea whose expression changes in response to acidified seawater. Therefore, the microarray in which the gene derived from the mandrel cockscomb, whose expression level changes in response to the change in the acidity of seawater, can be used for detecting whether acidified seawater is exposed and diagnosing the health status of marine ecosystems.
본 발명은 하기의 군으로부터 선택되는 어느 하나 이상의 유전자의 핵산 서열의 올리고뉴클레오티드 또는 그의 상보가닥 분자가 집적된 산성화된 해수에 대한 노출 여부 확인용 마이크로어레이(microarray)를 제공한다:The present invention provides a microarray for confirming exposure to acidified seawater in which an oligonucleotide of a nucleic acid sequence of one or more genes selected from the following group or its complementary strand molecules are integrated:
서열번호 1로 기재되는 유전자(Acetyl-CoA hydrolase), 서열번호 2로 기재되는 유전자(L-Asparaginase), 서열번호 3으로 기재되는 유전자(Cadherin EGF LAG seven-pass G-type receptor), 서열번호 4로 기재되는 유전자(Calpain small subunit 1), 서열번호 5로 기재되는 유전자(DNA-directed RNA polymerase III subunit), 서열번호 6으로 기재되는 유전자(Dynactin subunit 1), 서열번호 7로 기재되는 유전자(FAD-dependent oxidoreductase), 서열번호 8로 기재되는 유전자(Ficolin), 서열번호 9로 기재되는 유전자(Myosin light polypeptide 6), 서열번호 10으로 기재되는 유전자(Phosphoenolpyruvate carboxykinase), 서열번호 11로 기재되는 유전자(Phosphoserine aminotransferase), 서열번호 12로 기재되는 유전자(polyketide synthase), 서열번호 13으로 기재되는 유전자(Protein phosphatase 1 regulatory subunit 12A), 서열번호 14로 기재되는 유전자(Pyrroline-5-carboxylate reductase), 서열번호 15로 기재되는 유전자(Transferrin receptor protein 2), 서열번호 16으로 기재되는 유전자(Alcohol dehydrogenase 1), 서열번호 17로 기재되는 유전자(Aquaporin TIP2-3), 서열번호 18로 기재되는 유전자(Deoxyribose-phosphate aldolase), 서열번호 19로 기재되는 유전자(Guanidinoacetate N-methyltransferase) 또는 서열번호 20으로 기재되는 유전자(Protein tyrosine phosphatase type IV A3).The gene shown in SEQ ID NO: 1 (Acetyl-CoA hydrolase), the gene shown in SEQ ID NO: 2 (L-Asparaginase), the gene shown in SEQ ID NO: 3 (Cadherin EGF LAG seven-pass G-type receptor), SEQ ID NO: 4 The gene described by (Calpain small subunit 1), the gene described by SEQ ID NO: 5 (DNA-directed RNA polymerase III subunit), the gene described by SEQ ID NO: 6 (Dynactin subunit 1), the gene described by SEQ ID NO: 7 (FAD -dependent oxidoreductase), the gene shown in SEQ ID NO: 8 (Ficolin), the gene shown in SEQ ID NO: 9 (Myosin light polypeptide 6), the gene shown in SEQ ID NO: 10 (Phosphoenolpyruvate carboxykinase), the gene shown in SEQ ID NO: 11 ( Phosphoserine aminotransferase), the gene shown in SEQ ID NO: 12 (polyketide synthase), the gene shown in SEQ ID NO: 13 (Protein phosphatase 1 regulatory subunit 12A), the gene shown in SEQ ID NO: 14 (Pyrroline-5-carboxylate reductase), SEQ ID NO The gene of 15 (Transferrin receptor protein 2), the gene of SEQ ID NO: 16 (Alcohol dehydrogenase 1), the gene of SEQ ID NO: 17 (Aquaporin TIP2-3), the gene of SEQ ID NO: 18 (Deoxyribose-phosphate aldolase), a gene represented by SEQ ID NO: 19 (Guanidinoacetate N-methyltransferase) or a gene represented by SEQ ID NO: 20 (Protein tyrosine phosphatase type IV A3).
상기 유전자는 연산호 유래인 것이 바람직하고, 큰수지맨드라미에서 유래되는 것이 보다 바람직하다.It is preferable that the said gene is derived from a soft coral, and it is more preferable that it is derived from a large resinous cockscomb.
상기 산성화된 해수는 pH 6 내지 7.7인 것이 바람직하고, pH 6.5 내지 7.5인 것이 더욱 바람직하나 이에 한정하지 않는다.The acidified seawater is preferably pH 6 to 7.7, more preferably pH 6.5 to 7.5, but is not limited thereto.
또한, 본 발명은 하기의 단계를 포함하는 산성화된 해수에 대한 노출 여부 확인 방법을 제공한다:In addition, the present invention provides a method for confirming exposure to acidified seawater comprising the following steps:
1) 산성화된 해수에 노출된 실험군인 큰수지맨드라미와 대조군인 큰수지맨드라미에서 각각 RNA를 분리하는 단계;1) separating RNA from the large resinous cockscomb, the experimental group and the large resinous cockscomb, the control group exposed to acidified seawater;
2) 단계 1)의 실험군 및 대조군의 RNA로부터 cDNA를 합성하면서 실험군과 대조군을 각기 다른 형광물질로 표지하는 단계;2) labeling the experimental group and the control group with different fluorescent substances while synthesizing cDNA from RNA of the experimental group and the control group of step 1);
3) 단계 2)의 각각 다른 형광물질로 표지된 cDNA를 본 발명의 마이크로어레이와 혼성화시키는 단계;3) hybridizing the cDNAs labeled with different fluorescent materials in step 2) with the microarray of the present invention;
4) 반응한 마이크로어레이를 분석하는 단계; 및4) analyzing the reacted microarray; And
5) 분석한 데이터에서 본 발명의 마이크로어레이에 집적된 유전자 발현정도를 대조군과 비교하여 확인하는 단계.5) Checking the level of expression of the genes accumulated in the microarray of the present invention from the analyzed data compared with the control group.
상기 단계 2)의 형광물질은 Cy3, Cy5, 폴리 L-라이신-플루오레세인 이소티오시아네이트(poly L-lysine-fluorescein isothiocyanate, FITC), 로다민-B-이소티오시아네이트(rhodamine-B-isothiocyanate, RITC) 및 로다민(rhodamine)으로 이루어진 군으로부터 선택되는 것이 바람직하나 이에 한정하지 않는다.The fluorescent material of step 2) is Cy3, Cy5, poly L-lysine-fluorescein isothiocyanate (FITC), rhodamine-B-isothiocyanate (rhodamine-B- It is preferably selected from the group consisting of isothiocyanate, RITC) and rhodamine, but is not limited thereto.
또한, 본 발명은 하기의 단계를 포함하는 산성화된 해수에 대한 노출 여부 확인 방법을 제공한다:In addition, the present invention provides a method for confirming exposure to acidified seawater comprising the following steps:
1) 산성화된 해수에 노출된 실험군인 큰수지맨드라미와 대조군인 큰수지맨드라미에서 각각 RNA를 분리하는 단계;1) separating RNA from the large resinous cockscomb, the experimental group and the large resinous cockscomb, the control group exposed to acidified seawater;
2) 단계 1)의 RNA를 주형으로 하고, 하기 각각의 유전자에 상보적이며 유전자 증폭이 가능한 프라이머 쌍을 사용하여 실시간 RT-PCR(Real-time reverse transcript polymerase chain reaction)을 수행하는 단계:2) Using the RNA of step 1) as a template, and performing a real-time reverse transcript polymerase chain reaction (RT-PCR) using a primer pair that is complementary to each of the following genes and capable of gene amplification:
서열번호 1로 기재되는 유전자(Acetyl-CoA hydrolase), 서열번호 2로 기재되는 유전자(L-Asparaginase), 서열번호 3으로 기재되는 유전자(Cadherin EGF LAG seven-pass G-type receptor), 서열번호 4로 기재되는 유전자(Calpain small subunit 1), 서열번호 5로 기재되는 유전자(DNA-directed RNA polymerase III subunit), 서열번호 6으로 기재되는 유전자(Dynactin subunit 1), 서열번호 7로 기재되는 유전자(FAD-dependent oxidoreductase), 서열번호 8로 기재되는 유전자(Ficolin), 서열번호 9로 기재되는 유전자(Myosin light polypeptide 6), 서열번호 10으로 기재되는 유전자(Phosphoenolpyruvate carboxykinase), 서열번호 11로 기재되는 유전자(Phosphoserine aminotransferase), 서열번호 12로 기재되는 유전자(polyketide synthase), 서열번호 13으로 기재되는 유전자(Protein phosphatase 1 regulatory subunit 12A), 서열번호 14로 기재되는 유전자(Pyrroline-5-carboxylate reductase), 서열번호 15로 기재되는 유전자(Transferrin receptor protein 2), 서열번호 16으로 기재되는 유전자(Alcohol dehydrogenase 1), 서열번호 17로 기재되는 유전자(Aquaporin TIP2-3), 서열번호 18로 기재되는 유전자(Deoxyribose-phosphate aldolase), 서열번호 19로 기재되는 유전자(Guanidinoacetate N-methyltransferase) 또는 서열번호 20으로 기재되는 유전자(Protein tyrosine phosphatase type IV A3); 및The gene shown in SEQ ID NO: 1 (Acetyl-CoA hydrolase), the gene shown in SEQ ID NO: 2 (L-Asparaginase), the gene shown in SEQ ID NO: 3 (Cadherin EGF LAG seven-pass G-type receptor), SEQ ID NO: 4 The gene described by (Calpain small subunit 1), the gene described by SEQ ID NO: 5 (DNA-directed RNA polymerase III subunit), the gene described by SEQ ID NO: 6 (Dynactin subunit 1), the gene described by SEQ ID NO: 7 (FAD -dependent oxidoreductase), the gene shown in SEQ ID NO: 8 (Ficolin), the gene shown in SEQ ID NO: 9 (Myosin light polypeptide 6), the gene shown in SEQ ID NO: 10 (Phosphoenolpyruvate carboxykinase), the gene shown in SEQ ID NO: 11 ( Phosphoserine aminotransferase), the gene shown in SEQ ID NO: 12 (polyketide synthase), the gene shown in SEQ ID NO: 13 (Protein phosphatase 1 regulatory subunit 12A), the gene shown in SEQ ID NO: 14 (Pyrroline-5-carboxylate reductase), SEQ ID NO The gene of 15 (Transferrin receptor protein 2), the gene of SEQ ID NO: 16 (Alcohol dehydrogenase 1), the gene of SEQ ID NO: 17 (Aquaporin TIP2-3), the gene of SEQ ID NO: 18 (Deoxyribose-phosphate aldolase), a gene represented by SEQ ID NO: 19 (Guanidinoacetate N-methyltransferase) or a gene represented by SEQ ID NO: 20 (Protein tyrosine phosphatase type IV A3); And
3) 단계 2)의 유전자 산물을 대조군과 비교하여 발현 정도를 확인하는 단계.3) Checking the level of expression by comparing the gene product of step 2) with a control.
상기 서열번호 1 내지 서열번호 15로 기재되는 유전자는 대조군과 비교하여, 발현이 증가하고, 서열번호 16 내지 서열번호 20으로 기재되는 유전자는 대조군과 비교하여 발현이 감소한다.The genes represented by SEQ ID NO: 1 to SEQ ID NO: 15 are compared with the control, the expression increases, and the genes represented by SEQ ID NO: 16 to SEQ ID NO: 20 are reduced in expression compared to the control.
또한, 본 발명은 본 발명에 따른 상기 마이크로어레이를 포함하는 산성화된 해수에 대한 노출 여부 확인용 키트를 제공한다.In addition, the present invention provides a kit for confirming exposure to acidified seawater comprising the microarray according to the present invention.
상기 산성화된 해수는 pH 6 내지 7.7인 것이 바람직하고, pH 6.5 내지 7.5인 것이 더욱 바람직하나 이에 한정하지 않는다.The acidified seawater is preferably pH 6 to 7.7, more preferably pH 6.5 to 7.5, but is not limited thereto.
또한, 상기 키트는 스트렙타비딘-알칼리 탈인화효소 접합물질(streptavidin-like phosphatase conjugate), 화학형광물질(chemifluorescent) 및 화학발광물질(chemiluminescent)로 이루어진 형광물질 군으로부터 선택되는 어느 하나를 추가적으로 포함하는 것이 바람직하나 이에 한정하지 않는다.In addition, the kit further comprises any one selected from the group of fluorescent substances consisting of streptavidin-like phosphatase conjugate, chemifluorescent and chemiluminescent. It is preferable but is not limited thereto.
또한, 상기 키트는 혼성화에 사용되는 완충용액, RNA로부터 cDNA를 합성하기 위한 역전사효소, dNTP 및 rNTP(사전 혼합형 또는 분리 공급형), 표식시약, 및 세척 완충용액으로 이루어진 반응시약 군으로부터 선택되는 어느 하나를 추가적으로 포함하는 것이 바람직하나 이에 한정하지 않는다.In addition, the kit is any selected from the group of reaction reagents consisting of a buffer solution used for hybridization, a reverse transcriptase for synthesizing cDNA from RNA, dNTP and rNTP (pre-mixed or separately supplied type), a labeling reagent, and a washing buffer solution. It is preferable to additionally include one, but is not limited thereto.
아울러, 본 발명은 하기 각각의 유전자에 상보적이고, 유전자를 증폭할 수 있는 프라이머 쌍을 포함하는 산성화된 해수에 대한 노출 여부 확인용 키트를 제공한다:In addition, the present invention provides a kit for confirming exposure to acidified seawater comprising a pair of primers that are complementary to each of the following genes and capable of amplifying the gene:
서열번호 1로 기재되는 유전자(Acetyl-CoA hydrolase), 서열번호 2로 기재되는 유전자(L-Asparaginase), 서열번호 3으로 기재되는 유전자(Cadherin EGF LAG seven-pass G-type receptor), 서열번호 4로 기재되는 유전자(Calpain small subunit 1), 서열번호 5로 기재되는 유전자(DNA-directed RNA polymerase III subunit), 서열번호 6으로 기재되는 유전자(Dynactin subunit 1), 서열번호 7로 기재되는 유전자(FAD-dependent oxidoreductase), 서열번호 8로 기재되는 유전자(Ficolin), 서열번호 9로 기재되는 유전자(Myosin light polypeptide 6), 서열번호 10으로 기재되는 유전자(Phosphoenolpyruvate carboxykinase), 서열번호 11로 기재되는 유전자(Phosphoserine aminotransferase), 서열번호 12로 기재되는 유전자(polyketide synthase), 서열번호 13으로 기재되는 유전자(Protein phosphatase 1 regulatory subunit 12A), 서열번호 14로 기재되는 유전자(Pyrroline-5-carboxylate reductase), 서열번호 15로 기재되는 유전자(Transferrin receptor protein 2), 서열번호 16으로 기재되는 유전자(Alcohol dehydrogenase 1), 서열번호 17로 기재되는 유전자(Aquaporin TIP2-3), 서열번호 18로 기재되는 유전자(Deoxyribose-phosphate aldolase), 서열번호 19로 기재되는 유전자(Guanidinoacetate N-methyltransferase) 또는 서열번호 20으로 기재되는 유전자(Protein tyrosine phosphatase type IV A3).The gene shown in SEQ ID NO: 1 (Acetyl-CoA hydrolase), the gene shown in SEQ ID NO: 2 (L-Asparaginase), the gene shown in SEQ ID NO: 3 (Cadherin EGF LAG seven-pass G-type receptor), SEQ ID NO: 4 The gene described by (Calpain small subunit 1), the gene described by SEQ ID NO: 5 (DNA-directed RNA polymerase III subunit), the gene described by SEQ ID NO: 6 (Dynactin subunit 1), the gene described by SEQ ID NO: 7 (FAD -dependent oxidoreductase), the gene shown in SEQ ID NO: 8 (Ficolin), the gene shown in SEQ ID NO: 9 (Myosin light polypeptide 6), the gene shown in SEQ ID NO: 10 (Phosphoenolpyruvate carboxykinase), the gene shown in SEQ ID NO: 11 ( Phosphoserine aminotransferase), the gene shown in SEQ ID NO: 12 (polyketide synthase), the gene shown in SEQ ID NO: 13 (Protein phosphatase 1 regulatory subunit 12A), the gene shown in SEQ ID NO: 14 (Pyrroline-5-carboxylate reductase), SEQ ID NO The gene of 15 (Transferrin receptor protein 2), the gene of SEQ ID NO: 16 (Alcohol dehydrogenase 1), the gene of SEQ ID NO: 17 (Aquaporin TIP2-3), the gene of SEQ ID NO: 18 (Deoxyribose-phosphate aldolase), a gene represented by SEQ ID NO: 19 (Guanidinoacetate N-methyltransferase) or a gene represented by SEQ ID NO: 20 (Protein tyrosine phosphatase type IV A3).
상기 프라이머는 서열번호 21 내지 서열번호 60으로 이루어진 군으로부터 선택되는 하나 이상인 것이 바람직하다.The primer is preferably at least one selected from the group consisting of SEQ ID NO: 21 to SEQ ID NO: 60.
상기 산성화된 해수는 pH 6 내지 7.7인 것이 바람직하고, pH 6.5 내지 7.5인 것이 더욱 바람직하나 이에 한정하지 않는다.The acidified seawater is preferably pH 6 to 7.7, more preferably pH 6.5 to 7.5, but is not limited thereto.
본 발명의 구체적인 실시예에서, 해수의 산성도 변화에 대응하는 큰수지맨드라미 유래의 유전자를 발굴하기 위하여, 큰수지맨드라미를 여러 pH의 해수에서 배양한 후, 상기 배양한 큰수지맨드라미 유래 cDNA를 합성하여 발현량이 변화하는 유전자들을 조사하였다. 구체적으로, pH 6.5, pH 7.0 및 pH 7.5에서 배양한 큰수지맨드라미의 조직에서 mRNA를 각각 분리한 후, 이를 주형으로 하여 cDNA를 합성하였다. 합성한 cDNA를 Cy3-CTP 및 Cy5-CTP로 형광 표지한 뒤 이를 이용하여 마이크로어레이를 제작하였다. 상기 제작한 마이크로어레이를 액손 진픽스 4000B 스캐너(Axon GenePix 4000B scanner, Axon Instrument, 미국)를 이용하여 스캔한 뒤 이를 분석하였다. 그 결과, 대조군을 기준으로 실험군에서 발현량이 증가하는 유전자 15종(표 1 참조), 감소하는 유전자 5종(표 2 참조)을 확인하였다. 또한, 실험군에서 2배 이상 차등 발현한 상기 유전자들 중 공통 유전자를 그룹화하였다(도 1 참조). 기후 변화는 해수의 산성도 변화를 유발하고, 이러한 환경의 변화에 따라 해양 생물은 생리 및 대사의 변화를 일으킨다. 그러므로 해양 생물인 큰수지맨드라미 유래 유전자 발현량의 변화를 확인함으로써 외부 환경 변화에 따른 스트레스 및 건강 상태를 확인할 수 있는 생체지표로 이용 가능하다. In a specific embodiment of the present invention, in order to discover a gene derived from a cockscomb in response to changes in the acidity of seawater, after culturing the cockscomb in seawater at various pHs, cDNA derived from the cultivated cockscomb is synthesized. Genes with varying expression levels were examined. Specifically, after each mRNA was isolated from the tissues of the cockscomb cultivated at pH 6.5, pH 7.0 and pH 7.5, cDNA was synthesized using this as a template. After the synthesized cDNA was fluorescently labeled with Cy3-CTP and Cy5-CTP, a microarray was prepared using the same. The prepared microarray was scanned using an Axon GenePix 4000B scanner (Axon Instrument, USA) and then analyzed. As a result, 15 types of genes with increasing expression levels (see Table 1) and 5 types of decreasing genes (see Table 2) were identified in the experimental group based on the control group. In addition, common genes were grouped among the genes that were differentially expressed more than two times in the experimental group (see FIG. 1). Climate change causes changes in the acidity of seawater, and changes in the environment cause changes in physiology and metabolism of marine life. Therefore, it can be used as a biomarker that can confirm the stress and health status according to changes in the external environment by checking the change in the expression level of the gene derived from a marine organism, the mandrel.
따라서, 상기 유전자들은 해수의 산성도 변화에 따른 산성화된 해수에 대한 노출 여부의 확인을 위한 마이크로어레이 및 키트로 유용하게 사용할 수 있다.Therefore, the genes can be usefully used as microarrays and kits for confirming exposure to acidified seawater according to changes in the acidity of seawater.
이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해서 한정되는 것은 아니다.However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following examples.
<실시예 1> 큰수지맨드라미(<Example 1> Large resin cockscomb ( Dendronephthya giganteaDendronephthya gigantea )의 배양 및 산성화된 해수에 노출) Culture and exposure to acidified seawater
<1-1> 큰수지맨드라미의 배양<1-1> Cultivation of large resin cockscomb
본 발명자들은 제주 연안 해역에서 큰수지맨드라미 시료를 채취하여 연구소에서 배양하였다.The inventors of the present inventors took a sample of a cockscomb snail from the coastal waters of Jeju and cultured it in a laboratory.
구체적으로, 제주 연안에서 채취한 큰수지맨드라미를 100, 10 및 1 ㎛ 세 종류의 필터를 거친 자연해수에 배양하였다. 이때, 수온은 수중 히터를 사용하여 24℃로 고정하여 1주 이상 순치시켰고, 광주기는 14:10으로 조절하였다.Specifically, the large resin cockscomb collected from the coast of Jeju was cultured in natural seawater that passed through three types of filters of 100, 10 and 1 µm. At this time, the water temperature was fixed at 24° C. using an underwater heater and purified for at least 1 week, and the photoperiod was adjusted to 14:10.
<1-2> 산성화된 해수에 노출<1-2> Exposure to acidified seawater
상기 실시예 <1-1>의 방법으로 배양된 큰수지맨드라미를 산성화된 해수에 노출시켰다.The large resinous cockscomb cultured by the method of Example <1-1> was exposed to acidified seawater.
구체적으로, 큰수지맨드라미를 세 군으로 나누어 pH 7.5, pH 7.0 및 pH 6.5의 해수에서 48시간 동안 배양하였고, 대조군은 자연해수(pH 8.0)에서 48시간 동안 배양하였다. 또한, 곤봉바다맨드라미과의 분홍바다맨드라미 유전자후보군을 산성화해수 노출 실험 후 마이크로어레이 실험을 통해 선별하였고, 이와 큰수지맨드라미 유전자 염기서열을 비교하여 산성화노출대응 유전자 후보군을 선별하였다.Specifically, large resinous mandrel was divided into three groups and cultured in seawater at pH 7.5, pH 7.0, and pH 6.5 for 48 hours, and the control group was cultured in natural seawater (pH 8.0) for 48 hours. In addition, the gene candidate group for the pink sea squirrels of the family Blackfish family was selected through a microarray experiment after exposure to acidified seawater, and the gene sequences corresponding to the acidification exposure were compared with the gene sequences of the large resinous mandrel.
<실시예 2> 산성화에 의한 큰수지맨드라미의 유전자 변화 측정<Example 2> Measurement of genetic changes in the resinous cockscomb by acidification
<2-1> 큰수지맨드라미에서 RNA 분리<2-1> RNA isolation from large resinous cockscomb
상기 실시예 <1-2>의 방법으로 산성화된 해수에 노출된 큰수지맨드라미의 유전자 변화를 측정하기 위하여, 본 발명자들에 의해 개발된 방법에 따라 RNA를 분리하였다. RNA was isolated according to the method developed by the present inventors in order to measure the genetic change of the cockscomb exposed to the acidified seawater by the method of Example <1-2>.
구체적으로, 상기 실험군 및 대조군의 큰수지맨드라미 조직을 막자사발에서 액체질소를 이용하여 분말로 만들고, 용해(lysis) 용액[35 mM EDTA, 0.7 M LiCl, 7% SDS, 200 mM Tris-Cl(pH 9.0)] 700 ㎕를 첨가하여 균질화하였다. 상기 균질화된 시료에 동량의 페놀 용액을 첨가하고 잘 섞은 후, 10분간 원심분리하였고, 상층액을 취해 새 튜브로 옮기고 총 용량의 1/3의 8 M 염화리튬(LiCl)을 첨가하여 이를 잘 섞은 후에 4℃에서 2시간 이상 방치하였다. 상기 방치한 시료를 약 30분간 원심분리하여 상등액을 제거하고 침전물을 취하여 300 ㎕의 DEPC-처리수에 녹이고, 1/10 용량의 3 M 아세트산나트륨(pH 5.2)과 동량의 이소프로판올(isopropanol)을 첨가하여 약 30분간 원심분리 후 상등액을 제거하고 침전물을 취하였다. 상기 침전물에 70% 에탄올 용액 50 ㎕를 넣어 5분간 원심분리한 뒤, 에탄올 용액을 제거하고 침전된 RNA를 건조시켜, 건조된 RNA를 적당량의 DEPC-처리수에 용해하였다. Specifically, the large resin cockscomb tissues of the experimental group and the control group were made into powder using liquid nitrogen in a mortar, and a lysis solution [35 mM EDTA, 0.7 M LiCl, 7% SDS, 200 mM Tris-Cl (pH 9.0)] 700 µl was added and homogenized. An equal amount of phenol solution was added to the homogenized sample, mixed well, centrifuged for 10 minutes, the supernatant was taken and transferred to a new tube, and 1/3 of the total volume of 8 M lithium chloride (LiCl) was added and mixed well. After that, it was left at 4° C. for 2 hours or more. The left sample was centrifuged for about 30 minutes to remove the supernatant, and the precipitate was taken and dissolved in 300 µl of DEPC-treated water, and 1/10 volume of 3 M sodium acetate (pH 5.2) and the same amount of isopropanol were added. Then, after centrifugation for about 30 minutes, the supernatant was removed and the precipitate was taken. 50 µl of a 70% ethanol solution was added to the precipitate and centrifuged for 5 minutes, the ethanol solution was removed, and the precipitated RNA was dried, and the dried RNA was dissolved in an appropriate amount of DEPC-treated water.
<2-2> cDNA의 합성<2-2> Synthesis of cDNA
상기 실시예 <2-1>의 방법으로 분리한 큰수지맨드라미 RNA에서 cDNA를 합성하였다.CDNA was synthesized from the large resinous cockscomb RNA isolated by the method of Example <2-1>.
구체적으로, 산성화된 해수에 대응하는 특이적인 유전자의 분리를 위하여 Tri-reagent(Molecular Research Center Inc., 미국)를 사용하였다. 상기 추출된 전체 mRNA(3.0 ㎍)를 주형으로 하고, 역전사 효소를 사용하여 대조군과 실험군의 cDNA를 합성하였다.Specifically, Tri-reagent (Molecular Research Center Inc., USA) was used to isolate a specific gene corresponding to acidified seawater. The extracted total mRNA (3.0 μg) was used as a template, and cDNA of the control group and the experimental group was synthesized using reverse transcriptase.
<2-3> cDNA 시퀀싱(sequencing)<2-3> cDNA sequencing
상기 실시예 <2-2>에서 합성된 cDNA를 next-generation sequencing 테크닉을 이용하여 직접적으로 염기서열 시퀀싱을 수행하였고, 얻어진 염기서열부분은 대조군 genome을 이용하여 발현체의 전체 지도를 얻기 위해 align 하였다.The cDNA synthesized in Example <2-2> was directly subjected to nucleotide sequence sequencing using the next-generation sequencing technique, and the obtained nucleotide sequence portion was aligned to obtain a full map of the expression body using the control genome. .
구체적으로, poly(A) RNA를 얻고, oligo(dT) 또는 random hexamer를 이용하여 첫번째 가닥을 합성하였다. 그런 다음, 상기 첫번째 가닥에서 상보적인 두번째 가닥을 얻고 cDNA 합성을 완성하였다. DNA 이중가닥을 부분적으로 절단하여, 3’ 말단에 deoxyadenine 염기를 덧붙이고, illumina 어댑터를 이용하여 접합하였고, PCR 방법으로 증폭한 다음 증폭된 산물을 사이즈별로 선별하고, 염기서열분석을 수행하였다. Specifically, poly(A) RNA was obtained, and the first strand was synthesized using oligo(dT) or random hexamer. Then, a second strand complementary from the first strand was obtained, and cDNA synthesis was completed. The DNA double strand was partially cut, deoxyadenine base was added to the 3'end, conjugated using an illumina adapter, amplified by PCR, and then the amplified products were selected for each size, followed by sequencing.
<2-4> 혼성화(Hybridization) 및 스캐닝(scanning)<2-4> Hybridization and scanning
본 발명자들은 큰수지맨드라미 cDNA 마이크로어레이를 제조하고 이를 혼성화시켜 스캐닝하였다.The present inventors prepared a large resin cockscomb cDNA microarray, hybridized and scanned.
구체적으로, 1-2 ㎍의 cDNA를 각각 실험군과 대조군에서 준비하고, 0.1 M 중탄산나트륨 완충용액(sodium bicarbonate buffer, pH 8.7)에 녹여, 40 ㎚의 Cy3 및 Cy5 형광물질과 혼합하여 암소에 90분간 방치하였다. 90분 후에 4 M 하이드록실아민(Hydroxylamine) 15 ㎕를 첨가하고 15분간 암소에 방치하였다. 형광물질이 라벨링된 큰수지맨드라미의 cDNA 시료를 PCR 정제 키트(PCR purification kit, Qiagen, 독일)를 사용하여 정제하고, 증류수로 용출하였다. 정제된 형광표지-cDNA 시료를 혼성화 완충액(hybridization buffer)[3x SSC, 0.3% SDS, 50% 포름아미드(formamide), 20 ㎍ Cot-1 DNA, 20 ㎍ yeast tRNA]에 첨가한 후, microcon YM-30으로 농축하여 혼성화 혼합물을 만들었다. 상기 혼성화 혼합물을 95℃로 3분 동안 가열하여 변성시키고, 12,000 g에서 30초간 원심분리하여 가열된 혼성화 화합물의 온도를 떨어뜨렸다. 제조된 큰수지맨드라미 cDNA 마이크로어레이(microarray)에 커버슬립(coverslip)을 덮고, 변성시킨 혼성화 혼합물을 파이펫팅(pipetting)하였다. 마이크로어레이를 GT-Hyb 챔버(Chamber)에 넣고 65℃에서 16시간 동안 반응시켰다. 혼성화가 끝난 후, 챔버에서 마이크로어레이를 꺼내어 세척과정을 수행하고, 마이크로어레이를 회전시켜 건조한 후 스캐닝(scanning)할 때까지 암실에서 보관하였다. 실험이 완료된 큰수지맨드라미 마이크로어레이를 액손 진픽스 4000B 스캐너(Axon GenePix 4000B scanner, Axon Instrument, 미국)를 사용하여 스캔하였다. 진픽스 프로 6.0 프로그램(GenePix Pro 6.0 program)에서, 스캔 이미지로부터 각 점을 그리딩 파일(gridding file)을 이용하여 그리딩하고, 정량화하여 각 점의 Cy5/Cy3 강도 및 비율 등의 분석 값이 포함된 GPR 파일(GPR file)을 얻었다.Specifically, 1-2 μg of cDNA was prepared in the experimental group and the control group, dissolved in 0.1 M sodium bicarbonate buffer (pH 8.7), mixed with 40 nm of Cy3 and Cy5 fluorescent materials, and placed in the dark for 90 minutes. Left unattended. After 90 minutes, 15 µl of 4 M hydroxylamine was added and left in the dark for 15 minutes. The fluorescent substance-labeled cDNA sample of the cockscomb was purified using a PCR purification kit (Qiagen, Germany), and eluted with distilled water. After adding the purified fluorescent-labeled-cDNA sample to a hybridization buffer [3x SSC, 0.3% SDS, 50% formamide, 20 µg Cot-1 DNA, 20 µg yeast tRNA], microcon YM- Concentrated to 30 to make a hybridization mixture. The hybridization mixture was denatured by heating at 95° C. for 3 minutes, and centrifuged at 12,000 g for 30 seconds to reduce the temperature of the heated hybridization compound. Coverslip was covered on the prepared large resin mandrel cDNA microarray, and the denatured hybridization mixture was pipetted. The microarray was placed in a GT-Hyb chamber and reacted at 65° C. for 16 hours. After the hybridization was completed, the microarray was removed from the chamber to perform a washing process, and the microarray was rotated and dried, and then stored in a dark room until scanning. The large resin mandrel microarray of which the experiment was completed was scanned using an Axon GenePix 4000B scanner (Axon Instrument, USA). In the GenePix Pro 6.0 program, each point from the scanned image is gridd using a gridding file, quantified, and analyzed values such as Cy5/Cy3 intensity and ratio of each point are included. Obtained the GPR file (GPR file).
<2-4> 마이크로어레이 자료 분석<2-4> Microarray data analysis
진픽스 프로 6.0 프로그램에서 얻어진 GPR 파일로부터, 분석 프로그램인 진스프링 7.3.1(GeneSpring 7.3.1, Agilent Technologies, 미국)을 이용하여 아래와 같이 분석을 수행하였다. 표준화(normalization)는 LOWESS(locally weighted regression scatterplot smoothing)를 이용하여 수행하였고, 신뢰할 수 있는 유전자(reliable gene)는 중앙값의 합이 배경(background)보다 낮거나 각 화소(pixel) 값의 표준편차가 유의하지 않은 점을 플래그 아웃(flag-out)함으로써 얻었다. 또한, 유의한 유전자(Significant genes)는 평준화된 비율(normalized ratio) 값이 2 배 이상 차이를 보이는 점을 선별하였다. From the GPR file obtained in the GenePix Pro 6.0 program, analysis was performed as follows using GeneSpring 7.3.1 (GeneSpring 7.3.1, Agilent Technologies, USA), an analysis program. Normalization was performed using LOWESS (locally weighted regression scatterplot smoothing), and for reliable genes, the sum of the median values was lower than the background or the standard deviation of each pixel value was significant. The point that was not made was obtained by flag-out. In addition, significant genes were selected for points that showed a difference of 2 times or more in normalized ratio values.
그 결과, 표 1 및 표 2에 나타난 바와 같이, 대조군과 비교하여 산성화 실험군(pH 6.5, 7.0, 7.5)에서 발현량이 2배 이상 유의하게 증가한 유전자 15종(표 1) 및 감소한 유전자 5종(표 2)을 발굴하여 총 20종의 유전자를 서열번호 1 내지 20으로 기재하였다. 아울러, 도 1에 나타난 바와 같이, 실험군에서 2배 이상 차등 발현한 상기 유전자들 중 공통 유전자를 그룹화하였다(도 1).As a result, as shown in Tables 1 and 2, 15 genes (Table 1) and 5 reduced genes (Table 1) significantly increased the expression level in the acidification experimental group (pH 6.5, 7.0, 7.5) compared to the control group (Table 1). 2) was excavated, and a total of 20 genes were described in SEQ ID NOs: 1 to 20. In addition, as shown in Fig. 1, a common gene among the genes differentially expressed by two or more times in the experimental group was grouped (Fig. 1).
R-CTTAAGCTGGCAGACTTTTT (서열번호 22)F-AGATGAAGCATAACCCTCAA (SEQ ID NO: 21)
R-CTTAAGCTGGCAGACTTTTT (SEQ ID NO: 22)
R-CTTTCGGAAATCTTCATCAG (서열번호 24)F-AAACAAGCCACTCTGAAAGA (SEQ ID NO: 23)
R-CTTTCGGAAATCTTCATCAG (SEQ ID NO: 24)
R-CGTATTCTGGTACGCATCTT (서열번호 26)F-AGTCACAGCTTGAAACCACT (SEQ ID NO: 25)
R-CGTATTCTGGTACGCATCTT (SEQ ID NO: 26)
R-TTGTTGGAGAAGCAGTAGGT (서열번호 28)F-CAGAGGAATGTTTCTTCGAG (SEQ ID NO: 27)
R-TTGTTGGAGAAGCAGTAGGT (SEQ ID NO: 28)
R-CCATAGACCAGCCAGTTTAG (서열번호 30)F-ACGACAAGGACTACAGCATT (SEQ ID NO: 29)
R-CCATAGACCAGCCAGTTTAG (SEQ ID NO: 30)
R-TGAGATTTTTGTAGGGATGC (서열번호 32)F-AACAAGAGTGCGTTGAAGTT (SEQ ID NO: 31)
R-TGAGATTTTTGTAGGGATGC (SEQ ID NO: 32)
R-CCGTGGTTGAGTGAGTAAGT (서열번호 34)F-CGGACTACTTCAAGACGAAC (SEQ ID NO: 33)
R-CCGTGGTTGAGTGAGTAAGT (SEQ ID NO: 34)
R-TGGTGGAGGAGTTAGAAGAA (서열번호 36)F-AAGAAAGGAAAGCCAGAACT (SEQ ID NO: 35)
R-TGGTGGAGGAGTTAGAAGAA (SEQ ID NO: 36)
R-ACTTTTCCACAACAGCAACT (서열번호 38)F- CGTTTCTTACAGCTCGTTCT (SEQ ID NO: 37)
R-ACTTTTCCACAACAGCAACT (SEQ ID NO: 38)
R-CTCTTGTGGAACTCCAGATT (서열번호 40)F-CTACTCCACTTTCGAGTCGT (SEQ ID NO: 39)
R-CTCTTGTGGAACTCCAGATT (SEQ ID NO: 40)
R-GTTATTGGGTTGATCAGGAA (서열번호 42)F-ACAGTTCCCTCAATGATTTC (SEQ ID NO: 41)
R-GTTATTGGGTTGATCAGGAA (SEQ ID NO: 42)
R-TTCCCTCAGAGTGTCTGTTC (서열번호 44)F-ATCACTGACCCTCAATGTTC (SEQ ID NO: 43)
R-TTCCCTCAGAGTGTCTGTTC (SEQ ID NO: 44)
R-AGATCACCTTGCACTGATTC (서열번호 46)F-CTGAGTTCCAAGACTCCAAG (SEQ ID NO: 45)
R-AGATCACCTTGCACTGATTC (SEQ ID NO: 46)
R-CTCCTTCTCCTTGATCTCCT (서열번호 48)F-ACACCAGGTACAAGATGCTC (SEQ ID NO: 47)
R-CTCCTTCTCCTTGATCTCCT (SEQ ID NO: 48)
R-CGCAAATTTCTTTCTGTCTT (서열번호 50)F-AATATCTTGCATTGGGATTG (SEQ ID NO: 49)
R-CGCAAATTTCTTTCTGTCTT (SEQ ID NO: 50)
R-CATCTTCATTCAACCCAAAT (서열번호 52)F-ACACAGCAGAAACAAGAGGT (SEQ ID NO: 51)
R-CATCTTCATTCAACCCAAAT (SEQ ID NO: 52)
R-AAGTCTCCAAATGTCTCCAA (서열번호 54)F-AATACCAGTCAGTGGTCAGG (SEQ ID NO: 53)
R-AAGTCTCCAAATGTCTCCAA (SEQ ID NO: 54)
R-GAAGTCCACCCTTTCAGTG (서열번호 56)F-ATCAAAGCGCAGGAGAAG (SEQ ID NO: 55)
R-GAAGTCCACCCTTTCAGTG (SEQ ID NO: 56)
R-GTTGTCTGAAATCGGAGTTG (서열번호 58)F-TTTAGCCACTTCAGGACAAT (SEQ ID NO: 57)
R-GTTGTCTGAAATCGGAGTTG (SEQ ID NO: 58)
R-GGCACTGCTACTGAAGATGT (서열번호 60)F-CCTCGAACACTGAAGGACTA (SEQ ID NO: 59)
R-GGCACTGCTACTGAAGATGT (SEQ ID NO: 60)
<110> Office of Reseach/Ewha University-Industry Collaboration Foundation <120> Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same <130> 2015P-06-002 <150> KR 10-2015-0121637 <151> 2015-08-28 <160> 60 <170> KopatentIn 2.0 <210> 1 <211> 273 <212> DNA <213> Dendronephthya gigantea <400> 1 ccaatcagat cgctccggcg gcagatgaag cataaccctc aatgcatcgg catgtccgca 60 cagctgcaga gcaagaaaac ttctggagcg acccaagcgg aaagagggtc acgcatcagg 120 tcgtctcacc atgcagagct tctcggcaca tcggccaatc aggaaaacaa ggcacaaagc 180 caatgcttgc aaaaagtctg ccagcttaag catgcaagcg ccagcaagag ctgggtggag 240 tcacgcgcac catcaaagta cagggcgctc tga 273 <210> 2 <211> 478 <212> DNA <213> Dendronephthya gigantea <400> 2 cccaaccccg atattccggt tggcaaggtg ctgggaaata ttgccagcag aggcgtcatg 60 ttcgcgatct gtctcactct ggacaacaga gaccacggat cactgaccct caatgttctc 120 cagggccagc agcaggagca caggaacatg ccggtggatg acgctatgtc attcatctct 180 aaacagtttc ccagcctcgt gggcggagga ggaggtggga actctgtgat atctcgggac 240 gggtcagcac tgccgggccc ctcccacacc ggccatcctc cagacatcag caagatactc 300 agcttcctca cagacgacag acctctctcc atcatggagt atgacaagat gattaaatac 360 ctggtcacca agagaacaga cactctgagg gaagagtacg gagacagcat cccagcccac 420 ctgcagcatc caccagtggg gcctcaccag gatccagcca ccaaggccaa gcaggaag 478 <210> 3 <211> 306 <212> DNA <213> Dendronephthya gigantea <400> 3 gggtgcctgc tggccgtttt gggctgcctc tccctcctgg cgggggcaca cggctacttt 60 atcaccgtgg acgcccatgc agaggaatgt ttcttcgaga aggtgacggc gggtacaaaa 120 ttaggcctgg catttgaggt tgctgaggga ggcttccttg acatagacat caagatctac 180 aaccctgaga tgaagaccat ccatgagggc gagcgcgagt ccaacgggcg gtacaccttc 240 cctgccagca tggacggcgt ctacacctac tgcttctcca acaagatgtc caccatgacg 300 cccaag 306 <210> 4 <211> 369 <212> DNA <213> Dendronephthya gigantea <400> 4 cttaaaattg acgacaagga ctacagcatt accttttcac tttatttcaa tgttcaatgg 60 tccgagccac gtttgaattt gtcccaagag tttttcaaca gtgaaaacat cactactgat 120 gagcagctgg tgccagtgaa tctggagctc attcatgacc tttgggtgcc aaacatttac 180 atatacaacc tgaaatcctt caaagtcatt gatgtcctct ctaaactggc tggtctatgg 240 attaacaaca agaaggaaat ctattatagc caagccactc acatcacctt catttgtcca 300 atgcttttcg actcgtttcc tctggatact caagtctgca agttccaagt tggcagctat 360 tcttacgac 369 <210> 5 <211> 366 <212> DNA <213> Dendronephthya gigantea <400> 5 aggtacaatg cccgcgggtt cgacatcaac cgcaacttcc cggactactt caagacgaac 60 aacaagcgat ctcagccgga gactgaggcg gtgaaggagt ggctgtccaa gatccagttc 120 gtcttgtcgg gcaacatcca cggcggcgcc ctggtggcct cctacccgtt cgacaacacg 180 ccaagctcca tcttcagctc ggtcctctcg tccccctcgc tcaccccgga cgacgacacc 240 ttcaaacacc tggccacaac ttactcactc aaccacggac gcatgtatct tggggacccc 300 tgcaaggttg gcgcgccaca gttcggaaac gggacgacga acggagcggc gtggtacccg 360 ctgact 366 <210> 6 <211> 423 <212> DNA <213> Dendronephthya gigantea <400> 6 atgtcaaagc gtggacgcgg tggtaaagga ggtggaaagt tccacatctc cctcgccctc 60 ccagttgctg ccgttatgaa ctgcgctgat aacactggcg ccaagtctct ctacgtcatc 120 gctgttgccg gcatcaaagg tcgattgaac cgactcccag ccgccggatc aggagatctc 180 gtcatggcct ccgtgaagaa aggaaagcca gaactccgaa agaaggtcca ccccgccgtc 240 gttgtccgac agtccaaggc tttccgaaga cgagacggta ccttcctgta cttcgaagat 300 aacgccggtg ttattgtcaa caacaaggga gaaatgaagg gctctgccgt cactggaccc 360 gtcgcgaagg aatgcgctga tctctggccc cgtatttctt ctaactcctc caccattgcc 420 taa 423 <210> 7 <211> 987 <212> DNA <213> Dendronephthya gigantea <400> 7 cttgtggctc tgacatgtct ctcacggtgg ctgtactggc aagtccacgc gatgtcacta 60 ggttgtgcgg tgggattgca aaggctgcgc tacacatgtg aagctatcgg ggccgagggc 120 tcaatccacg agtccatcga acagttgccg accttcgtgg ctggaccagc ccgacacggc 180 catggcctgg cgttggataa agacatgggc gtttcttaca gctcgttctt gggtgaggca 240 cctccgttga ggccacggca tgcggaaact gcgttcgacc agatgaccat ctacttcaag 300 ccacgcaagg aagcgctggt cgcccaggaa atgaaatgcg acgacgacat ggcttcttgc 360 tctcgcgaat gcgagcgctt atacggagac caagtttcga cgatgatgga accctgcaaa 420 gttgctgttg tggaaaagta tgctggtggc ggaggcggca gctgctttcc tgccaaggcc 480 gccgtctgga accagaacgt tggtcgcatc cgtatctccg acgtgcgcat cggtgacgag 540 cttgagactg gcagcggcaa ctcgtcgccg gttgtcgccc tactgcacgc tgatccggag 600 gcctgggtcg actacgtccg catctcgcat tctgccgggg aagacttgta catttcgcct 660 gcgcatatcc tgcagcttct ttctcgcagt caagggccca cctgggtgcc cgccagcctt 720 gttcgcccag gcgataactt gaagtcctca gcagggccga ccttggtgaa cgctgtggac 780 accgtgcggc tgaaaggcgc atacgcgccc ctgactgact cgggccagct gcttgtggag 840 ggcgtgctct gctcctgtta cgctcccccg cagagctttg agctctcaca caatatctgc 900 cactgggcca tgtttccgct gcgcgtcttt cacgctttga ggggtgtggt ggcgtccgca 960 gctcccgcac gcgttttcgt caccgca 987 <210> 8 <211> 1113 <212> DNA <213> Dendronephthya gigantea <400> 8 cccgtcctga tggaaaatct tcccacggac gcctgcctgc tcgttttcag gatcctcagt 60 gttctcggca tggcgatgcc caagattgcc agcattttcg tcctgggcat cgggactgcg 120 agaacttctc ggttgccaaa tggcgtcgcc gattacacgc taggcctcgt gcagctgcac 180 gcggagaaga ccgacggggc cctggctact gcgttccgca gtgaagatgc gccacagccc 240 gtggacgccg caagcagccc gattttggcg accgcggagg cggacaccaa atcgcagtgg 300 tgtttggctt cacaggcgaa ggcggtggag atgcatcagg aggtacagct gctcctggcg 360 cgaaatcgaa gcccgaacag taccgacgaa agccttatcc acatgaccta ctcgcagctc 420 caggaaggcc cgcagtctcg tatccttgac gaagagcaga tgcttgtgga tatggagtca 480 acggagttca ccgagaagtg cgatttgggc aacgaccttt ggttgctgaa ggacgaggtg 540 aatttcgctt cttgccctcc tgggaagtac ctccgtcatc agaccgcgga ggaccacaag 600 cgcaaacgga tgcgcctgcg gaaggccctg tgccagttga agctgcgcgg cgcacggcca 660 tggaacaagc gcgagcggtc gttcttcagg gcgcggggct actccacttt cgagtcgtcg 720 gtgtggccga agttgcccgg gtgcgcgtcc gtggtcgacg aaagctggta cagtgggcag 780 cacaagagct gggacatgcc cgccttccgc ccggacagcg cgcctccaca catgggcaag 840 ctggtccgcg ggaatctgga gttccacaag agctggaagg tggcatccac tggcttcccc 900 gactacttgc agtgcgagta tgacggcacc tggaaagagg ttccagtcac caaccccgtt 960 gggcagggct ccagtgtggt cttcgccgtg cgggagccta tcgggcgttg gatctccgct 1020 gtgggcgagc tgttggagcg atccatcaac cattggtgcc caaacgggcc ttgcagtaag 1080 caggacggtt tcgacctgat gacgacaatg gat 1113 <210> 9 <211> 372 <212> DNA <213> Dendronephthya gigantea <400> 9 ccacggattg ccctgttcgc tgtttgctcg gcgctcgtgg ttcagctggg catgtcgagc 60 tctcttcgaa cgcaacctgc agtgaaggtt gtggacgccc accagtgcaa agtgatgtgc 120 cagcgctttg cgtaccgctt catgggccct gagttccaag actccaagag ccctacggac 180 tgctccaaga agtgcgaggc agtttacggg ggcgcttcgc caacgagcgc cctggaggtc 240 aaggctgaag tcaccgaccg caaggctgaa gtcaagcaac gcggtgtgga cgtgcatgat 300 gcgaatcagt gcaaggtgat ctgccagcgc ttcggcatgc cgatgcttgg tccggatttt 360 gaaggtatca ag 372 <210> 10 <211> 384 <212> DNA <213> Dendronephthya gigantea <400> 10 ggaggcgggt catgggagga ggactgggag gggatggtga ccagctccgt ggaggcggac 60 accccctgct tcatcctgtt cagactggat gagaaggaca gcgggggatg cttcctgtgg 120 acccttctct cctggtcacc tgacaccagc cacaccaggt acaagatgct ctacgcctcg 180 accaaggcca ccttcaagaa gcagttcggg gcggggcaga tcaaggacga atactacgcc 240 aacctgaagg aggaggtcac cctggcggga tacaagaagc acctgagtgt cgaggcggca 300 cctggccccc tgaccagggc ggaggaggag gccaaggaga tcaaggagaa ggagtcccgg 360 gtcgagatta gcgtggactc caag 384 <210> 11 <211> 341 <212> DNA <213> Dendronephthya gigantea <400> 11 gttaatactt ctcaaggagt accaatatct tgcattggga ttgcacaagt aaaaattgaa 60 ggaaagaatc aagatatgct tgctaatgca tgcatgcagt ttcttggaaa atcagaacat 120 gaaatccaac agattgcact tgaaactctt gaaggccatc aaagagcaat tatgggcaat 180 atgacagtgg aagaaattta ccaagacaga aagaaatttg cgaaagaggt gtttgaagtt 240 gcatcgtctg atcttctgca aatgggaata tatgttgtat catacacact gaaagatgtg 300 acagacaacg aaggatacct tgcagccctt ggaaaaaccc g 341 <210> 12 <211> 372 <212> DNA <213> Dendronephthya gigantea <400> 12 atggccatgg caatgcagaa aaaattgaat gttcgattac ccccagaagt caatcgcata 60 ctttacgtcc ggaatctacc atacaagatt acatcagaag aaatgtatga tatattcggg 120 aaatatggag ccatacgaca aatccgtgtt ggaaacacag cagaaacaag aggtacagct 180 tttgtggtat atgaagatat ttttgatgca aagaatgctt gtgaccacct ttcgggtttt 240 aatgtttgca accgctattt agtagttctt tactatcagc ccacaaaagc cttcaagaag 300 gtagacacag ataaaaagaa agaagaaatc gagaaaatga aggccaaatt tgggttgaat 360 gaagatgaat aa 372 <210> 13 <211> 405 <212> DNA <213> Dendronephthya gigantea <400> 13 atgctgcgaa ctgctgttct cgcatttatc tgcagttgct tggtccagac gacgtacggg 60 gggaccgtcg aagcgaagtt cctttcccgc ggccaacgca gtgaagacga ggtgaagcac 120 gacaccgcgc gccaatacca gtcagtggtc aggcttcacg acaatgctga gaggaggctg 180 accagaatcg tcgtcgagtt gttgggtgtc gacgagtctg aggtcaagcg tgatgcgagc 240 ttcgtggaag accttggcgc tgatgagctg gacacggtgg aactcgtcgt ggcagtgggg 300 gaggagtttg gcttccaaat tccagatgat gacgcggagt cgttggagac atttggagac 360 ttggtcgact acgtgaataa ttacgaacac aacacagtcc gttga 405 <210> 14 <211> 270 <212> DNA <213> Dendronephthya gigantea <400> 14 ggaggactca gccgggaaga tatcatatct ttagccactt caggacaatc gcttggtggc 60 gacatgagtg agctggacga tgctggaact tactttgatc tgggattgcg caaagtgaca 120 atgccgggaa cttatcaata catgtgcacc cggaacaaca acttctcgaa ccggagtcag 180 aaaggaaagc tggtggtcac caactccgat ttcagacaac agagcgttga ccaaaatggc 240 ggcgtcgtgg tcgtctccga cgtcgagtaa 270 <210> 15 <211> 290 <212> DNA <213> Dendronephthya gigantea <400> 15 atggaacgca gcgagagcaa ccagttggag gctgcacctg tcctttgccg ggcgggctgc 60 ggcttctttg gctcctcgaa cactgaagga ctatgttcaa aatgttacaa agaccaattg 120 aagaaaaagc agcaaccccc aaatcaaagc aataatactt cttcatccac tgcaacagca 180 cagccaacag ttccttctat cacaccgcaa ataagcgaaa gctcatccac atctcccacc 240 acatcctcta caactgcatc ggttgccaca tcttcagtag cagtgccaag 290 <210> 16 <211> 426 <212> DNA <213> Dendronephthya gigantea <400> 16 tggagttatt ataattaccc gttggttgtc ggtatgtcta catctctact gaaaaagagt 60 ttagaactct ttgatgaaga gggaaagacg gacagaacca aatcaaacaa aggacgccct 120 gctcgtacca ttgtgaagaa taaacaagcc actctgaaag ataggaaagt gaagtcagca 180 ttagaatcat acacgaagaa gaaccgtaag gaagacagga cacttggaaa tttggctgtt 240 cttgaaaaga tatcgctgaa aaactctgtt agccaagact cggccaacaa aattctgaaa 300 tatcatctgc agaagtctcg gaaagttgtg gaagctgagc caaagaaaga ggccgagaag 360 tctgtgttta ctgatgaaga tttccgaaag ttccagcagg aatattttgt caaaggaaag 420 atataa 426 <210> 17 <211> 1107 <212> DNA <213> Dendronephthya gigantea <400> 17 atgaacggct acggtgtgac cgccgagcag cggtctttgt tgaacagaaa cagtcacagc 60 ttgaaaccac tatccgctgc cggccacctc aacatctggc aggtggtcgt gcaagccatc 120 gtaccgatcc tcatcttctt gttcgcgctc gggatcctga caatcacgcc acgctattcc 180 agccctgact ccgtgtccac gctctgcgcc attggccttt tcggcgcttt gctgtacccc 240 acgatctcct tcctgctggt ggtcgtaggg gttgtgtcaa cgaagatgcg taccagaata 300 cgctggcccc cagtcgtctt ctggtcatgg tggccgtgct ggaagttctc cgcctgctgt 360 ctcgcggcgt ttctgggcat cagcatcggc aactacatct ggtacaagca gctcctgccc 420 taccaccaga tggaccgcct ccaggcatat gacaatgtca acccttccga ggtgaccggc 480 actcggatgc aggacgccgg ggtcgtcgag ttcaagtcca ccaacggtgt ggatcgcaca 540 cggactgggt gcatcaagaa tggtgccacc tactgcatcg cccctgtcgt gctgaatggc 600 aaggtggagc caggtgtggc accaggggag acgtacgact tcttcatggc agggaaggac 660 tgctgcagct gccccggcga gttccgttgt ggcgactgga acatgccgtc gccaactcta 720 ggtgggctgc gaatcgtgga ctcgggcgat cgcgccttct acaggctcgc cgcggagcag 780 tggggcagcc tgtacggcaa gcccgtggag cacccgctgt tcttcacgtg gtcaacggat 840 ccggtggaga cctggcacga aatgcgcacg acagcgacac gtgaggcctg tctggccatg 900 ctcgtggtcc catttttctt gatcacgtac gccttcctcg ctaatggtct gttgggcatc 960 ctccacgatc ggggctacgc ggcgccccaa gaggctccga tgccgcctgc gggcatgggg 1020 cgcgacatga ctgcgaagtt cctgccccag atgcacaagt acacggcaga ctcgcaggct 1080 cagcaggccg gcgcgaccgt gatctga 1107 <210> 18 <211> 1821 <212> DNA <213> Dendronephthya gigantea <400> 18 atgtcggcaa cccctgcgcc gatcgtggag ggctgcccgg cgttctcgga aggatgcccg 60 ttctccaagc tcgacatcgc gctgctgcca caggtcatcc aggaggtgcc gaaggagatc 120 acggagaagt gccctgcatt tgagaagggc tgccctttca aggaggacga ctccgtggag 180 gcgctgtaca agcgcatgtc ggaaatgccg gcctcgcacc gcatgggcca ggagagcccc 240 tcacccgcgg cacagaaggt ggaggccacg ctgcgcctgg tgcacgagca gtcgaaggcc 300 ttgaagtcca ggttgaaagc cacctgcccc gtcttcgcca catcctgccc tttcaagaca 360 gtaacctcgg acggccagcc cttggtgcac gagttggacg acgtcgtcga gaggtgggga 420 ctgaaggaga tcgaggaggt gatcacctct cctgtgtcag cgaacgccga gccgctctcc 480 aagaccatga aagctgggac caggtctgtg caccgcgctg ccgagaacgt ccgatttgtc 540 cgcgacttcc tcaagggcac ggtgcccaaa gacagctacg tggagctgtt gcgtgcgttg 600 taccatgtct acgacgccct ggagcgagct atccgaggcc tgccagagca tttgcagcac 660 tgcgacttca acaagttgtg gcgcaccgag accttgcttg ccgacctgtg ccactacacc 720 aacagcgcct acccagagac cccggaggct gtgagcagaa tcgtcggtgt tccttctcag 780 gtggcccagc agtacgtgga tcatttggac gctctcgggg agcaggagcc cctgctggtg 840 ttggcgcacg cctacacccg ctacctgggg gacttgagcg gcggccagat cctggcccga 900 gcggctgaga aggcgtacgg cctggagggc ggccgaggca ctgcattcta cagcttcgag 960 ctggtgggaa cagctgcgtc cgaggtcaag gacttcaaga aagcgtacag agcgtccttg 1020 gacgcgttgc agctgaaagc acacgaggcg gacgcgttgg tggaggaggc caacatggct 1080 ttcttgatga acatgctcct cttcgaggac cgggatgtcg ctgctggtca cctagcgcga 1140 gtgcggactc tggaagaggc tcgcgagctg gtggcagcga acaagagtgc gttgaagttc 1200 cagcaggcct acgctggggg tagcaccgca gcagggaagt gccccttctt gccgccgcca 1260 gagcagcggg gggccagtgg cgccagctgc ccctggccct tcttgtggct gcacgacccc 1320 cgcgcagcct tgatggggca tccctacaaa aatctcaccg gtgctctcgt ggcagcgggc 1380 ttcacgaagt ttgcatggga gcgtcctcgc agtgcagcgg tcgggtcttt gttgtgtgcc 1440 gtgggctgct acagcttgaa gccgacgcgc aatacccaag ccgggcgtgg cgtctgcccg 1500 ttcatgcctg catccacgaa cagcgcgtcg ccggcatcgc ggagcgccgc ccaagaacac 1560 catggcgacc gtgtgtgccc atggcctttc gtgtgcttcc acgacccccg tgctgcgttc 1620 cggggccacc cttgcaagaa cgcgtgcggt gtgctggcga cggcgggctt tgcgaaggtc 1680 gcatgggagt accctcgcag cgctgcggcc gggtcgctga tctgtgcgct ggggtgctac 1740 agtctgaagc caaagcgcaa gagcatttcg aatgatgcgg cgccagcctg tgaacctgcc 1800 gaccggatgc ttgccgcctg a 1821 <210> 19 <211> 204 <212> DNA <213> Dendronephthya gigantea <400> 19 tccgacagtt ccctcaatga tttcctccat gcggactccg tcagcatagc ttccagctgg 60 ccctgcccca gatccacggg tgcgcccatt ggtatcctgg aaggctctga tcagcagatg 120 caccagccta ggaatggatc cattctcacg gagcggcgca tgattggccg ggcacagagc 180 caagttcctg atcaacccaa taac 204 <210> 20 <211> 20 <212> DNA <213> Dendronephthya gigantea <400> 20 agatgaagca taaccctcaa 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 21 agatgaagca taaccctcaa 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 22 cttaagctgg cagacttttt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 23 aaacaagcca ctctgaaaga 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 24 ctttcggaaa tcttcatcag 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 25 agtcacagct tgaaaccact 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 26 cgtattctgg tacgcatctt 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 27 cagaggaatg tttcttcgag 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 28 ttgttggaga agcagtaggt 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 29 acgacaagga ctacagcatt 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 30 ccatagacca gccagtttag 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 31 aacaagagtg cgttgaagtt 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 32 tgagattttt gtagggatgc 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 33 cggactactt caagacgaac 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 34 ccgtggttga gtgagtaagt 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 35 aagaaaggaa agccagaact 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 36 tggtggagga gttagaagaa 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 37 cgtttcttac agctcgttct 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 38 acttttccac aacagcaact 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 39 ctactccact ttcgagtcgt 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 40 ctcttgtgga actccagatt 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 41 acagttccct caatgatttc 20 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 42 gttattgggt tgatcaggaa 20 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 43 atcactgacc ctcaatgttc 20 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 44 ttccctcaga gtgtctgttc 20 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 45 ctgagttcca agactccaag 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 46 agatcacctt gcactgattc 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 47 acaccaggta caagatgctc 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 48 ctccttctcc ttgatctcct 20 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 49 aatatcttgc attgggattg 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 50 cgcaaatttc tttctgtctt 20 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 51 acacagcaga aacaagaggt 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 52 catcttcatt caacccaaat 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 53 aataccagtc agtggtcagg 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 54 aagtctccaa atgtctccaa 20 <210> 55 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 55 atcaaagcgc aggagaag 18 <210> 56 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 56 gaagtccacc ctttcagtg 19 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 57 tttagccact tcaggacaat 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 58 gttgtctgaa atcggagttg 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 59 cctcgaacac tgaaggacta 20 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 60 ggcactgcta ctgaagatgt 20 <110> Office of Reseach/Ewha University-Industry Collaboration Foundation <120> Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same <130> 2015P-06-002 <150> KR 10-2015-0121637 <151> 2015-08-28 <160> 60 <170> KopatentIn 2.0 <210> 1 <211> 273 <212> DNA <213> Dendronephthya gigantea <400> 1 ccaatcagat cgctccggcg gcagatgaag cataaccctc aatgcatcgg catgtccgca 60 cagctgcaga gcaagaaaac ttctggagcg acccaagcgg aaagagggtc acgcatcagg 120 tcgtctcacc atgcagagct tctcggcaca tcggccaatc aggaaaacaa ggcacaaagc 180 caatgcttgc aaaaagtctg ccagcttaag catgcaagcg ccagcaagag ctgggtggag 240 tcacgcgcac catcaaagta cagggcgctc tga 273 <210> 2 <211> 478 <212> DNA <213> Dendronephthya gigantea <400> 2 cccaaccccg atattccggt tggcaaggtg ctgggaaata ttgccagcag aggcgtcatg 60 ttcgcgatct gtctcactct ggacaacaga gaccacggat cactgaccct caatgttctc 120 cagggccagc agcaggagca caggaacatg ccggtggatg acgctatgtc attcatctct 180 aaacagtttc ccagcctcgt gggcggagga ggaggtggga actctgtgat atctcgggac 240 gggtcagcac tgccgggccc ctcccacacc ggccatcctc cagacatcag caagatactc 300 agcttcctca cagacgacag acctctctcc atcatggagt atgacaagat gattaaatac 360 ctggtcacca agagaacaga cactctgagg gaagagtacg gagacagcat cccagcccac 420 ctgcagcatc caccagtggg gcctcaccag gatccagcca ccaaggccaa gcaggaag 478 <210> 3 <211> 306 <212> DNA <213> Dendronephthya gigantea <400> 3 gggtgcctgc tggccgtttt gggctgcctc tccctcctgg cgggggcaca cggctacttt 60 atcaccgtgg acgcccatgc agaggaatgt ttcttcgaga aggtgacggc gggtacaaaa 120 ttaggcctgg catttgaggt tgctgaggga ggcttccttg acatagacat caagatctac 180 aaccctgaga tgaagaccat ccatgagggc gagcgcgagt ccaacgggcg gtacaccttc 240 cctgccagca tggacggcgt ctacacctac tgcttctcca acaagatgtc caccatgacg 300 cccaag 306 <210> 4 <211> 369 <212> DNA <213> Dendronephthya gigantea <400> 4 cttaaaattg acgacaagga ctacagcatt accttttcac tttatttcaa tgttcaatgg 60 tccgagccac gtttgaattt gtcccaagag tttttcaaca gtgaaaacat cactactgat 120 gagcagctgg tgccagtgaa tctggagctc attcatgacc tttgggtgcc aaacatttac 180 atatacaacc tgaaatcctt caaagtcatt gatgtcctct ctaaactggc tggtctatgg 240 attaacaaca agaaggaaat ctattatagc caagccactc acatcacctt catttgtcca 300 atgcttttcg actcgtttcc tctggatact caagtctgca agttccaagt tggcagctat 360 tcttacgac 369 <210> 5 <211> 366 <212> DNA <213> Dendronephthya gigantea <400> 5 aggtacaatg cccgcgggtt cgacatcaac cgcaacttcc cggactactt caagacgaac 60 aacaagcgat ctcagccgga gactgaggcg gtgaaggagt ggctgtccaa gatccagttc 120 gtcttgtcgg gcaacatcca cggcggcgcc ctggtggcct cctacccgtt cgacaacacg 180 ccaagctcca tcttcagctc ggtcctctcg tccccctcgc tcaccccgga cgacgacacc 240 ttcaaacacc tggccacaac ttactcactc aaccacggac gcatgtatct tggggacccc 300 tgcaaggttg gcgcgccaca gttcggaaac gggacgacga acggagcggc gtggtacccg 360 ctgact 366 <210> 6 <211> 423 <212> DNA <213> Dendronephthya gigantea <400> 6 atgtcaaagc gtggacgcgg tggtaaagga ggtggaaagt tccacatctc cctcgccctc 60 ccagttgctg ccgttatgaa ctgcgctgat aacactggcg ccaagtctct ctacgtcatc 120 gctgttgccg gcatcaaagg tcgattgaac cgactcccag ccgccggatc aggagatctc 180 gtcatggcct ccgtgaagaa aggaaagcca gaactccgaa agaaggtcca ccccgccgtc 240 gttgtccgac agtccaaggc tttccgaaga cgagacggta ccttcctgta cttcgaagat 300 aacgccggtg ttattgtcaa caacaaggga gaaatgaagg gctctgccgt cactggaccc 360 gtcgcgaagg aatgcgctga tctctggccc cgtatttctt ctaactcctc caccattgcc 420 taa 423 <210> 7 <211> 987 <212> DNA <213> Dendronephthya gigantea <400> 7 cttgtggctc tgacatgtct ctcacggtgg ctgtactggc aagtccacgc gatgtcacta 60 ggttgtgcgg tgggattgca aaggctgcgc tacacatgtg aagctatcgg ggccgagggc 120 tcaatccacg agtccatcga acagttgccg accttcgtgg ctggaccagc ccgacacggc 180 catggcctgg cgttggataa agacatgggc gtttcttaca gctcgttctt gggtgaggca 240 cctccgttga ggccacggca tgcggaaact gcgttcgacc agatgaccat ctacttcaag 300 ccacgcaagg aagcgctggt cgcccaggaa atgaaatgcg acgacgacat ggcttcttgc 360 tctcgcgaat gcgagcgctt atacggagac caagtttcga cgatgatgga accctgcaaa 420 gttgctgttg tggaaaagta tgctggtggc ggaggcggca gctgctttcc tgccaaggcc 480 gccgtctgga accagaacgt tggtcgcatc cgtatctccg acgtgcgcat cggtgacgag 540 cttgagactg gcagcggcaa ctcgtcgccg gttgtcgccc tactgcacgc tgatccggag 600 gcctgggtcg actacgtccg catctcgcat tctgccgggg aagacttgta catttcgcct 660 gcgcatatcc tgcagcttct ttctcgcagt caagggccca cctgggtgcc cgccagcctt 720 gttcgcccag gcgataactt gaagtcctca gcagggccga ccttggtgaa cgctgtggac 780 accgtgcggc tgaaaggcgc atacgcgccc ctgactgact cgggccagct gcttgtggag 840 ggcgtgctct gctcctgtta cgctcccccg cagagctttg agctctcaca caatatctgc 900 cactgggcca tgtttccgct gcgcgtcttt cacgctttga ggggtgtggt ggcgtccgca 960 gctcccgcac gcgttttcgt caccgca 987 <210> 8 <211> 1113 <212> DNA <213> Dendronephthya gigantea <400> 8 cccgtcctga tggaaaatct tcccacggac gcctgcctgc tcgttttcag gatcctcagt 60 gttctcggca tggcgatgcc caagattgcc agcattttcg tcctgggcat cgggactgcg 120 agaacttctc ggttgccaaa tggcgtcgcc gattacacgc taggcctcgt gcagctgcac 180 gcggagaaga ccgacggggc cctggctact gcgttccgca gtgaagatgc gccacagccc 240 gtggacgccg caagcagccc gattttggcg accgcggagg cggacaccaa atcgcagtgg 300 tgtttggctt cacaggcgaa ggcggtggag atgcatcagg aggtacagct gctcctggcg 360 cgaaatcgaa gcccgaacag taccgacgaa agccttatcc acatgaccta ctcgcagctc 420 caggaaggcc cgcagtctcg tatccttgac gaagagcaga tgcttgtgga tatggagtca 480 acggagttca ccgagaagtg cgatttgggc aacgaccttt ggttgctgaa ggacgaggtg 540 aatttcgctt cttgccctcc tgggaagtac ctccgtcatc agaccgcgga ggaccacaag 600 cgcaaacgga tgcgcctgcg gaaggccctg tgccagttga agctgcgcgg cgcacggcca 660 tggaacaagc gcgagcggtc gttcttcagg gcgcggggct actccacttt cgagtcgtcg 720 gtgtggccga agttgcccgg gtgcgcgtcc gtggtcgacg aaagctggta cagtgggcag 780 cacaagagct gggacatgcc cgccttccgc ccggacagcg cgcctccaca catgggcaag 840 ctggtccgcg ggaatctgga gttccacaag agctggaagg tggcatccac tggcttcccc 900 gactacttgc agtgcgagta tgacggcacc tggaaagagg ttccagtcac caaccccgtt 960 gggcagggct ccagtgtggt cttcgccgtg cgggagccta tcgggcgttg gatctccgct 1020 gtgggcgagc tgttggagcg atccatcaac cattggtgcc caaacgggcc ttgcagtaag 1080 caggacggtt tcgacctgat gacgacaatg gat 1113 <210> 9 <211> 372 <212> DNA <213> Dendronephthya gigantea <400> 9 ccacggattg ccctgttcgc tgtttgctcg gcgctcgtgg ttcagctggg catgtcgagc 60 tctcttcgaa cgcaacctgc agtgaaggtt gtggacgccc accagtgcaa agtgatgtgc 120 cagcgctttg cgtaccgctt catgggccct gagttccaag actccaagag ccctacggac 180 tgctccaaga agtgcgaggc agtttacggg ggcgcttcgc caacgagcgc cctggaggtc 240 aaggctgaag tcaccgaccg caaggctgaa gtcaagcaac gcggtgtgga cgtgcatgat 300 gcgaatcagt gcaaggtgat ctgccagcgc ttcggcatgc cgatgcttgg tccggatttt 360 gaaggtatca ag 372 <210> 10 <211> 384 <212> DNA <213> Dendronephthya gigantea <400> 10 ggaggcgggt catgggagga ggactgggag gggatggtga ccagctccgt ggaggcggac 60 accccctgct tcatcctgtt cagactggat gagaaggaca gcgggggatg cttcctgtgg 120 acccttctct cctggtcacc tgacaccagc cacaccaggt acaagatgct ctacgcctcg 180 accaaggcca ccttcaagaa gcagttcggg gcggggcaga tcaaggacga atactacgcc 240 aacctgaagg aggaggtcac cctggcggga tacaagaagc acctgagtgt cgaggcggca 300 cctggccccc tgaccagggc ggaggaggag gccaaggaga tcaaggagaa ggagtcccgg 360 gtcgagatta gcgtggactc caag 384 <210> 11 <211> 341 <212> DNA <213> Dendronephthya gigantea <400> 11 gttaatactt ctcaaggagt accaatatct tgcattggga ttgcacaagt aaaaattgaa 60 ggaaagaatc aagatatgct tgctaatgca tgcatgcagt ttcttggaaa atcagaacat 120 gaaatccaac agattgcact tgaaactctt gaaggccatc aaagagcaat tatgggcaat 180 atgacagtgg aagaaattta ccaagacaga aagaaatttg cgaaagaggt gtttgaagtt 240 gcatcgtctg atcttctgca aatgggaata tatgttgtat catacacact gaaagatgtg 300 acagacaacg aaggatacct tgcagccctt ggaaaaaccc g 341 <210> 12 <211> 372 <212> DNA <213> Dendronephthya gigantea <400> 12 atggccatgg caatgcagaa aaaattgaat gttcgattac ccccagaagt caatcgcata 60 ctttacgtcc ggaatctacc atacaagatt acatcagaag aaatgtatga tatattcggg 120 aaatatggag ccatacgaca aatccgtgtt ggaaacacag cagaaacaag aggtacagct 180 tttgtggtat atgaagatat ttttgatgca aagaatgctt gtgaccacct ttcgggtttt 240 aatgtttgca accgctattt agtagttctt tactatcagc ccacaaaagc cttcaagaag 300 gtagacacag ataaaaagaa agaagaaatc gagaaaatga aggccaaatt tgggttgaat 360 gaagatgaat aa 372 <210> 13 <211> 405 <212> DNA <213> Dendronephthya gigantea <400> 13 atgctgcgaa ctgctgttct cgcatttatc tgcagttgct tggtccagac gacgtacggg 60 gggaccgtcg aagcgaagtt cctttcccgc ggccaacgca gtgaagacga ggtgaagcac 120 gacaccgcgc gccaatacca gtcagtggtc aggcttcacg acaatgctga gaggaggctg 180 accagaatcg tcgtcgagtt gttgggtgtc gacgagtctg aggtcaagcg tgatgcgagc 240 ttcgtggaag accttggcgc tgatgagctg gacacggtgg aactcgtcgt ggcagtgggg 300 gaggagtttg gcttccaaat tccagatgat gacgcggagt cgttggagac atttggagac 360 ttggtcgact acgtgaataa ttacgaacac aacacagtcc gttga 405 <210> 14 <211> 270 <212> DNA <213> Dendronephthya gigantea <400> 14 ggaggactca gccgggaaga tatcatatct ttagccactt caggacaatc gcttggtggc 60 gacatgagtg agctggacga tgctggaact tactttgatc tgggattgcg caaagtgaca 120 atgccgggaa cttatcaata catgtgcacc cggaacaaca acttctcgaa ccggagtcag 180 aaaggaaagc tggtggtcac caactccgat ttcagacaac agagcgttga ccaaaatggc 240 ggcgtcgtgg tcgtctccga cgtcgagtaa 270 <210> 15 <211> 290 <212> DNA <213> Dendronephthya gigantea <400> 15 atggaacgca gcgagagcaa ccagttggag gctgcacctg tcctttgccg ggcgggctgc 60 ggcttctttg gctcctcgaa cactgaagga ctatgttcaa aatgttacaa agaccaattg 120 aagaaaaagc agcaaccccc aaatcaaagc aataatactt cttcatccac tgcaacagca 180 cagccaacag ttccttctat cacaccgcaa ataagcgaaa gctcatccac atctcccacc 240 acatcctcta caactgcatc ggttgccaca tcttcagtag cagtgccaag 290 <210> 16 <211> 426 <212> DNA <213> Dendronephthya gigantea <400> 16 tggagttatt ataattaccc gttggttgtc ggtatgtcta catctctact gaaaaagagt 60 ttagaactct ttgatgaaga gggaaagacg gacagaacca aatcaaacaa aggacgccct 120 gctcgtacca ttgtgaagaa taaacaagcc actctgaaag ataggaaagt gaagtcagca 180 ttagaatcat acacgaagaa gaaccgtaag gaagacagga cacttggaaa tttggctgtt 240 cttgaaaaga tatcgctgaa aaactctgtt agccaagact cggccaacaa aattctgaaa 300 tatcatctgc agaagtctcg gaaagttgtg gaagctgagc caaagaaaga ggccgagaag 360 tctgtgttta ctgatgaaga tttccgaaag ttccagcagg aatattttgt caaaggaaag 420 atataa 426 <210> 17 <211> 1107 <212> DNA <213> Dendronephthya gigantea <400> 17 atgaacggct acggtgtgac cgccgagcag cggtctttgt tgaacagaaa cagtcacagc 60 ttgaaaccac tatccgctgc cggccacctc aacatctggc aggtggtcgt gcaagccatc 120 gtaccgatcc tcatcttctt gttcgcgctc gggatcctga caatcacgcc acgctattcc 180 agccctgact ccgtgtccac gctctgcgcc attggccttt tcggcgcttt gctgtacccc 240 acgatctcct tcctgctggt ggtcgtaggg gttgtgtcaa cgaagatgcg taccagaata 300 cgctggcccc cagtcgtctt ctggtcatgg tggccgtgct ggaagttctc cgcctgctgt 360 ctcgcggcgt ttctgggcat cagcatcggc aactacatct ggtacaagca gctcctgccc 420 taccaccaga tggaccgcct ccaggcatat gacaatgtca acccttccga ggtgaccggc 480 actcggatgc aggacgccgg ggtcgtcgag ttcaagtcca ccaacggtgt ggatcgcaca 540 cggactgggt gcatcaagaa tggtgccacc tactgcatcg cccctgtcgt gctgaatggc 600 aaggtggagc caggtgtggc accaggggag acgtacgact tcttcatggc agggaaggac 660 tgctgcagct gccccggcga gttccgttgt ggcgactgga acatgccgtc gccaactcta 720 ggtgggctgc gaatcgtgga ctcgggcgat cgcgccttct acaggctcgc cgcggagcag 780 tggggcagcc tgtacggcaa gcccgtggag cacccgctgt tcttcacgtg gtcaacggat 840 ccggtggaga cctggcacga aatgcgcacg acagcgacac gtgaggcctg tctggccatg 900 ctcgtggtcc catttttctt gatcacgtac gccttcctcg ctaatggtct gttgggcatc 960 ctccacgatc ggggctacgc ggcgccccaa gaggctccga tgccgcctgc gggcatgggg 1020 cgcgacatga ctgcgaagtt cctgccccag atgcacaagt acacggcaga ctcgcaggct 1080 cagcaggccg gcgcgaccgt gatctga 1107 <210> 18 <211> 1821 <212> DNA <213> Dendronephthya gigantea <400> 18 atgtcggcaa cccctgcgcc gatcgtggag ggctgcccgg cgttctcgga aggatgcccg 60 ttctccaagc tcgacatcgc gctgctgcca caggtcatcc aggaggtgcc gaaggagatc 120 acggagaagt gccctgcatt tgagaagggc tgccctttca aggaggacga ctccgtggag 180 gcgctgtaca agcgcatgtc ggaaatgccg gcctcgcacc gcatgggcca ggagagcccc 240 tcacccgcgg cacagaaggt ggaggccacg ctgcgcctgg tgcacgagca gtcgaaggcc 300 ttgaagtcca ggttgaaagc cacctgcccc gtcttcgcca catcctgccc tttcaagaca 360 gtaacctcgg acggccagcc cttggtgcac gagttggacg acgtcgtcga gaggtgggga 420 ctgaaggaga tcgaggaggt gatcacctct cctgtgtcag cgaacgccga gccgctctcc 480 aagaccatga aagctgggac caggtctgtg caccgcgctg ccgagaacgt ccgatttgtc 540 cgcgacttcc tcaagggcac ggtgcccaaa gacagctacg tggagctgtt gcgtgcgttg 600 taccatgtct acgacgccct ggagcgagct atccgaggcc tgccagagca tttgcagcac 660 tgcgacttca acaagttgtg gcgcaccgag accttgcttg ccgacctgtg ccactacacc 720 aacagcgcct acccagagac cccggaggct gtgagcagaa tcgtcggtgt tccttctcag 780 gtggcccagc agtacgtgga tcatttggac gctctcgggg agcaggagcc cctgctggtg 840 ttggcgcacg cctacacccg ctacctgggg gacttgagcg gcggccagat cctggcccga 900 gcggctgaga aggcgtacgg cctggagggc ggccgaggca ctgcattcta cagcttcgag 960 ctggtgggaa cagctgcgtc cgaggtcaag gacttcaaga aagcgtacag agcgtccttg 1020 gacgcgttgc agctgaaagc acacgaggcg gacgcgttgg tggaggaggc caacatggct 1080 ttcttgatga acatgctcct cttcgaggac cgggatgtcg ctgctggtca cctagcgcga 1140 gtgcggactc tggaagaggc tcgcgagctg gtggcagcga acaagagtgc gttgaagttc 1200 cagcaggcct acgctggggg tagcaccgca gcagggaagt gccccttctt gccgccgcca 1260 gagcagcggg gggccagtgg cgccagctgc ccctggccct tcttgtggct gcacgacccc 1320 cgcgcagcct tgatggggca tccctacaaa aatctcaccg gtgctctcgt ggcagcgggc 1380 ttcacgaagt ttgcatggga gcgtcctcgc agtgcagcgg tcgggtcttt gttgtgtgcc 1440 gtgggctgct acagcttgaa gccgacgcgc aatacccaag ccgggcgtgg cgtctgcccg 1500 ttcatgcctg catccacgaa cagcgcgtcg ccggcatcgc ggagcgccgc ccaagaacac 1560 catggcgacc gtgtgtgccc atggcctttc gtgtgcttcc acgacccccg tgctgcgttc 1620 cggggccacc cttgcaagaa cgcgtgcggt gtgctggcga cggcgggctt tgcgaaggtc 1680 gcatgggagt accctcgcag cgctgcggcc gggtcgctga tctgtgcgct ggggtgctac 1740 agtctgaagc caaagcgcaa gagcatttcg aatgatgcgg cgccagcctg tgaacctgcc 1800 gaccggatgc ttgccgcctg a 1821 <210> 19 <211> 204 <212> DNA <213> Dendronephthya gigantea <400> 19 tccgacagtt ccctcaatga tttcctccat gcggactccg tcagcatagc ttccagctgg 60 ccctgcccca gatccacggg tgcgcccatt ggtatcctgg aaggctctga tcagcagatg 120 caccagccta ggaatggatc cattctcacg gagcggcgca tgattggccg ggcacagagc 180 caagttcctg atcaacccaa taac 204 <210> 20 <211> 20 <212> DNA <213> Dendronephthya gigantea <400> 20 agatgaagca taaccctcaa 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 21 agatgaagca taaccctcaa 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 22 cttaagctgg cagacttttt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 23 aaacaagcca ctctgaaaga 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 24 ctttcggaaa tcttcatcag 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 25 agtcacagct tgaaaccact 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 26 cgtattctgg tacgcatctt 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 27 cagaggaatg tttcttcgag 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 28 ttgttggaga agcagtaggt 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 29 acgacaagga ctacagcatt 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 30 ccatagacca gccagtttag 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 31 aacaagagtg cgttgaagtt 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 32 tgagattttt gtagggatgc 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 33 cggactactt caagacgaac 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 34 ccgtggttga gtgagtaagt 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 35 aagaaaggaa agccagaact 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 36 tggtggagga gttagaagaa 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 37 cgtttcttac agctcgttct 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 38 acttttccac aacagcaact 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 39 ctactccact ttcgagtcgt 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 40 ctcttgtgga actccagatt 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 41 acagttccct caatgatttc 20 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 42 gttattgggt tgatcaggaa 20 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 43 atcactgacc ctcaatgttc 20 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 44 ttccctcaga gtgtctgttc 20 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 45 ctgagttcca agactccaag 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 46 agatcacctt gcactgattc 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 47 acaccaggta caagatgctc 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 48 ctccttctcc ttgatctcct 20 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 49 aatatcttgc attgggattg 20 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 50 cgcaaatttc tttctgtctt 20 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 51 acacagcaga aacaagaggt 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 52 catcttcatt caacccaaat 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 53 aataccagtc agtggtcagg 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 54 aagtctccaa atgtctccaa 20 <210> 55 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 55 atcaaagcgc aggagaag 18 <210> 56 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 56 gaagtccacc ctttcagtg 19 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 57 tttagccact tcaggacaat 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 58 gttgtctgaa atcggagttg 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 59 cctcgaacac tgaaggacta 20 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> synthetic nucleotides <400> 60 ggcactgcta ctgaagatgt 20
Claims (11)
서열번호 1로 기재되는 유전자(Acetyl-CoA hydrolase), 서열번호 2로 기재되는 유전자(L-Asparaginase), 서열번호 3으로 기재되는 유전자(Cadherin EGF LAG seven-pass G-type receptor), 서열번호 4로 기재되는 유전자(Calpain small subunit 1), 서열번호 5로 기재되는 유전자(DNA-directed RNA polymerase III subunit), 서열번호 6으로 기재되는 유전자(Dynactin subunit 1), 서열번호 7로 기재되는 유전자(FAD-dependent oxidoreductase), 서열번호 8로 기재되는 유전자(Ficolin), 서열번호 9로 기재되는 유전자(Myosin light polypeptide 6), 서열번호 10으로 기재되는 유전자(Phosphoenolpyruvate carboxykinase), 서열번호 11로 기재되는 유전자(Phosphoserine aminotransferase), 서열번호 12로 기재되는 유전자(polyketide synthase), 서열번호 13으로 기재되는 유전자(Protein phosphatase 1 regulatory subunit 12A), 서열번호 14로 기재되는 유전자(Pyrroline-5-carboxylate reductase), 서열번호 15로 기재되는 유전자(Transferrin receptor protein 2), 서열번호 16으로 기재되는 유전자(Alcohol dehydrogenase 1), 서열번호 17로 기재되는 유전자(Aquaporin TIP2-3), 서열번호 18로 기재되는 유전자(Deoxyribose-phosphate aldolase) 및 서열번호 19로 기재되는 유전자(Guanidinoacetate N-methyltransferase).
Microarray for the determination of exposure to acidified seawater at pH 6-7.7 where oligonucleotide or complementary strand molecules of the nucleic acid sequence of all the following genes derived from a large resin dendronephthya gigantea are integrated:
(L-Asparaginase), a gene described in SEQ ID NO: 3 (Cadherin EGF LAG seven-pass G-type receptor), SEQ ID NO: 4 (DNA-directed RNA polymerase III subunit), the gene described in SEQ ID NO: 6 (Dynactin subunit 1), the gene described in SEQ ID NO: 7 (FAD -dependent oxidoreductase), Ficolin (SEQ ID NO: 8), Myosin light polypeptide 6, Phosphoenolpyruvate carboxykinase (SEQ ID NO: 10), Gene A polyketide synthase, a gene described in SEQ ID NO: 13 (Protein phosphatase 1 regulatory subunit 12A), a gene described in SEQ ID NO: 14 (Pyrroline-5-carboxylate re the gene described in SEQ ID NO: 16 (Alcohol dehydrogenase 1), the gene described in SEQ ID NO: 17 (Aquaporin TIP2-3), the gene described in SEQ ID NO: 18 (Deoxyribose-phosphate aldolase) and a gene described in SEQ ID NO: 19 (Guanidinoacetate N-methyltransferase).
2) 단계 1)의 실험군 및 대조군의 RNA에서 cDNA를 합성하면서 실험군과 대조군을 각기 다른 형광물질로 표지하는 단계;
3) 단계 2)의 각각 다른 형광물질로 표지된 cDNA를 제 1항의 마이크로어레이와 혼성화시키는 단계;
4) 반응한 마이크로어레이를 분석하는 단계; 및
5) 분석한 데이터에서 제 1항의 마이크로어레이에 집적된 유전자 발현정도를 대조군과 비교하여 확인하는 단계;
를 포함하는 pH 6 내지 7.7의 산성화 해수에 대한 노출 여부 확인 방법.
1) isolating the RNA from the large resin bumblebees as the experimental group exposed to acidified sea water and the large resin bumblebees as the control group;
2) labeling the experimental group and the control group with different fluorescent substances while synthesizing cDNA from the RNA of the experimental group and the control group of step 1);
3) hybridizing the cDNA labeled with each of the different fluorescent substances of step 2) with the microarray of claim 1;
4) analyzing the reacted microarray; And
5) comparing the degree of gene expression integrated in the microarray of claim 1 with the control group in the analyzed data;
Wherein the pH of the acidified seawater is between 6 and 7.7.
The method according to claim 3, wherein the fluorescent material of step 2) is selected from the group consisting of Cy3, Cy5, poly L-lysine-fluorescein isothiocyanate (RITC), rhodamine-B-isothiocyanate (RITC), and rhodamine To determine whether the acidified sea water is exposed.
2) 단계 1)의 RNA를 주형으로 하고, 하기 각각의 유전자에 상보적이며 유전자 증폭이 가능한 프라이머 쌍을 사용하여 실시간 RT-PCR(Real-time reverse transcript polymerase chain reaction)을 수행하는 단계:
서열번호 1로 기재되는 유전자(Acetyl-CoA hydrolase), 서열번호 2로 기재되는 유전자(L-Asparaginase), 서열번호 3으로 기재되는 유전자(Cadherin EGF LAG seven-pass G-type receptor), 서열번호 4로 기재되는 유전자(Calpain small subunit 1), 서열번호 5로 기재되는 유전자(DNA-directed RNA polymerase III subunit), 서열번호 6으로 기재되는 유전자(Dynactin subunit 1), 서열번호 7로 기재되는 유전자(FAD-dependent oxidoreductase), 서열번호 8로 기재되는 유전자(Ficolin), 서열번호 9로 기재되는 유전자(Myosin light polypeptide 6), 서열번호 10으로 기재되는 유전자(Phosphoenolpyruvate carboxykinase), 서열번호 11로 기재되는 유전자(Phosphoserine aminotransferase), 서열번호 12로 기재되는 유전자(polyketide synthase), 서열번호 13으로 기재되는 유전자(Protein phosphatase 1 regulatory subunit 12A), 서열번호 14로 기재되는 유전자(Pyrroline-5-carboxylate reductase), 서열번호 15로 기재되는 유전자(Transferrin receptor protein 2), 서열번호 16으로 기재되는 유전자(Alcohol dehydrogenase 1), 서열번호 17로 기재되는 유전자(Aquaporin TIP2-3), 서열번호 18로 기재되는 유전자(Deoxyribose-phosphate aldolase) 및 서열번호 19로 기재되는 유전자(Guanidinoacetate N-methyltransferase); 및
3) 단계 2)의 유전자 산물을 대조군과 비교하여 발현 정도를 확인하는 단계;
를 포함하는 pH 6 내지 7.7의 산성화 해수에 대한 노출 여부 확인 방법.
1) isolating the RNA from the large resin beetle, which is an experimental group exposed to acidified sea water, and the large resin beetle, which is a control group;
2) Performing Real-time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) using a primer pair complementary to the following genes and capable of gene amplification, using the RNA of step 1) as a template,
(L-Asparaginase), a gene described in SEQ ID NO: 3 (Cadherin EGF LAG seven-pass G-type receptor), SEQ ID NO: 4 (DNA-directed RNA polymerase III subunit), the gene described in SEQ ID NO: 6 (Dynactin subunit 1), the gene described in SEQ ID NO: 7 (FAD -dependent oxidoreductase), Ficolin (SEQ ID NO: 8), Myosin light polypeptide 6, Phosphoenolpyruvate carboxykinase (SEQ ID NO: 10), Gene A polyketide synthase, a gene described in SEQ ID NO: 13 (Protein phosphatase 1 regulatory subunit 12A), a gene described in SEQ ID NO: 14 (Pyrroline-5-carboxylate re the gene described in SEQ ID NO: 16 (Alcohol dehydrogenase 1), the gene described in SEQ ID NO: 17 (Aquaporin TIP2-3), the gene described in SEQ ID NO: 18 A gene (Deoxyribose-phosphate aldolase) and a gene described in SEQ ID NO: 19 (Guanidinoacetate N-methyltransferase); And
3) comparing the gene product of step 2) with the control group to confirm the expression level;
Wherein the pH of the acidified seawater is between 6 and 7.7.
A kit for confirming exposure to acidified sea water at a pH of 6 to 7.7, which comprises the microarray of claim 1.
The method according to claim 6, further comprising adding any one selected from the group consisting of streptavidin-like phosphatase conjugate, chemifluorescent, and chemiluminescent fluorescent substance Wherein the acidicized sea water is exposed to the water.
The method according to claim 6, which is selected from the group of reaction reagents consisting of the buffer solution used for hybridization, the reverse transcriptase for the synthesis of cDNA from RNA, dNTP and rNTP (premixed or separate feed type), marker reagent, and wash buffer solution Wherein the acidified sea water is one or more of the following:
서열번호 1로 기재되는 유전자(Acetyl-CoA hydrolase), 서열번호 2로 기재되는 유전자(L-Asparaginase), 서열번호 3으로 기재되는 유전자(Cadherin EGF LAG seven-pass G-type receptor), 서열번호 4로 기재되는 유전자(Calpain small subunit 1), 서열번호 5로 기재되는 유전자(DNA-directed RNA polymerase III subunit), 서열번호 6으로 기재되는 유전자(Dynactin subunit 1), 서열번호 7로 기재되는 유전자(FAD-dependent oxidoreductase), 서열번호 8로 기재되는 유전자(Ficolin), 서열번호 9로 기재되는 유전자(Myosin light polypeptide 6), 서열번호 10으로 기재되는 유전자(Phosphoenolpyruvate carboxykinase), 서열번호 11로 기재되는 유전자(Phosphoserine aminotransferase), 서열번호 12로 기재되는 유전자(polyketide synthase), 서열번호 13으로 기재되는 유전자(Protein phosphatase 1 regulatory subunit 12A), 서열번호 14로 기재되는 유전자(Pyrroline-5-carboxylate reductase), 서열번호 15로 기재되는 유전자(Transferrin receptor protein 2), 서열번호 16으로 기재되는 유전자(Alcohol dehydrogenase 1), 서열번호 17로 기재되는 유전자(Aquaporin TIP2-3), 서열번호 18로 기재되는 유전자(Deoxyribose-phosphate aldolase) 및 서열번호 19로 기재되는 유전자(Guanidinoacetate N-methyltransferase).
A kit for confirming exposure to acidified seawater having a pH of 6 to 7.7, which contains both primer pairs complementary to each of the following genes derived from a large resin dendronephthya gigantea and capable of amplifying genes:
(L-Asparaginase), a gene described in SEQ ID NO: 3 (Cadherin EGF LAG seven-pass G-type receptor), SEQ ID NO: 4 (DNA-directed RNA polymerase III subunit), the gene described in SEQ ID NO: 6 (Dynactin subunit 1), the gene described in SEQ ID NO: 7 (FAD -dependent oxidoreductase), Ficolin (SEQ ID NO: 8), Myosin light polypeptide 6, Phosphoenolpyruvate carboxykinase (SEQ ID NO: 10), Gene A polyketide synthase, a gene described in SEQ ID NO: 13 (Protein phosphatase 1 regulatory subunit 12A), a gene described in SEQ ID NO: 14 (Pyrroline-5-carboxylate re the gene described in SEQ ID NO: 16 (Alcohol dehydrogenase 1), the gene described in SEQ ID NO: 17 (Aquaporin TIP2-3), the gene described in SEQ ID NO: 18 (Deoxyribose-phosphate aldolase) and a gene described in SEQ ID NO: 19 (Guanidinoacetate N-methyltransferase).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170169447A KR101888797B1 (en) | 2017-12-11 | 2017-12-11 | Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170169447A KR101888797B1 (en) | 2017-12-11 | 2017-12-11 | Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150121637A Division KR20170025324A (en) | 2015-08-28 | 2015-08-28 | Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170140801A KR20170140801A (en) | 2017-12-21 |
KR101888797B1 true KR101888797B1 (en) | 2018-08-14 |
Family
ID=60936357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170169447A KR101888797B1 (en) | 2017-12-11 | 2017-12-11 | Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101888797B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101442653B1 (en) | 2013-04-02 | 2014-09-22 | 한국해양과학기술원 | Acidified ocean exposure responsive gene in Scleronephthya gracillimum and the method for diagnosing the coastal environment pollution using the same |
-
2017
- 2017-12-11 KR KR1020170169447A patent/KR101888797B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101442653B1 (en) | 2013-04-02 | 2014-09-22 | 한국해양과학기술원 | Acidified ocean exposure responsive gene in Scleronephthya gracillimum and the method for diagnosing the coastal environment pollution using the same |
Non-Patent Citations (2)
Title |
---|
Mar Ecol Prog Ser 398: 157-171, 2010 |
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4696-701 |
Also Published As
Publication number | Publication date |
---|---|
KR20170140801A (en) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108368551B (en) | Method for diagnosing tuberculosis | |
WO2011146942A1 (en) | Methods and kits to analyze microrna by nucleic acid sequencing | |
CN106676191B (en) | A kind of molecular marker for adenocarcinoma of colon | |
KR101908834B1 (en) | Acidified ocean exposure responsive gene in Alveopora japonica and diagnosing kits of the oceanic environmental change using the same | |
KR101888797B1 (en) | Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same | |
KR101823209B1 (en) | Composition for identifying breed Hanwoo comprising single nucleotide polymorphism markers | |
KR100900764B1 (en) | Detection kit for epilepsy by measuring the expression of epilepsy marker genes | |
KR101472025B1 (en) | Kits and methods for detecting intramuscular fat tissue of Hanwoo using TNMD and DUSP27 | |
KR20170025324A (en) | Ocean Acidification responsive genes in Dendronephthya gigantea and the method for diagnosing marine ecosystem using the same | |
KR101426822B1 (en) | Diagnosis method for feeding and managing condition of swine using microbiome metagenome microarray | |
KR101379317B1 (en) | Seawater temperature change responsive genes in ecklonia cava and the method for diagnosing marine environmental changes using the same | |
KR101308541B1 (en) | Dissolved oxygen change responsive genes in Mytilus galloprovincialis and the method for diagnosing marine ecosystem using the same | |
KR20130107553A (en) | Seawater temperature change responsive genes in ecklonia cava and the method for diagnosing marine environmental changes using the same | |
KR101945433B1 (en) | Acidified seawater responsive genes in Sanderia malayensis and prediction method for physiological or metabological changing of Sanderia malayensis using thereof | |
WO2014104867A1 (en) | Probes and primers for detection of the her2 gene and a regulator gene (ribosomal) in multiplex format: use in selecting treatment for her2 breast cancer | |
KR101602391B1 (en) | Seawater temperature change and ocean acidification responsive genes in Scleronephthya gracillimum and method for diagnosing marine ecosystem using the same | |
KR102721574B1 (en) | Seawater temperature change responsive genes in female gamete of Undaria pinnatifida and the method for diagnosing marine environmental changes using the same | |
CN108251531B (en) | Application of ENSG00000267549 in judging osteosarcoma metastasis | |
KR20160049177A (en) | Prediction method for swine fecundity using gene expression profile | |
KR101265679B1 (en) | Marker genes and screening method for carciongenic mutagens using thereof | |
KR101457481B1 (en) | The biomarkers for identification of exposure to deiodinase inhibiting disruptors and the identification method of deiodinase inhibiting disruptors exposure using the same biomarkers | |
KR101402771B1 (en) | Kits and methods for detecting intramuscular fat tissue of hanwoo using tbx5 and cyp17a2 | |
EP1527201B1 (en) | Analysis of biological samples | |
US20040224349A1 (en) | Methods of screening novel agents for use in cancer therapy and prevention | |
KR101402769B1 (en) | Kits and methods for detecting intramuscular fat tissue of hanwoo using tbx152 and zic1 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |