KR101880634B1 - 3차원 볼륨 파노라마 영상 생성 방법 및 장치 - Google Patents
3차원 볼륨 파노라마 영상 생성 방법 및 장치 Download PDFInfo
- Publication number
- KR101880634B1 KR101880634B1 KR1020110079153A KR20110079153A KR101880634B1 KR 101880634 B1 KR101880634 B1 KR 101880634B1 KR 1020110079153 A KR1020110079153 A KR 1020110079153A KR 20110079153 A KR20110079153 A KR 20110079153A KR 101880634 B1 KR101880634 B1 KR 101880634B1
- Authority
- KR
- South Korea
- Prior art keywords
- volume
- image
- conversion
- conversion function
- generating
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000009466 transformation Effects 0.000 claims abstract description 134
- 230000006870 function Effects 0.000 claims description 469
- 238000006243 chemical reaction Methods 0.000 claims description 363
- 238000005457 optimization Methods 0.000 claims description 143
- 230000000877 morphologic effect Effects 0.000 claims description 43
- 230000008859 change Effects 0.000 claims description 8
- 230000002194 synthesizing effect Effects 0.000 claims description 8
- 238000009499 grossing Methods 0.000 claims 2
- 239000002131 composite material Substances 0.000 description 28
- 239000011159 matrix material Substances 0.000 description 20
- 239000013598 vector Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 239000000523 sample Substances 0.000 description 8
- 238000002604 ultrasonography Methods 0.000 description 8
- 238000002591 computed tomography Methods 0.000 description 4
- 210000003754 fetus Anatomy 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000012285 ultrasound imaging Methods 0.000 description 3
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- FKOQWAUFKGFWLH-UHFFFAOYSA-M 3,6-bis[2-(1-methylpyridin-1-ium-4-yl)ethenyl]-9h-carbazole;diiodide Chemical compound [I-].[I-].C1=C[N+](C)=CC=C1C=CC1=CC=C(NC=2C3=CC(C=CC=4C=C[N+](C)=CC=4)=CC=2)C3=C1 FKOQWAUFKGFWLH-UHFFFAOYSA-M 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4038—Image mosaicing, e.g. composing plane images from plane sub-images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/08—Volume rendering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Graphics (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Image Processing (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
볼륨 파노라마 영상 생성 방법 및 장치에 따르면, 대상체 내부의 관찰 영역을 3차원적으로 나타내는 복수의 볼륨 영상들의 영상 데이터들을 입력받고, 입력된 볼륨 영상들 중 제1 볼륨 영상에 제1 볼륨 영상과 공통된 영역을 갖는 제2 볼륨 영상이 정합되도록 제2 볼륨 영상을 이동시키는 변환 함수를 결정하고, 적어도 결정된 변환 함수를 포함하는 복수의 변환 함수들에 기초하여 복수의 볼륨 영상들의 통합 변환 특성을 결정하고, 결정된 통합 변환 특성에 기초하여 복수의 볼륨 영상들의 영상 데이터로부터 볼륨 파노라마 영상의 영상 데이터를 생성한다.
Description
의료 영상을 생성하는 방법 및 장치에 관한 것으로 볼륨 영상들간의 변환 함수에 기초하여 볼륨 파노라마 영상을 생성하는 방법 및 장치에 관한 것이다.
환자를 진단하기 위한 다양한 의료 장비들이 사용 또는 개발 중에 있다. 환자 진단 과정에서의 환자의 편의, 환자 진단 결과의 신속성 등으로 인하여 초음파 영상 장치, CT(Computed Tomography), MRI(Magnetic Resonance Imaging) 등과 같이 인체 내부 단면의 모습을 영상으로 보여주는 의료 장비들의 중요성이 부각되고 있다. 초음파 영상 장치는 대상체의 내부의 소정 지점을 향하여 초음파 신호를 전달하고, 대상체 내부에서 반사된 초음파 신호의 정보를 이용하여 대상체 내부에 관한 이미지를 얻는 장치이다. 이와 같은 초음파 영상 장치는 소형이고, 저렴하며, 실시간으로 표시 가능하고, X선 등의 피폭이 없어 안전성이 높은 장점을 가지고 있다.
한편, 의료 장비들의 급속한 발전에 따라 인체 내부 단면을 나타내는 2차원 영상을 넘어서 3차원 영상을 출력하는 의료 장비들이 등장하고 있다. 나아가 보다 넓은 관찰 영역을 확보하기 위해 복수의 3차원 영상들을 합성하여 3차원 파노라마 영상을 생성하는 의료 장비들이 소개되고 있다.
복수의 3차원 볼륨 영상들간의 복수의 변환 함수들을 통합적으로 고려하여 보다 정확하게 볼륨 영상들을 정합하는 볼륨 파노라마 영상을 생성하는 방법 및 장치를 제공하는데 있다. 복수의 변환 함수들로부터 결정된 통합 변환 정보를 갱신하여 많은 개수의 볼륨 영상들을 효율적으로 처리하는 볼륨 파노라마 영상을 생성하는 방법 및 장치를 제공하는데 있다. 또한, 상기 방법들 각각을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체를 제공하는데 있다. 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
본 발명의 일측에 따르면, 볼륨 파노라마 영상 생성 방법은 상기 볼륨 영상들 중 제1 볼륨 영상과 상기 제1 볼륨 영상과 공통된 영역을 갖는 제2 볼륨 영상간의 변환 관계를 나타내는 변환 함수를 입력받는 단계, 적어도 상기 변환 함수를 포함하는 복수의 변환 함수들을 통합적으로 고려하여 상기 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성하는 단계 및 상기 최적화 변환 함수에 기초하여 상기 볼륨 파노라마 영상을 생성하는 단계를 포함한다.
본 발명의 다른 측면에 따라 상기 볼륨 파노라마 영상 생성 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체가 제공된다.
본 발명의 또 다른 측면에 따르면, 볼륨 파노라마 영상 생성 장치는 상기 복수의 볼륨 영상들의 영상 데이터들을 입력받는 입력부, 복수의 볼륨 영상들간의 변환 관계를 수식적으로 나타내는 복수의 변환 함수들을 통합적으로 고려하여 상기 복수의 변환 함수들 중 어느 하나로부터 최적화 변환 함수를 생성하고, 상기 최적화 변환 함수에 기초하여 상기 복수의 볼륨 영상들로부터 볼륨 파노라마 영상을 생성하는 영상 프로세서 및 상기 생성된 볼륨 파노라마 영상을 출력하는 출력부를 포함한다.
본 발명의 또 다른 측면에 따르면, 입력부는 복수의 변환 함수들을 입력받고, 영상 프로세서는 상기 볼륨 영상들 중 제1 볼륨 영상과 상기 제1 볼륨 영상과 공통된 영역을 갖는 제2 볼륨 영상간의 변환 관계를 나타내는 변환 함수를 포함하는 복수의 변환 함수들을 통합적으로 고려하여 상기 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성하는 최적화 변환 함수 생성부 및 상기 최적화 변환 함수에 기초하여 복수의 볼륨 영상들로부터 볼륨 파노라마 영상을 생성하는 볼륨 파노라마 영상 생성부를 포함한다.
본 발명의 또 다른 측면에 따르면, 영상 프로세서는 상기 볼륨 영상들 중 제1 볼륨 영상과 상기 제1 볼륨 영상과 공통된 영역을 갖는 제2 볼륨 영상간의 변환 관계를 나타내는 변환 함수를 결정하는 변환 함수 결정부, 상기 변환 함수를 포함하는 복수의 변환 함수들을 통합적으로 고려하여 상기 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성하는 최적화 변환 함수 생성부 및 상기 최적화 변환 함수에 기초하여 복수의 볼륨 영상들로부터 볼륨 파노라마 영상을 생성하는 볼륨 파노라마 영상 생성부를 포함한다.
복수의 3차원 볼륨 영상들간의 복수의 변환 함수들을 통합적으로 고려하여 통합 변환 특성을 생성함으로써, 보다 정확하게 볼륨 영상들을 정합할 수 있는 볼륨 파노라마 영상을 생성하는 방법 및 장치를 제공할 수 있다. 또한, 복수의 변환 함수들 각각을 통합 변환 정보의 파라미터로 결정하고, 결정된 통합 변환 특성을 최적화함으로써, 볼륨 파노라마 영상의 품질을 향상시키는 볼륨 파노라마 영상을 생성하는 방법 및 장치를 제공할 수 있다. 또한, 복수의 변환 함수들로부터 결정된 통합 변환 특성을 갱신함으로써, 많은 개수의 볼륨 영상들간의 변환 함수들을 효율적으로 관리하는 볼륨 파노라마 영상을 생성하는 방법 및 장치를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 의료 영상 시스템의 구성도이다.
도 2는 도 1에 도시된 볼륨 파노라마 영상 생성 장치(20)의 일 예에 따른 구성도이다.
도 3은 도 2에 도시된 영상 프로세서(22)에서 복수의 볼륨 영상들로부터 볼륨 파노라마 영상을 생성하는 모습을 도시한 도면이다.
도 4는 도 2에 도시된 최적화 변환 함수 생성부(221)에서 입력된 통합 변환 정보와 볼륨 영상들의 영상 데이터에 기초하여 최적화 변환 함수를 생성하는 과정을 설명하기 위한 도면이다.
도 5는 도 2에 도시된 최적화 변환 함수 생성부(221)의 일 예에 따른 구성도이다.
도 6은 부분 영역의 형태적인 특성을 결정하는 과정을 설명하기 위한 도면이다.
도 7은 도 6의 평활화된 구 형상의 영역(64)의 일 영역에 포함된 복셀들의 강도들의 변화하는 정도를 나타내는 지표를 나타낸 도면이다.
도 8은 도 2의 합성 영상 데이터 생성부(222)에서 합성되는 볼륨 영상의 영상 데이터를 생성하는 과정을 나타낸 동작 흐름도이다.
도 9는 합성되는 볼륨 영상으로부터 적어도 하나의 지역 볼륨 영상을 분할하는 일 실시예를 나타낸 도면이다.
도 10은 발명의 다른 실시예에 따른 볼륨 파노라마 영상 생성 장치(100)의 구성도이다.
도 11은 본 발명의 일 실시예에 따른 볼륨 파노라마 영상 생성 방법의 동작 흐름도이다.
도 12는 본 발명의 다른 실시예에 따른 볼륨 파노라마 영상 생성 방법의 동작 흐름도이다.
도 2는 도 1에 도시된 볼륨 파노라마 영상 생성 장치(20)의 일 예에 따른 구성도이다.
도 3은 도 2에 도시된 영상 프로세서(22)에서 복수의 볼륨 영상들로부터 볼륨 파노라마 영상을 생성하는 모습을 도시한 도면이다.
도 4는 도 2에 도시된 최적화 변환 함수 생성부(221)에서 입력된 통합 변환 정보와 볼륨 영상들의 영상 데이터에 기초하여 최적화 변환 함수를 생성하는 과정을 설명하기 위한 도면이다.
도 5는 도 2에 도시된 최적화 변환 함수 생성부(221)의 일 예에 따른 구성도이다.
도 6은 부분 영역의 형태적인 특성을 결정하는 과정을 설명하기 위한 도면이다.
도 7은 도 6의 평활화된 구 형상의 영역(64)의 일 영역에 포함된 복셀들의 강도들의 변화하는 정도를 나타내는 지표를 나타낸 도면이다.
도 8은 도 2의 합성 영상 데이터 생성부(222)에서 합성되는 볼륨 영상의 영상 데이터를 생성하는 과정을 나타낸 동작 흐름도이다.
도 9는 합성되는 볼륨 영상으로부터 적어도 하나의 지역 볼륨 영상을 분할하는 일 실시예를 나타낸 도면이다.
도 10은 발명의 다른 실시예에 따른 볼륨 파노라마 영상 생성 장치(100)의 구성도이다.
도 11은 본 발명의 일 실시예에 따른 볼륨 파노라마 영상 생성 방법의 동작 흐름도이다.
도 12는 본 발명의 다른 실시예에 따른 볼륨 파노라마 영상 생성 방법의 동작 흐름도이다.
이하에서는 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 의료 영상 시스템의 구성도이다. 도 1을 참조하면, 도 1에 도시된 실시예에 따른 의료 진단 시스템은 3차원 볼륨 영상 생성 장치(10), 볼륨 파노라마 영상 생성 장치(20), 영상 표시 장치(30)로 구성된다. 3차원 볼륨 영상 생성 장치(10)는 대상체(40) 내부의 관찰 영역을 3차원적으로 나타내는 볼륨 영상들의 영상 데이터들을 생성한다. 이 때, 이와 같은 3차원 볼륨 영상 생성 장치(10)의 일 예에는 초음파 진단 장치, CT(Computed Tomography), MRI(Magnetic Resonance Imaging) 등과 같이 대상체 내부 모습을 영상으로 보여주는 의료 장비들이 포함된다. 특히, 3차원 볼륨 영상 생성 장치(10)가 초음파 진단 장치인 경우, 3차원 볼륨 영상 생성 장치(10)는 이것에 장착된 프로브(11)로부터 발생된 소스 신호(source signal)가 의사 등과 같은 의료 전문가가 진단하고자 하는 대상체(40) 내부의 관찰 영역에 전달됨으로써 발생되는 반응 신호를 이용하여 이러한 관찰 영역을 3차원적으로 나타내는 볼륨 영상들의 영상 데이터들을 생성한다. 이 때, 소스 신호는 초음파, X선 등 여러 종류의 신호가 될 수 있다. 이하에서는 설명의 편의를 위하여 3차원 볼륨 영상 생성 장치(10)가 초음파(ultrasound)를 이용하여 대상체(40, 예를 들어 환자의 신체)로부터 3차원 볼륨 영상을 검출하는 초음파 진단 장치인 경우를 예로 들어 설명하도록 한다. 그러나, 본 발명의 복수의 볼륨 영상들이 초음파 진단 장치에 의해 생성되는 것으로만 한정 해석되지는 않는다.
초음파 진단 장치에서의 프로브(11)는 일반적으로 적어도 하나의 변환기의 배열로 구성된다. 3차원 볼륨 영상 생성 장치(10)의 프로브(11)로부터 초음파 신호가 대상체(40)의 내부의 관찰 영역으로 전달되면, 이러한 초음파 신호는 여러 다른 조직들(tissue) 사이의 계층들로부터 부분적으로 반사된다. 특히, 초음파 신호는 대상체(40) 내부에서의 밀도 변화가 있는 곳, 예를 들어, 혈장(blood plasma) 내의 혈구들(blood cells), 장기들(organs) 내의 작은 조직들(structures) 등에서 반사된다. 이와 같이 반사된 초음파 신호들은 프로브(11)의 변환기들을 진동시키고, 변환기들은 이 진동들에 따른 전기적 펄스들(electrical pulses)을 출력한다. 이와 같은 전기적 펄스들이 3차원 볼륨 영상으로 변환될 수 있다.
3차원 볼륨 영상 생성 장치(10)는 대상체(40) 위에서 프로브(11)의 위치(location)와 방향(orientation)을 변화시키면서, 대상체(40)에 대한 3차원 볼륨 영상을 검출한다. 예를 들어, 3차원 볼륨 영상 생성 장치(10)는 대상체(40)의 관찰 영역으로 복수 회의 초음파 신호들을 송신함에 따라 대상체(40)의 특정 부위에 대한 다수의 단면 영상들을 검출하고, 이와 같은 단면 영상들을 축척하여 대상체(40) 내부의 관찰 영역을 3차원적으로 나타내는 3차원 볼륨(volume) 영상의 영상 데이터를 생성한다. 이와 같이 단면 영상들을 축척하여 3차원 볼륨 영상의 영상 데이터를 생성하는 방식을 MPR(Multiplanar Recunstruction) 방식이라고 한다. 그러나, 이하에서 설명될 실시예들의 특징은 3차원 볼륨 영상을 생성에 있는 것이 아니라, 3차원 볼륨 영상들로부터 대상체(40) 내부의 보다 넓은 관찰 영역에 대한 볼륨 파노라마 영상을 얻는 것에 있다. 따라서, 앞서 설명된 3차원 볼륨 영상의 생성 과정은 하나의 예일 뿐, 다른 방식들로 생성된 3차원 볼륨 영상에 이하에서 설명될 실시예들이 적용될 수 있다. 예를 들어, x 축, y 축, z 축의 위치 데이터를 포함하는 3차원 수신 신호를 프로브(11)의 변환기들로 입력받아, 이러한 3차원 수신 신호로부터 3차원 볼륨 영상들의 영상 데이터를 생성하는 방식으로 생성된 3차원 볼륨 영상에 이하에서 설명될 실시예들이 적용될 수도 있는 것이다.
그런데, 이와 같이 생성된 3차원 볼륨 영상에는 한 번에 관찰 가능한 관찰 영역 (Field of View)의 크기에 제한이 수반될 수 있다. 특히, 초음파 신호로부터 생성된 초음파 3차원 볼륨 영상은 프로브의 종류, 변환기의 배열 형태, 변환기의 개수 등에 의해서 한 번에 관찰 가능한 관찰 영역의 크기가 제한될 수 있다. 이 때, 한 번에 관찰 가능한 관찰 영역은 프로브(11)를 대상체(40)의 소정 위치로 위치시키고, 위치의 이동 없이 상기 위치에서 획득하는 초음파 영상을 의미한다. 예를 들어, 본 발명의 실시예에 따른 3차원 볼륨 영상 생성 장치(10)가 대상체(40)의 피부로부터 깊이 15cm, 시야각 60 내지 100도 정도의 관찰 영역을 한 번에 관찰 가능한 경우, 3차원 볼륨 영상 생성 장치(10)로부터 출력되는 3차원 볼륨 영상은 대상체(40) 내부의 장기 기관이나 또는 태아 전체를 한 번에 관찰하기 위한 용도로 활용함에 있어 제한을 가질 수 있다. 이에 따라, 보다 넓은 시역의 확보를 위해서는 순차적으로 획득한 복수의 3차원 볼륨 영상들을 합성하여, 볼륨 파노라마 영상을 생성하는 것이 요구된다.
한편, 복수의 3차원 볼륨 영상들을 합성하여 볼륨 파노라마 영상을 생성함에 있어서, 복수의 3차원 볼륨 영상들간의 정합이 요구된다. 일반적으로, 이러한 정합은 볼륨 영상들간의 변환 함수에 의하여 수행된다. 예를 들어, 복수의 볼륨 영상들 중 제1 볼륨 영상과 제2 볼륨 영상간의 정합은 제1 볼륨 영상과 제2 볼륨 영상간의 변환 관계를 나타내는 변환 함수에 의하여 수행될 수 있다. 이러한 변환 함수는 제1 볼륨 영상에 제2 볼륨 영상을 정합하기 위하여, 제2 볼륨 영상에 포함된 복셀들의 위치와 방향을 이동시켜 제1 볼륨 영상에 매칭시키는 것을 의미할 수 있다. 그런데 복수의 볼륨 영상들 중 적어도 둘간의 변환 함수는 다른 볼륨 영상들간의 변환 함수에 오차를 야기할 수 있다. 예를 들어, 순차적으로 획득되는 제1 볼륨 영상, 제2 볼륨 영상 및 제3 볼륨 영상을 합성하여 볼륨 파노라마 영상을 생성함에 있어서, 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수에 발생하는 오차는 제2 볼륨 영상과 제3 볼륨 영상간의 변환 함수에 오차를 야기할 수 있다. 이에 따라, 적어도 셋 이상의 볼륨 영상들을 합성하여 볼륨 파노라마 영상을 생성함에 있어서, 복수의 볼륨 영상들간의 변환 함수들을 통합적으로 고려하여 변환 함수들 각각으로부터 최적화 변환 함수들을 생성하는 것이 요구된다. 이러한 최적화 변환 함수들은 복수의 볼륨 영상들을 합성하여 볼륨 파노라마 영상을 생성함에 있어 오차를 최소화할 수 있다. 이하에서 설명될 실시예들은 3차원 볼륨 영상들간의 복수의 변환 함수들을 통합적으로 고려하여 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성하고, 생성된 최적화 변환 함수에 기초하여 복수의 볼륨 영상들로 이루어진 볼륨 파노라마 영상을 생성하는 방식을 제시한다.
도 2는 도 1에 도시된 볼륨 파노라마 영상 생성 장치(20)의 일 예에 따른 구성도이다. 도 2를 참조하면, 도 1에 도시된 볼륨 파노라마 영상 생성 장치(20)는 입력부(21), 영상 프로세서(22), 저장부(23) 및 출력부(24)로 구성된다. 다만, 도 2에 도시된 볼륨 파노라마 영상 생성 장치(20)는 본 발명의 하나의 구현 예에 불과하며, 도 2에 도시된 구성 요소들을 기초로 하여 여러 가지 변형이 가능함을 본 발명의 일 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 이해할 수 있다. 예를 들어, 볼륨 파노라마 영상 생성 장치(20)는 사용자 인터페이스를 더 포함할 수 있다. 이와 같은 사용자 인터페이스는 의료 전문가 등과 같은 사용자로부터 어떤 명령 내지 정보를 입력받기 위한 인터페이스이다. 사용자 인터페이스는 일반적으로 키보드, 마우스 등과 같은 입력 장치가 될 수도 있으나, 영상 표시 장치(30)에 표현되는 그래픽 유저 인터페이스(GUI, Graphical User interface)가 될 수도 있다.
입력부(21)는 3차원 볼륨 영상 생성 장치(10)로부터 볼륨 영상의 영상 데이터를 입력받는다. 이 때, 볼륨 영상은 대상체(40) 내부의 관찰 영역을 3차원적으로 나타낸다. 일반적으로, 입력부(21)는 3차원 볼륨 영상 생성 장치(10)로부터 복수의 3차원 볼륨 영상의 영상 데이터들을 입력받는다. 이 때, 복수의 볼륨 영상들 각각은 서로 다른 관찰 영역을 갖는다. 예를 들어, 복수의 볼륨 영상들 중 어느 하나는 대상체(40) 내부의 태아의 머리 부분의 관찰 영역을 갖고, 복수의 볼륨 영상들 중 다른 하나는 대상체(40) 내부의 태아의 몸통 부분의 관찰 영역을 가질 수 있다. 이와 같은 입력부(21)는 3차원 볼륨 영상 생성 장치(10)로부터 입력받은 복수의 볼륨 영상들의 영상 데이터들을 영상 프로세서(22)에 전달한다.
본 발명의 일 실시예에 따르면, 입력부(21)는 3차원 볼륨 영상 생성 장치(10)로부터 볼륨 영상들간의 변환 함수를 입력받는다. 이 때, 볼륨 영상들간의 변환 함수는 볼륨 영상들 중 적어도 둘을 정합하기 위한 함수를 의미한다. 일반적으로, 볼륨 영상들을 정합한다는 것은 복수의 볼륨 영상들 중 어느 하나에 포함된 복셀들의 위치와 방향을 이동시켜 볼륨 영상들 중 다른 하나에 매칭시키는 것을 의미한다. 이와 같이, 볼륨 영상들간의 변환 함수는 볼륨 영상들 각각에 대응하는 복셀들간의 변환 함수를 의미할 수 있다. 예를 들어, 제1 볼륨 영상과 제2 볼륨 영상의 변환 함수는 제1 볼륨 영상에 대응하는 복셀들과 제2 볼륨 영상에 대응하는 복셀들간의 변환 함수를 의미할 수 있다. 이 때, 제1 볼륨 영상에 대응하는 복셀들과 제2 볼륨 영상에 대응하는 복셀들간의 변환 함수는 제1 볼륨 영상에 대응하는 복셀들을 기준으로 제2 볼륨 영상에 대응하는 복셀들을 제1 볼륨 영상에 대응하는 복셀들로 정합시키기 위한 제2 볼륨 영상에 대응하는 복셀들의 변환 함수를 의미한다. 제1 볼륨 영상에 대응하는 복셀들은 제1 볼륨 영상에 포함된 복셀들을 의미할 수 있다. 이와 같은 맥락으로, 제2 볼륨 영상에 대응하는 복셀들은 제2 볼륨 영상에 포함된 복셀들을 의미할 수 있다. 다만, 이에 한정되지 않는다. 예를 들어, 제1 볼륨 영상에 대응하는 복셀들은 제1 볼륨 영상에 포함된 복셀들 중 임계값 이상의 강도를 갖는 복셀들만을 의미할 수도 있다.
본 발명의 일 실시예에 따르면, 입력부(21)는 3차원 볼륨 영상 생성 장치(10)로부터 볼륨 영상들간의 복수의 변환 함수들을 입력받는다. 예를 들어, 입력부(21)는 3차원 볼륨 영상 생성 장치(10)로부터 볼륨 영상들 중 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 입력받고, 이와 비교하여 볼륨 영상들 중 제2 볼륨 영상과 제3 볼륨 영상간의 변환 함수를 입력받는다. 이와 같은, 제1 볼륨 영상, 제2 볼륨 영상 및 제3 볼륨 영상은 순차적으로 획득된 볼륨 영상들일 수도 있고, 시간의 선후에 상관 없이 무작위로 획득된 볼륨 영상들일 수도 있다. 일반적으로, 제1 볼륨 영상과 제2 볼륨 영상간에는 공통된 영역이 존재한다. 이와 마찬가지로, 제2 볼륨 영상과 제3 볼륨 영상간에는 공통된 영역이 존재한다. 다만, 제1 볼륨 영상과 제2 볼륨 영상간의 공통된 영역과 제2 볼륨 영상과 제3 볼륨 영상간의 공통된 영역은 서로 다른 영역일 수 있다. 또한, 이러한 공통된 영역은 관찰 영역을 달리하는 복수의 볼륨 영상들 각각의 관찰 영역간에 공통된 영역을 의미할 수 있다.
지금까지 입력부(21)가 3차원 볼륨 영상 생성 장치(10)로부터 복수의 변환 함수들간의 변환 함수를 수신하는 실시예에서 설명하였으나, 본 발명의 다른 실시예에 따르면, 입력부(21)는 3차원 볼륨 영상 생성 장치(10)로부터 복수의 볼륨 영상들의 영상 데이터들만을 입력받고, 영상 프로세서(22)에서 이와 같은 복수의 볼륨 영상들의 영상 데이터들에 기초하여 복수의 볼륨 영상들간의 변환 함수를 결정할 수도 있다. 이와 같은 다른 실시예에 대한 구체적인 설명 및 복수의 볼륨 영상들간의 변환 함수들에 관한 구체적인 설명은 이하에서 이루어진다.
출력부(24)는 영상 프로세서(22)에 의해 복수의 볼륨 영상들의 영상 데이터들로부터 합성된 볼륨 파노라마 영상의 영상 데이터를 영상 표시 장치(30)로 출력한다. 이와 같은, 출력부(24)와 앞서 설명된 입력부(21) 각각은 영상 프로세서(22)와 영상 표시 장치(30)를 연결하고, 3차원 볼륨 영상 생성 장치(10)와 영상 프로세서(22)를 연결하기 위한 일종의 인터페이스(interface)이다. 영상 표시 장치(30)는 출력부(24)로부터 수신한 볼륨 파노라마 영상의 영상 데이터를 이용하여 볼륨 파노라마 영상을 표시한다. 이와 같은 영상 표시 장치(30)의 일 예에는 볼륨 파노라마 영상을 스크린 또는 종이 위에 디스플레이하는 장치가 포함된다. 다만, 이에 한정되지 아니한다.
저장부(23)에는 영상 프로세서(22)에서 수행되는 영상 프로세싱 과정에서 발생되는 다양한 데이터들이 저장된다. 예를 들어, 저장부(23)에는 입력부(21)로부터 입력된 복수의 볼륨 영상들의 영상 데이터들이 저장되고, 복수의 볼륨 영상들간의 변환 함수들이 저장되고, 출력부(24)로 전달되는 볼륨 파노라마 영상의 영상 데이터가 저장될 수 있다. 또한, 본 발명의 다양한 실시예들에 따르면, 저장부(23)에는 이하에서 설명되는 파라미터, 통합 변환 정보 등의 데이터들이 저장될 수도 있다. 이러한 저장부(23)의 일 예에는 하드디스크드라이브, ROM(Read Only Memory), RAM(Random Access Memory), 플래쉬메모리 및 메모리카드 등이 포함된다.
영상 프로세서(22)는 입력부(21)에 입력된 복수의 볼륨 영상들의 영상 데이터들을 이용하여 복수의 볼륨 영상들로 이루어진 볼륨 파노라마 영상의 영상 데이터를 생성한다. 이 때, 볼륨 파노라마 영상은 복수의 볼륨 영상들 각각의 관찰 영역보다 넓은 관찰 영역을 갖는 볼륨 영상을 의미한다. 도 3은 도 2에 도시된 영상 프로세서(22)에서 복수의 볼륨 영상들로부터 볼륨 파노라마 영상을 생성하는 모습을 도시한 도면이다. 도 3을 통하여 예시하면, 영상 프로세서(22)는 입력부(21)에 입력된 제1 볼륨 영상(31)의 영상 데이터와 제2 볼륨 영상(32)의 영상 데이터를 이용하여 제1 볼륨 영상(31)의 관찰 영역 또는 제2 볼륨 영상(32)의 관찰 영역보다 넓은 관찰 영역을 갖는 볼륨 파노라마 영상(34)의 영상 데이터를 생성한다.
영상 프로세서(22)는 볼륨 영상들간의 변환 관계를 나타내는 변환 함수에 기초하여 볼륨 영상들로부터 볼륨 파노라마 영상을 생성한다. 이 때, 변환 함수는 볼륨 파노라마 영상을 생성하기 위하여 합성되는 복수의 볼륨 영상들 중 어느 하나를 기준으로 복수의 볼륨 영상들 중 다른 하나를 이동시키는 것을 의미한다. 이와 같은 변환 함수는 볼륨 영상들 상호간을 정합하기 위한 함수를 의미할 수도 있다. 일반적으로, 영상 프로세서(22)는 볼륨 영상들간의 변환 관계를 나타내는 변환 함수를 결정하고, 결정된 변환 함수에 기초하여 볼륨 영상들을 정합하고, 정합된 볼륨 영상들을 합성하여 볼륨 파노라마 영상을 생성한다. 도 3을 통해 예시하면, 영상 프로세서(22)는 복수의 볼륨 영상들 중 제1 볼륨 영상(31)과 제2 볼륨 영상(32)간의 변환 함수를 결정하고, 결정된 변환 함수에 기초하여 제2 볼륨 영상(32)으로부터 제1 볼륨 영상과 합성되는 볼륨 영상(33)을 생성하고, 생성된 볼륨 영상(33)과 제1 볼륨 영상(31)을 합성하여 볼륨 파노라마 영상(34)을 생성할 수 있다.
영상 프로세서(22)는 최적화 변환 함수에 기초하여 복수의 볼륨 영상들로부터 볼륨 파노라마 영상을 생성한다. 이 때, 최적화 변환 함수는 볼륨 영상들간의 형태적인 특성의 유사도를 최대화시키는 함수를 의미한다. 도 3을 통해 예시하면, 최적화 변환 함수는 제1 볼륨 영상(31)과 제2 볼륨 영상(32)간의 형태적인 특성의 유사도를 최대화하는 제1 볼륨 영상(31)과 제2 볼륨 영상(32)간의 변환 관계를 나타내는 변환 함수를 의미한다. 다만, 본 발명의 다양한 실시예들에 따르면, 이와 같은 최적화 변환 함수는 다양하게 정의될 수 있다. 도 3을 통해 예시하면, 최적화 변환 함수는 제1 볼륨 영상(31)과 합성되는 볼륨 영상(33)간의 형태적인 특성의 유사도를 최대화하는 제1 볼륨 영상(31)과 제2 볼륨 영상(32)간의 변환 관계를 나타내는 변환 함수를 의미할 수도 있다. 또한, 본 발명의 일 실시예에 따른 영상 프로세서(22)는 입력부(21)에 입력된 복수의 볼륨 영상들간의 복수의 변환 함수들을 통합적으로 고려하여, 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성하고, 생성된 최적화 변환 함수에 기초하여 볼륨 파노라마 영상의 영상 데이터를 생성한다. 이와 같은 영상 프로세서(22)의 동작에 대해서는 이하 보다 구체적으로 설명된다.
도 2를 참조하면, 영상 프로세서(22)는 최적화 변환 함수 생성부(221), 합성 영상 데이터 생성부(222), 볼륨 파노라마 영상 생성부(223)로 구성된다. 이러한 영상 프로세서(22)는 상기된 바와 같은 구성 요소들의 기능을 수행하는 전용 칩(chip)들로 제작될 수도 있고, 범용 CPU와 저장부(23)에 저장된 전용 프로그램으로 구현될 수도 있다.
최적화 변환 함수 생성부(221)는 볼륨 영상들간의 변환 관계를 나타내는 변환 함수를 입력부(21)로부터 입력받는다. 이 때, 변환 함수는 볼륨 영상들을 합성하는 볼륨 파노라마 영상을 생성함에 있어서, 볼륨 영상들간의 정합을 위해 결정되는 함수를 의미한다. 도 3을 통해 예시하면, 볼륨 영상들 중 제1 볼륨 영상(31)과 제2 볼륨 영상(32)간의 변환 함수는 제1 볼륨 영상(31)을 기준으로 제2 볼륨 영상(32)을 제1 볼륨 영상(31)에 정합시키기 위해서 제2 볼륨 영상(32)에 적용되는 함수를 의미할 수 있다. 또한, 볼륨 영상들간의 변환 함수는 볼륨 영상들 각각에 대응하는 복셀들간의 변환 함수를 의미할 수 있다. 도 3을 통하여 예시하면, 복수의 볼륨 영상들 중 제1 볼륨 영상(31)과 제2 볼륨 영상(32)간의 변환 함수는 제1 볼륨 영상(31)에 대응하는 복셀들과 제2 볼륨 영상(32)에 대응하는 복셀들간의 변환 함수를 의미할 수 있다. 일반적으로, 볼륨 영상들 각각에 대응하는 복셀들은 볼륨 영상들 각각에 포함된 복셀들을 의미한다. 다만, 본 발명의 다양한 실시예에 따르면, 이와 같은 볼륨 영상들 각각에 대응하는 복셀들은 다양한 형태로 결정될 수도 있다. 도 3을 통해 예시하면, 제1 볼륨 영상(31)에 대응하는 복셀들은 제1 볼륨 영상(31) 내 소정 영역에 포함된 복셀들 그리고 그 주변부의 복셀들을 의미할 수도 있고, 제1 볼륨 영상(31)에 포함된 복셀들 중 관찰 대상(예를 들어, 태아)에 포함되는 복셀들을 의미할 수도 있는 것이다.
최적화 변환 함수 생성부(221)는 복수의 볼륨 영상들 중 어느 하나의 볼륨 영상과 이러한 어느 하나의 볼륨 영상과 공통된 영역을 갖는 복수의 볼륨 영상들 중 다른 하나의 볼륨 영상간의 변환 함수를 입력받는다. 또한, 최적화 변환 함수 생성부(221)는 이러한 변환 함수와 다른 제2 변환 함수를 더 입력받는다. 도 4는 도 2에 도시된 최적화 변환 함수 생성부(221)에서 입력된 통합 변환 정보와 볼륨 영상들의 영상 데이터에 기초하여 최적화 변환 함수를 생성하는 과정을 설명하기 위한 도면이다. 도 4를 통하여 예시하면, 최적화 변환 함수 생성부(221)는 복수의 볼륨 영상들 중 제1 볼륨 영상(41)과 이러한 제1 볼륨 영상(41)과 공통된 영역을 갖는 제2 볼륨 영상(42)간의 제1 변환 함수를 입력받고, 복수의 볼륨 영상들 중 제2 볼륨 영상(42)과 이러한 제2 볼륨 영상(42)과 앞서 언급된 공통된 영역과 다른 공통된 영역을 갖는 제3 볼륨 영상(43)간의 제2 변환 함수를 입력받을 수 있다. 이 때, 제1 볼륨 영상(41), 제2 볼륨 영상(42) 및 제3 볼륨 영상(43) 각각은 입력부(21)로부터 순차적으로 입력되고, 제1 변환 함수와 제2 변환 함수 역시 순차적으로 입력될 수 있다. 다시 말하면, 최적화 변환 함수 생성부(221)는 순차적으로 획득된 볼륨 영상들 각각의 순서를 기준으로, 제1 볼륨 영상(41)과 제2 볼륨 영상(42)간의 제1 변환 함수를 입력받고, 제2 볼륨 영상(42)과 제3 볼륨 영상(43)간의 제2 변환 함수를 입력받을 수 있다. 다만, 본 발명의 다른 실시예에 따르면, 최적화 변환 함수 생성부(221)는 복수의 볼륨 영상들 중 어느 하나를 제1 볼륨 영상으로 결정하고, 결정된 제1 볼륨 영상과 다른 볼륨 영상들 각각과의 변환 함수들을 볼륨 영상들 각각의 획득 또는 입력 순서와 상관없이 입력받을 수도 있다.
최적화 변환 함수 생성부(221)는 복수의 변환 함수들을 통합적으로 고려하여 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성한다. 일반적으로, 복수의 변환 함수들을 통합적으로 고려한다는 것은 복수의 변환 함수들 중 어느 하나의 변환 함수로부터 최적화 변환 함수를 생성함에 있어서, 이러한 어느 하나의 변환 함수와 복수의 변환 함수들 중 다른 변환 함수들을 함께 고려하여 어느 하나의 변환 함수로부터 최적화 변환 함수를 생성하는 것을 의미한다. 이 때, 최적화 변환 함수는 변환 함수들 각각으로부터 변경된 것을 의미한다. 일반적으로, 최적화 변환 함수는 복수의 변환 함수들간의 형태적인 특성의 유사도를 최대화하는 변환 함수를 의미할 수 있으나, 이와 같은 정의에 한정 해석되지는 않는다.
도 4를 참조하면, 최적화 변환 함수 생성부(221)는 복수의 변환 함수들을 통합적으로 고려하여 제1 변환 함수로부터 제1 최적화 변환 함수를 생성하고, 제2 변환 함수로부터 제2 최적화 변환 함수를 생성한다. 이 때, 제1 변환 함수는 앞서 설명된 바와 같이 제1 볼륨 영상(41)과 제2 볼륨 영상(42)간의 변환 관계를 나타내는 변환 함수이고, 제2 변환 함수는 제2 볼륨 영상(42)과 제3 볼륨 영상(43)간의 변환 관계를 나타내는 변환 함수로 가정된다. 일반적으로, 최적화 변환 함수 생성부(221)는 복수의 볼륨 영상들간의 유사도를 결정하고, 복수의 유사도들을 통합적으로 고려하여 최적화 변환 함수를 생성한다. 도 4를 통해 예시하면, 최적화 변환 함수 생성부(221)는 복수의 볼륨 영상들 중 제1 볼륨 영상(41)과 제2 볼륨 영상(42)간의 제1 변환 함수에 기초하여 제1 볼륨 영상(41)과 제2 볼륨 영상(42)간의 유사도를 결정하고, 복수의 볼륨 영상들 중 제2 볼륨 영상(42)과 제3 볼륨 영상(43)간의 제2 변환 함수에 기초하여 제2 볼륨 영상(42)과 제3 볼륨 영상(43)간의 유사도를 결정하고, 복수의 유사도들을 통합적으로 고려하여 제1 변환 함수로부터 제1 최적화 변환 함수를 생성하고, 제2 변환 함수로부터 제2 최적화 변환 함수를 생성한다. 이 때, 앞서 설명된 바와 같이, 제1 볼륨 영상(41)과, 제2 볼륨 영상(42)간의 유사도는 제1 볼륨 영상(41)과 제1 변환 함수에 기초하여 제2 볼륨 영상(42)으로부터 생성된 볼륨 영상간의 유사도를 의미할 수도 있다.
일반적으로, 볼륨 영상들간의 유사도의 합은 볼륨 영상들간의 형태적인 특성의 유사도를 의미한다. 이와 같은 볼륨 영상들 각각의 형태적인 특성은 볼륨 영상들 각각에 대응하는 복셀들에 의해 결정된다. 예를 들어, 볼륨 영상들 각각의 형태적인 특성은 볼륨 영상들 각각에 대응하는 복셀들의 위치 정보 및 정보량에 따라 정의될 수 있다. 이 때, 정보량의 일 예는 복셀들 각각의 강도(intensity)이다. 또한, 볼륨 영상들간의 형태적인 특성의 유사도는 볼륨 영상들간의 상호 정보관계 (Mutual Information)로 정의될 수 있다. 이 때, 상호 정보관계는 평활화된 상호 정보관계 (Normalized Mutual Information)를 의미할 수도 있다. 다만, 이와 같은 상호 정보관계는 볼륨 영상들간의 형태적인 특성의 유사도를 결정하는 일 예에 불과하며, 본 발명의 다양한 실시예들에 따르면 이러한 유사도는 다양하게 결정될 수 있다. 예를 들어, 볼륨 영상들 각각에 대응하는 복셀들간의 강도 분포의 유사도를 의미할 수도 있고, 볼륨 영상들 각각에 포함된 부분 영역들간의 유사도를 의미할 수도 있고, 볼륨 영상들 각각에 포함된 에지를 구성하는 복셀들간의 유사도를 의미할 수도 있다. 이에 대해서는 이하 자세하게 설명된다.
일반적으로, 최적화 변환 함수 생성부(221)는 복수의 유사도들의 합을 최대화하도록 복수의 변환 함수들 각각을 변경하고, 변경된 변환 함수로부터 최적화 변환 함수를 생성한다. 도 4를 통해 예시하면, 최적화 변환 함수 생성부(221)는 제1 볼륨 영상(41)과 제2 볼륨 영상(42)간의 형태적인 특성의 유사도와 제2 볼륨 영상(42)과 제3 볼륨 영상(43)간의 형태적인 특성의 유사도의 합이 최대화되도록, 제1 변환 함수와 제2 변환 함수를 변경하고, 변경된 제1 변환 함수 및 제2 변환 함수 각각을 제1 최적화 변환 함수 및 제2 최적화 변환 함수로 결정할 수 있다. 다만, 본 발명의 다양한 실시예들에 따르면, 최적화 변환 함수 생성부(221)는 복수의 유사도들의 합이 기 결정된 임계값에 근사하도록 복수의 변환 함수들 각각을 변경할 수도 있고, 유사도들을 대신하여 다른 파라미터들의 합이 최대화 또는 최소화되도록 복수의 변환 함수들 각각을 변경할 수도 있다.
최적화 변환 함수 생성부(221)로부터 출력되는 최적환 변환 함수는 복수의 볼륨 영상들로부터 볼륨 파노라마 영상을 생성하기 위해 이용된다. 도 4를 통해 예시하면, 최적화 변환 함수 생성부(221)로부터 출력되는 최적환 변환 함수는 제1 볼륨 영상(41), 제2 볼륨 영상(42) 및 제3 볼륨 영상(43)으로부터 볼륨 파노라마 영상(44)을 생성하기 위하여 이용될 수 있다. 이에 대해서는 이하에서 보다 상세하게 설명된다.
도 5는 도 2에 도시된 최적화 변환 함수 생성부(221)의 일 예에 따른 구성도이다. 도 5를 참조하면, 최적화 변환 함수 생성부(221)는 통합 변환 정보 생성부(2211) 및 통합 변환 정보 최적화부(2212)로 구성된다. 최적화 변환 함수 생성부(221)는 복수의 변환 함수들을 통합적으로 나타내는 통합 변환 정보를 생성한다. 이 때, 통합 변환 정보는 복수의 변환 함수들 각각으로부터 추출된 적어도 하나의 파라미터로 이루어진 벡터를 포함한다. 또한, 이러한 파라미터의 일 예에는 볼륨 영상들간의 방향의 변환 관계를 나타내는 파라미터 및 볼륨 영상들간의 위치의 변환 관계를 나타내는 파라미터 중 적어도 하나가 포함된다. 일반적으로, 볼륨 영상들간의 방향의 변환 관계를 나타내는 파라미터 및 볼륨 영상들간의 위치의 변환 관계를 나타내는 파라미터 각각은 볼륨 영상들 각각에 대응하는 복셀들간의 방향의 변환 관계를 나타내는 파라미터 및 볼륨 영상들 각각에 대응하는 복셀들간의 위치의 변환 관계를 나타내는 파라미터를 의미할 수 있다.
통합 변환 정보 생성부(2211)는 복수의 변환 함수들을 이용하여 통합 변환 정보를 생성한다. 앞서 설명된 바와 같이, 복수의 변환 함수들 각각은 볼륨 영상들간의 변환 관계를 나타내며, 본 발명의 일 실시예에 따르면, 볼륨 영상들간의 변환 관계는 볼륨 영상들 각각에 대응하는 복셀들간의 변환 관계를 나타낸다. 예를 들어, 제1 볼륨 영상과 제2 볼륨 영상간의 제1 변환 함수는 제1 볼륨 영상에 포함된 복셀들 중 어느 하나가 제2 볼륨 영상에 포함된 복셀들 중 어느 하나로 변환하는 관계를 나타낼 수 있다. 이를 수식적으로 표현하면, 수학식 1과 같다. 구체적으로, 수학식 1은 N개의 볼륨 영상들과 N-1개의 볼륨 영상들간의 변환 함수들이 통합 변환 정보 생성부(2211)로 입력되는 경우, N-1번째 볼륨 영상과 N번째 볼륨 영상간의 변환 함수를 정의한다. 다만, N은 2 이상의 정수이다. 이 때, 앞서 설명된 바와 같이, 볼륨 영상들간의 변환 함수는 볼륨 영상들 각각에 대응하는 복셀들간의 변환 함수를 의미할 수 있다. 따라서, 수학식 1을 다시 해석하면, 수학식 1은 N개의 볼륨 영상들 중 N번째 볼륨 영상에 대응하는 임의의 복셀 xn으로부터 볼륨 영상들 중 N-1번째 볼륨 영상에 대응하는 임의의 복셀 xn - 1으로의 변환 관계를 나타낸 것이다. 이 때, An,n-1은 제2 볼륨 영상에 대응하는 복셀들로부터 제1 볼륨 영상에 대응하는 복셀들로의 방향의 변환 관계를 나타내는 파라미터이고, Tn ,n-1은 제1 볼륨 영상에 대응하는 복셀들로의 위치의 변환 관계를 나타내는 파라미터를 의미할 수 있다.
[수학식 1]
수학식 1에서 N-1번째 볼륨 영상과 N번째 볼륨 영상간의 변환 함수를 정의하는 (An,n-1, Tn ,n-1)을 입력으로 가정하는 경우, (An ,m, Tn ,m)의 An ,m과 Tn ,m 각각은 수학식 2와 같이 정의된다.
[수학식 2]
각각의 변환 함수는 일반적으로 복수 개의 파라미터로 정의된다. 이 때, 파라미터의 일 예에는 볼륨 영상들간의 방향의 변환 관계를 나타내는 파라미터 및 볼륨 영상들간의 위치의 변환 관계를 나타내는 파라미터 중 적어도 하나가 포함된다. 예를 들어, 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수는 제1 볼륨 영상과 제2 볼륨 영상간의 방향의 변환 관계를 나타내는 파라미터 및 제1 볼륨 영상과 제2 볼륨 영상간의 위치의 변환 관계를 나타내는 파라미터로 정의될 수 있다. 또한, 볼륨 영상들간의 위치 또는 방향의 변환 관계를 나타내는 파라미터 각각은 볼륨 영상들 각각에 대응하는 복셀들간의 위치 또는 방향의 변환 관계를 나타내는 파라미터 각각일 수 있음은 앞서 설명된 바와 같다.
일반적으로, 변환 함수를 정의하는 (An ,n-1, Tn ,n-1)은 복수 개의 파라미터로 정의된다. 이 때, 변환 함수가 리지드 변환 함수(Rigid Transformation)인 경우, (An ,n-1, Tn ,n-1)은 6 개 또는 7 개의 파라미터로 표현될 수 있다. 예를 들어, 6 개의 파라미터들로 표현되는 경우, 6 개의 파라미터들 중 3 개의 파라미터들은 방향의 변환을 정의하는 파라미터들이고, 나머지 3 개의 파라미터들은 위치 이동을 정의하는 파라미터들일 수 있다. 이 때, 방향의 변환을 정의하는 파라미터들의 일 예는 3 개의 오일러 각(Euler Angle)들이고, 위치 이동을 정의하는 파라미터들의 일 예는 3 개의 전환 벡터(Translation Vector)들이다. 다른 예를 들어, 7 개의 파라미터들로 표현되는 경우, 7 개의 파라미터들 중 4 개의 파라미터들은 방향의 변환을 정의하는 파라미터들이고, 나머지 3 개의 파라미터들은 위치 이동을 정의하는 파라미터들일 수 있다. 이 때, 방향의 변환을 정의하는 파라미터들의 일 예는 4개의 쿼터니언(quaternion) 구성(element)들이고, 위치 이동을 정의하는 파라미터들의 일 예는 3 개의 전환 벡터(Translation Vector)들이다. 또한, 본 발명의 다른 실시예에 따라, 변환 함수가 아핀 변환 함수(Affine Transformation)인 경우, (An ,n-1, Tn ,n-1)은 6 개 또는 7 개의 파라미터로 표현될 수도 있다. 일반적으로, 리지드 변환 함수는 이동변환과 회전변환을 나타내며 물체(예를 들어, 볼륨 영상) 자체의 모습은 변화가 없는 변환을 의미한다. 다시 말하면, 리지드 변환 함수는 유클리드 공간(Euclidean Space) 상에서 모든 점들 사이의 거리를 보전하는 변환을 의미할 수도 있다. 또한, 아핀 변환 함수는 n 차원의 공간 내 점들로부터 변환된 점들로의 변환 관계를 1차식으로 나타낸 변환 함수를 의미할 수 있다. 다만, 이러한 정의에 한정 해석되는 것은 아니다.
통합 변환 정보 생성부(2211)는 복수의 변환 함수들을 이용하여 통합 변환 정보를 생성한다. 이 때, 통합 변환 정보 생성부(2211)는 복수의 변환 함수들 각각을 정의하는 파라미터들을 이용하여 통합 변환 정보를 생성한다. 예를 들어, 통합 변환 정보 생성부(2211)는 제1 변환 함수를 나타내는 6 개의 파라미터들과 제2 변환 함수를 나타내는 6 개의 파라미터들을 이용하여 통합 변환 정보를 생성할 수 있다. 이 때, 제1 변환 함수는 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 나타내고, 제2 변환 함수는 제2 볼륨 영상과 제3 볼륨 영상간의 변환 함수를 나타냄은 앞서 설명된 예시와 같다. 일반적으로, 통합 변환 정보 생성부(2211)는 복수의 변환 함수들 각각의 파라미터들을 벡터로 정의하고, 정의된 벡터 형태의 파라미터들을 이용하여 통합 변환 정보를 생성한다. 따라서, 이와 같은 통합 변환 정보는 복수개의 벡터들로부터 정의된 벡터가 될 수 있다. 이러한 통합 변환 정보의 일 예를 수식적으로 표현하면, 수학식 3과 같다. 이 때, 통합 변환 정보 v를 구성하는 v2 , 1 내지 vN ,N- 1각각은 복수의 변환 함수들 각각으로부터 추출된 파라미터들을 나타내는 벡터를 의미할 수 있다. 예를 들어, n=2 내지 N인 경우, vn ,n-1은 앞서 설명된 (An ,n-1, Tn ,n-1)을 나타내는 복수 개의 파라미터들을 벡터로 표현한 것을 의미할 수 있다. 지금까지의 설명은 복수의 변환 함수들이 기 정의되어 통합 변환 정보 생성부(2211)로 입력되는 것을 가정하여 설명되었으나, 앞서 언급된 바와 같이 본 발명의 다른 실시예에 따르면, 통합 변환 정보 생성부(2211)는 복수의 볼륨 영상들의 영상 데이터들만을 입력받고 스스로 복수의 볼륨 영상들간의 변환 함수를 정의할 수도 있다.
[수학식 3]
통합 변환 정보 최적화부(2212)는 생성된 통합 변환 정보에 기초하여 최적화 변환 함수를 생성한다. 이 때, 통합 변환 정보는 앞서 살펴본 바와 같이 복수의 변환 함수들 각각을 나타내는 파라미터들을 모두 포함한다. 따라서, 통합 변환 정보 최적화부(2212)에 의해 통합 변환 정보가 고려된다는 것은 통합 변환 정보 최적화부(2212)에 의해 복수의 변환 함수들이 통합적으로 고려된다는 것을 의미할 수 있다. 이와 같이, 통합 변환 정보 최적화부(2212)는 복수의 변환 함수들을 통합적으로 고려하여 최적화 변환 함수를 생성한다.
통합 변환 정보 최적화부(2212)는 생성된 통합 변환 정보에 기초하여 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성한다. 앞서 설명된 바와 같이, 통합 변환 정보는 복수의 변환 함수들의 정보들을 모두 포함한다. 따라서, 통합 변환 정보 최적화부(2212)에 의하여 통합 변환 정보에 기초하여 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성한다는 것은 통합 변환 정보에 포함된 복수의 변환 함수들 각각의 정보를 변경하여, 복수의 변환 함수들 각각으로부터 변경된 변환 함수들 각각을 생성하고, 생성된 변환 함수들 각각을 최적화 변환 함수로서 결정한다는 것을 의미할 수 있다. 이 때, 복수의 변환 함수들 각각의 정보를 변경하는 기준은 앞서 설명된 바와 같이 볼륨 영상들간의 유사도들의 합을 최대화시키 위한 복수의 변환 함수들 각각의 정보를 결정하는 것을 의미할 수 있다. 결론적으로, 통합 변환 정보 최적화부(2212)는 생성된 통합 변환 정보에 포함된 복수의 변환 함수들 각각의 정보를 볼륨 영상들간의 유사도들의 합이 최대화되도록 변경하고, 변경된 정보에 기초하여 각각의 변환 함수로부터 각각의 최적화 변환 함수를 생성하는 것이다.
볼륨 영상들간의 유사도를 수식적으로 나타내면 수학식 4와 같다. 수학식 4에서 sn은 복수의 볼륨 영상들 중 n 볼륨 영상을 기준으로, n 볼륨 영상과 복수의 볼륨 영상들 중 다른 영상들인 m 볼륨 영상들 각각간의 유사도들의 합을 나타낸다. 예를 들어, 제1 볼륨 영상, 제2 볼륨 영상, 제3 볼륨 영상이 입력되는 경우, sn은 제1 볼륨 영상과 제2 볼륨 영상간의 유사도와 제1 볼륨 영상과 제3 볼륨 영상간의 유사도의 합을 의미할 수 있다. 다른 예를 들어, 제1 볼륨 영상, 제2 볼륨 영상, 제3 볼륨 영상이 순차적으로 입력되는 경우, sn은 중간에 입력된 제2 볼륨 영상과 최초 입력된 제1 볼륨 영상간의 유사도와 중간에 입력된 제2 볼륨 영상과 최후 입력된 제3 볼륨 영상간의 유사도의 합을 의미할 수도 있다.
[수학식 4]
또한, 수학식 4로부터 N 개의 볼륨 영상들에 대해서 볼륨 영상들간의 유사도들의 합을 표현하는 경우, 수학식 5와 같이 표현될 수 있다. 이 때, 볼륨 영상들간의 유사도들의 합인 S는 복수의 볼륨 영상들에 의해 가능한 볼륨 영상 쌍들의 유사도들을 모두 합한 값을 의미할 수 있다.
[수학식 5]
통합 변환 정보 최적화부(2212)는 복수의 볼륨 영상들간의 유사도들을 결정하고, 복수의 유사도들을 통합적으로 고려하여 최적화 변환 함수를 생성한다. 일반적으로, 통합 변환 정보 최적화부(2212)는 복수의 유사도들의 합이 최대화되도록 통합 변환 정보를 갱신하고, 갱신된 통합 변환 정보에 기초하여 각각의 변환 함수들로부터 최적화 변환 함수를 생성한다. 수학식 5를 통해 예시하면, 통합 변환 정보 최적화부(2212)는 볼륨 영상들간의 유사도들의 합인 S가 최대화되도록 통합 변환 정보를 갱신하고, 갱신된 통합 변환 정보에 기초하여 각각의 변환 함수들로부터 최적화 변환 함수를 생성한다. 이 때, 통합 변환 정보를 갱신한다는 것은 통합 변환 정보에 포함된 복수의 변환 함수들 각각의 파라미터들을 갱신하는 것을 의미하고, 갱신된 통합 변환 정보에 기초하여 각각의 변환 함수들로부터 최적화 변환 함수를 생성하는 것은 갱신된 파라미터들에 기초하여 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성하는 것을 의미할 수 있다.
앞서 설명된 바와 같이, 볼륨 영상들간의 유사도는 볼륨 영상들간의 형태적인 특성의 유사도를 의미한다. 이와 같은 볼륨 영상들 각각의 형태적인 특성은 볼륨 영상들 각각에 대응하는 복셀들에 의해 결정된다. 예를 들어, 볼륨 영상들 각각의 형태적인 특성은 볼륨 영상들 각각에 대응하는 복셀들의 위치 정보 및 정보량에 따라 정의될 수 있다. 이 때, 정보량의 일 예는 복셀들 각각의 강도(intensity)이다. 또한, 볼륨 영상들간의 형태적인 특성의 유사도는 볼륨 영상들간의 상호 정보관계 (Mutual Information)로 정의될 수 있다. 이 때, 상호 정보관계는 평활화된 상호 정보관계 (Normalized Mutual Information)를 의미할 수도 있다. 다만, 이와 같은 상호 정보관계는 볼륨 영상들간의 형태적인 특성의 유사도를 결정하는 일 예에 불과하며, 본 발명의 다양한 실시예들에 따르면 이러한 유사도는 다양하게 결정될 수 있다.
통합 변환 정보 최적화부(2212)는 볼륨 영상들간의 복수의 변환 함수들에 최적화 알고리즘을 적용하여 복수의 유사도들의 합이 최대화시키는 최적화 변환 함수를 결정한다. 다시 말하면, 통합 변환 정보 최적화부(2212)는 최적화 알고리즘에 기초하여 복수의 유사도들의 합을 최대화시키도록 볼륨 영상들간의 복수의 변환 함수들 각각을 대표하는 통합 변환 정보의 파라미터들을 갱신하고, 갱신된 파라미터들을 이용하여 복수의 변환 함수들 각각에 대응하는 최적화 변환 함수를 결정할 수 있다. 예를 들어, 통합 변환 정보가 제1 볼륨 영상과 제2 볼륨 영상간의 제1 변환 함수로부터 추출된 제1 파라미터와 제2 볼륨 영상과 제3 볼륨 영상간의 제2 변환 함수로부터 추출된 제2 파라미터로 구성되는 경우, 통합 변환 정보 최적화부(2212)는 최적화 알고리즘을 적용하여 제1 볼륨 영상과 제2 볼륨 영상간의 유사도와 제2 볼륨 영상과 제3 볼륨 영상간의 유사도의 합을 최대화하는 제1 파라미터와 제2 파라미터를 계산하고, 계산된 제1 파라미터에 기초하여 제1 변환 함수에 대응하는 제1 최적화 변환 함수를 생성하고, 계산된 제2 파라미터에 기초하여 제2 변환 함수에 대응하는 제2 최적화 변환 함수를 생성한다. 이 때, 최적화 알고리즘의 일 예는 Downhill Simplex 알고리즘이다. 다만, 이와 같은 최적화 알고리즘은 본 발명의 다양한 실시예들에 따라 다양하게 선택될 수 있다. 예를 들어, 최적화 알고리즘은 Downhill simplex 알고리즘뿐만 아니라, Conjugate Gradient 알고리즘, Powell 알고리즘 등이 선택될 수도 있고, 복수의 최적화 알고리즘들을 함께 선택될 수도 있다.
통합 변환 정보 최적화부(2212)는 볼륨 영상들간의 유사도들의 합이 최대화되도록 통합 변환 정보를 갱신하고, 갱신된 통합 변환 정보로부터 최적화 변환 함수를 생성한다. 예를 들어, 통합 변환 정보 최적화부(2212)는 복수의 변환 함수들로부터 추출된 파라미터들을 구성 요소로 하는 통합 변환 정보인 벡터 v를 볼륨 영상들간의 유사도들의 합이 최대화되도록 갱신하여 갱신된 통합 변환 정보인 v*를 생성하고, 갱신된 통합 변환 정보인 v*를 구성하는 파라미터들을 이용하여 최적화 변환 함수를 생성한다. 수학식 3 및 5를 통해 구체화하면, 통합 변환 정보 최적화부(2212)는 수학식 5의 S를 최대화시키도록 수학식 3의 v에 포함된 v2 , 1 내지 vN ,N- 1각각을 갱신하여 v*를 생성하고, 생성된 v*를 구성하는 파라미터들을 이용하여 최적화 변환 함수를 생성하는 것이다.
본 발명의 다른 실시예에 따르면, 볼륨 영상들간의 유사도는 볼륨 영상들 각각에 포함된 부분 영역들간의 유사도에 기초하여 결정될 수 있다. 이 경우, 부분 영역들 각각의 유사도는 부분 영역들 각각의 형태적인 특성의 유사도를 의미한다. 예를 들어, 제1 볼륨 영상과 제2 볼륨 영상간의 유사도는 제1 볼륨 영상에 포함된 제1 부분 영역과 제2 볼륨 영상에 포함된 제2 부분 영역간의 유사도로부터 결정되고, 이 때, 제1 부분 영역과 제2 부분 영역간의 유사도는 제1 부분 영역의 형태적인 특성과 제2 부분 영역의 형태적인 특성간의 유사도를 의미할 수 있다. 본 발명의 일 실시예에 따르면, 부분 영역들 각각의 형태적인 특성은 부분 영역들 각각을 구(sphere) 형상의 영역으로 평활화(normalize)함에 기초하여 결정된다. 이하에서는 본 발명의 일 실시예에 따라 부분 영역의 형태적인 특성을 결정하는 과정을 설명한다.
도 6은 부분 영역의 형태적인 특성을 결정하는 과정을 설명하기 위한 도면이다. 이와 같은 과정은 통합 변환 정보 최적화부(2212)에 의해 수행된다. 도 6을 참조하면, 통합 변환 정보 최적화부(2212)는 복수의 볼륨 영상들 중 제1 볼륨 영상에 포함된 부분 영역(61)을 타원체(ellipsoid) 형상의 영역(62)으로 변환하고, 변환된 타원체 형상의 영역(62)을 구(sphere) 형상의 영역(63)으로 변환하고, 구(sphere) 형상의 영역(63)을 평활화(normalize)하여 평활화된(normalized) 영역(64)을 생성하고, 평활화된(normalized) 영역(64)에 기초하여 부분 영역(61)의 형태적인 특성을 결정할 수 있다. 이하에서 보다 구체적으로 설명한다.
도 6을 참조하면, 통합 변환 정보 최적화부(2212)는 부분 영역(61)을 타원체 형상의 영역(62)으로 변환한다. 일반적으로, 통합 변환 정보 최적화부(2212)는 부분 영역(61)에 포함된 복수의 복셀들 중 어느 하나를 타원체 형상의 영역(62)의 중심 복셀로 결정하고, 결정된 중심 복셀을 이용하여 타원체 형상의 영역(62)을 정의할 수 있다. 예를 들어, 통합 변환 정보 최적화부(2212)는 타원체 형상의 영역(62)을 부분 영역(61)에 대응하는 복셀들 각각인 x에 대하여 수학식 6과 같이 정의할 수 있다. 이 때, 부분 영역(61)에 대응하는 복셀들은 부분 영역(61)에 포함된 복셀들 또는 부분 영역(61)에 포함된 복셀과 부분 영역(61)의 주변의 복셀들을 모두를 의미할 수 있다. 또한, c는 타원체 형상의 영역(62)에 포함된 복셀들 중 중심 복셀을 의미하고, 는 공분산(covariance) 행렬을 의미하고, r은 타원체 형상의 영역(62)의 크기에 비례하는 상수를 의미한다. 공분산 행렬은 분산(dispersion) 행렬로도 불리우며, i, j 위치로 특정되는 공분산 행렬의 요소(element)가 랜덤 벡터의 i번째(ith) 요소와 j번째(jth) 요소 사이의 상관 관계의 양을 나타내는 행렬을 의미한다.
[수학식 6]
한편, 부분 영역(61)은 일반적으로 볼륨 영상들 각각에 포함된 적어도 하나의 복셀로 구성된 소정 영역을 의미한다. 일반적으로, 이러한 부분 영역은 3차원적으로 표현되나 이에 한정되는 것은 아니다. 즉, 부분 영역은 2차원으로도 표현될 수 있다. 또한, 이러한 부분 영역에는 둘 이상의 복수의 복셀들이 포함된다. 예를 들어, 부분 영역은 볼륨 영상들 각각에 포함된 복셀들 중 20 개의 복셀들로 구성된 소정의 3차원 영역을 의미할 수 있다. 또한, 부분 영역은 둘 이상의 복수의 복셀들로 구성된 3차원 볼륨 세그먼트라 표현될 수도 있다. 또한, 부분 영역(61)은 일반적으로 볼륨 영상들 각각의 복셀들의 강도(intensity)에 기초하여 복수의 볼륨 영상들 각각으로부터 추출한다. 예를 들어, 부분 영역(61)은 볼륨 영상에 포함된 복수의 강도들을 비교함에 기초하여, 복수의 복셀들 중 상호간에 유사한 강도를 갖는 복셀들의 집합으로서 결정될 수 있다. 이와 같이, 상호간에 유사한 강도를 갖는 복셀들을 추출하는 일 실시예는 Maximally stable extremal regions 방식(J. Matas et al., "Robust wide baseline stereo from maximally stable extremal regions," BMVC 2002)을 3차원적으로 이용한 방식이 포함된다. 다만, 이러한 실시예는 본 발명에 따른 하나의 실시예에 불과하므로, 본원 발명의 권리 범위가 이러한 실시예에 한정 해석되지는 않는다. 예를 들어, 부분 영역(61)은 볼륨 영상에 포함된 복셀들 중 어느 하나의 복셀을 임의로 결정하고, 결정된 복셀의 주변 복셀들의 강도를 비교한 후, 유사한 강도를 갖는 복셀들의 집합으로부터 추출될 수도 있고, 볼륨 영상에 포함된 모든 복셀들 각각의 위치와 강도를 기준으로, 상호간에 유사한 강도를 갖는 복셀들의 집합으로부터 추출될 수도 있다.
도 6을 참조하면, 통합 변환 정보 최적화부(2212)는 타원체 형상의 영역(62)을 구 형상의 영역(63)으로 변환한다. 이 때, 구 형상 영역(63)은 앞서 설명된 타원체 형상의 영역(62)과 마찬가지로 부분 영역(61)에 대응하는 복셀들 각각인 x에 대한 수학식 7과 같이 정의한다. 구체적으로, 통합 변환 정보 최적화부(2212)는 구 형상의 영역(63)을 수학식 6에 포함된 공분산(covariance) 행렬의 역행렬인 가 Positive Definite Symmetric Matrix이므로 이를 의 형태로 분해(decomposition)한 후, 부분 영역(61)에 대응하는 복셀들 각각인 x에 대하여 수학식 7과 같이 정의한다.
[수학식 7]
도 6을 참조하면, 통합 변환 정보 최적화부(2212)는 구 형상의 영역(63)을 평활화하여 평활화된 구 형상의 영역(64)으로 변환한다. 이 때, 평활화된 구 형상의 영역(64)은 구 형상의 영역(63)으로부터 구의 중심 복셀을 기준으로 상호 직교하는 3 개의 벡터 성분들에 의해서 정의된다. 예를 들어, 통합 변환 정보 최적화부(2212)는 평활화된 구 형상의 영역(64)을 수학식 7에 로테이션 행렬 R을 적용하여 부분 영역(61)에 대응하는 복셀들 각각인 x에 대하여 수학식 8과 같이 정의한다.
[수학식 8]
도 6을 참조하면, 통합 변환 정보 최적화부(2212)는 수학식 9를 이용하여 부분 영역(61)에 대응하는 복셀들을 변환한 후, 수학식 9에 의해 변환된 복셀들의 강도를 이용하여 로테이션 행렬 R을 결정할 수 있다. 이 때, 로테이션 행렬 R은 일반적으로 3차원을 구성하는 3 개의 벡터 성분을 구성요소로서 포함한다. 따라서, 통합 변환 정보 최적화부(2212)는 수학식 9를 이용하여 부분 영역(61)에 대응하는 복셀들을 변환한 후, 수학식 9에 의해 변환된 복셀들의 강도를 이용하여 강도의 변화도(gradient)의 크기가 큰 방향을 순차적으로 검출함으로써, 3 개의 벡터 성분을 결정할 수 있다. 예를 들어, 통합 변환 정보 최적화부(2212)는 수학식 9를 이용하여 부분 영역(61)에 대응하는 복셀들을 이동(wraping)하고, 강도의 변화도(gradient)의 크기에 비례하는 가중치로 변화도 방향의 히스토그램을 만든 후, 가장 빈도수가 높은 방향을 찾고 그 방향을 벡터 v1으로 결정하고, v1에 직교한 두 개의 방향 중 보다 빈도수가 높은 방향을 벡터 v2로 결정하고, v1과 v2에 모두 직교하는 방향을 벡터 v3로 결정함으로써, 로테이션 행렬 R을 결정할 수 있다. 수학식 10은 수학식 8의 로테이션 행렬 R을 나타낸다.
[수학식 9]
[수학식 10]
도 6을 참조하면, 통합 변환 정보 최적화부(2212)는 평활화된 구 형상의 영역(64)에 기초하여 부분 영역(61)의 형태적인 특성을 결정할 수 있다. 구체적으로, 통합 변환 정보 최적화부(2212)는 수학식 8을 이용하여 부분 영역(61)에 대응하는 복셀들을 변환한 후, 변환된 복셀들의 강도를 이용하여 평활화된 구 형상의 영역(64)의 일 영역별로 강도의 변화하는 정도를 나타내는 지표를 생성하여 이러한 지표들을 하나의 벡터로 집적(aggregation)시킨 형태적인 특성을 결정할 수 있다. 이와 같은 형태적인 특성은 불변하는 특징 식별자(Invariant Feature Descriptor)로 표현될 수 있다. 또한, 변화하는 정도를 나타내는 지표의 일 예에는 Intensity Gradient Orientation Histogram이 포함된다.
도 7은 평활화된 구 형상의 영역(64)의 일 영역에 포함된 복셀들의 강도들의 변화하는 정도를 나타내는 지표를 나타낸 도면이다. 도 6 및 7을 참조하면, 통합 변환 정보 최적화부(2212)는 부분 영역(61)에 대응하는 복셀들로부터 평활화된 구 형상의 영역(64)의 일 영역(631)에 포함된 복셀들의 강도의 변화하는 정도를 나타내는 지표(632)를 생성한다. 또한, 통합 변환 정보 최적화부(2212)는 평활화된 구 형상의 영역(64)의 다른 영역들 각각에 포함된 복셀들의 강도의 변화하는 정도를 나타내는 지표들을 생성하고, 생성된 복수의 지표들을 이용하여 부분 영역(61)에 대한 형태적인 특성을 결정할 수 있다.
이와 같이, 통합 변환 정보 최적화부(2212)는 볼륨 영상들 각각의 부분 영역들로부터 볼륨 영상들 각각의 형태적인 특성을 결정할 수 있다. 또한, 통합 변환 정보 최적화부(2212)는 볼륨 영상들 각각의 부분 영역들로부터 결정된 볼륨 영상들 각각의 형태적인 특성을 비교하여, 볼륨 영상들간의 유사도를 결정할 수 있다. 볼륨 영상에 포함된 부분 영역들로부터 이러한 볼륨 영상의 형태적인 특성을 결정한다는 것은 볼륨 영상에 포함된 부분 영역들의 형태적인 특성의 평균을 볼륨 영상의 형태적인 특성으로 결정한다는 것을 의미할 수도 있고, 볼륨 영상에 포함된 적어도 하나의 부분 영역 각각의 형태적인 특성의 셋을 볼륨 영상의 형태적인 특성으로 결정한다는 것을 의미할 수도 있다. 이와 같이, 볼륨 영상의 형태적인 특성을 결정함에 있어서, 이러한 볼륨 영상에 포함된 부분 영역들의 형태적인 특성을 이용하는 실시예들은 다양하게 결정될 수 있다. 또한, 통합 변환 정보 최적화부(2212)는 부분 영역들간의 유사도에 기초하여 볼륨 영상들간의 유사도를 결정할 수도 있다. 예를 들어, 통합 변환 정보 최적화부(2212)는 볼륨 영상들 중 제1 볼륨 영상에 포함된 적어도 하나의 제1 부분 영역 각각과 볼륨 영상들 중 제2 볼륨 영상에 포함된 적어도 하나의 제2 부분 영역 각각간의 유사도에 기초하여 제1 볼륨 영상과 제2 볼륨 영상간의 유사도를 결정할 수 있다.
또한, 본 발명의 다른 실시예에 따르면, 통합 변환 정보 최적화부(2212)는 볼륨 영상들간의 목적 함수를 극소화시키도록 통합 변환 정보를 갱신하고, 갱신된 통합 변환 정보에 기초하여 최적화 변환 함수를 생성할 수도 있다. 예를 들어, 통합 변환 정보 최적화부(2212)는 볼륨 영상들 각각에 포함된 복셀들을 이용하여 볼륨 영상들 각각의 에지 응답(Edge Response)을 생성하고, 볼륨 영상들 각각의 에지 응답의 크기 및 방향의 유사도를 에지 응답의 크기 및 방향 차이로 대체하여 목적 함수를 만들고, 이와 같은 목적 함수에 기초하여 최적화 변환 함수를 생성할 수도 있다.
또한, 본 발명의 다른 실시예에 따르면, 통합 변환 정보 최적화부(2212)는 복수의 볼륨 영상들 중 일부의 볼륨 영상들간의 유사도를 최대화하도록 최적화 변환 함수를 결정할 수도 있다. 예를 들어, 통합 변환 정보 최적화부(2212)는 제1 볼륨 영상과 제2 볼륨 영상간의 제1 변환 함수, 제2 볼륨 영상과 제3 볼륨 영상간의 제2 변환 함수 및 제3 볼륨 영상과 제4 볼륨 영상간의 제3 변환 함수 각각으로부터 추출된 파라미터들에 의해 통합 변환 정보가 결정된 경우, 제1 변환 함수, 제2 변환 함수 및 제3 변환 함수로부터 추출된 파라미터를 모두 이용하여, 제1 볼륨 영상과 제2 볼륨 영상간의 유사도를 제외한 제2 볼륨 영상과 제3 볼륨 영상간의 유사도와 제3 볼륨 영상과 제4 볼륨 영상간의 유사도의 합이 최대화되도록 최적화 변환 함수를 결정할 수도 있다. 또한, 다른 예를 들어, 통합 변환 정보 최적화부(2212)는 제1 볼륨 영상과 제2 볼륨 영상간의 제1 변환 함수, 제2 볼륨 영상과 제3 볼륨 영상간의 제2 변환 함수 및 제3 볼륨 영상과 제4 볼륨 영상간의 제3 변환 함수 각각으로부터 추출된 파라미터들에 의해 통합 변환 정보가 결정된 경우, 제1 변환 함수로부터 추출된 파라미터를 제외한 제2 변환 함수와 제3 변환 함수로부터 추출된 파라미터들만을 이용하여, 제1 볼륨 영상과 제2 볼륨 영상간의 유사도, 제2 볼륨 영상과 제3 볼륨 영상간의 유사도 및 제3 볼륨 영상과 제4 볼륨 영상간의 유사도의 합이 최대화되도록 최적화 변환 함수를 결정할 수도 있다.
앞서 설명된 바와 같이, 영상 프로세서(22)는 최적화 변환 함수에 기초하여 볼륨 파노라마 영상을 생성한다. 구체적으로, 영상 프로세서(22)는 최적화 변환 함수에 기초하여 복수의 볼륨 영상들의 영상 데이터로부터 볼륨 파노라마 영상을 나타내는 영상 데이터를 생성한다. 이하에서는 영상 프로세서(22)에 포함된 합성 영상 데이터 생성부(222) 및 볼륨 파노라마 영상 생성부(223)에 의한 동작 설명을 통해 볼륨 파노라마 영상을 생성하는 과정을 더욱 상세하게 설명하도록 한다.
합성 영상 데이터 생성부(222)는 복수의 변환 함수들 각각으로부터 생성된 최적화 변환 함수에 기초하여 복수의 볼륨 영상들의 영상 데이터들로부터 합성되는 볼륨 영상들의 영상 데이터들을 생성한다. 도 3을 통해 예시하면, 합성 영상 데이터 생성부(222)는 제1 볼륨 영상(31)과 제2 볼륨 영상(32)간의 제1 변환 함수로부터 생성된 제1 최적화 변환 함수에 기초하여 제2 볼륨 영상(32)의 영상 데이터로부터 제1 볼륨 영상(31)과 합성되는 볼륨 영상(33)의 영상 데이터를 생성한다. 이 때, 볼륨 영상(33)은 제2 볼륨 영상(32)에 제1 최적화 변환 함수가 반영된 것을 의미한다. 따라서, 볼륨 영상(33)은 제1 볼륨 영상(31)을 기준으로 제2 볼륨 영상(32)을 제1 볼륨 영상(31)에 정합시킨 영상을 의미할 수 있다. 또한, 합성 영상 데이터 생성부(222)는 제2 볼륨 영상과 제3 볼륨 영상간의 제2 변환 함수로부터 생성된 제2 최적화 변환 함수에 기초하여 제3 볼륨 영상의 영상 데이터로부터 제2 볼륨 영상과 합성되는 다른 볼륨 영상의 영상 데이터를 생성할 수 있다. 또한, 합성 영상 데이터 생성부(222)는 일반적으로 최적화 변환 함수에 기초하여 제1 볼륨 영상에 포함된 복셀들을 기준으로 제2 볼륨 영상에 포함된 복셀들을 이동하여 합성되는 볼륨 영상의 복셀들을 생성한다. 다만, 이에 한정되지는 않는다.
도 8은 도 2의 합성 영상 데이터 생성부(222)에서 합성되는 볼륨 영상의 영상 데이터를 생성하는 과정을 나타낸 동작 흐름도이다. 도 8의 단계 81 내지 단계 83은 합성 영상 데이터 생성부(222)에 의해 수행된다. 단계 81에서 합성 영상 데이터 생성부(222)는 전역 변환 함수에 기초하여 제1 볼륨 영상과 합성되는 볼륨 영상의 영상 데이터를 생성한다. 단계 82에서 합성 영상 데이터 생성부(222)는 합성되는 볼륨 영상으로부터 분할된 적어도 하나의 지역 볼륨 영상에 기초하여 지역 변환 함수를 결정한다. 구체적으로, 합성 영상 데이터 생성부(222)는 합성되는 볼륨 영상을 복수개의 지역 볼륨 영상들로 분할하고, 분할된 지역 볼륨 영상들 각각에 기초하여 지역 볼륨 영상들 각각에 대한 지역 변환 함수를 결정한다.
도 9는 합성되는 볼륨 영상으로부터 적어도 하나의 지역 볼륨 영상을 분할하는 일 실시예를 나타낸 도면이다. 도 9를 통해 예시하면, 합성 영상 데이터 생성부(222)는 합성되는 볼륨 영상(91)을 복수개의 지연 볼륨 영상들(92)로 분할하고, 분할된 지연 볼륨 영상들(92) 각각에 대한 지역 변환 함수를 결정한다. 본 발명의 일 실시예에 따르면, 합성 영상 데이터 생성부(222)는 지역 볼륨 영상들(92) 각각에 대응하는 복셀들과 제2 볼륨 영상들에 대응하는 복셀들간의 변환 함수에 기초하여 지역 볼륨 영상들(92) 각각에 대한 지역 변환 함수를 결정한다. 이 때, 합성 영상 데이터 생성부(222)는 지역 볼륨 영상들(92) 각각에 대응하는 복셀들과 제2 볼륨 영상들에 대응하는 복셀들간의 변환 함수를 초기값으로 하여 최적화 알고리즘을 적용함으로써, 지역 볼륨 영상들(92) 각각에 대한 지역 변환 함수를 결정할 수 있다. 예를 들어, 합성 영상 데이터 생성부(222)는 지역 볼륨 영상들(92) 각각의 초기 지역 변환 함수 (I, O)와 초기 지역 변환 함수의 주변에서 샘플링 한 지역 변혼 특성에 기초하여 최적화 알고리즘을 적용할 수 있다. 이 때, I는 3행 3열의 단위 행렬을 의미하고, O는 3 차원 0 벡터를 의미한다.
도 9를 참조하면, 본 발명의 일 실시예에 따른 합성 영상 데이터 생성부(222)는 지역 볼륨 영상들(92) 중 어느 하나의 지역 볼륨 영상의 지역 변환 함수를 결정하기 위해, 지역 볼륨 영상들(92) 중 어느 하나의 지역 볼륨 영상의 주변 지역 볼륨 영상의 지역 변환 함수를 이용할 수도 있다. 예를 들어, 합성 영상 데이터 생성부(222)는 지역 볼륨 영상들(92) 중 어느 하나의 지역 볼륨 영상의 주변 지역 볼륨 영상의 지역 변환 함수를 이용하여 지역 볼륨 영상들(92) 중 어느 하나의 지역 볼륨 영상의 지역 변환 함수에 대한 보간(Interpolation)을 수행할 수도 있다.
도 9를 참조하면, 본 발명의 일 실시예에 따른 합성 영상 데이터 생성부(222)는 합성되는 볼륨 영상들(91)을 계층적으로 분할한다. 예를 들어, 합성 영상 데이터 생성부(222)는 합성되는 볼륨 영상들(91)을 4 개의 영역으로 분할하여 지역 볼륨 영상들(92)을 생성하고, 생성된 지역 볼륨 영상들(92) 각각을 분할하여 지역 볼륨 영상들(93)을 생성할 수 있다. 일반적으로, 지역 볼륨 영상들 중 텍스쳐가 많은 지역 볼륨 영상은 보다 작은 영역으로 분할할수록 보다 정확한 지연 변환 함수가 획득된다. 따라서, 본 발명의 일 실시예에 따른 합성 영상 데이터 생성부(222)는 지역 볼륨 영상들 각각에 포함된 텍스쳐의 양을 고려하여 지역 볼륨 영상들 각각마다 얼마나 작은 영역으로 분할할지를 적응적으로 결정할 수도 있다.
단계 83에서 합성 영상 데이터 생성부(222)는 결정된 지역 변환 함수에 기초하여 제1 볼륨 영상과 합성되는 볼륨 영상의 영상 데이터를 갱신한다. 구체적으로, 합성 영상 데이터 생성부(222)는 합성되는 볼륨 영상으로부터 분할된 지역 볼륨 영상들 각각에 지역 볼륨 영상들 각각의 지역 변환 함수를 적용하여, 합성되는 볼륨 영상의 영상 데이터를 갱신할 수 있다.
볼륨 파노라마 영상 생성부(223)는 복수의 볼륨 영상들의 영상 데이터와 합성되는 볼륨 영상들의 영상 데이터에 기초하여 볼륨 파노라마 영상을 나타내는 영상 데이터를 생성한다. 도 4를 통해 예시하면, 볼륨 파노라마 영상 생성부(223)는 제1 최적화 변환 함수에 기초하여 제2 볼륨 영상(42)의 영상 데이터로부터 생성된 제1 볼륨 영상(41)과 합성되는 볼륨 영상의 영상 데이터, 제2 최적화 변환 함수에 기초하여 제3 볼륨 영상(43)의 영상 데이터로부터 생성된 제2 볼륨 영상(42)과 합성되는 다른 볼륨 영상의 영상 데이터 및 제1 볼륨 영상(41)의 영상 데이터에 기초하여 볼륨 파노라마 영상(44)을 나타내는 영상 데이터를 생성한다.
볼륨 파노라마 영상 생성부(223)는 제1 볼륨 영상에 포함된 복셀들, 합성되는 볼륨 영상에 포함된 복셀들 및 합성되는 다른 볼륨 영상에 포함된 복셀들을 합성하여 볼륨 파노라마 영상을 생성한다. 일반적으로, 최적화 변환 함수에 기초하여 제1 볼륨 영상으로부터 생성된 합성되는 볼륨 영상에 포함된 복셀들 각각은 제1 볼륨 영상에 포함된 복셀들 각각에 대응한다. 그럼에도 불구하고, 합성되는 볼륨 영상에 포함된 복셀들 각각의 강도와 합성되는 볼륨 영상에 포함된 복셀들 각각에 대응하는 제1 볼륨 영상에 포함된 복셀들 각각의 강도는 다를 수 있다. 이러한 강도의 차이는 일반적으로 초음파 신호의 쉐도우(shadow) 효과에 의해서 나타날 수 있다. 이 경우, 볼륨 파노라마 영상 생성부(223)는 제1 볼륨 영상의 복셀들 중 어느 하나의 강도, 합성되는 볼륨 영상의 복셀들 중 어느 하나의 강도 및 합성되는 다른 볼륨 영상의 복셀들 중 어느 하나의 강도에 기초하여 볼륨 파노라마 영상의 복셀들 중 어느 하나의 강도를 결정할 수 있다. 예를 들어, 볼륨 파노라마 영상 생성부(223)는 제1 볼륨 영상의 복셀들 중 어느 하나의 강도, 합성되는 볼륨 영상의 복셀들 중 어느 하나의 강도 및 합성되는 다른 볼륨 영상의 복셀들 중 어느 하나의 강도 중 가장 낮은 강도 또는 가장 큰 강도를 볼륨 파노라마 영상의 복셀들 중 어느 하나의 강도로 결정할 수 있다. 또한, 본 발명의 일 실시예에 따르면, 볼륨 파노라마 영상 생성부(223)는 제1 볼륨 영상의 복셀들 중 어느 하나의 강도, 합성되는 볼륨 영상의 복셀들 중 어느 하나의 강도 및 합성되는 다른 볼륨 영상의 복셀들 중 어느 하나의 강도의 평균을 볼륨 파노라마 영상의 복셀들 중 어느 하나의 강도로 결정할 수도 있다.
도 10은 발명의 다른 실시예에 따른 볼륨 파노라마 영상 생성 장치(100)의 구성도이다. 도 10의 볼륨 파노라마 영상 생성 장치(100)의 영상 프로세서(22)는 도 2의 영상 프로세서(22)와 비교하여 변환 함수 결정부(224)를 더 포함한다. 이와 같은 변환 함수 결정부(224)는 입력부(21)로부터 입력된 볼륨 영상들의 영상 데이터에 기초하여 볼륨 영상들간의 변환 함수를 생성하고, 생성된 변환 함수를 최적화 변환 함수 생성부(221)로 전달한다. 변환 함수 결정부(224)에 의해 생성되는 변환 함수들은 앞서 설명된 복수의 볼륨 영상들간의 복수의 변환 함수들에 대해 설명된 것에 의한다.
본 발명의 일 실시예에 따르면, 변환 함수 결정부(224)는 볼륨 영상들 각각에 포함된 부분 영역들간의 부분 변환 함수에 기초하여 볼륨 영상들간의 변환 함수를 결정할 수 있다. 예를 들어, 변환 함수 결정부(224)는 복수의 볼륨 영상들 중 제1 볼륨 영상의 제1 부분 영역과 복수의 볼륨 영상들 중 제2 볼륨 영상의 제2 부분 영역간의 부분 변환 함수를 결정하고, 결정된 제1 부분 영역과 제2 부분 영역간의 부분 변환 함수에 기초하여 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 결정할 수 있다. 이하에서 구체적으로 설명한다.
변환 함수 결정부(224)는 제1 볼륨 영상의 제1 부분 영역을 구 형상의 영역으로 평활화하여 평활화된 구 형상의 영역을 생성한다. 이 때, 앞서 설명된 바와 같이, 변환 함수 결정부(224)는 수학식 6 내지 10을 이용하여, 제1 볼륨 영상의 제1 부분 영역을 타원체 형상의 영역으로 변환하고, 변환된 타원체 형상의 영역을 구 형상의 영역으로 변환하고, 변환된 구 형상의 영역을 평활화하여 평활화된 구 형상의 영역을 생성할 수 있다. 이와 같은 맥락으로, 변환 함수 결정부(224)는 제2 볼륨 영상의 제2 부분 영역을 구 형상의 영역으로 평활화하여 평활화된 구 형상의 영역을 생성한다.
변환 함수 결정부(224)는 제1 부분 영역과 제2 부분 영역 각각을 구 형상의 영역으로 변환하는 적어도 하나의 파라미터를 결정하고, 결정된 파라미터에 기초하여 제1 부분 영역과 제2 부분 영역간의 부분 변환 함수를 결정한다. 예를 들어, 변환 함수 결정부(224)는 제1 부분 영역에 대응하는 복셀들 각각인 x1에 대하여 수학식 8로부터 변형된 수학식 11과 같이 정의할 수 있다. 이 때, c1는 타원체 형상의 영역에 포함된 복셀들 중 중심 복셀을 의미하고, 는 공분산(covariance) 행렬을 의미하고, R1은 제1 부분 영역의 로테이션 행렬을 의미한다. 이와 같은 맥락으로, 변환 함수 결정부(224)는 제2 부분 영역에 대응하는 복셀들 각각인 x2에 대하여 수학식 8로부터 변형된 수학식 12와 같이 정의할 수 있다. 이 때, c2는 타원체 형상의 영역에 포함된 복셀들 중 중심 복셀을 의미하고, 는 공분산(covariance) 행렬을 의미하고, R2은 제2 부분 영역의 로테이션 행렬을 의미한다.
[수학식 11]
[수학식 12]
변환 함수 결정부(224)는 결정된 파라미터에 기초하여 제1 부분 영역과 제2 부분 영역간의 부분 변환 함수를 결정한다. 이 때, 결정된 파라미터는 제1 부분 영역에 대한 제1 파라미터와 제2 부분 영역에 대한 제2 파라미터를 포함한다. 또한, 앞서 설명된 바와 같이, 제1 파라미터에는 제1 부분 영역에 대응하는 복셀들의 위치 이동을 나타내는 제1 파라미터 및 제1 부분 영역에 대응하는 복셀들의 방향 변환을 나타내는 제1 파라미터 중 적어도 하나가 포함되고, 제2 파라미터에는 제2 부분 영역에 대응하는 복셀들의 위치 이동을 나타내는 제2 파라미터 및 제2 부분 영역에 대응하는 복셀들의 방향 변환을 나타내는 제2 파라미터 중 적어도 하나가 포함된다. 또한, 위치 이동을 나타내는 제1 파라미터 및 제2 파라미터 각각은 공분산 행렬을 의미하고, 방향 변환을 나타내는 제1 파라미터 및 제2 파라미터 각각은 로테이션 행렬을 의미할 수 있다. 또한, 본 발명의 일 실시예에 따르면, 제1 파라미터와 제2 파라미터는 앞서 설명된 통합 변환 정보를 생성하기 위해 변환 함수들로부터 추출된 파라미터에 대응한다.
변환 함수 결정부(224)는 제1 파라미터와 제2 파라미터에 기초하여 제1 부분 영역과 제2 부분 영역간의 부분 변환 함수를 결정한다. 예를 들어, 변환 함수 결정부(224)는 수학식 11 및 수학식 12로부터 변형된 수학식 13과 같이 정의할 수 있다. 수학식 13을 참조하면, 제1 부분 영역과 제2 부분 영역간의 변환 함수는 제2 부분 영역에 대응하는 복셀들 각각을 나타내는 x2가 제1 부분 영역에 대응하는 복셀들 각각을 나타내는 x1으로 변환되는 관계로 정의될 수 있다.
[수학식 13]
변환 함수 결정부(224)는 제1 부분 영역과 제2 부분 영역간의 부분 변환 함수에 기초하여 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 결정한다. 이 때, 일반적으로 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수는 제1 볼륨 영상에 대응하는 복셀들과 제2 볼륨 영상에 대응하는 복셀들간의 변환 함수를 의미할 수 있다. 이 때, 제1 볼륨 영상에 대응하는 복셀들과 제2 볼륨 영상에 대응하는 복셀들간의 변환 함수는 제1 볼륨 영상에 대응하는 복셀들을 기준으로 제2 볼륨 영상에 대응하는 복셀들을 제1 볼륨 영상에 대응하는 복셀들로 정합시키기 위한 제2 볼륨 영상에 대응하는 복셀들의 변환 함수를 의미한다. 제1 볼륨 영상에 대응하는 복셀들은 제1 볼륨 영상에 포함된 복셀들을 의미할 수 있다. 이와 같은 맥락으로, 제2 볼륨 영상에 대응하는 복셀들은 제2 볼륨 영상에 포함된 복셀들을 의미할 수 있다. 다만, 이에 한정되지 않는다. 예를 들어, 제1 볼륨 영상에 대응하는 복셀들은 제1 볼륨 영상에 포함된 복셀들 중 임계값 이상의 강도를 갖는 복셀들만을 의미할 수도 있다. 따라서, 제1 부분 영역과 제2 부분 영역간의 변환 함수에 기초하여 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 결정하는 것은 제1 부분 영역과 제2 부분 영역간의 변환 함수를 제1 볼륨 영상에 포함된 복셀들로부터 제2 볼륨 영상에 포함된 복셀들로의 변환을 의미할 수 있다. 예를 들어, 변환 함수 결정부(224)는 제1 부분 영역과 제2 부분 영역간의 변환 함수를 나타내는 수학식 13을 이용하여 제1 볼륨 영상에 포함된 복셀들로부터 제2 볼륨 영상에 포함된 복셀들로의 변환을 수행할 수 있다.
본 발명의 일 실시예에 따르면, 변환 함수 결정부(224)는 복수의 대응쌍들을 이루는 복수의 제1 부분 영역들 각각과 복수의 제2 부분 영역들 각각에 대한 부분 변환 함수를 결정한다. 예를 들어, 변환 함수 결정부(224)는 복수의 제1 부분 영역들 중 어느 하나의 제1 부분 영역과 이러한 어느 하나의 제1 부분 영역에 대응하는 제2 부분 영역들 중 다른 하나의 제2 부분 영역간의 제1 부분 변환 함수를 결정하고, 복수의 제1 부분 영역들 중 다른 하나의 제1 부분 영역과 이러한 다른 하나의 제1 부분 영역에 대응하는 제2 부분 영역들 중 다른 하나의 제2 부분 영역간의 제2 부분 변환 함수를 결정할 수 있다. 또한, 변환 함수 결정부(224)는 복수의 부분 변환 함수들에 기초하여 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 결정할 수도 있다. 또한, 변환 함수 결정부(224)는 복수의 부분 변환 함수들 중 적어도 하나의 부분 변환 함수를 선택하고, 선택된 부분 변환 함수에 기초하여 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 결정할 수도 있다.
변환 함수 결정부(224)는 복수의 부분 변환 함수들 중 적어도 하나를 선택함에 있어서, 부분 변환 함수들 각각에 기초하여 제2 볼륨 영상을 제1 볼륨 영상을 기준으로 이동(wraping)하고, 이동한 결과들을 비교하여 적어도 하나의 부분 변환 함수를 선택할 수 있다. 예를 들어, 변환 함수 결정부(224)는 제1 부분 변환 함수에 기초하여 제2 볼륨 영상을 이동시킨 결과와 제2 부분 변환 함수에 기초하여 제2 볼륨 영상을 이동시킨 결과를 비교한 후, 비교 결과에 따라 제1 부분 변환 함수 및 제2 부분 변환 함수 중 어느 하나를 선택할 수 있다. 일반적으로, 변환 함수 결정부(224)는 제1 부분 변환 함수에 기초하여 제2 볼륨 영상을 이동시킨 결과와 제2 부분 변환 함수에 기초하여 제2 볼륨 영상을 이동시킨 결과를 비교함에 있어서, 볼륨 간 유사도를 이용한다. 이 때, 볼륨 간 유사도는 제1 부분 변환 함수에 기초하여 제2 볼륨 영상을 이동시킨 결과와 제1 볼륨 영상간의 유사도를 의미한다. 이와 마찬가지로, 볼륨 간 유사도는 제2 부분 변환 함수에 기초하여 제2 볼륨 영상을 이동시킨 결과와 제1 볼륨 영상간의 유사도를 의미할 수도 있다. 따라서, 변환 함수 결정부(224)는 제1 부분 변환 함수에 기초하여 제2 볼륨 영상을 이동시킨 결과와 제1 볼륨간의 제1 유사도를 계산하고, 제2 부분 변환 함수에 기초하여 제2 볼륨 영상을 이동시킨 결과와 제1 볼륨간의 제2 유사도를 계산한 후, 제1 유사도와 제2 유사도를 비교한 결과 보다 높은 유사도를 갖는 제1 유사도를 선택하고, 제1 유사도에 대응하는 제1 부분 변환 함수를 선택할 수 있다. 이 때, 볼륨 간 유사도는 제1 볼륨 영상과 이동한 제2 볼륨 영상간의 복셀들의 강도의 분포 유사도, 동일 위치에 대응하는 복셀들간의 강도의 변화(gradient)의 크기 및 방향의 유사도가 이용될 수 있다. 이 때, 복셀들의 강도의 분포 유사도의 일 예는 Normalized Mutual Information이다.
변환 함수 결정부(224)는 제1 부분 영역과 제2 부분 영역간의 부분 변환 함수에 기초하여 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 결정한다. 이 때, 제1 부분 영역과 제2 부분 영역간의 부분 변환 함수는 앞서 설명된 바와 같이 복수의 유사도들에 기초하여 복수의 변환 함수들 중 선택된 적어도 하나의 부분 변환 함수를 의미할 수도 있다. 예를 들어, 변환 함수 결정부(224)는 복수의 부분 변환 함수들 중 M 개의 부분 변환 함수를 선택하고, 이와 같은 M 개의 부분 변환 함수들에 최적화 알고리즘을 적용하여, 제1 볼륨 영상과 제2 볼륨 영상간의 유사도를 최대화하는 부분 변환 함수를 결정할 수 있다. 이 때, 최적화 알고리즘의 일 예는 Downhill Simplex이다. 다만, 이와 같은 최적화 알고리즘은 본 발명의 다양한 실시예들에 따라 다양하게 선택될 수 있다. 예를 들어, 최적화 알고리즘은 Downhill simplex 알고리즘뿐만 아니라, Conjugate Gradient 알고리즘, Powell 알고리즘 등이 선택될 수도 있고, 복수의 최적화 알고리즘들을 함께 선택될 수도 있다. 또한, 본 발명의 일 실시예에 따르면, 변환 함수 결정부(224)는 복수의 부분 변환 함수들로부터 선택된 부분 변환 함수들이 N (M>N)개 존재하는 경우, 부족한 L 개(L=M-N)의 부분 변환 함수들은 N 개의 부분 변환 함수들 각각의 주변에서 샘플링하여 생성할 수 있다.
본 발명의 일 실시예에 따르면, 변환 함수 결정부(224)는 최적화 알고리즘의 적용 없이, 복수의 부분 변환 함수들 중 적어도 하나의 부분 변환 함수를 그대로 이용하여 제1 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 결정할 수 있다. 예를 들어, 변환 함수 결정부(224)는 제1 부분 영역과 제2 부분 영역간의 부분 변환 함수를 나타내는 수학식 13을 변환 함수로 결정할 수도 있다.
본 발명의 일 실시예에 따르면, 변환 함수 결정부(224)는 결정된 변환 함수에 대한 미세 보정(Refinement)을 수행한다. 이를 위해, 변환 함수 결정부(224)는 결정된 변환 함수를 제2 볼륨 영상에 적용하고, 적용된 제2 볼륨 영상과 제2 볼륨 영상간의 변환 함수를 샘플링한 후, 샘플링 한 변환 함수에 최적화 알고리즘을 다시 적용함으로써, 변환 함수에 대한 미세 보정을 수행할 수 있다. 이와 같이 미세 보정은 변환 함수를 갱신하는 것을 의미한다.
이와 같은 도 10의 볼륨 파노라마 영상 생성 장치(100)에 대하여 설명되지 아니한 사항은 앞서 도 2의 볼륨 파노라마 영상 생성 장치(20)에 대해 설명된 내용과 동일 및 설명된 내용으로부터 당업자에 의해 용이하게 유추 가능한 것으로 이하 설명을 생략하도록 한다.
도 11은 본 발명의 일 실시예에 따른 볼륨 파노라마 영상 생성 방법의 동작 흐름도이다. 도 11에 도시된 실시예에 따른 볼륨 파노라마 영상 생성 방법은 도 2에 도시된 볼륨 파노라마 영상 생성 장치(20)에서 시계열적으로 처리되는 단계들로 구성된다. 따라서, 이하 생략된 내용이라고 하더라도 도 2에 도시된 볼륨 파노라마 영상 생성 장치(20)에 관하여 이상에서 기술된 내용은 도 11에 도시된 실시예에 따른 볼륨 파노라마 영상 생성 방법에도 적용된다.
단계 111에서 입력부(21)는 볼륨 영상들 중 제1 볼륨 영상과 제1 볼륨 영상과 공통된 영역을 갖는 제2 볼륨 영상간의 변환 관계를 나타내는 변환 함수를 입력받는다. 단계 112에서 영상 프로세서(22)는 복수의 변환 함수들을 통합적으로 고려하여 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성한다. 단계 113에서 영상 프로세서(22)는 최적화 변환 함수에 기초하여 볼륨 파노라마 영상을 생성한다.
도 12는 본 발명의 다른 실시예에 따른 볼륨 파노라마 영상 생성 방법의 동작 흐름도이다. 도 12에 도시된 실시예에 따른 볼륨 파노라마 영상 생성 방법은 도 10에 도시된 볼륨 파노라마 영상 생성 장치(100)에서 시계열적으로 처리되는 단계들로 구성된다. 따라서, 이하 생략된 내용이라고 하더라도 도 10에 도시된 볼륨 파노라마 영상 생성 장치(100)에 관하여 이상에서 기술된 내용은 도 12에 도시된 실시예에 따른 볼륨 파노라마 영상 생성 방법에도 적용된다.
단계 111에서 입력부(21)는 볼륨 영상들의 영상 데이터들을 입력받는다. 단계 112에서 영상 프로세서(22)는 볼륨 영상들의 영상 데이터들에 기초하여 볼륨 영상들 중 제1 볼륨 영상과 상기 제1 볼륨 영상과 공통된 영역을 갖는 제2 볼륨 영상간의 변환 관계를 나타내는 변환 함수를 결정한다. 단계 113에서 영상 프로세서(22)는 복수의 변환 함수들을 통합적으로 고려하여 복수의 변환 함수들 각각으로부터 최적화 변환 함수를 생성한다. 단계 114에서 영상 프로세서(22)는 최적화 변환 함수에 기초하여 볼륨 파노라마 영상을 생성한다.
도 11 및 12를 각각을 통해 설명된 실시예에 따른 볼륨 파노라마 영상 생성 방법은 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
20 ... 볼륨 파노라마 영상 생성 장치
22 ... 영상 프로세서
221 ... 최적화 변환 함수 생성부
222 ... 합성 영상 데이터 생성부
223 ... 볼륨 파노라마 영상 생성부
22 ... 영상 프로세서
221 ... 최적화 변환 함수 생성부
222 ... 합성 영상 데이터 생성부
223 ... 볼륨 파노라마 영상 생성부
Claims (20)
- 볼륨 파노라마 영상을 생성하는 방법에 있어서,
복수의 볼륨 영상들 중 순차적인 볼륨 영상들 간의 적어도 두 개의 변환 함수들을 획득하는 단계;
상기 획득된 변환 함수들로부터 최적화 변환 함수를 생성하는 단계; 및
상기 생성된 최적화 변환 함수에 기초하여, 상기 볼륨 파노라마 영상을 생성하는 단계;를 포함하고,
상기 최적화 변환 함수를 생성하는 단계는,
상기 획득한 변환 함수들 각각에 기초하여 상기 순차적인 볼륨 영상들의 형태적인 특성의 유사도를 결정하는 단계; 및
상기 결정된 유사도를 포함하는 유사도들에 기초하여 상기 최적화 변환 함수를 생성하는 단계;
를 포함하고,
상기 결정된 유사도는 제 1 볼륨 영상의 형태적인 특성과, 상기 획득된 변환 함수들 중 하나에 기초하여 이동된 제 2 볼륨 영상의 형태적인 특성 간의 유사도를 포함하고,
상기 유사도를 결정하는 단계는, 상기 순차적인 볼륨 영상들의 대응하는 복셀들 각각의 위치 정보 및 강도(intensity)에 기초하여 상기 유사도를 결정하는 단계를 포함하는, 볼륨 파노라마 영상을 생성하는 방법. - 제 1 항에 있어서,
상기 최적화 변환 함수를 생성하는 단계는,
상기 유사도들의 합을 최대화하도록 상기 획득된 변환 함수들을 변경하는 단계; 및
상기 변경된 변환 함수들에 기초하여 상기 최적화 변환 함수를 생성하는 단계;
를 더 포함하는, 볼륨 파노라마 영상을 생성하는 방법. - 삭제
- 제 1 항에 있어서,
상기 복수의 볼륨 영상들의 영상 데이터들을 수신하는 단계를 더 포함하고,
상기 볼륨 파노라마 영상을 생성하는 단계는,
상기 생성된 최적화 변환 함수에 기초하여 상기 영상 데이터들로부터 볼륨 파노라마 영상을 나타내는 영상 데이터를 생성하는 단계를 포함하는, 볼륨 파노라마 영상을 생성하는 방법. - 제 4 항에 있어서,
상기 볼륨 파노라마 영상을 생성하는 단계는,
상기 생성된 최적화 변환 함수에 기초하여 제 2 볼륨 영상의 영상 데이터로부터 제 1 볼륨 영상과 합성되는 볼륨 영상의 영상 데이터를 생성하는 단계를 더 포함하고,
상기 볼륨 파노라마 영상을 나타내는 영상 데이터를 생성하는 단계는,
상기 생성된 상기 제 1 볼륨 영상과 합성되는 볼륨 영상의 영상 데이터와 상기 제 1 볼륨 영상의 영상 데이터를 합성하는 단계를 포함하는, 볼륨 파노라마 영상을 생성하는 방법. - 제 5 항에 있어서,
상기 볼륨 파노라마 영상을 생성하는 단계는,
상기 제 1 볼륨 영상과 합성되 볼륨 영상으로부터 분할된 지역 볼륨 영상들에 기초하여 지역 변환 함수를 결정하는 단계; 및
상기 결정된 지역 변환 함수에 기초하여 상기 생성된 상기 제 1 볼륨 영상과 합성되는 볼륨 영상의 영상 데이터를 갱신하는 단계;
를 포함하는, 볼륨 파노라마 영상을 생성하는 방법. - 제 1 항에 있어서,
상기 획득된 변환 함수들 중 어느 하나의 변환 함수는 제1 볼륨 영상의 부분 영역과 제2 볼륨 영상의 부분 영역간의 변환 관계를 나타내는 부분 변환 함수에 기초하여 결정되는, 볼륨 파노라마 영상을 생성하는 방법. - 제 7 항에 있어서,
상기 획득된 변환 함수들 중 상기 어느 하나의 변환 함수는, 상기 제1 볼륨 영상의 부분 영역 및 상기 제2 볼륨 영상의 부분 영역을 구 형상의 영역들로 평활화하는 적어도 하나의 파라미터에 기초하여 결정되는, 볼륨 파노라마 영상을 생성하는 방법. - 제 1 항, 제 2 항 및 제 4 항 내지 제 8 항 중에 어느 한 항의 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
- 볼륨 파노라마 영상을 생성하는 장치에 있어서,
복수의 볼륨 영상들 중 순차적인 볼륨 영상들 간의 적어도 두 개의 변환 함수들을 획득하고, 상기 획득한 변환 함수들 각각에 기초하여 상기 순차적인 볼륨 영상들의 형태적인 특성의 유사도를 결정하며, 상기 결정된 유사도를 포함하는 유사도들에 기초하여 최적화 변환 함수를 생성하고, 상기 생성된 최적화 변환 함수에 기초하여, 상기 볼륨 파노라마 영상을 생성하는 영상 프로세서; 및
상기 생성된 볼륨 파노라마 영상을 출력하는 출력부;
를 포함하고,
상기 결정된 유사도는 제 1 볼륨 영상의 형태적인 특성과, 상기 획득된 변환 함수들 중 하나에 기초하여 이동된 제 2 볼륨 영상의 형태적인 특성 간의 유사도를 포함하고,
상기 영상 프로세서는 상기 순차적인 볼륨 영상상들의 대응하는 복셀들 각각의 위치 정보 및 강도(intensity)에 기초하여 상기 유사도를 결정하는, 볼륨 파노라마 영상을 생성하는 장치. - 제 10 항에 있어서,
상기 영상 프로세서는,
상기 유사도들의 합을 최대화하도록 상기 획득된 변환 함수들을 변경하고, 상기 변경된 변환 함수들에 기초하여 상기 최적화 변환 함수를 생성하는, 볼륨 파노라마 영상을 생성하는 장치. - 삭제
- 제 10 항에 있어서,
상기 복수의 볼륨 영상들의 영상 데이터들을 수신하는 입력부를 더 포함하고,
상기 영상 프로세서는,
상기 생성된 최적화 변환 함수에 기초하여 상기 영상 데이터들로부터 볼륨 파노라마 영상을 나타내는 영상 데이터를 생성하는, 볼륨 파노라마 영상을 생성하는 장치. - 제 13 항에 있어서,
상기 영상 프로세서는,
상기 생성된 최적화 변환 함수에 기초하여 제 2 볼륨 영상의 영상 데이터로부터 제 1 볼륨 영상과 합성되는 볼륨 영상의 영상 데이터를 생성하고, 상기 생성된 상기 제 1 볼륨 영상과 합성되는 볼륨 영상의 영상 데이터와 상기 제 1 볼륨 영상의 영상 데이터를 합성함으로써 상기 볼륨 파노라마 영상을 나타내는 영상 데이터를 생성하는, 볼륨 파노라마 영상을 생성하는 장치. - 제 14 항에 있어서,
상기 영상 프로세서는,
상기 제 1 볼륨 영상과 합성되 볼륨 영상으로부터 분할된 지역 볼륨 영상들에 기초하여 지역 변환 함수를 결정하고, 상기 결정된 지역 변환 함수에 기초하여 상기 생성된 상기 제 1 볼륨 영상과 합성되는 볼륨 영상의 영상 데이터를 갱신하는, 볼륨 파노라마 영상을 생성하는 장치. - 제 10 항에 있어서,
상기 획득된 변환 함수들 중 어느 하나의 변환 함수는 제1 볼륨 영상의 부분 영역과 제2 볼륨 영상의 부분 영역간의 변환 관계를 나타내는 부분 변환 함수에 기초하여 결정되는, 볼륨 파노라마 영상을 생성하는 장치. - 제 16 항에 있어서,
상기 획득된 변환 함수들 중 상기 어느 하나의 변환 함수는 상기 제1 볼륨 영상의 부분 영역 및 상기 제2 볼륨 영상의 부분 영역을 구 형상의 영역들로 평활화하는 적어도 하나의 파라미터에 기초하여 결정되는, 볼륨 파노라마 영상을 생성하는 장치. - 제 10 항에 있어서,
상기 영상 프로세서는 최적화 변환 함수 생성부와 볼륨 파노라마 영상 생성부를 포함하고,
상기 최적화 변환 함수 생성부는 상기 복수의 변환 함수들로부터 상기 최적화 변환 함수를 생성하고,
상기 볼륨 파노라마 영상 생성부는 상기 생성된 최적화 변환 함수에 기초하여 상기 볼륨 파노라마 영상을 생성하는, 볼륨 파노라마 영상을 생성하는 장치. - 제 18 항에 있어서,
상기 최적화 변환 함수 생성부는 변환 정보 생성부와 변환 정보 최적화부를 포함하고,
상기 변환 정보 생성부는 상기 복수의 변환 함수들을 나타내는 변환 정보를 생성하고,
상기 변환 정보 최적화부는 상기 변환 정보에 기초하여 상기 복수의 변환 함수들로부터 상기 최적화 변환 함수를 생성하는, 볼륨 파노라마 영상을 생성하는 장치. - 제 10 항에 있어서,
상기 복수의 볼륨 영상들의 영상 데이터들을 수신하는 입력부를 더 포함하고,
상기 영상 프로세서는 변환 함수 결정부, 최적화 변환 함수 생성부, 및 볼륨 파노라마 영상 생성부를 포함하고,
상기 변환 함수 결정부는 상기 수신된 영상 데이터들에 기초하여 복수의 변환 함수들을 결정하고,
상기 최적화 변환 함수 생성부는 상기 결정된 복수의 변환 함수들로부터 상기 최적화 변환 함수를 생성하며,
상기 볼륨 파노라마 영상 생성부는 상기 생성된 최적화 변환 함수에 기초하여 상기 볼륨 파노라마 영상을 생성하는, 볼륨 파노라마 영상을 생성하는 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110079153A KR101880634B1 (ko) | 2011-08-09 | 2011-08-09 | 3차원 볼륨 파노라마 영상 생성 방법 및 장치 |
US13/566,000 US20130039567A1 (en) | 2011-08-09 | 2012-08-03 | Method and apparatus to generate a volume-panorama image |
US15/149,605 US10210653B2 (en) | 2011-08-09 | 2016-05-09 | Method and apparatus to generate a volume-panorama image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110079153A KR101880634B1 (ko) | 2011-08-09 | 2011-08-09 | 3차원 볼륨 파노라마 영상 생성 방법 및 장치 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180078251A Division KR101946577B1 (ko) | 2018-07-05 | 2018-07-05 | 3차원 볼륨 파노라마 영상 생성 방법 및 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130016942A KR20130016942A (ko) | 2013-02-19 |
KR101880634B1 true KR101880634B1 (ko) | 2018-08-16 |
Family
ID=47677586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110079153A KR101880634B1 (ko) | 2011-08-09 | 2011-08-09 | 3차원 볼륨 파노라마 영상 생성 방법 및 장치 |
Country Status (2)
Country | Link |
---|---|
US (2) | US20130039567A1 (ko) |
KR (1) | KR101880634B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024058563A1 (ko) * | 2022-09-16 | 2024-03-21 | 주식회사 필드큐어 | 3차원 대상체의 동질 물성 볼륨별 물성값 최적화 장치 및 방법 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9076238B2 (en) * | 2013-08-21 | 2015-07-07 | Seiko Epson Corporation | Intelligent weighted blending for ultrasound image stitching |
KR101562569B1 (ko) * | 2013-11-05 | 2015-10-22 | 한국디지털병원수출사업협동조합 | 3차원 초음파 스캔 이미지의 합성을 포함한 3차원 초음파 진단 장치 및 방법 |
KR101602056B1 (ko) * | 2014-09-25 | 2016-03-10 | 한양대학교 에리카산학협력단 | 볼륨 데이터에 대한 6자유도 정합 방법 및 시스템 |
CN108447018B (zh) * | 2018-01-31 | 2022-04-12 | 苏州佳世达电通有限公司 | 产生超音波全景影像的方法及产生全景影像的超音波装置 |
CN115908992B (zh) * | 2022-10-22 | 2023-12-05 | 北京百度网讯科技有限公司 | 双目立体匹配的方法、装置、设备以及存储介质 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060239571A1 (en) * | 2005-03-29 | 2006-10-26 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Method of volume-panorama imaging processing |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5848121A (en) * | 1996-10-28 | 1998-12-08 | General Electric Company | Method and apparatus for digital subtraction angiography |
US6369817B1 (en) | 1998-05-25 | 2002-04-09 | Japan Radio Co., Ltd. | Image synthesis system |
MXPA02010884A (es) | 2000-05-05 | 2003-03-27 | Aerogen Ireland Ltd | Aparato y metodo para el suministro de medicamentos al sistema respiratorio. |
JP4299015B2 (ja) | 2003-01-31 | 2009-07-22 | アロカ株式会社 | 超音波画像処理装置 |
US8045770B2 (en) * | 2003-03-24 | 2011-10-25 | Cornell Research Foundation, Inc. | System and method for three-dimensional image rendering and analysis |
US7033320B2 (en) | 2003-08-05 | 2006-04-25 | Siemens Medical Solutions Usa, Inc. | Extended volume ultrasound data acquisition |
US20060058651A1 (en) * | 2004-08-13 | 2006-03-16 | Chiao Richard Y | Method and apparatus for extending an ultrasound image field of view |
KR100869497B1 (ko) | 2005-07-01 | 2008-11-21 | 주식회사 메디슨 | 계층적 움직임 추정방법 및 이를 적용한 초음파 영상장치 |
US8385687B1 (en) * | 2006-12-06 | 2013-02-26 | Matrox Electronic Systems, Ltd. | Methods for determining a transformation between images |
US8532734B2 (en) * | 2008-04-18 | 2013-09-10 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
EP2194506B1 (en) | 2008-12-02 | 2016-03-09 | Samsung Medison Co., Ltd. | Image based registration |
KR101132536B1 (ko) | 2008-12-02 | 2012-04-02 | 삼성메디슨 주식회사 | 영상 정합을 수행하는 시스템 및 방법 |
-
2011
- 2011-08-09 KR KR1020110079153A patent/KR101880634B1/ko active IP Right Grant
-
2012
- 2012-08-03 US US13/566,000 patent/US20130039567A1/en not_active Abandoned
-
2016
- 2016-05-09 US US15/149,605 patent/US10210653B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060239571A1 (en) * | 2005-03-29 | 2006-10-26 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Method of volume-panorama imaging processing |
Non-Patent Citations (1)
Title |
---|
J Matas, et al., ‘Robust wide-baseline stereo form maximally stable extremal regions’, Image and Vision Computing, Vol. 22, Issue 10, 2004. 9.1. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024058563A1 (ko) * | 2022-09-16 | 2024-03-21 | 주식회사 필드큐어 | 3차원 대상체의 동질 물성 볼륨별 물성값 최적화 장치 및 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20130016942A (ko) | 2013-02-19 |
US20130039567A1 (en) | 2013-02-14 |
US20160267706A1 (en) | 2016-09-15 |
US10210653B2 (en) | 2019-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111771138B (zh) | 具有用于根据欠采样超声数据产生图像的神经网络的超声系统 | |
KR101805619B1 (ko) | 3차원 의료 영상으로부터 최적의 2차원 의료 영상을 자동으로 생성하는 방법 및 장치 | |
EP3338625B1 (en) | Medical image display device and medical image processing method | |
RU2663649C2 (ru) | Сегментация крупных объектов из нескольких трехмерных видов | |
KR101805624B1 (ko) | 장기 모델 영상 생성 방법 및 장치 | |
US9179890B2 (en) | Model-based positioning for intracardiac echocardiography volume stitching | |
US10026016B2 (en) | Tracking and representation of multi-dimensional organs | |
US11013495B2 (en) | Method and apparatus for registering medical images | |
US8116548B2 (en) | Method and system for detecting 3D anatomical structures using constrained marginal space learning | |
US10945708B2 (en) | Method and apparatus for registration of medical images | |
KR101880634B1 (ko) | 3차원 볼륨 파노라마 영상 생성 방법 및 장치 | |
US20100123715A1 (en) | Method and system for navigating volumetric images | |
KR101783000B1 (ko) | 복수의 3차원 볼륨 영상들을 이용하여 3차원 볼륨 파노라마 영상 생성 방법 및 장치 | |
EP3108456B1 (en) | Motion adaptive visualization in medical 4d imaging | |
US20100274132A1 (en) | Arranging A Three-Dimensional Ultrasound Image In An Ultrasound System | |
KR101946577B1 (ko) | 3차원 볼륨 파노라마 영상 생성 방법 및 장치 | |
US9449425B2 (en) | Apparatus and method for generating medical image | |
JP6501796B2 (ja) | 超音波画像のモデル・ベースのセグメンテーションのための取得方位依存特徴 | |
JP5647398B2 (ja) | 定量的局所測定結果および形態構造の複合4次元プレゼンテーションのための方法および装置 | |
KR100466409B1 (ko) | 가상 내시경 시스템, 가상 내시경 디스플레이 방법과 그 방법을 컴퓨터 상에서 수행하는 프로그램을 저장한 컴퓨터가 판독 가능한 기록 매체 | |
JP7313392B2 (ja) | 最適な超音波式臓器セグメンテーション | |
Wen et al. | GPU-based volume reconstruction for freehand 3D ultrasound imaging | |
Lai et al. | Designs and Implementation of Three Dimensional Nuchal Translucency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |