KR101882789B1 - 상황인지 서비스를 위한 활동 정확도 산정 방법 - Google Patents
상황인지 서비스를 위한 활동 정확도 산정 방법 Download PDFInfo
- Publication number
- KR101882789B1 KR101882789B1 KR1020140105438A KR20140105438A KR101882789B1 KR 101882789 B1 KR101882789 B1 KR 101882789B1 KR 1020140105438 A KR1020140105438 A KR 1020140105438A KR 20140105438 A KR20140105438 A KR 20140105438A KR 101882789 B1 KR101882789 B1 KR 101882789B1
- Authority
- KR
- South Korea
- Prior art keywords
- accuracy
- activity data
- activity
- inference
- time
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
본 발명은, 상황인지 서비스를 위한 활동 정확도 산정 방법에 관한 것으로, 기 설정된 주기 마다 실제 경로 상에서 실측을 통해 수집된 실제 활동 데이터를 미리 저장하는 단계; 일정 시간 구간 동안 상황 인지 서비스를 위한 활동을 추론하는 단계; 추론된 추론 활동 데이터와 대응하는 기 저장된 실제 활동 데이터를 기 설정된 정확도 산정 기준에 따라 비교하는 단계; 및 비교 결과에 따라 상기 상황 인지 서비스를 위한 활동의 정확도를 산정하는 단계를 포함함으로써, 추론된 활동이 얼마나 정확한지를 확인할 수 있으므로 상황 인지 서비스 시 정확한 활동에 대한 정보를 제공할 수 있는 효과가 있다.
Description
본 발명은 상황 인지 서비스에 관한 것으로서, 특히 실제 경로 상에서 실측을 통해 수집된 실제 활동 데이터와 상황 인지 알고리즘에 의해 추론한 추론 활동 데이터를 비교하여 상황 인지 서비스를 위해 추론된 활동이 얼마나 정확한지를 산정하는 상황인지 서비스를 위한 활동 정확도 산정 방법에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
이동통신망의 발달과 단말기 사양의 발전에 따라 종래의 단순한 통신 장치 또는 정보 제공 장치의 범주를 벗어나 이동통신단말기는 현대인의 필수 소지품이 되었고, 토탈 엔터테인먼트 기기로 진화해 가고 있는 추세에 있다.
또한, 이동통신단말기는 근거리에 위치한 장치들 간에 근거리 무선 데이터 통신을 수행하기 위한 기술들이 급속히 발전하고 있으며, 이러한 근거리 무선 데이터 통신은 스마트폰, 지오펜싱(geofencing), 위치 기반 서비스 등에 널리 이용되고 있다. 최근에는 이동통신 단말기에 인터넷 통신과 정보 검색된 컴퓨터 지원 기능을 추가한 지능형 단말기인 스마트 기기가 보급되면서 어플리케이션을 설치하여 다양한 서비스를 제공받을 수 있게 되었다.
더불어, 최근에는 상황 인지 기술을 기반으로 사용자의 일상을 자동으로 인지하여 기록하는 기술도 개발되고 있다. 이렇게 사용자의 일상 전반을 기록 및 보관하는 것을 라이프 로그라 하며, 사용자는 라이프 로그를 기반으로 한 상황 인지 서비스를 위한 어플리케이션을 설치하여 상황 인지 서비스를 제공받을 수 있다.
상황 인지 서비스는 사용자의 위치 정보, 생체 정보, 움직임 감지 및 운동량 정보 등을 체계적으로 분석하여, 도보 이동, 정지, 교통 수단을 통한 이동 등 사용자의 일상에 대한 활동을 기록할 수 있다.
이를 위해 사용자의 휴대 단말 장치를 통해 사용자의 이동 활동에 따른 사용자의 위치를 측위하고, 이후, 측위된 위치 정보를 이용하여 사용자의 이동에 따른 활동을 추론함으로써, 사용자에게 추론된 활동에 따라 상황 인지 서비스를 제공한다.
그러나 종래의 상황 인지 서비스 기술은 제공되는 상황 인지를 위한 활동이 실제로 정확한지를 확인할 수 없으므로 정확한 활동에 따른 상황 인지 서비스를 제공하기 어려웠다.
이에 본 발명은 종래의 불편함을 해소하기 위하여 제안된 것으로서, 실제 경로 상에서 해 실측을 통해 수집된 실제 활동 데이터와 상황 인지 알고리즘을 통해 추론한 추론 활동 데이터를 비교하여 추론된 활동이 얼마나 정확한지를 산정함으로써, 상황 인지 서비스 시 정확한 활동을 제공할 수 있는 상황 인지 서비스를 위한 활동 정확도 산정 방법을 제공하고자 한다.
그러나 이러한 본 발명의 목적은 상기의 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 바람직한 실시 예에 따른 정확도 산정 장치에서의 상황 인지 서비스를 위한 활동의 정확도 산정 방법은, 기 설정된 주기 마다 실제 경로 상에서 실측을 통해 수집된 실제 활동 데이터를 미리 저장하는 단계; 일정 시간 구간 동안 상황 인지 서비스를 위한 활동을 추론하는 단계; 추론된 추론 활동 데이터와 상기 실제 활동 데이터를 기 설정된 정확도 산정 기준에 따라 비교하는 단계; 및 비교 결과에 따라 상기 상황 인지 서비스를 위한 활동의 정확도를 산정하는 단계를 포함할 수 있다.
본 발명의 바람직한 실시 예에 따른 정확도 산정 장치에서의 상황 인지 서비스를 위한 활동의 정확도 산정 방법에 있어서, 상기 추론된 활동의 정확도를 산정하는 단계는, 상기 일정 시간 구간의 각 시점의 추론 활동 데이터를 해당 시점의 실제 활동 데이터 및 기 설정된 정확도 산정 기준에 따른 이전 시점의 실제 활동 데이터와 비교하여 각 시점의 추론 활동 데이터의 정확도를 판단하는 단계; 및 상기 일정 시간 구간의 추론 활동 데이터들의 정확도를 판단한 후, 정확도 판단 결과들이 기 설정된 목표 수준에 도달하면, 상기 일정 시간 구간에서의 추론된 활동이 정확한 것으로 판단하는 단계를 포함할 수 있다.
본 발명의 바람직한 실시 예에 따른 정확도 산정 장치에서의 상황 인지 서비스를 위한 활동의 정확도 산정 방법에 있어서, 상기 각 시점의 정확도를 판단하는 단계는, 현재 비교 시점의 추론 활동 데이터와 동일 시점의 실제 활동 데이터를 비교하는 단계; 현재 비교 시점의 추론 활동 데이터와 실제 활동 데이터가 일치하지 않으면, 상기 현재 비교 시점의 추론 활동 데이터와 상기 기 설정된 정확도 산정 기준에 따른 이전 시점의 실제 활동 데이터를 비교하는 단계; 및 상기 현재 비교 시점의 추론 활동 데이터와 동일 시점의 실제 활동 데이터가 일치하거나, 상기 현재 비교 시점의 추론 활동 데이터와 이전 시점의 실제 활동 데이터가 일치하면, 상기 현재 비교 시점의 정확도 판단을 잠재적 성공으로 판단하여 상기 추론 활동 데이터의 정확도가 높은 것으로 판단하는 단계를 포함할 수 있다.
본 발명의 바람직한 실시 예에 따른 정확도 산정 장치에서의 상황 인지 서비스를 위한 활동의 정확도 산정 방법에 있어서, 상기 각 시점의 정확도를 판단하는 단계는, 상기 현재 비교 시점의 추론 활동 데이터와 이전 시점의 실제 활동 데이터가 일치하지 않으면, 상기 현재 비교 시점의 추론 활동 데이터의 정확도가 낮은 것으로 판단하는 단계를 더 포함할 수 있다.
본 발명의 바람직한 실시 예에 따른 정확도 산정 장치에서의 상황 인지 서비스를 위한 활동의 정확도 산정 방법에 있어서, 상기 일정 시간 구간에서의 추론된 활동이 정확한 것으로 판단하는 단계는, 상기 추론 활동 데이터의 정확도가 높은 것으로 판단된 시점들을 누적하여 상기 추론된 활동의 정확도 확률을 산출하는 단계; 및 산출된 정확도 확률이 상기 기 설정된 목표 수준에 도달하면, 상기 일정 시간 구간 동안 추론된 활동이 정확한 것으로 판단하는 단계를 포함할 수 있다.
본 발명의 바람직한 실시 예에 따른 정확도 산정 장치에서의 상황 인지 서비스를 위한 활동의 정확도 산정 방법에 있어서, 상기 기 설정된 정확도 산정 기준은, 현재 비교 시점의 추론 활동 데이터와 비교할 실제 활동 데이터를 수집한 이전 시점의 개수로서, 센서 기반의 추론 시의 지연 시간 및 최소 수집 모수를 고려하여 설정할 수 있다.
본 발명의 바람직한 실시 예에 따른 정확도 산정 장치에서의 상황 인지 서비스를 위한 활동의 정확도 산정 방법에 있어서, 상기 실제 활동 데이터를 수집 및 저장하는 단계는, 기 설정된 시나리오를 기반으로 실제 경로 상을 이동하는 시험자의 단말 장치로부터 입력되는 실제 활동 데이터를 상기 기 설정된 주기 마다 수집하는 단계; 및 수집된 실제 활동 데이터를 상기 실제 경로의 지도 상에 표출하는 단계를 포함할 수 있다.
본 발명은, 실제 경로 상에서 실측한 실제 활동 데이터와 상황 인지 알고리즘을 통해 추론된 추론 활동 데이터를 비교하여 추론 활동의 정확도를 산정함으로써, 정확도 향상을 위한 정략적인 측정이 가능하며, 추론된 활동이 얼마나 정확한지를 확인할 수 있으므로 상황 인지 서비스 시 정확한 활동에 대한 정보를 제공할 수 있는 효과가 있다.
이로 인해, 본 발명은 차량에 탑승하여 이동 중에도 사용자의 일상을 명확히 기록할 수 있으므로 보다 정확한 라이프 로그 서비스를 제공할 수 있는 효과가 있다.
도 1은 본 발명의 실시 예에 따른 정확도 산정 장치를 도시한 도면이다.
도 2는 본 발명의 실시 예에 따른 상황 인지 서비스를 위한 활동의 정확도 산정을 위한 매트릭의 일 예를 도시한 도면이다.
도 3은 본 발명의 실시 예에 따른 상황 인지 서비스를 위한 활동의 정확도 산정 방법을 도시한 도면이다.
도 2는 본 발명의 실시 예에 따른 상황 인지 서비스를 위한 활동의 정확도 산정을 위한 매트릭의 일 예를 도시한 도면이다.
도 3은 본 발명의 실시 예에 따른 상황 인지 서비스를 위한 활동의 정확도 산정 방법을 도시한 도면이다.
이하, 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 다만, 하기의 설명 및 첨부된 도면에서 본 발명의 요지를 흐릴 수 있는 공지 기능 또는 구성에 대한 상세한 설명은 생략한다. 또한, 도면 전체에 걸쳐 동일한 구성 요소들은 가능한 한 동일한 도면 부호로 나타내고 있음에 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위한 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
그러면 본 발명의 실시 예들에 따른 상황 인지 서비스 시스템에서 상황 인지 서비스를 위한 활동의 정확도를 산정하는 정확도 산정 장치에 대해 구체적으로 설명하면 다음과 같다.
도 1은 본 발명의 실시 예에 따른 정확도 산정 장치를 도시한 도면이다.
도 1을 참조하면, 본 발명의 실시 예들에 따른 정확도 산정 장치(100)는 상황 인지 서비스를 제공 및 상황 인지 서비스를 위한 활동의 정확도를 산정하기 위한 단말 장치일 수 있다. 여기서, 단말 장치는 사용자의 키 조작에 따라 통신망을 경유하여 각종 데이터를 송수신할 수 있는 단말기를 말하는 것이며, 통신망에 연결되어 서비스 장치(도시되지 않음)로부터 제공 받은 하나 이상의 어플리케이션을 설치 및 저장하고, 사용자의 요청에 따라 설치된 임의의 어플리케이션을 실행할 수 있다. 이러한 단말 장치는 이동통신단말기를 대표적인 예로서 설명하지만 이는 이동통신단말기에 한정된 것이 아니고, 모든 정보통신기기, 멀티미디어 단말기, 유선 단말기, 고정형 단말기 및 IP(Internet Protocol) 단말기 등의 다양한 단말기에 적용될 수 있다. 또한, 단말 장치(100)는 휴대폰, PMP(Portable Multimedia Player), MID(Mobile Internet Device), 스마트폰(Smart Phone), 데스크톱(Desktop), 태블릿컴퓨터(Tablet PC), 노트북(Note book), 넷북(Net book) 및 정보통신 기기 등과 같은 다양한 이동통신 사양을 갖는 모바일(Mobile) 단말기일 때 유리하게 활용될 수 있다. 또한, 단말 장치는 통신망을 이용하여 음성 또는 데이터 통신을 수행하는 단말기이며, 통신망을 경유하여 서비스 장치와 통신하기 위한 브라우저, 프로그램 및 프로토콜을 저장하는 메모리, 각종 프로그램을 실행하여 연산 및 제어하기 위한 마이크로프로세서 등을 구비하고 있는 단말기를 의미한다. 그리고 단말 장치(100)는 터치 스크린을 구비한 형태로 제작되는 것이 바람직하나 반드시 이에 한정되는 것은 아니다.
특히, 본 발명의 실시 예에 따른 정확도 산정 장치(100)는 상황 인지 서비스 시 현재 시점의 과거 일정 시간 동안의 사용자의 이동에 따른 상황(이하, 활동(Activity)이라 칭함)을 추론하여 추론된 활동이 얼마나 정확한지를 확인할 수 있다. 여기서, 상황인지 서비스는 일정 주기 마다 수집된 위치 정보 및 센싱 정보 등의 상황 인지 추론을 위한 데이터를 이용하여 현재 시점의 과거 일정 시간 동안의 사용자의 이동에 따른 활동들(도보(walk), 자동차(car), 정지(stay), 지하철(subway) 등)을 인지하도록 서비스를 제공한다.
이에 따라 정확도 산정 장치(100)는 상황 인지 서비스 시 제공되는 활동을 추론하여 이에 대한 정확도를 산정하기 위해, 실제 경로 상에서 대조군으로 이용할 실제 활동 데이터(AAS: Sequence set of Actual activities, 도보, 자동차, 정지, 지하철 등)를 수집하여 대조군으로 저장하고, 동일한 시점에 위치 측위를 통해 수집된 위치 정보 및 센서들로부터 수집된 센싱 정보 등을 저장할 수 있다.
그리고 정확도 산정 장치(100)는 추론 요청에 따라 현재 시점의 과거 일정 시간 구간 동안 수집되어 기 저장된 상황 인지 추론을 위한 데이터(위치 정보 및 센싱 정보 등)을 이용하여 사용자의 활동을 추론할 수 있다.
또한, 정확도 산정 장치(100)는 상황 인지 알고리즘을 통해 추론된 활동을 나타내는 추론 활동 데이터(Reasoning Activity)와 대응하는 기 저장된 실제 활동 데이터를 비교하여 추론 활동에 대한 정확도를 판단할 수 있다.
구체적으로, 정확도 산정 장치(100)는 상황 인지 서비스를 위한 활동의 정확도를 산정하기 위해 정보 수집부(110), 통신부(120), 제어부(130), 입력부(140), 출력부(150) 및 저장부(160)를 포함하여 구성될 수 있다.
정보 수집부(110)는 사용자의 활동 추론 및 추론 결과에 대한 정확도를 산정하기 위해 필요한 정보를 수집하기 위한 구성이다. 구체적으로, 정보 수집부(110)는 기 설정된 시나리오를 기반으로 실제 경로 상에서 실측을 통해 일정 주기 마다 실제 활동 데이터를 수집하고, 위치 측위를 통해 위치 정보를 수집하고, 사용자의 단말 장치에 장착된 센서로부터 센싱 정보를 수집하여 저장부(160)로 전달하여 정확도 산정을 수행하기 전에 미리 저장하도록 할 수 있다.
통신부(120)는 통신망을 통해 상황 인지 서비스 시스템, 위치 측위 시스템 및 이동 통신 시스템 등에 포함된 장치들과 연동하여 상황인지 서비스를 위한 활동의 정확도를 산정하기 위한 통신을 수행할 수 있다. 이러한 통신부(120)는 유선 방식 및 무선 방식뿐만 아니라 다양한 통신 방식을 통해서 데이터를 송수신할 수 있다. 더하여, 통신부(120)는 하나 이상의 통신 방식을 사용하여 데이터를 송수신할 수 있으며, 이를 위하여 통신부(120)는 각각 서로 다른 통신 방식에 따라서 데이터를 송수신하는 복수의 통신 모듈을 포함할 수 있다. 아울러, 통신부(120)는 서비스 장치(도시되지 않음)로부터 활동의 정확도 산정 및 실제 활동 데이터를 수집하기 위한 어플리케이션(또는 프로그램)을 수신할 수 있다.
제어부(130)는 정보 수집부(110)에서 수집되어 저장부(160)에 기 저장된 실제 활동 데이터 및 추론을 위해 수집된 정보들을 이용하여 상황 인지 서비스를 위한 추론된 활동의 정확도를 산정할 수 있다. 이를 위해, 제어부(130)는 정확도 산정 모듈(131)을 포함하여 구성될 수 있다.
정확도 산정 모듈(131)은 일정 시간 구간 동안 상황 인지 서비스를 위한 활동을 추론하고, 추론된 추론 활동 데이터와 대응하는 기 저장된 실제 활동 데이터를 기 설정된 정확도 산정 기준에 따라 비교하여 비교 결과에 따라 추론된 활동의 정확도를 산정할 수 있다.
구체적으로, 정확도 산정 모듈(131)은 실제 경로를 이동함에 따라 수집된 센싱 정보 및 위치 정보 중 하나 이상을 수집하여 미리 저장하도록 제어하고, 일정 시간 구간 동안 각 시점의 기 저장된 센싱 정보 및 위치 정보 중 하나 이상을 이용하여 추론 활동 데이터를 추론할 수 있다. 예를 들어, 정확도 산정 모듈(131)은 수집된 정보들의 필터링 및 멀티-레벨(Multi-level) 정규화(nomalization)와, 센서 기반 상황(Activity) 추론과 결합하여 추론 기간 동안(추론 시점부터 과거의 일정 시간 동안)의 실제 위치로 추정되는 지점 별로 추론 활동 데이터를 생성하여 상황 인지를 위한 활동을 추론할 수 있다.
또한, 정확도 산정 모듈(131)은 추론 요청에 따라 대조군으로 저장부(160)에 기 저장된 현재 시점으로부터 과거 일정 시간 구간 동안의 실제 활동 데이터를 독출하고, 독출된 각 시점의 실제 활동 데이터와 추론된 활동의 추론 활동 데이터를 비교하여 추론 활동의 정확도를 산정할 수 있다. 이를 위해 정확도 산정 모듈(131)은 이러한 추론 활동의 정확도 산정을 위한 매트릭을 구성할 수 있다.
이러한 활동 정확도 매트릭을 통해 정확도 산정 모듈(131)은 첨부된 도 2에 도시된 바와 같이, 각 시점의 실제 활동 데이터들(Actual Activity)(21)과 추론 활동 데이터(Reasoning Activity(22)를 비교할 수 있다.
이를 위해, 정확도 산정 모듈(131)은 우선, 일정 시간 구간의 각 시점의 추론 활동 데이터와 실제 활동 데이터를 각각 비교하여 일치 여부를 판단하고, 판단 결과(23)를 첨부된 도 2에 도시된 바와 같이, o 또는 x로 나타낼 수 있다.
그런데, 실제 다양한 센서들에서 수집한 센싱값(위치 정보 포함)을 기반으로 사용자의 활동을 추론하는 경우, 센싱값 수집에 대해 물리적인 지연이 발생할 수 있으며, 그 결과, 추론 활동 데이터에도 추론 시점의 지연이 발생할 수 있다.
본 발명에 따른, 정확도 산정 모듈(131)은 상술한 센싱값 수집 지연을 고려하여, 기 설정된 정확도 산정 기준(K)에 따라 현재 비교 시점의 추론 활동 데이터와 이전 시점의 실제 활동 데이터를 더 비교하여 상기 현재 비교 시점의 추론 활동 데이터에 대한 정확도를 판단하고, 판단 결과(24)를 첨부된 도 2에 도시된 바와 같이, o 또는 x로 나타낼 수 있다. 여기서, 기 설정된 정확도 산정 기준(K)은 현재 비교 시점의 추론 활동 데이터에 대하여 비교할 수 있는 실제 활동 데이터의 이전 시점의 범위를 정의하는 정보로서, 센서 기반의 추론 시의 지연 시간 및 최소 수집 모수를 고려하여 설정할 수 있다. 본 발명의 실시예에서는 K를 예를 들어, 3으로 설정하기로 한다.
정확도 판단 결과, 각 시점의 추론 활동 데이터와 실제 활동 데이터가 일치하면, 정확도 산정 모듈(131)은 정확도 판단이 성공한 것으로 판단("o")하여 현재 비교 시점의 추론 활동 데이터의 정확도가 높은 것으로 판단할 수 있다.
반면, 정확도 판단 결과, 각 시점의 추론 활동 데이터와 실제 활동 데이터가 일치하지 않으면, 정확도 산정 모듈(131)은 현재 비교 시점의 추론 활동 데이터와 기 설정된 정확도 산정 기준에 따른 이전 시점(예를 들어, 3번 앞선 시점까지)의 실제 활동 데이터를 더 비교하여 정확도를 판단할 수 있다. 이때, 현재 비교 시점의 추론 활동 데이터와 기 설정된 정확도 산정 기준에 따른 이전 시점의 실제 활동 데이터가 일치하면, 정확도 산정 모듈(131)은 현재 비교 시점의 정확도 판단을 잠재적 성공으로 판단("o")하여 추론 활동 데이터의 정확도가 높은 것으로 판단할 수 있다. 여기서, 잠재적 정확성 판단 성공은 하기 <수학식 1>을 통해 판단할 수 있다.
예를 들어, 첨부된 도 2에 도시된 바와 같이, a로 표시된 시점에서 실제 활동 데이터와 추론 활동 데이터가 일치하지 않으나, 이전 시점의 비교 결과가 일치하므로 정확도 산정 모듈(131)은 해당 시점(a)을 정확도가 높은 것으로 판단할 수 있다. 또한, b로 표시된 시점에서는 두 번 앞선 시점의 비교 결과가 일치하지 않으므로 기 설정된 정확도 산정 기준(K=3)에 포함되므로 정확도 산정 모듈(131)은 해당 시점(b)을 정확도가 높은 것으로 판단할 수 있다.
반면, 현재 비교 시점의 추론 활동 데이터와 기 설정된 정확도 산정 기준에 따른 이전 시점의 실제 활동 데이터가 일치하지 않으면, 정확도 산정 모듈(131)은 현재 비교 시점의 추론 활동 데이터의 정확도가 낮은 것으로 판단할 수 있다.
예를 들어, 첨부된 도 2에 도시된 바와 같이, c로 표시된 시점에서 실제 활동 데이터와 추론 활동 데이터가 일치하지 않고, 세 번 앞선 시점의 비교 결과가 일치하지 않으므로 정확도 산정 모듈(131)은 해당 시점(c)을 정확도가 낮은 것으로 판단할 수 있다.
한편, 첨부된 도 2의 d로 표시된 시점과 같이, 각 시점의 추론 활동 데이터와 실제 활동 데이터가 일치하지 않고, 현재 비교 시점의 실제 활동 데이터가 정확도 산정 기준에 따른 이전 시점의 실제 활동 데이터와도 일치하지 않으므로 정확도 산정 모듈(131)은 정확도 판단이 실패한 것으로 판단("X")하여 현재 비교 시점의 추론 활동 데이터의 정확도가 낮은 것으로 판단할 수 있다.
또한, 정확도 산정 모듈(131)은 마지막 시점까지의 추론 활동 데이터의 정확도 산정을 반복적 수행한 후, 추론 활동 데이터의 정확도가 높은 것으로 판단된 시점들을 누적하여 추론된 활동의 정확도 확률을 산출하고, 산출된 정확도 확률이 기 설정된 목표 수준에 도달하면, 일정 시간 구간 동안 추론된 활동이 정확한 것으로 판단할 수 있다. 이러한 정확도 산정이 성공한 확률을 하기 <수학식 2>와 같이 계산할 수 있다.
그리고 활동 정확도 산정 모듈(132)는 계산된 확률이 기 설정된 목표 수준에 도달하였는지를 확인하여, 목표 수준(예를 들어, 2σ 또는 σ이상)에 도달하면, 추론된 활동이 정확한 것으로 판단할 수 있다.
상술한 바와 같은 본 발명의 실시 예에 따른 정확도 산정 장치(100)에 탑재되는 프로세서는 본 발명에 따른 방법을 실행하기 위한 프로그램 명령을 처리할 수 있다. 일 구현 예에서, 이 프로세서는 싱글 쓰레드(Single-threaded) 프로세서일 수 있으며, 다른 구현 예에서 본 프로세서는 멀티 쓰레드(Multi-threaded) 프로세서일 수 있다. 나아가 본 프로세서는 메모리 혹은 저장 장치 상에 저장된 명령을 처리하는 것이 가능하다.
이와 같은 정확도 산정 장치(100)는 통신망을 통해 상황 인지 서비스 시스템, 위치 측위 시스템 및 이동 통신 시스템 등에 포함된 장치들과 연동되며, 이러한 통신망은 인터넷망, 인트라넷망, 이동통신망, 위성 통신망 등 다양한 유무선 통신 기술을 이용하여 인터넷 프로토콜로 데이터를 송수신할 수 있는 망을 말한다. 이러한, 통신망은 LAN(Local Area Network), WAN(Wide Area Network)등의 폐쇄형 네트워크, 인터넷(Internet)과 같은 개방형 네트워크뿐만 아니라, CDMA(Code Division Multiple Access), WCDMA(Wideband Code Division Multiple Access), GSM(Global System for Mobile Communications), LTE(Long Term Evolution), EPC(Evolved Packet Core) 등의 네트워크와 향후 구현될 차세대 네트워크 및 컴퓨팅 네트워크를 통칭하는 개념이다.
입력부(140)는 숫자 및 문자 정보 등의 다양한 정보를 입력 받고, 각종 기능을 설정 및 정확도 산정 장치(100)의 기능 제어와 관련하여 입력되는 신호를 제어부(130)로 전달한다. 또한, 입력부(140)는 사용자의 터치 또는 조작에 따른 입력 신호를 발생하는 키패드와 터치패드 중 적어도 하나를 포함하여 구성될 수 있다. 이때, 입력부(140)는 출력부(150)의 표시부와 함께 하나의 터치패널(또는 터치스크린(touch screen))의 형태로 구성되어 입력과 표시 기능을 동시에 수행할 수 있다. 또한, 입력부(140)는 키보드, 키패드, 마우스, 조이스틱 등과 같은 입력 장치 외에도 향후 개발될 수 있는 모든 형태의 입력 수단이 사용될 수 있다. 특히, 본 발명에 따른 입력부(140)는 실제 경로의 지도를 통해 기 설정된 주기 마다 시험자의 현재 위치에서의 활동 정보를 입력받을 수 있다. 또한, 입력부(140)는 상황 인지를 위한 활동의 추론 요청 및 활동 정확도 산정 요청을 입력 받을 수 있다.
출력부(150)는 기본적으로, 정확도 산정 장치(100)의 사용에 따라 발생되는 정보를 사용자가 시각, 청각, 또는, 촉각으로 인지할 수 있도록 출력하기 위한 수단일 수 있으며, 이러한 출력부(150)는 시각적인 정보를 출력하는 표시 장치, 청각적인 정보를 출력하는 오디오 장치(스피커), 촉각적인 정보를 출력하는 햅틱 장치 등을 포함할 수 있다. 여기서, 표시 장치는 터치스크린(touch screen)이 될 수 있으며, 이와 같이, 터치스크린 형태로 표시 장치가 형성된 경우, 표시 장치는 입력부(140)의 기능 중 일부 또는 전부를 수행할 수 있다. 오디오 장치는 대표적으로 스피커를 예시할 수 있다. 따라서, 본 발명의 실시 예들에 따른 출력부(150)는 실제 활동 데이터를 실행 화면에 출력할 수 있으며, 추론 활동 데이터 및 추론 활동의 정확도 산정 결과를 정확도 산정을 위한 실행 화면에 출력할 수 있다.
저장부(160)는 정확도 산정 장치(100)의 동작에 필요한 프로그램 및 데이터를 저장하는 것으로서, 기본적으로 단말 장치(100)의 운영 프로그램이 저장되며, 더불어, 정보 수집에 관련한 어플리케이션(제1 및 제2 어플리케이션), 활동 정확도 산정을 위한 어플리케이션(또는 프로그램) 및 관련 정보를 저장할 수 있다. 특히, 본 발명의 실시 예에 따른 저장부(160)는 기 설정된 주기마다 수집된 실제 활동 데이터를 실제 활동 데이터베이스(161)에 저장하고, 추론된 추론 활동 데이터를 추론 활동 데이터베이스(162) 저장할 수 있으며, 정확도 산정 결과를 정확도 산정 데이터베이스(163)에 저장할 수 있다. 이러한 저장부(160)는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(Magnetic Media), CD-ROM(Compact Disk Read Only Memory), DVD(Digital Video Disk)와 같은 광 기록 매체(Optical Media), 플롭티컬 디스크(Floptical Disk)와 같은 자기-광 매체(Magneto-Optical Media), 및 롬(ROM), 램(RAM, Random Access Memory), 플래시 메모리를 포함한다.
또한, 저장부(160)는 본 발명의 실시 예에 따른 기능 동작에 필요한 응용 프로그램을 비롯하여, 출력부(150)의 표시부에 출력될 화면 이미지 등을 저장한다. 그리고 저장부(160)는 표시부가 터치스크린으로 구성되는 경우 터치스크린 운용을 위한 키 맵이나 메뉴 맵 등을 저장할 수 있다. 여기서 키 맵, 메뉴 맵은 각각 다양한 형태가 될 수 있다. 이러한 저장부(160)는 정확도 산정 장치(100)의 부팅 및 상술한 각 구성의 운용을 위한 운영체제(OS: Operating System), 다양한 사용자 기능을 저장할 수 있다.
그러면 이와 같이 구성된 정확도 산정 장치에서의 상황인지 서비스를 위한 활동의 정확도 산정 방법에 대해 첨부된 도면을 참조하여 구체적으로 설명하기로 한다.
도 3은 본 발명의 실시 예에 따른 상황 인지 서비스를 위한 활동의 정확도 산정 방법을 도시한 도면이다.
도 3을 참조하면, 1101단계에서 본 발명의 실시 예에 따른 정확도 산정 장치(100)는 기 설정된 주기 마다 실측을 통해 실제 경로 상에서 실제 활동 데이터를 수집 및 저장한다. 즉, 정확도 산정 장치(100)는 기 설정된 시나리오를 기반으로 실제 경로 상을 이동하는 정확도 산정 장치(100)의 입력부(140)로부터 입력되는 실제 활동 데이터를 기 설정된 주기 마다 수집하고, 수집된 실제 활동 데이터를 실제 활동의 지도 또는 특정 메뉴 화면 상에 표출한다. 그리고 정확도 산정 장치(100)는 수집된 실제 활동 데이터를 실제 활동 데이터로 실제 활동 DB(161)에 저장한다. 여기서, 실제 활동 데이터는 센싱 정보 및 위치 정보 등의 수집 시점과 동기화되어 저장될 수 있다.
그런 다음 1102단계에서 정확도 산정 장치(100)는 추론 요청된 시점의 과거 일정 시간 구간 동안 상황 인지 서비스를 위한 활동을 추론하여 추론된 활동에 대한 추론 활동 데이터를 생성하여 생성된 추론 활동 데이터를 저장한다.
이후, 1103단계에서 정확성 산정 장치(100)는 일정 시간 구간의 각 시점의 추론 활동 데이터와 실제 활동 데이터를 각각 비교하여 일치 여부를 판단한다. 판단 결과, 두 활동 데이터가 일치하면, 1105단계에서 정확성 산정 장치(100)는 현재 비교 시점의 추론 활동 데이터의 정확도가 높은 것으로 판단한다.
반면, 두 활동 데이터가 일치하지 않으면, 1106단계에서 정확성 산정 장치(100)는 기 설정된 정확도 산정 기준(K)에 따른 조건에 부합하는지를 확인한다. 즉, 정확도 산정 기준에 따라 현재 비교 시점의 추론 활동 데이터와 이전 시점3번 앞선 시점까지)의 실제 활동 데이터를 비교하여 각 시점의 정확도를 판단한다.
판단 결과, 조건에 부합 즉, 현재 비교 시점의 추론 활동 데이터와 기 설정된 정확도 산정 기준에 따른 이전 시점의 실제 활동 데이터가 일치하면, 1107단계에서 정확도 산정 모듈(131)은 현재 비교 시점의 정확도 판단을 잠재적 성공으로 판단("o")하여 추론 활동 데이터의 정확도가 높은 것으로 판단한다.
반면, 조건에 부합하지 않으면, 즉, 현재 비교 시점의 추론 활동 데이터와 기 설정된 정확도 산정 기준에 따른 이전 시점의 실제 활동 데이터가 일치하지 않으면, 1108단계에서 정확도 산정 모듈(131)은 현재 비교 시점의 추론 데이터의 정확도 판단을 실패하여 추론 데이터의 정확도가 낮은 것으로 판단한다.
그런 다음 1109단계에서 현재 비교 시점이 마지막 시점인지를 확인하여 마지막 시점이 아닌 경우에는 1103단계 내지 1109단계를 반복 수행한다.
한편, 추론 요청한 일정 시간 구간 내의 마지막 시점까지 정확도 판단을 완료하면, 각 시점들의 추론 활동 데이터의 정확도 판단 결과들을 누적하여 추론된 활동의 정확도 확률을 산출하고, 산출된 정확도 확률이 기 설정된 목표 수준에 도달하면, 일정 시간 구간 동안 추론된 활동이 정확한 것으로 판단할 수 있다.
더하여, 정확도 산정 기준 별 테스트 결과, K=1일 때 95.35%, K=2일 때, 97.40%, K=3일 때 98.43%의 신뢰도가 산출되었다.
한편, 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 예컨대 기록매체는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(Magnetic Media), CD-ROM(Compact Disk Read Only Memory), DVD(Digital Video Disk)와 같은 광 기록 매체(Optical Media), 플롭티컬 디스크(Floptical Disk)와 같은 자기-광 매체(Magneto-Optical Media), 및 롬(ROM), 램(RAM, Random Access Memory), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치를 포함한다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함할 수 있다. 이러한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
또한, 본 발명에 따른 장치에 탑재되고 본 발명에 따른 방법을 실행하는 컴퓨터 프로그램(프로그램, 소프트웨어, 소프트웨어 어플리케이션, 스크립트 혹은 코드로도 알려져 있음)은 컴파일 되거나 해석된 언어나 선험적 혹은 절차적 언어를 포함하는 프로그래밍 언어의 어떠한 형태로도 작성될 수 있으며, 독립형 프로그램이나 모듈, 컴포넌트, 서브루틴 혹은 컴퓨터 환경에서 사용하기에 적합한 다른 유닛을 포함하여 어떠한 형태로도 전개될 수 있다. 컴퓨터 프로그램은 파일 시스템의 파일에 반드시 대응하는 것은 아니다. 프로그램은 요청된 프로그램에 제공되는 단일 파일 내에, 혹은 다중의 상호 작용하는 파일(예컨대, 하나 이상의 모듈, 하위 프로그램 혹은 코드의 일부를 저장하는 파일) 내에, 혹은 다른 프로그램이나 데이터를 보유하는 파일의 일부(예컨대, 마크업 언어 문서 내에 저장되는 하나 이상의 스크립트) 내에 저장될 수 있다. 컴퓨터 프로그램은 하나의 사이트에 위치하거나 복수의 사이트에 걸쳐서 분산되어 통신 네트워크에 의해 상호 접속된 다중 컴퓨터나 하나의 컴퓨터 상에서 실행되도록 전개될 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.
또한, 본 명세서는 다수의 특정한 구현물의 세부사항들을 포함하지만, 이들은 어떠한 발명이나 청구 가능한 것의 범위에 대해서도 제한적인 것으로서 이해되어서는 안되며, 오히려 특정한 발명의 특정한 실시형태에 특유할 수 있는 특징들에 대한 설명으로서 이해되어야 한다. 개별적인 실시형태의 문맥에서 본 명세서에 기술된 특정한 특징들은 단일 실시형태에서 조합하여 구현될 수도 있다. 반대로, 단일 실시형태의 문맥에서 기술한 다양한 특징들 역시 개별적으로 혹은 어떠한 적절한 하위 조합으로도 복수의 실시형태에서 구현 가능하다. 나아가, 특징들이 특정한 조합으로 동작하고 초기에 그와 같이 청구된 바와 같이 묘사될 수 있지만, 청구된 조합으로부터의 하나 이상의 특징들은 일부 경우에 그 조합으로부터 배제될 수 있으며, 그 청구된 조합은 하위 조합이나 하위 조합의 변형물로 변경될 수 있다.
마찬가지로, 특정한 순서로 도면에서 동작들을 묘사하고 있지만, 이는 바람직한 결과를 얻기 위하여 도시된 그 특정한 순서나 순차적인 순서대로 그러한 동작들을 수행하여야 한다거나 모든 도시된 동작들이 수행되어야 하는 것으로 이해되어서는 안 된다. 또한, 상술한 실시형태의 다양한 시스템 컴포넌트의 분리는 그러한 분리를 모든 실시형태에서 요구하는 것으로 이해되어서는 안되며, 설명한 프로그램 컴포넌트와 시스템들은 일반적으로 단일의 소프트웨어 제품으로 함께 통합되거나 다중 소프트웨어 제품에 패키징될 수 있다는 점을 이해하여야 한다.
본 발명은, 상황인지 서비스를 위한 활동 정확도 산정 방법에 관한 것으로서, 실제 경로 상에서 실측한 실제 활동 데이터와 추론된 활동의 추론 활동 데이터를 비교하여 추론 활동의 정확도를 산정함으로써, 정확도 향상을 위한 정략적인 측정이 가능하며, 추론된 활동이 얼마나 정확한지를 확인할 수 있으므로 상황 인지 서비스 시 정확한 활동에 대한 정보를 제공할 수 있는 효과가 있다.
아울러, 본 발명은 시판 또는 영업의 가능성이 충분할 뿐만 아니라 현실적으로 명백하게 실시할 수 있는 정도이므로 산업상 이용가능성이 있다.
100: 정확도 산정 장치 110: 정보 수집부
120: 통신부 130: 제어부
132: 활동 정확도 산정 모듈 140: 입력부
150: 출력부 160: 저장부
161: 실제 활동 데이터베이스 162: 추론 활동 데이터베이스
163: 정확도 산정 데이터베이스
120: 통신부 130: 제어부
132: 활동 정확도 산정 모듈 140: 입력부
150: 출력부 160: 저장부
161: 실제 활동 데이터베이스 162: 추론 활동 데이터베이스
163: 정확도 산정 데이터베이스
Claims (7)
- 정확도 산정 장치가,
기 설정된 주기 마다 실제 경로 상을 이동하는 시험 단말에 대한 실제 활동 데이터를 수집하는 단계;
상기 시험 단말을 통해 감지된 일정 시간 구간 동안의 위치 정보 및 센서 정보를 이용하여 상황 인지 서비스를 위한 활동을 추론하여 상기 기 설정된 주기마다 추론 활동 데이터를 생성하는 단계; 및
각 추론 활동 데이터를 해당 시점의 실제 활동 데이터부터 기 설정된 정확도 산정 기준에 따라 설정된 이전 시점까지의 실제 활동 데이터 중 하나 이상과 비교하여, 각 시점의 추론 활동 데이터에 대한 정확도를 판단하는 단계;
를 포함하는 것을 특징으로 하는 상황 인지 서비스를 위한 활동 정확도 산정 방법. - 제1항에 있어서,
상기 일정 시간 구간 동안의 각 시점의 추론 활동 데이터들의 정확도 산정 결과를 누적하여, 상기 일정 시간 구간에서의 추론된 활동에 대한 정확도를 판단하는 단계;
를 더 포함하는 것을 특징으로 하는 상황 인지 서비스를 위한 활동 정확도 산정 방법. - 제1항에 있어서, 상기 각 시점의 추론 활동 데이터에 대한 정확도를 판단하는 단계는,
현재 비교 시점의 추론 활동 데이터와, 동일한 시점의 실제 활동 데이터를 비교하는 단계;
현재 비교 시점의 추론 활동 데이터와 실제 활동 데이터가 일치하지 않으면, 상기 현재 비교 시점의 추론 활동 데이터와 상기 기 설정된 정확도 산정 기준에 따른 이전 시점의 실제 활동 데이터 중 하나 이상을 비교하는 단계; 및
상기 현재 비교 시점의 추론 활동 데이터가 동일 시점의 실제 활동 데이터와 일치하거나, 상기 현재 비교 시점의 추론 활동 데이터가 상기 이전 시점의 실제 활동 데이터 중 하나 이상과 일치하면, 상기 현재 비교 시점의 추론 활동 데이터에 대한 정확도가 높은 것으로 판단하는 단계;
를 포함하는 것을 특징으로 하는 상황 인지 서비스를 위한 활동 정확도 산정 방법. - 제3항에 있어서, 상기 각 시점의 추론 활동 데이터에 대한 정확도를 판단하는 단계는,
상기 현재 비교 시점의 추론 활동 데이터가, 동일 시점의 실제 활동 데이터 및 이전 시점의 실제 활동 데이터와 모두 일치하지 않으면, 상기 현재 비교 시점의 추론 활동 데이터에 대한 정확도가 낮은 것으로 판단하는 단계;
를 더 포함하는 것을 특징으로 하는 상황 인지 서비스를 위한 활동 정확도 산정 방법. - 제2항에 있어서, 상기 일정 시간 구간에서의 추론된 활동에 대한 정확도를 판단하는 단계는,
상기 일정 시간 구간 동안의 추론 활동 데이터 중, 정확도가 높은 것으로 판단된 시점들을 누적하여 상기 추론된 활동의 정확도 확률을 산출하는 단계; 및
산출된 정확도 확률이 상기 기 설정된 목표 수준에 도달하면, 상기 일정 시간 구간 동안 추론된 활동이 정확한 것으로 판단하는 단계
를 포함하는 것을 특징으로 하는 상황 인지 서비스를 위한 활동 정확도 산정 방법. - 제1항에 있어서,
상기 기 설정된 정확도 산정 기준은, 센서 기반의 추론 시의 지연 시간 및 최소 수집 모수 중 하나 이상을 고려하여 설정함을 특징으로 하는 상황 인지 서비스를 위한 활동 정확도 산정 방법. - 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140105438A KR101882789B1 (ko) | 2014-08-13 | 2014-08-13 | 상황인지 서비스를 위한 활동 정확도 산정 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140105438A KR101882789B1 (ko) | 2014-08-13 | 2014-08-13 | 상황인지 서비스를 위한 활동 정확도 산정 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160020292A KR20160020292A (ko) | 2016-02-23 |
KR101882789B1 true KR101882789B1 (ko) | 2018-07-27 |
Family
ID=55449209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140105438A KR101882789B1 (ko) | 2014-08-13 | 2014-08-13 | 상황인지 서비스를 위한 활동 정확도 산정 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101882789B1 (ko) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100060926A (ko) | 2008-11-28 | 2010-06-07 | 연세대학교 산학협력단 | 상황 인지 서비스를 제공하는 시스템 및 그 방법 |
KR20110033636A (ko) * | 2009-09-25 | 2011-03-31 | 아주대학교산학협력단 | 상황 인식 서비스 제공 장치 및 방법 |
KR101680266B1 (ko) * | 2010-01-29 | 2016-11-29 | 삼성전자주식회사 | 지역 서비스 정보를 이용한 상황 정보 생성 장치 및 방법 |
KR20130006831A (ko) * | 2011-06-24 | 2013-01-18 | 에스케이텔레콤 주식회사 | 상황 인식을 이용한 맞춤형 정보 서비스 시스템 및 방법, 맞춤형 정보 서비스 장치 및 그 장치의 구동 방법, 클라우드 컴퓨팅을 이용한 맞춤형 정보 서비스 장치 및 방법, 단말기 및 단말기의 구동 방법 |
KR101568098B1 (ko) * | 2011-06-28 | 2015-11-10 | 노키아 코포레이션 | 상황정보 추출 |
-
2014
- 2014-08-13 KR KR1020140105438A patent/KR101882789B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20160020292A (ko) | 2016-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109427333B (zh) | 激活语音识别服务的方法和用于实现所述方法的电子装置 | |
US8990384B2 (en) | Mobile device controlled by context awareness | |
US20190230210A1 (en) | Context recognition in mobile devices | |
KR101510860B1 (ko) | 사용자 의도 파악 어플리케이션 서비스 방법 및 서버와 이를 이용한 사용자 의도 파악 어플리케이션 서비스 시스템 | |
CN108304758A (zh) | 人脸特征点跟踪方法及装置 | |
US10579726B2 (en) | Method and device for generating natural language expression by using framework | |
US20150254737A1 (en) | Method, apparatus and system for providing customized service based on beacon signal | |
US20120109862A1 (en) | User device and method of recognizing user context | |
US8990011B2 (en) | Determining user device's starting location | |
US20140129560A1 (en) | Context labels for data clusters | |
CN102257511A (zh) | 用于提供自适应姿态分析的方法、装置和计算机程序产品 | |
CN109672978B (zh) | 一种无线热点扫描频率控制方法及装置 | |
KR20130093682A (ko) | 유저 인터페이스를 통한 불만의 정량화 | |
KR20100132868A (ko) | 목표 예측 인터페이스 제공 장치 및 그 방법 | |
KR20120045415A (ko) | 지능형서비스제공 라이프로깅장치 및 방법 | |
KR102197911B1 (ko) | 사용자의 운동 정보 확인방법 및 장치 | |
CN103905638B (zh) | 一种信息处理方法及电子设备 | |
US20140232642A1 (en) | Method of Temporal Segmentation of an Instrumented Gesture, Associated Device and Terminal | |
CN115130232A (zh) | 零件的寿命预测方法、装置、设备、存储介质及程序产品 | |
JP4946626B2 (ja) | 位置推定システム、位置推定装置及びそれらに用いる位置推定方法並びにそのプログラム | |
KR101774236B1 (ko) | 사용자 상황 인지 장치 및 방법 | |
KR101882789B1 (ko) | 상황인지 서비스를 위한 활동 정확도 산정 방법 | |
US11455837B2 (en) | Adaptive inference system and operation method therefor | |
KR101881443B1 (ko) | 상황인지 서비스를 위한 경로 정확도 산정 방법 | |
KR101553540B1 (ko) | 차량 탑승 추론을 위한 장치 및 방법, 이를 위한 기록매체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |