KR101884074B1 - Novel polyene specific hybrid hydroxylase constructed by domain swapping - Google Patents

Novel polyene specific hybrid hydroxylase constructed by domain swapping Download PDF

Info

Publication number
KR101884074B1
KR101884074B1 KR1020160120629A KR20160120629A KR101884074B1 KR 101884074 B1 KR101884074 B1 KR 101884074B1 KR 1020160120629 A KR1020160120629 A KR 1020160120629A KR 20160120629 A KR20160120629 A KR 20160120629A KR 101884074 B1 KR101884074 B1 KR 101884074B1
Authority
KR
South Korea
Prior art keywords
leu
ala
polyene
pcyp
cyp
Prior art date
Application number
KR1020160120629A
Other languages
Korean (ko)
Other versions
KR20180032011A (en
Inventor
김응수
김민경
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020160120629A priority Critical patent/KR101884074B1/en
Publication of KR20180032011A publication Critical patent/KR20180032011A/en
Application granted granted Critical
Publication of KR101884074B1 publication Critical patent/KR101884074B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/60Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
    • C12P19/62Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin the hetero ring having eight or more ring members and only oxygen as ring hetero atoms, e.g. erythromycin, spiramycin, nystatin

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 도메인 치환된 폴리엔(polyene) 특이적인 하이브리드 수산화효소에 관한 것으로, 본 발명은 서열번호 1 또는 서열번호 2로 표시된 아미노산 서열로 이루어진 폴리엔 특이적인 하이브리드 수산화효소(hydroxylase)를 제공한다. 또한, 본 발명은 상기 하이브리드 수산화효소를 암호화하는 유전자를 발현벡터에 삽입시켜 재조합 발현벡터를 제작하는 단계; 상기 재조합 발현벡터로 세포를 형질전환시키는 단계; 및 상기 형질전환된 세포를 폴리엔이 포함된 배지에서 배양하는 단계를 포함하는 폴리엔을 수산화(hydroxylation)시키는 방법을 제공한다.The present invention relates to a domain-substituted polyene-specific hybrid hydroxylase, and the present invention provides a polyene-specific hybrid hydroxylase consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2. The present invention also relates to a method for producing a recombinant expression vector, comprising the steps of: preparing a recombinant expression vector by inserting a gene encoding the hybrid hydroxylase into an expression vector; Transforming the cells with the recombinant expression vector; And culturing the transformed cells in a medium containing a polyene. The present invention also provides a method for hydroxylation of a polyene.

Description

도메인 치환된 폴리엔 특이적인 하이브리드 수산화효소{Novel polyene specific hybrid hydroxylase constructed by domain swapping}Domain substituted polyene-specific < RTI ID = 0.0 > hydroxylase < / RTI >

본 발명은 도메인 치환된 폴리엔(polyene) 특이적인 하이브리드 수산화효소에 관한 것이다.The present invention relates to a domain-substituted polyene-specific hybrid hydroxylase.

사이토크롬 P450 수산화 효소(Cytochrome P450, CYP)는 철을 함유한 효소로서 생화학, 약리학, 독성학에서 중요한 역할을 하며 스테로이드, 지방산, 폴리케타이드 등을 기질로 인지하여 산화 혹은 하이드록실화를 일으킨다. 현재까지 CYP에 대한 많은 연구가 이루어져 왔는데, 폴리엔 화합물은 항진균제로서 사용되고 있지만 인체에 대한 높은 독성과 낮은 수용성으로 인하여 사용이 제한되고 있는 실정이며, 화학적 변형이 어려워 유용한 여러 폴리엔 유도체를 구축하는 데 어려움을 겪고 있다. 이러한 폴리엔 화합물의 생합성 단계에 관여하는 CYP를 조작하여 생물학적으로 다양한 유도체를 구축하기 위해서는 CYP의 기질특이성 규명이 필요하다. 하지만, 현재까지 CYP의 기질특이성을 나타내는 시스템이 알려진 바는 없다.Cytochrome P450 (Cytochrome P450, CYP) is an iron-containing enzyme that plays an important role in biochemistry, pharmacology, and toxicology and causes oxidation or hydroxylation by recognizing steroids, fatty acids and polyketides as substrates. Although many studies on CYP have been made so far, polyene compounds have been used as antifungal agents, but their use has been limited due to their high toxicity and low water solubility in the human body. I am having difficulties. In order to construct biologically diverse derivatives by manipulating the CYP involved in the biosynthesis step of the polyene compound, it is necessary to identify the substrate specificity of CYP. However, to date, no system has been known to indicate the substrate specificity of CYP.

대표적인 폴리엔 생산균주인 스트렙토마이세스 노도서스(Streptomyces nodosus), 스트렙토마이세스 노르세이(Streptomyces noursei) 및 희소방선균인 슈도노카디아 오토트로피카(Pseudonocardia autotrophica)에는 각각 AmphL, NysL 및 NppL이라는 CYP가 존재하는데, 상기 유전자들은 폴리엔 생합성 과정에서 마지막 단계인 수산화반응(hydroxylation)을 담당하고 있는 것으로 보고되었으나, 기질특이성을 나타내는데 영향을 미치는 도메인에 대해서는 명확하게 규명된 바가 없다.Typical polyene-producing strain of Streptomyces surf suspension (Streptomyces nodosus), Streptomyces Nord assay (Streptomyces noursei ) and sparse actinomycetes Pseudonocardia autotrophica have CYPs of AmphL, NysL and NppL, respectively. These genes have been reported to be involved in the hydroxylation, which is the final step in the polyene biosynthesis process, but the domains affecting the substrate specificity are clearly .

한국등록특허 제10-1379978호(2014.03.25 등록)Korean Registered Patent No. 10-1379978 (Registered on March 25, 2014)

본 발명의 목적은 서열번호 1 또는 서열번호 2로 표시된 아미노산 서열로 이루어진 폴리엔(polyene) 특이적인 하이브리드 수산화효소(hydroxylase)를 제공하는 데에 있다.An object of the present invention is to provide a polyene-specific hybrid hydroxylase consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2.

본 발명의 다른 목적은 상기 하이브리드 수산화효소를 이용하여 폴리엔을 수산화(hydroxylation)시키는 방법을 제공하는 데에 있다.Another object of the present invention is to provide a method of hydroxylating a polyene using the above-mentioned hybrid hydroxylase.

상기 목적을 달성하기 위하여, 본 발명은 서열번호 1 또는 서열번호 2로 표시된 아미노산 서열로 이루어진 폴리엔(polyene) 특이적인 하이브리드 수산화효소(hydroxylase)를 제공한다.In order to achieve the above object, the present invention provides a polyene-specific hybrid hydroxylase consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2.

또한, 본 발명은 상기 하이브리드 수산화효소를 암호화하는 유전자를 발현벡터에 삽입시켜 재조합 발현벡터를 제작하는 단계; 상기 재조합 발현벡터로 세포를 형질전환시키는 단계; 및 상기 형질전환된 세포를 폴리엔이 포함된 배지에서 배양하는 단계를 포함하는 폴리엔을 수산화(hydroxylation)시키는 방법을 제공한다.The present invention also relates to a method for producing a recombinant expression vector, comprising the steps of: preparing a recombinant expression vector by inserting a gene encoding the hybrid hydroxylase into an expression vector; Transforming the cells with the recombinant expression vector; And culturing the transformed cells in a medium containing a polyene. The present invention also provides a method for hydroxylation of a polyene.

본 발명은 도메인 치환된 폴리엔 특이적인 하이브리드 수산화효소에 관한 것으로서, 폴리엔 특이적인 3가지의 CYP를 이용한 fusion CYP 구축을 통하여 기질특이성을 규명하였다. 본 발명은 기존 항진균제의 생합성에 관여하여 하나의 당을 기질로 인지하는 CYP 뿐만 아니라 특이적으로 두개의 당을 기질로 인지하는 CYP의 기질특이성을 분석하였으며, 이는 추후 기질특이성을 나타내는 CYP의 조작을 통해 단당체 뿐만 아니라 이당체 구조의 기질을 인지하여 다양한 폴리엔 유도체를 구축할 수 있을 것이며, 이를 통해 유용한 폴리엔 유도체의 생산이 가능해 질 것으로 예상된다.The present invention relates to domain-substituted polyene-specific hybrid hydrolytic enzymes, and the substrate specificity is confirmed through fusion CYP construction using three polyen-specific CYPs. In the present invention, the substrate specificity of CYP, which specifically recognizes two sugars as substrates, as well as CYP, which is involved in the biosynthesis of a conventional antifungal agent, is analyzed, It is expected that various polyene derivatives can be constructed by recognizing monosaccharides as well as substrates of disialic structures, thereby enabling the production of useful polyene derivatives.

도 1 (A) 폴리엔 생합성 기작을 나타낸다. 나이스타틴-유사 슈도노카디아 폴리엔(nystatin-like Pseudonocardia polyene; NPP)를 예시적으로 나타냈다. (B) 본 발명에서 사용된 클로닝 및 삽입 플라스미드를 나타낸다. (C) P. autotrophica △nppY△nppL, P. autotrophica nppL 에서의 NppL, NysL, AmphL의 전환율을 나타낸다.
도 2a는 융합 CYPs을 제작하기 위한 아미노산 서열 분석 (PimD, NysL, NppL, AmphL) 및 2개의 중요 구역을 나타낸다. 도 2b는 돌연변이 CYP 유전자들을 나타낸다. 도 2c는 In-fusion에 의한 돌연변이 유전자들의 구축 모식도를 나타낸다.
도 3 (A) 융합 CYPs의 전환 수율을 나타낸다. (B) 폴리엔 생산 균주에 의해 생산되는 다양한 기질을 나타낸다. (C) S. nodosus amphL에서 CYP-AsL002의 전환 수율을 나타낸다.
도 4 (A) 기질특이성을 나타내는 특정 구역을 나타낸다. (B) 특정 구역을 기반으로 한 융합 CYPs의 전환율을 나타낸다. pCYP-PsL001은 A 및 B 구역을 모두 pCYP-NysL로 치환하였고, pCYP-PsL003은 A 구역만을 pCYP-NysL로 치환하였으며, pCYP-PsL002는 B 구역만을 pCYP-NysL로 치환하였다.
1 (A) shows polyene biosynthesis mechanism. Nystatin-like Pseudonocardia polyene (NPP) is illustratively shown. (B) Cloning and insertion plasmids used in the present invention. (C) P. autotrophica Δ nppY Δ nppL, P. autotrophica Δ nppL .
Figure 2a shows amino acid sequence analysis (PimD, NysL, NppL, AmphL) and two critical regions for making fusion CYPs. Figure 2b shows mutant CYP genes. FIG. 2C shows a construction diagram of mutation genes by In-fusion.
Figure 3 (A) shows the conversion yield of fused CYPs. (B) a polyene-producing strain. (C) The conversion yield of CYP-AsL002 in S. nodosus ? AmphL is shown.
Figure 4 (A) shows a specific region showing substrate specificity. (B) Conversion rates of fusion CYPs based on specific zones. In pCYP-PsL001, pCYP-NysL was substituted for both A and B regions, pCYP-PsL003 was substituted for pCYP-NysL for A region, and pCYP-NysL was substituted for pCYP-PsL002 for B region only.

본 발명자들은 각각의 폴리엔 특이적인 CYP(AmphL, NysL 및 NppL)의 이종숙주 발현을 진행하였고, 서로 다른 기질 특이성을 가지고 있음을 확인하였다. AmphL은 하나의 당(Mycosamine)을 기질로서 더 선호하며, NysL은 하나의 당(Mycosamine)과 두 개의 당(N-acetyl glucosamine, Mycosamine)을 모두 기질로 인지하였다. 마지막으로 NppL은 두 개의 당(N-acetyl glucosamine, Mycosamine)을 기질로서 더 선호하는 것을 확인하였다. 기질특이성을 나타내는 부위를 규명하기 위해 AmphL, NysL, NppL을 이용한 융합 CYP를 구축하고, 하나의 당(Mycosamine)과 두 개의 당(N-acetyl glucosamine, Mycosamine)에 대한 기질 특이성을 규명하고, 본 발명을 완성하였다.The present inventors have carried out heterologous host expression of each polyene-specific CYP (AmphL, NysL and NppL) and confirmed that they have different substrate specificities. AmphL preferred mycosamine as a substrate and NysL recognized both a single sugar (Mycosamine) and two sugars (N-acetyl glucosamine, Mycosamine) as substrates. Finally, NppL was found to prefer N-acetyl glucosamine (Mycosamine) as a substrate. In order to clarify the site showing substrate specificity, the fusion CYP using AmphL, NysL and NppL was constructed and the substrate specificity for one sugar (Mycosamine) and two sugars (N-acetyl glucosamine, Mycosamine) .

본 발명은 서열번호 1 또는 서열번호 2로 표시된 아미노산 서열로 이루어진 폴리엔(polyene) 특이적인 하이브리드 수산화효소(hydroxylase) 및 이의 기능적 동등물을 제공한다. 본 발명에서 상기 서열번호 1은 AsL001로 명명되었으며, 상기 서열번호 2는 PsL002로 명명되었다. The present invention provides a polyene-specific hybrid hydroxylase consisting of the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 and functional equivalents thereof. In the present invention, SEQ ID NO: 1 was named AsL001 and SEQ ID NO: 2 was named PsL002.

상세하게는 상기 서열번호 1의 252번째 내지 394번째 아미노산 또는 서열번호 2의 345번째 내지 401번째 아미노산으로 이루어진 도메인이 폴리엔의 기질특이성을 결정할 수 있으나, 이에 한정되는 것은 아니다.Specifically, the domain consisting of amino acids 252 to 394 of SEQ ID NO: 1 or amino acids 345 to 401 of SEQ ID NO: 2 can determine the substrate specificity of the polyene, but is not limited thereto.

상세하게는 상기 폴리엔은 10-데옥시 나이스타틴-유사 슈도노카디아 폴리엔(10-deoxy nystatin-like Pseudonocardia polyene; 10-deoxy NPP) 또는 10-데옥시 나이스타틴(10-deoxy nystatin)일 수 있으나, 이에 한정되는 것은 아니다.Specifically, the polyene may be 10-deoxy nystatin-like Pseudonocardia polyene (10-deoxy NPP) or 10-deoxy nystatin , But is not limited thereto.

상세하게는 상기 수산화효소는 10-데옥시 NPP를 NPP로 전환시키거나, 10-데옥시 나이스타틴을 나이스타틴으로 전환시키는 것을 특징으로 한다.Specifically, the hydroxylase is characterized by converting 10-deoxy NPP to NPP or 10-deoxynistatin to nystatin.

본 발명의 "폴리엔(polyene)"는 일반적으로 20 내지 40개의 탄소로 이루어진 거대한 마크로락톤(macrolactone) 링 구조를 지니며, 분자 내에 약 3 내지 8개의 접합된 이중결합(conjugated double bond)을 갖는 전형적인 유형 I 폴리케타이드 매크로라이드(polyketide macrolide) 화합물이다.The "polyene" of the present invention has a macrolactone ring structure generally comprised of 20 to 40 carbons and has about 3 to 8 conjugated double bonds in the molecule A typical type I polyketide macrolide compound.

본 발명의 "기능적 동등물"에는 서열번호 1 또는 서열번호 2의 수산화효소 중 일부 또는 전부가 치환되거나, 아미노산의 일부가 결실 또는 부가된 아미노산 서열 변형체가 상기 효소 기능을 유지하는 것 모두를 포함된다. 아미노산의 치환은 바람직하게는 보존적 치환이다. 천연에 존재하는 아미노산의 보존적 치환의 예는 다음과 같다; 지방족 아미노산(Gly,Ala, Pro), 소수성 아미노산(Ile, Leu, Val), 방향족 아미노산(Phe, Tyr, Trp), 산성 아미노산(Asp, Glu), 염기성 아미노산(His, Lys, Arg, Gln, Asn) 및 황함유 아미노산(Cys, Met). 아미노산의 결실은 바람직하게는 수산화효소의 활성에 직접 관여하지 않는 부분에 위치한다."Functional equivalent" of the present invention includes all of the amino acid sequence variants in which some or all of the hydroxylases of SEQ ID NO: 1 or SEQ ID NO: 2 are substituted, or amino acid sequence variants in which some of the amino acids are deleted or added, . Substitution of amino acids is preferably conservative substitution. Examples of conservative substitutions of amino acids present in nature are as follows: (Gly, Ala, Pro), hydrophobic amino acids (Ile, Leu, Val), aromatic amino acids (Phe, Tyr, Trp), acidic amino acids (Asp, Glu), basic amino acids (His, Lys, Arg, Gln, Asn ) And sulfur-containing amino acids (Cys, Met). The deletion of the amino acid is preferably located at a site that is not directly involved in the activity of the hydroxylase.

또한, 본 발명은 상기 하이브리드 수산화효소를 암호화하는 유전자를 발현벡터에 삽입시켜 재조합 발현벡터를 제작하는 단계; 상기 재조합 발현벡터로 세포를 형질전환시키는 단계; 및 상기 형질전환된 세포를 폴리엔이 포함된 배지에서 배양하는 단계를 포함하는 폴리엔을 수산화(hydroxylation)시키는 방법을 제공한다. The present invention also relates to a method for producing a recombinant expression vector, comprising the steps of: preparing a recombinant expression vector by inserting a gene encoding the hybrid hydroxylase into an expression vector; Transforming the cells with the recombinant expression vector; And culturing the transformed cells in a medium containing a polyene. The present invention also provides a method for hydroxylation of a polyene.

상세하게는 상기 세포는 슈도노카디아 오토트로피카(Pseudonocardia autotrophica)일 수 있으나, 이에 한정되는 것은 아니다.Specifically, the cell may be, but is not limited to, Pseudonocardia autotrophica .

상세하게는 상기 폴리엔은 10-데옥시 나이스타틴-유사 슈도노카디아 폴리엔(10-deoxy nystatin-like Pseudonocardia polyene; 10-deoxy NPP) 또는 10-데옥시 나이스타틴(10-deoxy nystatin)일 수 있으나, 이에 한정되는 것은 아니다.Specifically, the polyene may be 10-deoxy nystatin-like Pseudonocardia polyene (10-deoxy NPP) or 10-deoxy nystatin , But is not limited thereto.

상세하게는, 상기 폴리엔 수산화는 10-데옥시 NPP를 NPP로 전환시키거나, 10-데옥시 나이스타틴을 나이스타틴으로 전환시키는 것을 특징으로 한다.Specifically, the polyene hydroxylation is characterized by converting 10-deoxy NPP to NPP or 10-deoxynistatin to nystatin.

바람직하게는 상기 유전자는 서열번호 3 또는 서열번호 4로 표시되지만, 이에 한정되는 것은 아니고, 상기 서열에 등가의 핵산서열들을 제공한다. Preferably, the gene is represented by SEQ ID NO: 3 or SEQ ID NO: 4, but is not limited thereto and provides equivalent nucleic acid sequences to the sequence.

"등가의 핵산서열"에는 상기 수산화효소 서열의 코돈 축퇴성 서열을 포함한다. "코돈 축퇴성 서열"이란 상기 서열과는 상이하나 본 발명에 개시된 수산화효소와 동일한 서열의 폴리펩타이드를 암호화하는 핵산서열을 의미한다.The " equivalent nucleic acid sequence " includes the codon degenerate sequence of the above-mentioned hydroxylase sequence. The term " codon degenerate sequence " means a nucleic acid sequence which differs from the above sequence but encodes a polypeptide having the same sequence as the hydroxylase disclosed in the present invention.

본 발명에 있어서,“벡터”는 클론유전자(또는 클론 DNA의 다른 조각)를 운반하는데 사용되는 스스로 복제되는 DNA분자를 의미한다.In the present invention, " vector " means a DNA molecule that is replicated by itself, which is used to carry the clone gene (or another fragment of the clone DNA).

본 발명에서 있어서,“발현 벡터”는 목적한 코딩 서열과, 특정 숙주 생물에서 작동 가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질 전환된 세포를 비 형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 앰피실린(ampicilin), 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol), 아프라마이신(apramycin)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니며, 당업자에 의해 적절히 선택 가능하다.In the present invention, an "expression vector" means a recombinant DNA molecule comprising a desired coding sequence and a suitable nucleic acid sequence necessary for expressing a coding sequence operably linked in a particular host organism. The expression vector may preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having a property that can be selected by a chemical method, and includes all genes capable of distinguishing a transformed cell from a non-transformed cell. Examples include antibiotic resistance genes such as ampicilin, kanamycin, G418, Bleomycin, hygromycin, chloramphenicol, and apramycin. And is suitably selectable by a person skilled in the art.

본 발명에서 사용한 유전공학적 기술과 관련된 사항은 샘브룩 등의 문헌(Sambrook, et al. Molecular Cloning, A Laboratory Manual, Cold Spring Harbor laboratory Press, Cold Spring Harbor, N. Y.(2001)) 및 프레드릭 등의 문헌 (Frederick M. Ausubel et al., Current protocols in molecular biology volume 1,2,3, John Wiley & Sons, Inc.(1994)) 등을 참조할 수 있다.The issues related to the genetic engineering techniques used in the present invention are described in Sambrook et al. Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001) Frederick M. Ausubel et al., Current Protocols in Molecular Biology Volume 1,2,3, John Wiley & Sons, Inc. (1994)).

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the contents of the present invention, but the scope of the present invention is not limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

<< 실험예Experimental Example >>

하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.The following experimental examples are intended to provide experimental examples that are commonly applied to the respective embodiments according to the present invention.

1. 균주, 배양 조건1. Strain, culture condition

희소방선균 슈도노카디아 오토트로피카(Pseudonocardia autotrophica) KCTC9441은 한국세포주은행(Korean Collection for Type Cultures; KCTC, Korea)으로부터 구입하였다. P. autotrophica 야생형 및 P. autotrophica 돌연변이 균주는 ISP2 액체 배지(glucose 0.4%, yeast extract 0.4% 및 malt extract 1%)로 28℃에서 배양하였고, 폴리엔 생산을 위해서는 YEME 액체 배지(yeast extract 0.3%, peptone 0.5%, malt extract 0.3%, glucose 1%, sucrose 34% 및 MgCl2· H2O 2.5mM)에 배양하였다. 모든 E. coli 균주는 적절한 항생제가 첨가된 루리아 베르타니(Luria-Bertani) 액체 또는 루리아 베르타니(Luria-Bertani) 아가 배지로 37℃에서 배양하였다. E. coli ET12567/pUZ8002는 E. coli-Streptomyces 접합을 위한 공여 균주로 사용되었다. Rare actinomycetes Pseudonocardia autotrophica KCTC9441 was purchased from the Korean Collection for Type Cultures (KCTC, Korea). P. autotrophica and P. autotrophica were cultured in ISP2 liquid medium (glucose 0.4%, yeast extract 0.4% and malt extract 1%) at 28 ° C, yeast extract medium (yeast extract 0.3% peptone 0.5%, malt extract 0.3%, glucose 1%, sucrose 34% and MgCl 2 .H 2 O 2.5 mM). All E. coli strains were cultured in Luria-Bertani liquid or Luria-Bertani agar medium supplemented with appropriate antibiotics at 37 ° C. E. coli ET12567 / pUZ8002 was used as a donor strain for E. coli - Streptomyces junction.

2. 돌연변이 2. Mutation CYPCYP 유전자들의 구축 Construction of genes

모든 돌연변이 CYP 유전자는 In-Fusion HD Cloning kit (Clontech, CA, USA)을 사용하여 구축하였다. 선형화된 벡터는 제한효소 (XbaI)를 사용하여 제작하였고, DNA 단편은 PCR을 통해 증폭하였다. 선형화된 벡터 및 DNA 단편은 50℃에서 15분 동안 In-Fusion 클로닝 반응하여 융합하였다. 반응 혼합물을 컴피턴트(competent) E. coli에 형질전환하여 원하는 클론들을 얻었다. 돌연변이 CYP 유전자들을 제작하기 위해 사용된 프라이머 및 주형 DNA는 표 1에 나타냈으며, 프라이머 서열은 표 2에 나타냈다. All mutant CYP genes were constructed using the In-Fusion HD cloning kit (Clontech, CA, USA). The linearized vector was constructed using restriction enzyme ( Xba I) and the DNA fragment was amplified by PCR. The linearized vector and the DNA fragment were fused by in-fusion cloning reaction at 50 DEG C for 15 minutes. The reaction mixture was transformed into competent E. coli to obtain the desired clones. The primer and template DNA used to prepare the mutant CYP genes are shown in Table 1 and the primer sequences are shown in Table 2.

Mutant Mutant CYPCYP gene gene FragmentFragment PrimerPrimer Template DNATemplate DNA CYPCYP -- PsL001PsL001 upstreamupstream Infusion nppL(F), psL001(R)Infusion nppL (F), psL001 (R) pCYP-nppLpCYP-nppL downstreamdownstream psL001(F), Infusion nysL(R)psL001 (F), Infusion nysL (R) pCYP-nysLpCYP-nysL CYPCYP -- SpL001SpL001 upstreamupstream Infusion nysL(F), spL001(R)Infusion nysL (F), spL001 (R) pCYP-nysLpCYP-nysL downstreamdownstream spL001(F), Infusion nppL(R)spL001 (F), Infusion nppL (R) pCYP-nppLpCYP-nppL CYPCYP -- PaL001PaL001 upstreamupstream Infusion nppL(F), psL001(R)Infusion nppL (F), psL001 (R) pCYP-nppLpCYP-nppL downstreamdownstream paL001(F), Infusion amphL(R)paL001 (F), Infusion amphL (R) pCYP-amphLpCYP-amphL CYPCYP -- ApL001ApL001 upstreamupstream Infusion amphL(F), apL001(R)Infusion amphL (F), apL001 (R) pCYP-amphLpCYP-amphL downstreamdownstream apL001(F), Infusion nppL(R)apL001 (F), Infusion nppL (R) pCYP-nppLpCYP-nppL CYPCYP -- SaL001SaL001 upstreamupstream Infusion nysL(F), spL001(R)Infusion nysL (F), spL001 (R) pCYP-nysLpCYP-nysL downstreamdownstream saL001(F), Infusion amphL(R)saL001 (F), Infusion amphL (R) pCYP-amphLpCYP-amphL CYPCYP -- AsL001AsL001 upstreamupstream Infusion amphL(F), apL001(R)Infusion amphL (F), apL001 (R) pCYP-amphLpCYP-amphL downstreamdownstream asL001(F), Infusion nysL(R)asL001 (F), Infusion nysL (R) pCYP-nysLpCYP-nysL CYPCYP -- PsL002PsL002 upstreamupstream Infusion nppL(F), psL002(R)Infusion nppL (F), psL002 (R) pCYP-nppLpCYP-nppL downstreamdownstream psL002(F), Infusion nysL(R)psL002 (F), Infusion nysL (R) pCYP-nysLpCYP-nysL CYPCYP -- SpL002SpL002 upstreamupstream Infusion nysL(F), spL002(R)Infusion nysL (F), spL002 (R) pCYP-nysLpCYP-nysL downstreamdownstream spL002(F), Infusion nppL(R)spL002 (F), Infusion nppL (R) pCYP-nppLpCYP-nppL CYPCYP -- PaL002PaL002 upstreamupstream Infusion nppL(F), psL002(R)Infusion nppL (F), psL002 (R) pCYP-nppLpCYP-nppL downstreamdownstream paL002(F), Infusion amphL(R)paL002 (F), Infusion amphL (R) pCYP-amphLpCYP-amphL CYPCYP -- ApL002ApL002 upstreamupstream Infusion amphL(F), apL002(R)Infusion amphL (F), apL002 (R) pCYP-amphLpCYP-amphL downstreamdownstream apL002(F), Infusion nppL(R)apL002 (F), Infusion nppL (R) pCYP-nppLpCYP-nppL CYPCYP -- SaL002SaL002 upstreamupstream Infusion nysL(F), spL002(R)Infusion nysL (F), spL002 (R) pCYP-nysLpCYP-nysL downstreamdownstream saL002(F), Infusion amphL(R)(F), Infusion amphL (R) pCYP-amphLpCYP-amphL CYPCYP -- AsL002AsL002 upstreamupstream Infusion amphL(F), apL002(R)Infusion amphL (F), apL002 (R) pCYP-amphLpCYP-amphL downstreamdownstream asL002(F), Infusion nysL(R)asL002 (F), Infusion nysL (R) pCYP-nysLpCYP-nysL CYPCYP -- PsL003PsL003 upstreamupstream Infusion nppL(F), spL002(R)Infusion nppL (F), spL002 (R) pCYP-psL001pCYP-psL001 downstreamdownstream spL002(F), Infusion nysL(R)spL002 (F), Infusion nysL (R) pCYP-spL002pCYP-spL002 CYPCYP -- SpL003SpL003 upstreamupstream Infusion nysL(F), psL002(R)Infusion nysL (F), psL002 (R) pCYP-spL001pCYP-spL001 downstreamdownstream psL002(F), Infusion nppL(R)psL002 (F), Infusion nppL (R) pCYP-psL002pCYP-psL002

PrimerPrimer Sequence (5'→3')Sequence (5 '- &gt; 3') Infusion nppL(F)Infusion nppL (F) GGTTGGTAGGATCCTCTAGAGACCTGGCTCGCCGAGCTGGTTGGTAGGATCCTCTAGAGACCTGGCTCGCCGAGCT Infusion nppL(R)Infusion nppL (R) GGGCTGCAGGTCGACTCTAGACGGGGCGGGTGTGCCGGGCTGCAGGTCGACTCTAGACGGGGCGGGTGTGCC Infusion nysL(F)Infusion nysL (F) TGCCGGTTGGTAGGATCCATGAGCACACCGACCGTGCCGGTTGGTAGGATCCATGAGCACACCGACCG Infusion nysL(R)Infusion nysL (R) GGGCTGCAGGTCGACTCTAGATCACCAGGTGACGGGCAGGGCTGCAGGTCGACTCTAGATCACCAGGTGACGGGCA Infusion amphL(F)Infusion amphL (F) TGCCGGTTGGTAGGATCCGCACCTCACCACTCTCCCTGCCGGTTGGTAGGATCCGCACCTCACCACTCTCCC Infusion amphL(R)Infusion amphL (R) CAGGTCGACTCTAGAGCGGGGAGGTCACCAGGTCAGGTCGACTCTAGAGCGGGGAGGTCACCAGGT psL001(F)psL001 (F) CTGTTCGCGACCCACCCGGACCAGCTCGCCGCCTGTTCGCGACCCACCCGGACCAGCTCGCCGC spL001(F)spL001 (F) CTGTTCATCCAGCACCCCGACCAGCTGGCGGCCTGTTCATCCAGCACCCCGACCAGCTGGCGGC paL001(F)paL001 (F) CTGTTCGCGACCCACCCGGACCAGCTGAAGGAGCTGTTCGCGACCCACCCGGACCAGCTGAAGGAG apL001(F)apL001 (F) CTGTTCACGCAGTAC CCCGACCAGCTGGCGGCCTGTTCACGCAGTAC CCCGACCAGCTGGCGGC saL001(F)saL001 (F) CTGTTCATCCAGCACCCGGACCAGCTGAAGGAGGCTGTTCATCCAGCACCCGGACCAGCTGAAGGAGG asL001(F)asL001 (F) CTGTTCACGCAGTACCCGGACCAGCTCGCCGCCTGTTCACGCAGTACCCGGACCAGCTCGCCGC psL002(F)psL002 (F) CTGTTCGCGACCCACCCGGACCAGCTCGCCGCCTGTTCGCGACCCACCCGGACCAGCTCGCCGC spL002(F)spL002 (F) CACCTGACGTTCGGCCACGGCATGTGGCACTGCACACCTGACGTTCGGCCACGGCATGTGGCACTGCA paL002(F)pAL002 (F) CACCTGACCTTCGGACACGGCATGTGGCACTGCCACCTGACCTTCGGACACGGCATGTGGCACTGC apL002(F)apL002 (F) CACCTGACGTTCGGGCACGGCATGTGGCACTGCCACCTGACGTTCGGGCACGGCATGTGGCACTGC saL002(F)SA002 (F) CGCACCTGACGTTCGGCCACGGCATGTGGCACTGCACGCACCTGACGTTCGGCCACGGCATGTGGCACTGCA asL002(F)asL002 (F) GAGCACCTGACGTTCGGGCACGGCATGTGGCACTGGAGCACCTGACGTTCGGGCACGGCATGTGGCACTG psL001(R)psL001 (R) GTGGGTCGCGAACAGCAGTGTGGGTCGCGAACAGCAGT spL001(R)spL001 (R) GTGCTGGATGAACAGCACCGTGCTGGATGAACAGCACC apL001(R)apL001 (R) GTACTGCGTGAACAGCACGTACTGCGTGAACAGCAC psL002(R)psL002 (R) TCCGAAGGTCAGGTGCGGTCCGAAGGTCAGGTGCGG spL002(R)spL002 (R) GCCGAACGTCAGGTGCGGGCCGAACGTCAGGTGCGG apL002(R)apL002 (R) CCCGAACGTCAGGTGCTCCCCGAACGTCAGGTGCTC

3. 3. 방선균(Actinomycetes ( ActinomycetesActinomycetes )에서의) In 이종숙주 발현 Expression of heterozygous host

돌연변이 CYPs은 접합을 통해 스트렙토마이세스(Streptomyces)에서 이종숙주 발현되었다. 각각의 재조합 플라스미드를 포함한 E. coli ET12567/pUZ8002는 공여 균주로 사용되었고, P. autotrophica nppL , P. autotrophica nppY nppL은 수여 균주로 사용되었다. 삽입 플라스미드 및 수여 균주의 리스트는 표 3에 나타냈다. 공여 균주는 LB 배지로 2번 씻어냈고, 수여 균주는 2XYT 액체 배지(tryptone 1.6%, yeast extract 1%, NaCl 0.5%)로 한 번 씻어냈다. 수여 균주를 발아시킨 후, mISP4 고체 배지(ISP4 37%, yeast extract 0.5%, tryptone 1.5%)로 50℃에서 10분 동안 접촉시켰다. 30℃에서 16시간 동안 반응시킨 후, 재조합 균주의 선별을 위해 하이그로마이신(Hygromycin) 및 날리딕산(Nalidixic acid)을 함유한 증류수를 플레이트 상에 흘려보냈다. 하이그로마이신을 함유하는 ISP2 고체 배지 상에서 반복적으로 계대배양하여 돌연변이 균주들을 얻었다.Mutant CYPs were expressed in heterozygous hosts in Streptomyces via junctions. E. coli containing each recombinant plasmid ET12567 / pUZ8002 was used as a donor strain, P. autotrophica △ nppL, P. autotrophica △ nppY △ nppL were used to granting strains. The list of insert plasmids and acceptor strains is shown in Table 3. The donor strain was washed twice with LB medium, and the donor strain was rinsed once with 2XYT liquid medium (tryptone 1.6%, yeast extract 1%, NaCl 0.5%). The resulting strain was germinated and then contacted with mISP4 solid medium (ISP4 37%, yeast extract 0.5%, tryptone 1.5%) at 50 캜 for 10 minutes. After reacting at 30 DEG C for 16 hours, distilled water containing hygromycin and nalidixic acid was flowed on the plate for selection of the recombinant strains. Mutagenic strains were obtained by repeated subculture on ISP2 solid medium containing hygromycin.

PlasmidPlasmid CharacteristicCharacteristic pMMBL005pMMBL005 Integrative plasmid, Hygr Integrative plasmid, Hyg r StrainStrain Characteristic  Characteristic Pseduconocardia autotrophica
KCTC9441
Pseduconocardia autotrophica
KCTC9441
Wild-type, NPP producing strainWild-type, NPP producing strain
P. P. autotrophicaautotrophica nppLnppL nppL mutant producing 10-deoxy NPP nppL mutant producing 10-deoxy NPP P. P. autotrophicaautotrophica nppYnppY nppLnppL nppY nppL double mutant producing 10-deoxy Nystatin nppY nppL double mutant producing 10-deoxy nystatin

4. 폴리엔 특이적 수산화반응에 대한 4. For the polyene-specific hydroxylation reaction 생전환Live conversion 분석 및  Analysis and HPLCHPLC 분석 analysis

폴리엔 유도체들을 동량의 부탄올로 추출한 후, 원심분리하고 메탄올에 녹였다. 상기 추출물은 Zorbax SB-C18 column (5㎛ particles, 4.6 x150 mm, Agilent)이 장착된 Shimadzu SPD M10A (Shimadzu, Japan)을 사용하여 분석하였다. 상기 컬럼은 50% solvent A (0.05M ammonium acetate, pH 6.5) 및 50% solvent B (methanol)로 평형화시킨 후, 다음의 용매 기울기(gradient)로 분석을 수행하였다. 1.0 ml/min 유량에서, 50% B (0 min), 75% B (3 min), 100% B (30 min), 50% B (33 min) 및 50% B (40 min)이고, UV/Vis 검출은 305 nm에서 수행하였다. 폴리엔 유도체 정량은 나이스타틴 A1(Nystatin A1; Sigma Aldrich)을 표준으로 하여 HPLC를 통해 수행하였다. The polyene derivatives were extracted with the same amount of butanol, then centrifuged and dissolved in methanol. The extracts were analyzed using a Shimadzu SPD M10A (Shimadzu, Japan) equipped with a Zorbax SB-C18 column (5 mu m particles, 4.6 x 150 mm, Agilent). The column was equilibrated with 50% solvent A (0.05M ammonium acetate, pH 6.5) and 50% solvent B (methanol) and then analyzed with the following solvent gradient. B (0 min), 75% B (3 min), 100% B (30 min), 50% B (33 min) and 50% B (40 min) at a flow rate of 1.0 ml / Vis detection was performed at 305 nm. Quantification of polyene derivatives was carried out by HPLC using Nystatin A1 (Sigma Aldrich) as a standard.

<< 실시예Example 1> 폴리엔 특이적  1> polyenes specific CYP의CYP 이종 숙주 발현 Expression of heterozygous host

폴리엔 특이적인 수산화 효소들이 기질특이성을 가지고 있는지, 각각 어떤 기질을 선호하는지에 대해 규명하기 위하여 각각의 수산화 효소들을 이종숙주 발현하였다. 폴리엔 화합물 앰포테리신(Amphotericin), 나이스타틴(Nystatin), 나이스타틴-유사 슈도노카디아 폴리엔(nystatin-like Pseudonocardia polyene; NPP)의 생합성 과정(도 1A)에서 하이드록실화를 담당하는 CYP-AmphL, CYP-NysL, CYP-NppL을 선정하였고, 방선균 염색체 내에 삽입되는 벡터(도 1B)를 이용하여 이종숙주 발현하였다. 기질은 마이코사민(mycosamine)을 포함하는 10-데옥시 나이스타틴(10-deoxy Nystain)과 마이코사민(mycosamine) 및 N-아세틸 글루코사민(N-acetyl glucosamine)을 포함하는 10-데옥시 NPP(10-deoxy NPP)이며, 이를 각각 생산하는 균주인 P. autotrophica nppY nppL, P. autotrophica nppL을 숙주로 이용하였다. 그 결과, CYP-AmphL은 하나의 당(mycosamine)을 기질로 선호하였으며, 그에 반해 CYP-NppL은 두 개의 당(mycosamine, N-acetyl glucosamine)을 더 선호하였다. 마지막으로 CYP-NysL은 하나의 당과 두 개의 당을 모두 높은 비율로 인지하는 것을 확인하였다(도 1C). 이를 통해 폴리엔 특이적인 수산화 효소들이 각각 선호하는 기질이 있으며 즉, 기질특이성을 가지고 있음을 확인하였다.Each hydroxylase was expressed in a heterozygous host to elucidate whether polyene - specific hydroxylases have substrate specificity and which substrates are preferred. In the biosynthetic process of the polyene compound amphotericin, nystatin, and nystatin-like pseudonocardia polyene (NPP) (FIG. 1A), the CYP- AmphL, CYP-NysL, and CYP-NppL were selected, and heterologous host was expressed using a vector inserted into the actinomycete chromosome (FIG. 1B). The substrate is 10-deoxy N-terminal containing mycosamine and 10-deoxy NPP (10-deoxy N-terminal) containing mycosamine and N-acetyl glucosamine. deoxy NPP), and this was used as a strain of P. autotrophica nppY nppL, P. autotrophica nppL each production as a host. As a result, CYP-AmphL favored one mycosamine as a substrate, whereas CYP-NppL favored two sugars (mycosamine, N-acetyl glucosamine). Finally, it was confirmed that CYP-NysL recognizes both one sugar and two sugars at a high ratio (Fig. 1C). These results indicate that polyene - specific hydroxylases have a favorable substrate, that is, substrate specificity.

<< 실시예Example 2> 도메인  2> domain 스와핑Swapping (Domain swapping) 및 융합 (Domain swapping) and convergence CYPs의Of CYPs 이종 숙주 발현 Expression of heterozygous host

기존의 연구 결과를 통해 폴리엔 특이적인 수산화 효소들이 기질특이성을 가지고 있음을 확인하였다. 이러한 기질특이성을 나타내는 부위를 밝혀내기 위해 도메인 스와핑을 진행하였다. 단백질 3차 구조를 포함하여 다양한 연구가 진행된 폴리엔 수산화 효소인 CYP-PimD에서 기질과의 거리가 6Å이내이며, 기질과의 상호작용에 중요한 기능을 하는 두 도메인을 선정하였고, 아미노산 서열에서 CYP-PimD와 50% 이상의 상보성을 보이는 CYP-NppL, CYP-NysL, CYP-AmphL에 적용하였다(도 2a). 각각의 수산화 효소를 두 도메인을 기반으로 혼합하였고, 총 12개의 융합 CYP(도 2b)를 Infusion 방법을 이용하여 제작 하였다(도 2c). 이를 P. autotrophica nppY △nppLP. autotrophica nppL에 접합(conjugation) 방법을 통해 이종숙주 발현하여 기질특이성을 분석하였다.Previous studies have shown that polyene-specific hydroxylases have substrate specificity. Domain swapping was carried out to reveal the region exhibiting such substrate specificity. CYP-PimD, a polyene hydroxylase that has been studied in various ways including the tertiary structure of proteins, has selected two domains that are within 6 Å from the substrate and have important functions for interaction with the substrate. CYP-Npl, CYP-NysL, and CYP-AmphL, which show more than 50% complementarity with PimD (Fig. 2a). Each of the hydroxylases was mixed based on the two domains, and a total of 12 fusion CYPs (FIG. 2b) were prepared using the infusion method (FIG. 2c). This allows the joint (conjugation) method in P. autotrophica nppY nppL and P. autotrophica nppL substrate specificity was analyzed by two kinds of expression host.

<< 실시예Example 3> 융합  3> fusion CYPs의Of CYPs 생전환율을 분석하기 위한 이종 숙주 발현 Expression of heterozygous hosts for analyzing live exchange rates

폴리엔 특이적인 수산화 효소의 기질특이성 규명을 위하여 CYP-NppL, CYP-NysL, CYP-AmphL을 특정 위치를 기반으로 도메인을 치환하였고, 총 12개의 융합 CYP를 하나의 당을 포함한 10-데옥시 나이스타틴(10-deoxy Nystatin)과 두 개의 당을 포함한 10-데옥시 NPP(10-deoxy NPP)를 생산하는 P. autotrophica nppY nppLP. autotrophica nppL에 이종숙주 발현하였다. 유용한 폴리엔 유도체의 생산을 위해서는 폴리엔 생합성에 관여하는 CYP의 규명이 필요하다. 즉, CYP의 기질특이성을 나타내는 부위를 밝히는 것이 중요하다. 이를 위해 특정한 하나의 기질에만 뚜렷한 특이성을 보이는 폴리엔 CYP인 NppL과 AmphL을 NysL과 혼합하였을 때, 본래의 기질특이성을 잃어 버리고 NysL과 같이 두 가지의 기질을 모두 높은 비율로 인지하는 융합 CYP를 분석하였다(도 3A).To identify substrate specificity of polyenes-specific hydroxylase, CYP-NppL, CYP-NysL, and CYP-AmphL were substituted on the basis of specific positions and a total of 12 fusion CYPs were substituted with 10- statins (10-deoxy Nystatin) and 10 were used two kinds of host expression in P. oxy NPP autotrophica nppY nppL and P. autotrophica nppL producing (10-deoxy NPP), including two parties. For the production of useful polyene derivatives, it is necessary to identify CYPs involved in polyene biosynthesis. In other words, it is important to identify the site that indicates the substrate specificity of CYP. For this purpose, when polyphene CYP, NppL and AmphL, which show distinct specificity only on a specific substrate, are mixed with NysL, the original substrate specificity is lost and fusion CYP, which recognizes both substrates in a high ratio like NysL (Fig. 3A).

pCYP-PsL001(56%, 57%), pCYP-PsL002(84%, 71%)는 pCYP-NppL을 기반으로 C-말단에 pCYP-NysL을 포함함으로써 두개의 당을 기질로 인지하던 pCYP-NppL의 성질을 잃고 pCYP-NysL처럼 두 가지의 기질을 모두 인지하였다. 또한 pCYP-AsL001(74%, 90%)은 pCYP-AmphL을 기반으로 C-말단에 pCYP-NysL을 포함함으로써 하나의 당을 기질로 인지하던 pCYP-AmphL의 성질을 잃고 pCYP-NysL과 같이 두 가지의 기질을 모두 인지하였다. 즉, CYP의 C-말단 부분이 치환됨으로서 본래의 기질 특이성을 잃게 된 것이다.pCYP-PsL001 (56%, 57%) and pCYP-PsL002 (84%, 71%) were found to contain pCYP-NysL in the C-terminus based on pCYP-NppL We lost both properties and recognized both substrates as pCYP-NysL. In addition, pCYP-AsL001 (74%, 90%) contained pCYP-NysL at the C-terminus based on pCYP-AmphL and thus lost the property of pCYP-AmphL which recognized a sugar as a substrate. Were all recognized. In other words, the C-terminal portion of CYP was substituted, thereby losing original substrate specificity.

하지만 CYP-AsL002는 C-말단에 pCYP-NysL을 포함하고 있음에도 불구하고 두가지의 기질을 모두 인지하지 못하였다. CYP-AsL의 N-말단에 포함된 pCYP-AmphL은 야생형(Wild type) 균주인 S. nodosus 에서 8번 탄소에 하이드록실기가 없으며 7개의 연속적인 이중탄소결합을 가진 heptaene 형태의 8-데옥시 앰포테리신(8-deoxy Amphotericin)을 기질로 인지하여 작용하는 수산화 효소이다(도 3B). 그러나 연구에 사용된 기질은 10번 탄소 위치에 하이드록실기가 없으며 tetraene 형태의 aglycone인 10-데옥시 나이스타틴(10-deoxy Nystatin)과 10-데옥시 NPP(10-deoxy NPP)이다. 이러한 기질의 구조적 차이로 인해 pCYP-AmphL이 1번 위치를 기반으로 앞부분에 있는 CYP-AsL001 보다 더 많은 부분을 차지하는, 즉 2번 위치를 기반으로 앞부분에 CYP-AmphL이 상당부분 차지하는 CYP-AsL002은 다른 기질특이성을 보여 P. autotrophica 에서 정상적으로 작동하지 못한 것으로 판단하였다. 이를 검증하기 위하여 CYP-AsL002를 S. nodosus에서 CYP 기능을 없앤 S. nodosus amphL에 보상하였다. P. autotrophica nppY nppL에서는 20%의 전환율로 10-데옥시 나이스타틴(10-deoxy Nystatin)을 기질로 인지하여 전환을 일으킨 반면, S. nodosus amphL에서는 전환율이 40%로 증가하여 8-데옥시 암포테리신(8-deoxy Amphotericin)을 기질로 삼아 암포데리신(Amphotericin)을 생합성하였다(도 3C). 이를 통해 CYP-AmphL의 본래의 기질특이성과 이종숙주 발현을 위해 사용한 균주의 차이로 인해 예상과 다른 결과가 나온 것이라 판단하였다.However, CYP-AsL002 did not recognize both substrates even though it contained pCYP-NysL at the C-terminus. The pCYP-AmphL contained in the N-terminus of CYP-AsL is a wild-type strain of S. nodosus , which has no hydroxyl group at carbon number 8 and heptaene-type 8-deoxy It is a hydroxylase that functions by recognizing 8-deoxy Amphotericin as a substrate (Fig. 3B). However, the substrates used in the study are 10-deoxy Nystatin and 10-deoxy NPP, which are tetraene-type aglycons, which have no hydroxyl groups at the 10th carbon position. Due to the structural differences of these substrates, CYP-AsL002, in which pCYP-AmphL occupies more than CYP-AsL001 at the first position, ie, CYP-AmphL at the first position based on position 2, Other substrate specificities were determined to have failed to function normally in P. autotrophica . To verify this, CYP-AsL002 was compensated for in S. nodosus , S. nodosus amphL , which had no CYP function. P. autotrophica nppY nppL the other hand, caused by the conversion to the 10-oxy whether statins age (10-deoxy Nystatin) as a substrate in a 20% conversion, in the S. nodosus amphL the conversion rate is increased to 40% 8 Amphotericin was biosynthesized using 8-deoxy Amphotericin as a substrate (Fig. 3C). It was concluded that the different substrate specificity of CYP-AmphL and the difference of strains used for heterologous host expression resulted in different results.

CYP의 C-말단 중 특이적으로 어떤 부분에 의해 활성이 변하는지 좀 더 구체적인 위치를 규명하기 위하여 도메인을 세분화하여 분석하였다. pCYP-AmphL이 보인 다른 기질특이성으로 인해 같은 구조의 aglycon을 기질로 인지하는 pCYP-NppL과 pCYP-NysL의 융합 CYP를 통해 분석하였다. C-말단 중 1번 위치 기반으로 뒷부분을 A구역, 2번 위치 기반으로 뒷부분을 B 구역이라 명명하였다(도 4A). pCYP-NppL 기반으로 A, B 구역과 A 구역, B 구역을 각각 pCYP-NysL로 치환한 pCYP-PsL001, pCYP-PsL003, pCYP-PsL002를 통해 C-말단 중 어떤 위치가 기질 인지에 중요한지 분석하고자 하였다(도 4B).The domain was subdivided and analyzed to identify more specific positions of the C-terminal end of the CYP specifically affected by the part. Due to the different substrate specificity of pCYP-AmphL, we analyzed the fusion CYP of pCYP-NppL and pCYP-NysL, which recognizes aglycon of the same structure as a substrate. Based on position 1 of the C-terminus, the rear portion was referred to as A region, and the rear portion as base position 2 was referred to as B region (FIG. 4A). We analyzed the role of pCYP-PsL001, pCYP-PsL003, and pCYP-PsL002, which are substituted for pCYP-NysL in regions A and B and regions A and B, respectively, based on pCYP-NppL (Fig. 4B).

A, B 구역을 모두 pCYP-NysL로 치환한 pCYP-PsL001은 두 가지의 기질을 모두 인지하였다. 하지만 A 구역만을 pCYP-NysL로 치환한 pCYP-PsL003은 pCYP-NysL의 성질을 나타내지 않았고, pCYP-NppL과 같이 두 개의 당이 포함된 기질을 특이적으로 인지하였다. B 구역만을 pCYP-NysL로 치환한 pCYP-PsL002는 pCYP-NysL의 성질을 나타냈다. 즉, C-말단 중 2번 위치 기반으로 뒷부분인 B구역이 다른 CYP로 치환됨으로써 활성이 변하는 것을 확인하였다. PCYP-PsL001, in which all of the A and B regions were replaced by pCYP-NysL, recognized both substrates. However, pCYP-PsL003, which was substituted with pCYP-NysL only in region A, did not show the properties of pCYP-NysL and specifically recognized substrates containing two sugars such as pCYP-NppL. PCYP-PsL002 in which only region B was substituted with pCYP-NysL showed the property of pCYP-NysL. That is, it was confirmed that the activity was changed by substituting CYP at the rear part of the B-site based on the 2-position of the C-terminal.

본 발명을 통해 폴리엔 특이적인 수산화 효소의 기질특이성이 있음을 밝혀냈고, 10번 탄소위치에 하이드록실기가 없으며 tetraene 구조에 당의 개수에 따른 기질특이성을 확인하였다. 또한 공통적으로 2번 위치 기반으로 뒷부분인 B 구역의 CYP에 따라 기질특이성이 변화하는 것을 통해 기질특이성을 나타내는 부위를 규명하였다.The present inventors have found that there is substrate specificity of polyene-specific hydroxylase, that there is no hydroxyl group at 10 carbon position, and substrate specificity according to the number of sugars in tetraene structure is confirmed. In addition, the site specificity was identified through the change of the substrate specificity according to the CYP in the B region, which is commonly located on the second position.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that such detail is solved by the person skilled in the art without departing from the scope of the invention. will be. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> INHA-INDUSTRY PARTNERSHIP INSTITUTE <120> Novel polyene specific hybrid hydroxylase constructed by domain swapping <130> ADP-2015-0268 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 394 <212> PRT <213> Artificial Sequence <220> <223> hybrid hydroxylase_AsL001 <400> 1 Met Val Asn Pro Thr Pro Pro Pro Ser Leu Glu Asp Ala Ala Pro Ser 1 5 10 15 Val Leu Arg Leu Ser Pro Leu Leu Arg Glu Leu Gln Met Arg Ala Pro 20 25 30 Val Thr Lys Ile Arg Thr Pro Ala Gly Asp Glu Gly Trp Leu Val Thr 35 40 45 Arg His Ala Glu Leu Lys Gln Leu Leu His Asp Glu Arg Leu Ala Arg 50 55 60 Ala His Ala Asp Pro Ala Asn Ala Pro Arg Tyr Val Lys Ser Pro Leu 65 70 75 80 Met Asp Leu Leu Ile Met Asp Asp Val Glu Ala Ala Arg Ala Ala His 85 90 95 Ala Glu Leu Arg Thr Leu Leu Thr Pro Gln Phe Ser Ala Arg Arg Val 100 105 110 Leu Asn Met Met Pro Met Val Glu Gly Ile Ala Glu Gln Ile Leu Asn 115 120 125 Gly Phe Ala Ala Gln Glu Gln Pro Ala Asp Leu Arg Gly Asn Phe Ser 130 135 140 Leu Pro Tyr Ser Leu Thr Val Leu Cys Ala Leu Ile Gly Ile Pro Leu 145 150 155 160 Gln Glu Gln Gly Gln Leu Leu Ala Val Leu Gly Glu Met Ala Thr Leu 165 170 175 Asn Asp Ala Glu Ser Val Ala Arg Ser Gln Ala Lys Leu Phe Gly Leu 180 185 190 Leu Thr Asp Leu Ala Gly Arg Lys Arg Ala Glu Pro Gly Asp Asp Val 195 200 205 Ile Ser Arg Leu Cys Glu Thr Val Pro Glu Asp Glu Arg Ile Gly Pro 210 215 220 Ile Ala Ala Ser Leu Leu Phe Ala Gly Leu Asp Ser Val Ala Thr His 225 230 235 240 Val Asp Leu Gly Val Val Leu Phe Thr Gln Tyr Pro Asp Gln Leu Ala 245 250 255 Ala Ala Leu Ala Asp Glu Lys Leu Met Arg Gly Ala Val Glu Glu Ile 260 265 270 Leu Arg Ser Ala Lys Ala Gly Gly Ser Val Leu Pro Arg Tyr Ala Thr 275 280 285 Ala Asp Val Pro Ile Gly Asp Val Thr Ile Arg Ala Gly Asp Leu Val 290 295 300 Leu Leu Asp Phe Thr Leu Val Asn Phe Asp Arg Thr Val Phe Asp Glu 305 310 315 320 Pro Glu Leu Phe Asp Ile Arg Arg Ala Pro Asn Pro His Leu Thr Phe 325 330 335 Gly His Gly Met Trp His Cys Ile Gly Ala Pro Leu Ala Arg Val Asn 340 345 350 Leu Arg Thr Ala Tyr Thr Leu Leu Phe Thr Arg Leu Pro Gly Leu Arg 355 360 365 Leu Val Arg Pro Val Glu Glu Leu Arg Val Leu Ser Gly Gln Leu Ser 370 375 380 Ala Gly Leu Thr Glu Leu Pro Val Thr Trp 385 390 <210> 2 <211> 401 <212> PRT <213> Artificial Sequence <220> <223> hybrid hydroxylase_PsL002 <400> 2 Met Thr Ser Pro Thr Thr Cys Pro Val Thr Gly Gly Gly Pro Pro Pro 1 5 10 15 Ser Leu Glu Gly Gln Thr Pro Pro Val Leu Arg Leu Ser Pro Leu Leu 20 25 30 Arg Glu Leu Gln Gln Gln Ala Pro Val Cys Arg Val Arg Thr Pro Thr 35 40 45 Gly Asp Glu Ala Trp Leu Val Thr Arg Tyr Ala Glu Leu Lys Ala Leu 50 55 60 Leu His Asp Glu Arg Leu Gly Arg Ala His Ala Asp Pro Ala Asn Ala 65 70 75 80 Pro Arg Tyr Val Arg Asn Pro Phe Leu Asp Leu Leu Val Val Asp Asp 85 90 95 Ala Gln Gln Ala Arg Asp Leu His Thr Glu Met Arg Arg Leu Leu Thr 100 105 110 Pro Gln Phe Ser Ala Arg Arg Val Leu Gly Leu Ala Pro Thr Val Ser 115 120 125 Ala Val Ala Glu Gln Val Leu Asp Gly Phe Val Ala Ala Gly Asn Pro 130 135 140 Gly Asp Leu His Gly Gly Phe Ser Met Pro Tyr Ser Leu Thr Val Leu 145 150 155 160 Cys Glu Leu Ile Gly Ile Pro Pro Gln Asp Arg Pro Glu Leu Val Arg 165 170 175 Thr Ile Met Thr Met Gly Glu Val Asp Asp Ala Glu Arg Val Ala Thr 180 185 190 Val Gln Ala Glu Leu Phe Gly Leu Leu Ser Ala Val Ala Arg Arg Lys 195 200 205 Arg Ala Glu Pro Thr Asp Asp Val Val Ser Arg Leu Cys Ala Gln Val 210 215 220 Pro Asp Glu Arg Ile Gly Pro Ile Ala Ala Gly Leu Leu Phe Ala Gly 225 230 235 240 Leu Asp Ser Val Ala Ser His Val Asp Leu Gly Val Leu Leu Phe Ala 245 250 255 Thr His Pro Asp Gln Leu Ala Ala Ala Leu Ala Asp Glu Arg Thr Met 260 265 270 Arg Glu Gly Val Glu Glu Ile Leu Arg Cys Ala Lys Ala Gly Gly Ser 275 280 285 Val Leu Pro Arg Tyr Ala Thr Asp Asp Val Glu Ile Gly Gly Val Thr 290 295 300 Leu Arg Thr Gly Asp Leu Val Leu Leu Asp Phe Thr Leu Val Asn Phe 305 310 315 320 Asp Thr Gln Val Phe Asp Glu Pro Glu Val Phe Asp Ile Arg Arg Glu 325 330 335 Ser Asn Pro His Leu Thr Phe Gly His Gly Met Trp His Cys Ile Gly 340 345 350 Ala Pro Leu Ala Arg Val Asn Leu Arg Thr Ala Tyr Thr Leu Leu Phe 355 360 365 Thr Arg Leu Pro Gly Leu Arg Leu Val Arg Pro Val Glu Glu Leu Arg 370 375 380 Val Leu Ser Gly Gln Leu Ser Ala Gly Leu Thr Glu Leu Pro Val Thr 385 390 395 400 Trp <210> 3 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> hybrid hydroxylase_AsL001 <400> 3 atggtcaacc cgacaccgcc gccctctctc gaggatgccg cgccttcggt gctccgcctc 60 agcccgctgc tgcgcgagct ccagatgcgt gctcccgtca ccaagatccg caccccggcc 120 ggcgacgagg gctggctggt gacccggcac gccgagctga agcagctgct gcacgacgag 180 cgcctggccc gtgcgcacgc cgacccggcc aacgcgcccc gctacgtcaa gagccccttg 240 atggacctgc tcatcatgga cgacgtggag gcggcccgcg ccgcgcacgc cgagctgcgc 300 accctgctca ccccgcagtt ctccgcccgc cgggtgctca acatgatgcc catggtggag 360 gggatcgcgg agcagatcct gaacggcttc gccgcccagg aacaacccgc cgatctgcgg 420 ggcaacttct cgctgccgta ctcgctgacc gtgctgtgcg ccctgatcgg catcccgctg 480 caggagcagg gccaactcct cgcggtgctg ggcgagatgg ccacgctgaa cgacgcggag 540 agcgtcgcca ggagccaggc gaagctgttc gggctgctga ccgacctggc cggccgcaag 600 cgggccgaac ccggcgacga cgtgatctcc cggctgtgcg agacggtccc ggaggacgag 660 cgcatcggcc ccatcgccgc gagcctgctc ttcgccggcc tcgacagcgt tgccacccat 720 gtcgacctgg gcgtcgtgct gttcacgcag tacccggacc agctcgccgc ggccctggcc 780 gacgagaagc tgatgcgcgg cgccgtcgag gagatcctgc ggtccgccaa ggccggcggt 840 tcggtgctcc cgcggtacgc gaccgccgat gtaccgatcg gcgacgtgac catcagggcc 900 ggcgacctgg tgctgctgga cttcaccctg gtgaacttcg accgcacggt cttcgacgag 960 ccggagctct tcgacatccg gcgcgccccc aacccgcacc tgacgttcgg ccacggcatg 1020 tggcactgca tcggcgcgcc gctggcccgg gtcaatctgc gcaccgccta caccctgctg 1080 ttcacccgcc tgcccggcct gcggctggtg cgcccggtcg aggaactgcg ggtgctgtcg 1140 gggcagttgt cggccggcct gacggagctg cccgtcacct ggtga 1185 <210> 4 <211> 1206 <212> DNA <213> Artificial Sequence <220> <223> hybrid hydroxylase_PsL002 <400> 4 atgaccagcc cgacgacctg cccggtcacc ggcggcgggc ccccgccgtc cctggagggc 60 cagaccccgc cggtgctgcg gctgagcccg ctgctgcggg agctgcagca gcaggcaccc 120 gtgtgccggg tccggacccc caccggcgac gaggcctggc tggtcacccg ctacgccgag 180 ctgaaagcac tgctgcacga cgagcgcctc ggccgcgcgc acgccgatcc ggcgaacgcg 240 ccgcggtacg tgcgcaaccc gttcctggac ctgctggtcg tcgacgacgc ccagcaggcc 300 cgggacctgc acaccgagat gcggcgcctg ctcaccccgc agttctccgc gcgccgggtg 360 ctgggcctgg cgcccacggt gtccgcggtc gccgagcagg tgctcgacgg gttcgtcgcc 420 gcgggcaacc ccggcgacct gcacggcggg ttctccatgc cgtactcgct gacggtgctg 480 tgcgaactca tcgggatccc gccgcaggac cgacccgagc tggtgcggac catcatgacg 540 atgggtgagg tggacgacgc cgagcgcgtc gccacggtcc aggccgagct gttcgggctg 600 ctgtccgccg tcgcccggcg caagcgggcc gagcccaccg acgacgtcgt gtcccggctg 660 tgcgcgcagg tgcccgacga gcggatcggc ccgatcgccg ccggtctgct gttcgccggg 720 ctcgacagcg tcgccagcca cgtcgacctg ggcgtactgc tgttcgcgac ccaccccgac 780 cagctggcgg ccgcgctcgc cgacgagcgc accatgcgcg agggcgtcga ggagatcctg 840 cgctgcgcca aggcgggcgg atcggtgctg ccccgctatg ccaccgacga cgtcgagatc 900 ggtggcgtca ccctgcgcac cggcgacctg gtgctgctgg acttcaccct ggtcaacttc 960 gacacccagg tgttcgacga gccggaggtg ttcgacatcc gccgggagtc gaacccgcac 1020 ctgaccttcg gacacggcat gtggcactgc atcggcgcac cgctggcccg ggtcaatctg 1080 cgcaccgcct acaccctgct gttcacccgc ctgcccggcc tgcggctggt gcgcccggtc 1140 gaggaactgc gggtgctgtc ggggcagttg tcggccggcc tgacggagct gcccgtcacc 1200 tggtga 1206 <110> INHA-INDUSTRY PARTNERSHIP INSTITUTE &Lt; 120 > Novel polyene-specific hybrid < RTI ID = 0.0 &          swapping <130> ADP-2015-0268 <160> 4 <170> Kopatentin 2.0 <210> 1 <211> 394 <212> PRT <213> Artificial Sequence <220> <223> hybrid hydroxylase_AsL001 <400> 1 Met Val Asn Pro Thr Pro Pro Pro Ser Leu Glu Asp Ala Ala Pro Ser   1 5 10 15 Val Leu Arg Leu Ser Pro Leu Leu Arg Glu Leu Gln Met Arg Ala Pro              20 25 30 Val Thr Lys Ile Arg Thr Pro Ala Gly Asp Glu Gly Trp Leu Val Thr          35 40 45 Arg His Ala Glu Leu Lys Gln Leu Leu His Asp Glu Arg Leu Ala Arg      50 55 60 Ala His Ala Asp Pro Ala Asn Ala Pro Arg Tyr Val Lys Ser Pro Leu  65 70 75 80 Met Asp Leu Leu Ile Met Asp Asp Val Glu Ala Ala Arg Ala Ala His                  85 90 95 Ala Glu Leu Arg Thr Leu Leu Thr Pro Gln Phe Ser Ala Arg Arg Val             100 105 110 Leu Asn Met Met Pro Met Val Glu Gly Ile Ala Glu Gln Ile Leu Asn         115 120 125 Gly Phe Ala Ala Gln Glu Gln Pro Ala Asp Leu Arg Gly Asn Phe Ser     130 135 140 Leu Pro Tyr Ser Leu Thr Val Leu Cys Ala Leu Ile Gly Ile Pro Leu 145 150 155 160 Gln Glu Gln Gly Gln Leu Leu Ala Val Leu Gly Glu Met Ala Thr Leu                 165 170 175 Asn Asp Ala Glu Ser Val Ala Arg Ser Gln Ala Lys Leu Phe Gly Leu             180 185 190 Leu Thr Asp Leu Ala Gly Arg Lys Arg Ala Glu Pro Gly Asp Asp Val         195 200 205 Ile Ser Arg Leu Cys Glu Thr Val Pro Glu Asp Glu Arg Ile Gly Pro     210 215 220 Ile Ala Ale Le Leu Ale Gly Leu Asp Ser Val Ala Thr His 225 230 235 240 Val Asp Leu Gly Val Val Leu Phe Thr Gln Tyr Pro Asp Gln Leu Ala                 245 250 255 Ala Ala Leu Ala Asp Glu Lys Leu Met Arg Gly Ala Val Glu Glu Ile             260 265 270 Leu Arg Ser Ala Lys Ala Gly Gly Ser Val Leu Pro Arg Tyr Ala Thr         275 280 285 Ala Asp Val Pro Ile Gly Asp Val Thr Ile Arg Ala Gly Asp Leu Val     290 295 300 Leu Leu Asp Phe Thr Leu Val Asn Phe Asp Arg Thr Val Phe Asp Glu 305 310 315 320 Pro Glu Leu Phe Asp Ile Arg Arg Ala Pro Asn Pro His Leu Thr Phe                 325 330 335 Gly His Gly Met Trp His Cys Ile Gly Ala Pro Leu Ala Arg Val Asn             340 345 350 Leu Arg Thr Ala Tyr Thr Leu Leu Phe Thr Arg Leu Pro Gly Leu Arg         355 360 365 Leu Val Arg Pro Val Glu Glu Leu Arg Val Leu Ser Gly Gln Leu Ser     370 375 380 Ala Gly Leu Thr Glu Leu Pro Val Thr Trp 385 390 <210> 2 <211> 401 <212> PRT <213> Artificial Sequence <220> <223> hybrid hydroxylase_PsL002 <400> 2 Met Thr Ser Pro Thr Thr Cys Pro Val Thr Gly Gly Gly Pro Pro Pro   1 5 10 15 Ser Leu Glu Gly Gln Thr Pro Pro Val Leu Arg Leu Ser Pro Leu Leu              20 25 30 Arg Glu Leu Gln Gln Gln Ala Pro Val Cys Arg Val Thr Pro Thr          35 40 45 Gly Asp Glu Ala Trp Leu Val Thr Arg Tyr Ala Glu Leu Lys Ala Leu      50 55 60 Leu His Asp Glu Arg Leu Gly Arg Ala His Ala Asp Pro Ala Asn Ala  65 70 75 80 Pro Arg Tyr Val Arg Asn Pro Phe Leu Asp Leu Leu Val Val Asp Asp                  85 90 95 Ala Gln Gln Ala Arg Asp Leu His Thr Glu Met Arg Arg Leu Leu Thr             100 105 110 Pro Gln Phe Ser Ala Arg Arg Val Leu Gly Leu Ala Pro Thr Val Ser         115 120 125 Ala Val Ala Glu Gln Val Leu Asp Gly Phe Val Ala Ala Gly Asn Pro     130 135 140 Gly Asp Leu His Gly Gly Phe Ser Met Pro Tyr Ser Leu Thr Val Leu 145 150 155 160 Cys Glu Leu Ile Gly Ile Pro Pro Gln Asp Arg Pro Glu Leu Val Arg                 165 170 175 Thr Ile Met Thr Met Gly Glu Val Asp Asp Ala Glu Arg Val Ala Thr             180 185 190 Val Gln Ala Glu Leu Phe Gly Leu Leu Ser Ala Val Ala Arg Arg Lys         195 200 205 Arg Ala Glu Pro Thr Asp Val Val Ser Arg Leu Cys Ala Gln Val     210 215 220 Pro Asp Glu Arg Ile Gly Pro Ile Ala Gly Leu Leu Phe Ala Gly 225 230 235 240 Leu Asp Ser Val Ala Ser His Val Asp Leu Gly Val Leu Leu Phe Ala                 245 250 255 Thr His Pro Asp Gln Leu Ala Ala Ala Leu Ala Asp Glu Arg Thr Met             260 265 270 Arg Glu Gly Val Glu Glu Ile Leu Arg Cys Ala Lys Ala Gly Gly Ser         275 280 285 Val Leu Pro Arg Tyr Ala Thr Asp Asp Val Glu Ile Gly Gly Val Thr     290 295 300 Leu Arg Thr Gly Asp Leu Val Leu Leu Asp Phe Thr Leu Val Asn Phe 305 310 315 320 Asp Thr Gln Val Phe Asp Glu Pro Glu Val Phe Asp Ile Arg Arg Glu                 325 330 335 Ser Asn Pro His Leu Thr Phe Gly His Gly Met Trp His Cys Ile Gly             340 345 350 Ala Pro Leu Ala Arg Val Asn Leu Arg Thr Ala Tyr Thr Leu Leu Phe         355 360 365 Thr Arg Leu Pro Gly Leu Arg Leu Val Arg Pro Val Glu Glu Leu Arg     370 375 380 Val Leu Ser Gly Gln Leu Ser Ala Gly Leu Thr Glu Leu Pro Val Thr 385 390 395 400 Trp     <210> 3 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> hybrid hydroxylase_AsL001 <400> 3 atggtcaacc cgacaccgcc gccctctctc gaggatgccg cgccttcggt gctccgcctc 60 agcccgctgc tgcgcgagct ccagatgcgt gctcccgtca ccaagatccg caccccggcc 120 ggcgacgagg gctggctggt gacccggcac gccgagctga agcagctgct gcacgacgag 180 cgcctggccc gtgcgcacgc cgacccggcc aacgcgcccc gctacgtcaa gagccccttg 240 atggacctgc tcatcatgga cgacgtggag gcggcccgcg ccgcgcacgc cgagctgcgc 300 accctgctca ccccgcagtt ctccgcccgc cgggtgctca acatgatgcc catggtggag 360 gggatcgcgg agcagatcct gaacggcttc gccgcccagg aacaacccgc cgatctgcgg 420 ggcaacttct cgctgccgta ctcgctgacc gtgctgtgcg ccctgatcgg catcccgctg 480 caggagcagg gccaactcct cgcggtgctg ggcgagatgg ccacgctgaa cgacgcggag 540 agcgtcgcca ggagccaggc gaagctgttc gggctgctga ccgacctggc cggccgcaag 600 cgggccgaac ccggcgacga cgtgatctcc cggctgtgcg agacggtccc ggaggacgag 660 cgcatcggcc ccatcgccgc gagcctgctc ttcgccggcc tcgacagcgt tgccacccat 720 gtcgacctgg gcgtcgtgct gttcacgcag tacccggacc agctcgccgc ggccctggcc 780 gacgagaagc tgatgcgcgg cgccgtcgag gagatcctgc ggtccgccaa ggccggcggt 840 tcggtgctcc cgcggtacgc gaccgccgat gtaccgatcg gcgacgtgac catcagggcc 900 ggcgacctgg tgctgctgga cttcaccctg gtgaacttcg accgcacggt cttcgacgag 960 ccggagctct tcgacatccg gcgcgccccc aacccgcacc tgacgttcgg ccacggcatg 1020 tggcactgca tcggcgcgcc gctggcccgg gtcaatctgc gcaccgccta caccctgctg 1080 ttcacccgcc tgcccggcct gcggctggtg cgcccggtcg aggaactgcg ggtgctgtcg 1140 gggcagttgt cggccggcct gacggagctg cccgtcacct ggtga 1185 <210> 4 <211> 1206 <212> DNA <213> Artificial Sequence <220> <223> hybrid hydroxylase_PsL002 <400> 4 atgaccagcc cgacgacctg cccggtcacc ggcggcgggc ccccgccgtc cctggagggc 60 cagaccccgc cggtgctgcg gctgagcccg ctgctgcggg agctgcagca gcaggcaccc 120 gtgtgccggg tccggacccc caccggcgac gaggcctggc tggtcacccg ctacgccgag 180 ctgaaagcac tgctgcacga cgagcgcctc ggccgcgcgc acgccgatcc ggcgaacgcg 240 ccgcggtacg tgcgcaaccc gttcctggac ctgctggtcg tcgacgacgc ccagcaggcc 300 cgggacctgc acaccgagat gcggcgcctg ctcaccccgc agttctccgc gcgccgggtg 360 ctgggcctgg cgcccacggt gtccgcggtc gccgagcagg tgctcgacgg gttcgtcgcc 420 gcgggcaacc ccggcgacct gcacggcggg ttctccatgc cgtactcgct gacggtgctg 480 tgcgaactca tcgggatccc gccgcaggac cgacccgagc tggtgcggac catcatgacg 540 atgggtgagg tggacgacgc cgagcgcgtc gccacggtcc aggccgagct gttcgggctg 600 ctgtccgccg tcgcccggcg caagcgggcc gagcccaccg acgacgtcgt gtcccggctg 660 tgcgcgcagg tgcccgacga gcggatcggc ccgatcgccg ccggtctgct gttcgccggg 720 ctcgacagcg tcgccagcca cgtcgacctg ggcgtactgc tgttcgcgac ccaccccgac 780 cagctggcgg ccgcgctcgc cgacgagcgc accatgcgcg agggcgtcga ggagatcctg 840 cgctgcgcca aggcgggcgg atcggtgctg ccccgctatg ccaccgacga cgtcgagatc 900 ggtggcgtca ccctgcgcac cggcgacctg gtgctgctgg acttcaccct ggtcaacttc 960 gacacccagg tgttcgacga gccggaggtg ttcgacatcc gccgggagtc gaacccgcac 1020 ctgaccttcg gacacggcat gtggcactgc atcggcgcac cgctggcccg ggtcaatctg 1080 cgcaccgcct acaccctgct gttcacccgc ctgcccggcc tgcggctggt gcgcccggtc 1140 gaggaactgc gggtgctgtc ggggcagttg tcggccggcc tgacggagct gcccgtcacc 1200 tggtga 1206

Claims (9)

서열번호 1 또는 서열번호 2로 표시된 아미노산 서열로 이루어진 폴리엔(polyene) 특이적인 하이브리드 수산화효소(hydroxylase)로서, 상기 폴리엔 특이적인 하이브리드 수산화효소는 10-데옥시 나이스타틴-유사 슈도노카디아 폴리엔(10-deoxy nystatin-like Pseudonocardia polyene; 10-deoxy NPP) 및 10-데옥시 나이스타틴(10-deoxy nystatin)을 기질로 하여 각각 NPP 및 나이스타틴으로 전환시키는 것을 특징으로 하는 하이브리드 수산화효소. A polyene-specific hybrid hydroxylase consisting of an amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2, wherein the polyene-specific hybrid hydroxylase is 10-deoxynistatin-like pseudonocadia polyenes (10-deoxy NPP) and 10-deoxy nystatin (10-deoxy nystatin) into NPP and nisatin, respectively. 제1항에 있어서, 상기 서열번호 1의 252번째 내지 394번째 아미노산 또는 서열번호 2의 345번째 내지 401번째 아미노산으로 이루어진 도메인이 폴리엔의 기질특이성을 결정하는 것을 특징으로 하는 하이브리드 수산화효소. 2. The hybrid enzyme according to claim 1, wherein the 252nd to 394th amino acids of SEQ ID NO: 1 or the 345th to 401st amino acids of SEQ ID NO: 2 determine the substrate specificity of the polyene. 삭제delete 삭제delete 제1항 또는 제2항의 하이브리드 수산화효소를 암호화하는 유전자를 발현벡터에 삽입시켜 재조합 발현벡터를 제작하는 단계;
상기 재조합 발현벡터로 세포를 형질전환시키는 단계; 및
상기 형질전환된 세포를 10-데옥시 NPP 및 10-데옥시 나이스타틴이 포함된 배지에서 배양하는 단계를 포함하는 10-데옥시 NPP 및 10-데옥시 나이스타틴을 기질로 하여 각각 NPP 및 나이스타틴으로 수산화(hydroxylation)시키는 방법.
Preparing a recombinant expression vector by inserting a gene encoding the hybrid hydroxylase of claim 1 or 2 into an expression vector;
Transforming the cells with the recombinant expression vector; And
10-deoxy NPP and 10-deoxynistatin, which comprises culturing the transformed cells in a medium containing 10-deoxy NPP and 10-deoxynistatin, (Hydroxylation).
제5항에 있어서, 상기 유전자는 서열번호 3 또는 서열번호 4로 표시되는 것을 특징으로 하는 폴리엔을 수산화(hydroxylation)시키는 방법.6. The method according to claim 5, wherein the gene is represented by SEQ ID NO: 3 or SEQ ID NO: 4. 제5항에 있어서, 상기 세포는 슈도노카디아 오토트로피카(Pseudonocardia autotrophica)인 것을 특징으로 하는 폴리엔을 수산화(hydroxylation)시키는 방법.6. The method according to claim 5, wherein the cell is Pseudonocardia autotrophica . 삭제delete 삭제delete
KR1020160120629A 2016-09-21 2016-09-21 Novel polyene specific hybrid hydroxylase constructed by domain swapping KR101884074B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160120629A KR101884074B1 (en) 2016-09-21 2016-09-21 Novel polyene specific hybrid hydroxylase constructed by domain swapping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160120629A KR101884074B1 (en) 2016-09-21 2016-09-21 Novel polyene specific hybrid hydroxylase constructed by domain swapping

Publications (2)

Publication Number Publication Date
KR20180032011A KR20180032011A (en) 2018-03-29
KR101884074B1 true KR101884074B1 (en) 2018-07-31

Family

ID=61906993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160120629A KR101884074B1 (en) 2016-09-21 2016-09-21 Novel polyene specific hybrid hydroxylase constructed by domain swapping

Country Status (1)

Country Link
KR (1) KR101884074B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552400B1 (en) 2013-10-30 2015-09-10 인하대학교 산학협력단 Novel polyene specific glycosyltransferase from Pseudonocardia autotrophica

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665316B1 (en) * 2005-06-03 2007-01-09 한국생명공학연구원 Novel bifunctional hydroxylase from metagenome library genes and screening method thereof
KR101379978B1 (en) 2011-12-30 2014-04-02 인하대학교 산학협력단 New polyene compound, preparation method thereof and antifungal agent comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552400B1 (en) 2013-10-30 2015-09-10 인하대학교 산학협력단 Novel polyene specific glycosyltransferase from Pseudonocardia autotrophica

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Archives of Biochemistry and Biophysics, Vol. 425, pp. 233-241 (2004.)*
PLoS ONE, Vol. 10, No. 4, pp. 1-14 (2015.04.07.)*

Also Published As

Publication number Publication date
KR20180032011A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6479084B2 (en) A series of glycosyltransferases and their applications
US10724012B2 (en) Glycosyltransferase glycosylating flavokermesic acid and/or kermesic acid
CN109423486B (en) Novel UDP-glycosyltransferase and use thereof
WO2021147575A1 (en) New carbon glycoside glycosyltransferase and use thereof
WO2021164673A1 (en) Bifunctional c-glycoside glycosyltransferases and application thereof
EP0789078A2 (en) Engineered peptide synthetases and their use for the non-ribosomal production of peptides
USRE37206E1 (en) Gene encoding glycosyltransferase and its uses
US20180291410A1 (en) Method for small molecule glycosylation
EP3249044A1 (en) Method for preparing mogroside
Tang et al. Generation of new epothilones by genetic engineering of a polyketide synthase in Myxococcus xanthus
KR101602195B1 (en) Method for Production of Non-natural Antibiotic
KR101884074B1 (en) Novel polyene specific hybrid hydroxylase constructed by domain swapping
CN113493756A (en) Genetically engineered bacterium and application thereof
CN114032222B (en) Sugar chain extension glycosyltransferase mutant and coding gene thereof, genetic engineering bacteria and application of sugar chain extension glycosyltransferase mutant and coding gene
KR102565305B1 (en) Composition for preparing 3-hydroxy phlorizin
US20220275351A1 (en) Preparation of Glycosyltransferase UGT76G1 Mutant and Use Thereof
CN115678952A (en) Highly specific glycosyltransferase for rhamnose and application thereof
CN111575260A (en) Application of SAM dependent methyltransferase DmtMT2-1
JP5499350B2 (en) Quinuclidinone reductase and method for producing optically active 3-quinuclidinol using the same
WO2008100021A1 (en) Genes which are related to trehalose biosynthesis and mass-production of trehalose using thereof
KR101638334B1 (en) Cyclodextrin glucanotransferase mutants and method for preparation of l-ascorbic acid derivative using the same
KR0145943B1 (en) Aklavinone 11-hydroxylase, gene coding for alkavinone 11-hydroxylase, expression vector and process of hybrid antibiotic
KR101552400B1 (en) Novel polyene specific glycosyltransferase from Pseudonocardia autotrophica
KR102304145B1 (en) Composition for deacetylation and method using the same
CN109868265B (en) Novel glycosyltransferase and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant