KR101869337B1 - Tin sulfide thin film and method of forming the same, thin film solar cell and method of manufacturing the same - Google Patents

Tin sulfide thin film and method of forming the same, thin film solar cell and method of manufacturing the same Download PDF

Info

Publication number
KR101869337B1
KR101869337B1 KR1020160051358A KR20160051358A KR101869337B1 KR 101869337 B1 KR101869337 B1 KR 101869337B1 KR 1020160051358 A KR1020160051358 A KR 1020160051358A KR 20160051358 A KR20160051358 A KR 20160051358A KR 101869337 B1 KR101869337 B1 KR 101869337B1
Authority
KR
South Korea
Prior art keywords
thin film
tin
tin sulfide
light absorbing
absorbing layer
Prior art date
Application number
KR1020160051358A
Other languages
Korean (ko)
Other versions
KR20170122433A (en
Inventor
김수현
장병현
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020160051358A priority Critical patent/KR101869337B1/en
Publication of KR20170122433A publication Critical patent/KR20170122433A/en
Application granted granted Critical
Publication of KR101869337B1 publication Critical patent/KR101869337B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 황화주석 박막 및 그 형성 방법, 박막 태양전지 및 그 제조방법에 관한 것이다. 본 발명의 일 실시예에 따른 황화주석 박막 형성 방법은 기판 상에 황화주석(SnSx) 박막을 형성하는 단계와 황화주석 박막의 밴드갭(bandgap)이 감소되도록 황화주석 박막을 열처리하는 단계를 갖는다.The present invention relates to a tin sulphide thin film, a method for forming the tin sulphide thin film, a thin film solar cell and a manufacturing method thereof. A method of forming a tin sulfide thin film according to an embodiment of the present invention includes forming a tin sulphide (SnS x ) thin film on a substrate and heat treating the tin sulphide thin film to reduce bandgap of the tin sulphide thin film .

Description

황화주석 박막 및 그 형성 방법, 박막 태양전지 및 그 제조방법{TIN SULFIDE THIN FILM AND METHOD OF FORMING THE SAME, THIN FILM SOLAR CELL AND METHOD OF MANUFACTURING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a tin sulfide thin film, a thin film solar cell and a manufacturing method thereof,

본 발명은 황화주석 박막 및 그 형성 방법에 관한 것으로, 보다 상세하게는 박막 태양전지의 광흡수층에 이용되는 황화주석 박막 및 그 형성 방법에 관한 것이다.The present invention relates to a tin sulfide thin film and a method for forming the tin sulphide thin film, and more particularly, to a tin sulphide thin film used in a light absorbing layer of a thin film solar cell and a method for forming the same.

현재 상업적으로 가장 많이 사용되고 있는 박막 태양전지에 사용되는 광흡수층은 결정질 실리콘이 이용되거나 CdTe 또는 CIGS(Cu(In,Ga)Se2)와 같은 화합물이 이용된다. 그러나 이러한 광흡수층이 가격 경쟁력을 가지고, 대용량 생산성을 가지기에는 많은 문제점을 갖고 있다.Crystalline silicon is used for the light absorbing layer used in the thin film solar cell which is currently used most commercially, or a compound such as CdTe or CIGS (Cu (In, Ga) Se 2 ) is used. However, such a light absorbing layer has cost competitiveness and has many problems in achieving high capacity productivity.

예를 들어, 결정질 실리콘은 생산 단가가 클 뿐만 아니라 광흡수율이 뛰어나지 않은 문제점이 있다. 그리고 CdTe나 CIGS와 같은 화합물의 경우에는 구성 원소들 중에 카드뮴(Cd)과 같이 독성을 가지는 원소나 인듐(In), 텔루르(Te)와 같은 희소원소들이 포함되어 있어 대량 생산에 한계가 있다.For example, crystalline silicon has a problem in that its production cost is not only high but also its light absorptivity is not excellent. In the case of compounds such as CdTe and CIGS, there are limitations on mass production because the constituent elements include elements having toxicity such as cadmium (Cd) or rare elements such as indium (In) and tellurium (Te).

최근에 무독성이며 범용(earth-abundant)의 저가 원소들로 이루어진 CZTS라고 불리는 Cu2ZnSnS4 kesterite 화합물이 박막 태양전지의 광흡수층으로 각광을 받고 있다. 그러나 CZTS는 4원소로 이루어진 복잡계(complex system)이며 상분리(phase decomposition)의 취약함 때문에 공정 조건의 조절에 각별한 주의가 요구되어 대량 생산화에 걸림돌이 될 수도 있다. 또한, Cu와 Zn 사이의 자리바꿈 결함(anti-site defect)과 같은, CZTS 물질 자체의 근본적인 결함 때문에 최고 기대 효율의 제약이 있을 것이라는 회의적인 시각들이 최근에 보고되고 있다.Recently, a Cu 2 ZnSnS 4 kesterite compound called CZTS, which is composed of low-cost, earth-abundant low-cost elements, is attracting attention as a light absorbing layer of a thin film solar cell. However, CZTS is a complex system consisting of four elements and because of the weakness of phase decomposition, special care is required to control the process conditions, which may hinder mass production. Also, skepticism has recently been reported that there will be a restriction of maximum expected efficiency due to a fundamental defect of the CZTS material itself, such as anti-site defect between Cu and Zn.

본 발명이 해결하고자 하는 기술적 과제는 밴드갭이 작은 황화주석 박막 및 그 형성 방법과 이러한 황화주석 박막을 광흡수층으로 이용하는 박막 태양전지 및 그 제조방법을 제공하는 데에 있다.The present invention provides a tin sulphide thin film having a small band gap, a method for forming the tin sulphide thin film, and a thin film solar cell using the tin sulphide thin film as a light absorbing layer, and a method for manufacturing the same.

상기의 기술적 과제를 해결하기 위한, 본 발명에 따른 황화주석 박막 형성 방법에 대한 일 실시예는 기판 상에 황화주석(SnSx) 박막을 형성하는 단계; 및 상기 황화주석 박막의 밴드갭(bandgap)이 감소되도록 상기 황화주석 박막을 열처리하는 단계;를 포함한다.According to an aspect of the present invention, there is provided a method of forming a tin sulfide thin film, comprising: forming a tin sulfide (SnS x ) thin film on a substrate; And annealing the tin sulfide thin film so that a bandgap of the tin sulfide thin film is reduced.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 열처리는 환원 분위기에서 수행될 수 있다.In some embodiments of the tin sulphide thin film forming method according to the present invention, the heat treatment may be performed in a reducing atmosphere.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 열처리는 수소(H2) 분위기에서 수행될 수 있다.In some embodiments of the tin sulphide thin film formation method according to the present invention, the heat treatment may be performed in a hydrogen (H 2 ) atmosphere.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 열처리는 330 내지 340℃ 범위의 온도에서 수행될 수 있다.In some embodiments of the tin sulphide thin film forming method according to the present invention, the heat treatment may be performed at a temperature ranging from 330 to 340 ° C.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 열처리는 플라즈마를 인가하여 수행될 수 있다.In some embodiments of the tin sulphide thin film forming method according to the present invention, the heat treatment may be performed by applying a plasma.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 플라즈마는 수소 플라즈마일 수 있다.In some embodiments of the tin sulphide thin film forming method according to the present invention, the plasma may be a hydrogen plasma.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 황화주석 박막의 밴드갭이 1.2 내지 1.3 eV가 되도록 상기 열처리가 수행될 수 있다.In some embodiments of the tin sulphide thin film forming method according to the present invention, the heat treatment may be performed such that the band gap of the tin sulphide thin film is 1.2 to 1.3 eV.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 황화주석 박막 내의 일황화주석(SnS, tin monosulfide)의 함량이 증가되도록 상기 열처리가 수행될 수 있다.In some embodiments of the tin sulphide thin film formation method according to the present invention, the heat treatment may be performed such that the content of tin sulphide (SnS) in the tin sulphide thin film is increased.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 황화주석 박막이 단일상(single phase)의 일황화주석이 되도록 상기 열처리가 수행될 수 있다.In some embodiments of the tin sulphide thin film formation method according to the present invention, the heat treatment may be performed so that the tin sulphide thin film becomes a single phase of tin sulphide.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 황화주석 박막은 원자층증착법(ALD, Atomic Layer Deposition)에 의해 형성될 수 있다.In some embodiments of the tin sulphide thin film forming method according to the present invention, the tin sulphide thin film may be formed by ALD (Atomic Layer Deposition).

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 황화주석 박막은 140℃ 이하의 온도에서 형성될 수 있다.In some embodiments of the tin sulphide thin film forming method according to the present invention, the tin sulphide thin film may be formed at a temperature of 140 ° C or lower.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 황화주석 박막 형성 후, 인-시튜(in-situ)로 상기 열처리가 수행될 수 있다.In some embodiments of the method of forming a tin sulphide thin film according to the present invention, after the tin sulphide thin film formation, the heat treatment may be performed in-situ.

본 발명에 따른 황화주석 박막 형성 방법의 일부 실시예들에 있어서, 상기 황화주석 박막을 형성하는 단계와 상기 열처리하는 단계를 순차적으로 반복 수행하여, 상기 황화주석 박막을 원하는 두께로 형성할 수 있다.In some embodiments of the tin sulfide thin film forming method according to the present invention, the step of forming the tin sulphide thin film and the step of performing the heat treatment may be sequentially repeated to form the tin sulphide thin film to a desired thickness.

상기의 기술적 과제를 해결하기 위한, 본 발명에 따른 황화주석 박막에 대한 일 실시예는 기판; 및 상기 기판 상에 형성된 황화주석 박막;을 포함하며, 상기 황화주석 박막은 열처리에 의해 상기 황화주석 박막의 밴드갭(bandgap)이 1.2 내지 1.3 eV가 되도록 형성된다.According to an aspect of the present invention, there is provided a tin sulfide thin film comprising: a substrate; And a tin sulphide thin film formed on the substrate, wherein the tin sulphide thin film is formed such that the bandgap of the tin sulphide thin film is 1.2 to 1.3 eV by heat treatment.

본 발명에 따른 황화주석 박막의 일부 실시예들에 있어서, 상기 황화주석 박막은 단일상(single phase)의 일황화주석(tin monosulfide)으로 이루어질 수 있다.In some embodiments of the tin sulphide thin film according to the present invention, the tin sulphide thin film may be composed of a single phase of tin monosulfide.

상기의 기술적 과제를 해결하기 위한, 본 발명에 따른 박막 태양전지 제조방법에 대한 일 실시예는 기판 상에 후면전극을 형성하는 단계; 상기 전극 상에 황화주석(SnSx) 광흡수층을 형성하는 단계; 상기 황화주석 광흡수층의 밴드갭(bandgap)이 감소되도록 상기 황화주석 광흡수층을 열처리하는 단계; 및 상기 광흡수층 상에 투명전극을 형성하는 단계;를 포함한다.According to an aspect of the present invention, there is provided a method of manufacturing a thin film solar cell, including: forming a rear electrode on a substrate; Forming a tin sulfide (SnS x ) light absorbing layer on the electrode; Heat treating the tin sulfide light absorbing layer such that a bandgap of the tin sulfide light absorbing layer is reduced; And forming a transparent electrode on the light absorption layer.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 열처리는 환원 분위기에서 수행될 수 있다.In some embodiments of the thin film solar cell manufacturing method according to the present invention, the heat treatment may be performed in a reducing atmosphere.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 열처리는 수소(H2) 분위기에서 수행될 수 있다.In some embodiments of the thin film solar cell manufacturing method according to the present invention, the heat treatment may be performed in a hydrogen (H 2 ) atmosphere.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 열처리는 330 내지 340℃ 범위의 온도에서 수행될 수 있다.In some embodiments of the method for fabricating a thin film solar cell according to the present invention, the heat treatment may be performed at a temperature ranging from 330 to 340 ° C.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 열처리는 플라즈마를 인가하여 수행될 수 있다.In some embodiments of the method for fabricating a thin film solar cell according to the present invention, the heat treatment may be performed by applying a plasma.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 플라즈마는 수소 플라즈마일 수 있다.In some embodiments of the thin film solar cell manufacturing method according to the present invention, the plasma may be a hydrogen plasma.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 황화주석 광흡수층의 밴드갭이 1.2 내지 1.3 eV가 되도록 상기 열처리가 수행될 수 있다.In some embodiments of the method for fabricating a thin film solar cell according to the present invention, the heat treatment may be performed such that the band gap of the tin sulfide light absorbing layer is 1.2 to 1.3 eV.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 황화주석 광흡수층 내의 일황화주석(SnS, tin monosulfide)의 함량이 증가되도록 상기 열처리가 수행될 수 있다.In some embodiments of the method of manufacturing a thin film solar cell according to the present invention, the heat treatment may be performed so that the content of tin monosulfide (SnS) in the tin sulfide light absorbing layer is increased.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 황화주석 광흡수층이 단일상(single phase)의 일황화주석이 되도록 상기 열처리가 수행될 수 있다.In some embodiments of the method of manufacturing a thin film solar cell according to the present invention, the heat treatment may be performed so that the tin sulfide light absorbing layer becomes a single phase of tin sulfide.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 황화주석 광흡수층은 원자층증착법(ALD, Atomic Layer Deposition)에 의해 형성될 수 있다.In some embodiments of the method for fabricating a thin film solar cell according to the present invention, the tin sulfide light absorbing layer may be formed by ALD (Atomic Layer Deposition).

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 황화주석 광흡수층은 140℃ 이하의 온도에서 형성될 수 있다.In some embodiments of the method for fabricating a thin film solar cell according to the present invention, the tin sulfide light absorbing layer may be formed at a temperature of 140 ° C or less.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 황화주석 광흡수층 형성 후, 인-시튜(in-situ)로 상기 열처리가 수행될 수 있다.In some embodiments of the method for fabricating a thin film solar cell according to the present invention, the heat treatment may be performed in-situ after forming the tin sulfide light absorbing layer.

본 발명에 따른 박막 태양전지 제조방법의 일부 실시예들에 있어서, 상기 황화주석 광흡수층을 형성하는 단계와 상기 열처리하는 단계를 순차적으로 반복 수행하여, 상기 황화주석 광흡수층을 원하는 두께로 형성할 수 있다.In some embodiments of the method of manufacturing a thin film solar cell according to the present invention, the step of forming the tin sulfide light absorbing layer and the step of performing the heat treatment may be sequentially repeated to form the tin sulfide light absorbing layer to a desired thickness have.

상기의 기술적 과제를 해결하기 위한, 본 발명에 따른 박막 태양전지에 대한 일 실시예는 기판; 상기 기판 상에 형성된 후면전극; 상기 후면전극 상에 형성된 황화주석 광흡수층; 및 상기 황화주석 광흡수층 상에 형성된 투명전극;을 포함하며, 상기 황화주석 광흡수층은 열처리에 의해 상기 황화주석 박막의 밴드갭(bandgap)이 1.2 내지 1.3 eV가 되도록 형성된다.According to an aspect of the present invention, there is provided a thin film solar cell comprising: a substrate; A rear electrode formed on the substrate; A tin sulfide light absorbing layer formed on the rear electrode; And a transparent electrode formed on the tin sulfide light absorbing layer, wherein the tin sulphide light absorbing layer is formed such that the bandgap of the tin sulphide thin film is 1.2 to 1.3 eV by heat treatment.

본 발명에 따른 박막 태양전지의 일부 실시예들에 있어서, 상기 황화주석 광흡수층은 단일상(single phase)의 일황화주석(tin monosulfide)으로 이루어질 수 있다.In some embodiments of the thin film solar cell according to the present invention, the tin sulfide light absorbing layer may be composed of a single phase of tin monosulfide.

상기의 기술적 과제를 해결하기 위한, 본 발명에 따른 박막 태양전지에 대한 다른 실시예는 기판과, 상기 기판 상에 형성된 후면전극과, 상기 후면전극 상에 형성된 광흡수층과, 상기 광흡수층 상에 형성된 투명전극을 포함하는 박막 태양전지로서, 상기 광흡수층은 상기 기재된 황화주석 박막 형성 방법으로 형성된 황화주석 박막이다.According to another aspect of the present invention, there is provided a thin film solar cell comprising a substrate, a rear electrode formed on the substrate, a light absorbing layer formed on the rear electrode, A thin film solar cell comprising a transparent electrode, wherein the light absorbing layer is a tin sulfide thin film formed by the above described method for forming a tin sulfide thin film.

본 발명에 따르면, 황화주석 박막을 열처리하여 일황화주석으로 이루어진 황화주석 박막을 형성시킴으로써 밴드갭을 크게 낮출 수 있다. 이러한 황화주석 박막은 박막 태양전지의 광흡수층으로 이용하기에 적합한 밴드갭을 가지게 되어 높은 광흡수율을 갖는 박막 태양전지를 제조할 수 있게 된다.According to the present invention, the tin sulphide thin film is heat-treated to form a tin sulphide thin film, thereby significantly reducing the band gap. Such a tin sulfide thin film has a band gap suitable for use as a light absorption layer of a thin film solar cell, and thus a thin film solar cell having a high light absorption rate can be manufactured.

도 1은 본 발명에 따른 황화주석 박막 형성 방법에 대한 일 실시예를 수행하기 위한 흐름도이다.
도 2는 120℃에서 증착한 황화주석 박막의 단면과 표면을 나타낸 사진이다.
도 3은 200℃에서 증착한 황화주석 박막의 단면과 표면을 나타낸 사진이다.
도 4는 330℃에서 열처리한 황화주석 박막의 단면과 표면을 나타낸 사진이다.
도 5는 340℃에서 열처리한 황화주석 박막의 단면과 표면을 나타낸 사진이다.
도 6은 열처리 온도에 따른 황화주석 박막의 라만 분석(Raman spectra analysis) 결과를 나타낸 도면이다.
도 7은 본 발명에 따른 박막 태양전지 제조방법에 대한 일 실시예를 수행하기 위한 흐름도이다.
1 is a flowchart illustrating a method of forming a tin sulfide thin film according to an embodiment of the present invention.
2 is a photograph showing a cross section and a surface of a tin sulfide thin film deposited at 120 ° C.
3 is a photograph showing a cross section and a surface of a tin sulfide thin film deposited at 200 ° C.
4 is a photograph showing a cross section and a surface of a tin sulfide thin film heat-treated at 330 ° C.
5 is a photograph showing a cross section and a surface of a tin sulfide thin film heat-treated at 340 ° C.
6 is a graph showing the results of Raman spectral analysis of a tin sulfide thin film according to a heat treatment temperature.
7 is a flowchart illustrating a method of manufacturing a thin film solar cell according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments of the present invention are described in order to more fully explain the present invention to those skilled in the art, and the following embodiments may be modified into various other forms, It is not limited to the embodiment. Rather, these embodiments are provided so that this disclosure will be more faithful and complete, and will fully convey the scope of the invention to those skilled in the art.

도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다. 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서, 본 발명은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되지 않는다.In the figures, for example, variations in the shape shown may be expected, depending on manufacturing techniques and / or tolerances. Accordingly, embodiments of the present invention should not be construed as limited to any particular shape of the regions illustrated herein, including, for example, variations in shape resulting from manufacturing. The same reference numerals denote the same elements at all times. Further, various elements and regions in the drawings are schematically drawn. Accordingly, the invention is not limited by the relative size or spacing depicted in the accompanying drawings.

황화주석은 간단한 이원계 화합물이며, 무독성이고 저가의 범용(earth-abudant) 원소들로 이루어져 있어 박막 태양전지에 이용하기에 적절한 소재이다. 특히, 황화주석 중 일황화주석(SnS, tin monosulfide)은 작은 밴드갭(1.0 ~ 1.5 eV), 높은 광흡수율, 뛰어난 전하 이동도, 비교적 높은 유전상수, 안정적인 p형 전도도 및 긴 전하 재결함 수명(recombination lifetime)을 가지고 있어, 박막 태양전지의 광흡수층으로 이용하기에 적합하다.Tin sulfide is a simple binary compound, and it is a non-toxic, low-cost, earth-abundant element that is suitable for use in thin-film solar cells. In particular, tin sulphide (SnS) in tin sulphide has a small band gap (1.0-1.5 eV), high light absorption, good charge mobility, relatively high dielectric constant, stable p-type conductivity and long charge re- recombination lifetime), which is suitable for use as a light absorbing layer of a thin film solar cell.

그러나 주석은 여러 가지 산화 상태(0, +2, +4)를 가지기 때문에, 일반적인 증착방법(CBD, SILAR, ECD, thermal evaporation, sputtering, CVD 등)으로 황화주석 박막을 형성하면, 다양한 화학양론(stoichiometry)을 갖는 황화주석(SnSx)이 형성되어 박막 태양전지의 광흡수층에 적용하기에 적절하지 않게 된다. 따라서 박막 태양전지에 황화주석 박막을 사용하기 위해서는 일황화주석으로 이루어진 황화주석 박막을 형성하는 방법이 필요하다.However, since the tin has various oxidation states (0, +2, +4), forming tin sulphide thin films by general deposition methods (CBD, SILAR, ECD, thermal evaporation, sputtering, CVD, etc.) (SnS x ) is formed on the surface of the thin film solar cell and is not suitable for application to the light absorbing layer of the thin film solar cell. Therefore, in order to use a tin sulphide thin film in a thin film solar cell, a method of forming a tin sulphide thin film is needed.

도 1은 본 발명에 따른 황화주석 박막 형성 방법에 대한 일 실시예를 수행하기 위한 흐름도이다.1 is a flowchart illustrating a method of forming a tin sulfide thin film according to an embodiment of the present invention.

도 1을 참조하면, 본 발명에 따른 황화주석 박막 형성 방법에 대한 일 실시예는 우선 기판 상에 황화주석(SnSx) 박막을 형성한다(S110). 황화주석 박막은 원자층증착법(ALD, Atomic Layer Deposition)을 이용하여 형성할 수 있다. 주석(Sn) 전구체(precursor)로는 TDMASn(Tetrakis(diemethylamino)tin)이 이용될 수 있으며, 반응가스로는 황화수소(H2S)가 이용될 수 있다.Referring to FIG. 1, a method of forming a tin sulfide thin film according to an embodiment of the present invention includes forming a tin sulfide (SnS x ) thin film on a substrate (S110). The tin sulfide thin film can be formed using ALD (Atomic Layer Deposition). As the tin (Sn) precursor, TDMASn (Tetrakis (diethylamino) tin) may be used, and as the reaction gas, hydrogen sulfide (H 2 S) may be used.

TDMASn과 황화수소를 이용하여 140℃ 이하의 저온에서 황화주석 박막을 증착하는 경우에는 비정질(amorphous) 구조의 박막이 형성되어 2.4 eV보다 큰 밴드갭을 갖는 황화주석 박막이 형성된다. 증착 온도를 증가시키면, 이황화주석(SnS2, tin disulfide)가 증착되고, 180℃ 이상의 온도에서 증착하면 일황화주석으로 보이는 황화주석 박막이 증착된다. 그러나 180℃ 이상의 온도에서 증착된 황화주석 박막이일황화주석으로 보이기는 하나, 1.8 eV 정도의 상대적으로 큰 밴드갭을 가져 박막 태양전지의 광흡수층으로 이용하기에 적절하지 않다. 그리고 증착 온도가 증가하면 표면 거칠기(roughness)가 증가하고 기판과의 접착력(adhesion)이 떨어지는 문제가 발생하게 된다. When a tin sulfide thin film is deposited at a temperature lower than 140 ° C. by using TDMASn and hydrogen sulfide, an amorphous thin film is formed and a tin sulfide thin film having a band gap larger than 2.4 eV is formed. When the deposition temperature is increased, tin disulfide (SnS 2 ) is deposited and deposited at a temperature of 180 ° C or higher, depositing a tin sulfide thin film which appears as tin sulfide. However, although the tin sulfide thin film deposited at a temperature of 180 ° C or higher appears to be tin sulfide, it has a relatively large band gap of about 1.8 eV, which is not suitable for use as a light absorbing layer of a thin film solar cell. As the deposition temperature increases, the surface roughness increases and adhesion with the substrate decreases.

120℃와 200℃에서 증착한 황화주석 박막의 단면과 표면 사진을 각각 도 2와 도 3에 나타내었다. 120℃에서 증착된 황화주석 박막은 도 2에 도시된 바와 같이 비정질 구조를 가지며 표면이 매우 매끄러운 형태를 가지는 것에 비해, 200℃에서 증착된 황화주석 박막은 도 3에 도시된 바와 같이 결정질 구조를 가지며 표면이 매우 거친 것을 알 수 있다. 즉, 200℃와 같은 고온에서 증착된 황화주석 박막은 표면이 매우 거칠어 박막 태양전지의 광흡수층에 이용하기에 적합하지 않다.The cross-section and surface photographs of the tin sulfide thin films deposited at 120 ° C and 200 ° C are shown in FIGS. 2 and 3, respectively. The tin sulphide thin film deposited at 120 캜 has an amorphous structure and a very smooth surface as shown in Fig. 2, whereas the tin sulphide thin film deposited at 200 캜 has a crystalline structure as shown in Fig. 3 The surface is very rough. That is, the tin sulfide thin film deposited at a high temperature such as 200 ° C. is not suitable for use in the light absorption layer of the thin film solar cell because the surface is very coarse.

다음으로, 황화주석 박막의 밴드갭이 감소되도록 황화주석 박막을 열처리한다(S120). 이때 황화주석 박막은 표면 거칠기와 접착력이 우수한 140℃ 이하의 온도에서 증착된 비정질 황화주석 박막을 이용하는 것이 바람직하다. 열처리는 환원 분위기에서 수행될 수 있다. 환원 분위기를 위해 수소를 공급하며 열처리가 수행될 수 있다. 그리고 S120 단계의 열처리는 플라즈마를 인가하며 수행될 수 있고, 이때 이용되는 플라즈마는 수소 플라즈마일 수 있다. S120 단계의 열처리는 30분 동안 수행될 수 있다.Next, the tin sulphide thin film is heat-treated so that the band gap of the tin sulphide thin film is reduced (S120). At this time, it is preferable to use an amorphous tin sulphide thin film deposited at a temperature of 140 ° C or less, which is excellent in surface roughness and adhesion. The heat treatment can be performed in a reducing atmosphere. Hydrogen can be supplied for the reducing atmosphere and heat treatment can be performed. The heat treatment in step S120 may be performed by applying a plasma, and the plasma used may be a hydrogen plasma. The heat treatment in step S120 may be performed for 30 minutes.

100℃에서 증착된 비정질 황화주석 박막을 열처리하게 되면, 황화주석 박막의 밴드갭이 감소하게 된다. 100℃에서 증착된 비정질 황화주석 박막을 30분간 열처리하였을 때, 열처리 온도에 따른 황화주석 박막의 밴드갭 변화를 표 1에 나타내었다.When the amorphous tin sulphide thin film deposited at 100 ° C is heat-treated, the band gap of the tin sulphide thin film is reduced. Table 1 shows the bandgap changes of the tin sulfide thin films with annealing temperature when the amorphous tin sulphide thin films deposited at 100 ° C were heat treated for 30 minutes.

열처리 온도Heat treatment temperature 열처리 전Before heat treatment 310℃310 ° C 320℃320 ° C 330℃330 ℃ 340℃340 ° C 밴드갭(eV)Band gap (eV) 2.632.63 2.12.1 1.651.65 1.21.2 1.21.2

<열처리 온도에 따른 황화주석 박막의 밴드갭 변화><Change in bandgap of tin sulfide thin film with annealing temperature>

상기 표 1에 나타낸 바와 같이 황화주석 박막을 열처리하게 되면, 황화주석 박막의 밴드갭이 감소하게 되며, 열처리 온도가 증가할수록 황화주석 박막의 밴드갭이 더 많이 감소되는 것을 알 수 있다. 특히, 330 ~ 340℃ 온도 범위에서 열처리한 황화주석 박막의 밴드갭은 1.2 eV 정도로, 박막 태양전지의 광흡수층으로 이용하기에 아주 적절하다. 그리고 350℃ 이상의 온도에서 황화주석 박막을 열처리하게 되면 황화주석 박막이 휘발되어 사라지게 되어, 350℃ 이상의 온도에서 열처리하는 것은 적절하지 않으며, 낮은 밴드갭을 갖는 황화주석 박막을 얻기 위해서는 330 ~ 340℃ 온도 범위에서 열처리하는 것이 바람직하다.As shown in Table 1, when the tin sulphide thin film is heat-treated, the band gap of the tin sulphide thin film is decreased. As the heat treatment temperature is increased, the band gap of the tin sulphide thin film is further reduced. In particular, the band gap of the tin sulphide thin film annealed at 330 to 340 ° C is about 1.2 eV, which is very suitable for use as a light absorbing layer of a thin film solar cell. When the tin sulphide thin film is heat-treated at a temperature of 350 ° C or higher, the tin sulphide thin film is volatilized and disappears. Therefore, it is not appropriate to perform the heat treatment at a temperature of 350 ° C or higher. To obtain a tin sulphide thin film having a low band gap, It is preferable to perform the heat treatment in the range.

330℃와 340℃에서 열처리한 황화주석 박막의 단면과 표면 사진을 각각 도 4와 도 5에 나타내었다. 330℃와 340℃에서 열처리한 황화주석 박막은 도 4 및 도 5에 도시된 바와 같이 결정화되어 있다는 것을 알 수 있다. 도 4 및 도 5를 도 2와 비교하면, 열처리를 통해 비정질 구조가 결정화되면서 표면 거칠기가 증가하였지만, 200℃에서 증착된 황화주석 박막에 비하면(도 3 참조), 표면이 훨씬 매끄럽다는 것을 알 수 있다. 그리고 도 4 및 도 5에 나타낸 정도의 표면 거칠기를 갖는 황화주석 박막은 박막 태양전지의 광흡수층으로 이용하기에 큰 문제가 없다. 또한, 330℃와 340℃에서 열처리된 황화주석 박막은 200℃에서 증착된 황화주석 박막에 비해 기판과의 접착력이 훨씬 우수하다.Cross sections and surface photographs of the tin sulfide thin films annealed at 330 ° C. and 340 ° C. are shown in FIGS. 4 and 5, respectively. It can be seen that the tin sulphide thin films annealed at 330 ° C and 340 ° C are crystallized as shown in FIGS. 4 and 5. Comparing FIGS. 4 and 5 with FIG. 2, it can be seen that the amorphous structure is crystallized through the heat treatment to increase the surface roughness, but the surface is much smoother than the tin sulfide thin film deposited at 200 ° C. (see FIG. 3) have. The tin sulfide thin film having the surface roughness shown in Figs. 4 and 5 has no significant problem in using it as the light absorbing layer of the thin film solar cell. In addition, the tin sulfide thin film annealed at 330 ° C and 340 ° C has much better adhesion to the substrate than the tin sulphide thin film deposited at 200 ° C.

이와 같이 기판 상에 증착된 황화주석 박막을 열처리하게 되면, 박막 내에 일황화주석(SnS, tin monosulfide)의 함량이 증가하게 되고, 적절한 온도에서 적정 시간 열처리를 수행하면, 기판 상에 단일상(single phase)의 일황화주석 박막을 형성할 수 있게 된다. 이러한 일황화주석 박막은 1.2 ~ 1.3 eV의 밴드갭을 가지게 된다.When the tin sulphide thin film deposited on the substrate is heat treated, the content of tin sulphide (tin monosulfide) increases in the thin film, and if the heat treatment is performed at an appropriate temperature for a suitable time, a single single phase tin sulfide thin film can be formed. Such a tin sulfide thin film has a band gap of 1.2 to 1.3 eV.

100℃에서 증착된 비정질 황화주석 박막을 30분간 열처리하였을 때, 열처리 온도에 따른 황화주석 박막의 라만 분석(Raman spectra analysis) 결과를 도 6에 나타내었다. 도 6에는 4개의 라만 분석 그래프가 도시되어 있으며, 아래서부터 순차적으로 310℃, 320℃, 330℃, 340℃에서 열처리한 황화주석 박막의 라만 분석 그래프이다. 도 6을 살펴보면, 가장 하단의 310℃에서 열처리한 황화주석 박막에서 보이는 310cm-1 부근의 라만 피크(Raman peak)만 이황화주석(SnS2)에 해당하는 피크이고, 나머지 피크들은 모두 일황화주석(SnS)에 해당하는 피크이다. 즉, 310℃에서 열처리한 황화주석 박막은 일황화주석과 이황화주석이 혼합되어 있는 형태인 반면, 320℃ 이상에서 열처리한 황화주석 박막은 단일상의 일황화주석으로 이루어졌음을 알 수 있다.6 shows Raman spectra analysis results of the amorphous tin sulfide thin film deposited at 100 ° C for 30 minutes according to the annealing temperature. FIG. 6 shows four Raman analysis graphs, and is a Raman analysis graph of a tin sulfide thin film heat-treated at 310 ° C, 320 ° C, 330 ° C, and 340 ° C sequentially from the bottom. 6, only the Raman peak near 310 cm -1 in the tin sulphide thin film annealed at 310 ° C at the bottom is the peak corresponding to tin disulfide (SnS 2 ), and all the remaining peaks are tin sulfide SnS). That is, the tin sulfide thin film heat-treated at 310 ° C is a mixture of tin sulphide and tin disulphide, whereas the tin sulphide thin film heat-treated at 320 ° C or higher is composed of a single phase of tin sulphide.

기판 상에 황화주석 박막을 형성하는 S110 단계와 황화주석 박막을 열처리하는 S120 단계는 인-시튜(in-situ)로 수행할 수 있다. 하나의 챔버에서 S110 단계와 S120 단계를 진공을 깨지 않은 상태에서 연속적으로 수행할 수도 있고, 멀티 챔버를 갖는 장비에서 S110 단계와 S120 단계를 각기 다른 챔버에서 수행하되, 진공 상태는 유지하면서 S110 단계와 S120 단계를 연속적으로 수행할 수 있다.The step of forming the tin sulphide thin film on the substrate and the step of heat-treating the tin sulphide thin film may be performed in-situ. In a single chamber, steps S110 and S120 may be continuously performed without breaking the vacuum, and steps S110 and S120 may be performed in different chambers in a multi-chamber apparatus, Step S120 can be continuously performed.

그리고 원하는 두께의 황화주석 박막을 얻기 위해, S110 단계와 S120 단계를 순차적으로 반복 수행할 수 있다. 예컨대, 500nm 두께의 밴드갭이 작은 황화주석 박막을 형성하고자 할 때, 100nm의 황화주석 박막을 증착한 후(S110), 열처리를 수행하고(S120), 이 과정을 4번 더 반복하여 500nm 두께의 밴드갭이 작은 황화주석 박막을 형성할 수 있다.In order to obtain a tin sulfide thin film having a desired thickness, steps S110 and S120 may be repeated in order. For example, when a tin sulphide thin film having a small band gap of 500 nm is to be formed, a tin sulphide thin film having a thickness of 100 nm is deposited (S110), heat treatment is performed (S120) A tin sulphide thin film having a small band gap can be formed.

상술한 방법으로 기판 상에 황화주석 박막을 형성하면, 박막 태양전지의 광흡수층으로 사용하기에 적합한 밴드갭과 비교적 우수한 표면 거칠기와 접착력을 갖는 황화주석 박막을 형성할 수 있게 된다.When a tin sulfide thin film is formed on a substrate by the above-described method, it is possible to form a tin sulfide thin film having a band gap suitable for use as a light absorption layer of a thin film solar cell and a surface roughness and an adhesive strength comparatively excellent.

도 7은 본 발명에 따른 박막 태양전지 제조방법에 대한 일 실시예를 수행하기 위한 흐름도이다.7 is a flowchart illustrating a method of manufacturing a thin film solar cell according to an embodiment of the present invention.

도 7을 참조하면, 본 발명에 따른 박막 태양전지 제조방법에 대한 일 실시예는 우선 기판 상에 후면전극을 형성한다(S710). 후면전극은 태양전지에서 발생한 전기를 전달하는 기능을 하기 위해 내열성이 강하고 전기비저항이 작은 순금속 또는 합금으로 이루어질 수 있다. 예를 들어, 상기 후면전극은 몰리브덴(Mo), 니켈(Ni), 텅스텐(W), 코발트(Co), 티탄(Ti), 구리(Cu), 및 금(Au) 중 하나 또는 이들의 합금으로 이루어질 수 있다.Referring to FIG. 7, an embodiment of a method of fabricating a thin film solar cell according to the present invention first forms a back electrode on a substrate (S710). The back electrode may be made of a pure metal or an alloy having a high heat resistance and a small electrical resistivity so as to transfer electricity generated in the solar cell. For example, the rear electrode may be formed of one of or an alloy of molybdenum (Mo), nickel (Ni), tungsten (W), cobalt (Co), titanium (Ti), copper (Cu) Lt; / RTI &gt;

다음으로, 후면전극 상에 황화주석(SnSx) 광흡수층을 형성한다(S720). 황화주석 광흡수층은 원자층증착법(ALD, Atomic Layer Deposition)을 이용하여 형성할 수 있다. 주석(Sn) 전구체(precursor)로는 TDMASn(Tetrakis(diemethylamino)tin)이 이용될 수 있으며, 반응가스로는 황화수소(H2S)가 이용될 수 있다. TDMASn과 황화수소를 이용하여 140℃ 이하의 저온에서 황화주석 광흡수층을 형성하면 접착력이 우수하고 표면이 매끄러운 비정질(amorphous) 구조의 황화주석 광흡수층이 형성된다. 그러나 상술한 바와 같이 140℃에서 증착된 황화주석 광흡수층은 밴드갭이 상당히 크므로, 박막 태양전지의 광흡수층으로 사용하기 위해서는 후술할 열처리(S730)가 수행되어야 한다Next, a tin sulfide (SnS x ) light absorbing layer is formed on the back electrode (S720). The tin sulfide light absorbing layer can be formed using ALD (Atomic Layer Deposition). As the tin (Sn) precursor, TDMASn (Tetrakis (diethylamino) tin) may be used, and as the reaction gas, hydrogen sulfide (H 2 S) may be used. When a tin sulfide light absorbing layer is formed at a low temperature of 140 ° C or lower using TDMASn and hydrogen sulfide, an amorphous tin sulfide light absorbing layer having excellent adhesion and smooth surface is formed. However, as described above, since the tin sulfide light absorbing layer deposited at 140 캜 has a considerably large band gap, a heat treatment (S730) to be described later must be performed in order to use it as a light absorbing layer of a thin film solar cell

황화주석 광흡수층을 형성하는 S720 단계는 상술한 도 1의 S110 단계와 유사하므로, 자세한 설명은 S110 단계를 참조하고 여기서는 생략한다.The step S720 of forming the tin sulfide light absorbing layer is similar to the step S110 of FIG. 1 described above, and therefore, the detailed description will be omitted with reference to step S110.

다음으로, 황화주석 광흡수층의 밴드갭이 감소되도록 황화주석 광흡수층을 열처리한다(S730). 이때 황화주석 광흡수층은 표면 거칠기와 접착력이 우수한 140℃ 이하에서 증착된 비정질 황화주석 광흡수층을 이용하는 것이 바람직하다. 열처리는 환원 분위기에서 수행될 수 있다. 환원 분위기를 위해 수소를 공급하며 열처리가 수행될 수 있다. 그리고 S730 단계의 열처리는 플라즈마를 인가하며 수행될 수 있고, 이때 이용되는 플라즈마는 수소 플라즈마일 수 있다. S730 단계의 열처리는 30분 동안 수행될 수 있다.Next, the tin sulfide light absorbing layer is heat-treated so that the band gap of the tin sulfide light absorbing layer is reduced (S730). At this time, it is preferable to use an amorphous tin sulfide light absorbing layer deposited at 140 ° C or lower, which is excellent in surface roughness and adhesive strength. The heat treatment can be performed in a reducing atmosphere. Hydrogen can be supplied for the reducing atmosphere and heat treatment can be performed. The heat treatment in step S730 may be performed by applying a plasma, and the plasma used may be a hydrogen plasma. The heat treatment in step S730 may be performed for 30 minutes.

황화주석 광흡수층을 열처리하게 되면, 황화주석 광흡수층의 밴드갭이 감소하게 되며, 열처리 온도가 증가할수록 황화주석 광흡수층의 밴드갭이 감소된다. 특히, 330 ~ 340℃ 온도 범위에서 열처리하게 되면, 1.2 eV의 밴드갭을 갖는 황화주석 광흡수층을 형성할 수 있으며, 이러한 밴드갭은 박막 태양전지의 광흡수층으로 이용하기에 아주 적절하다. 그러나 350℃ 이상의 온도에서 황화주석 광흡수층을 열처리하게 되면, 황화주석 광흡수층이 휘발되어 사라지게 되므로, 350℃ 이상의 온도에서 열처리하는 것은 적절하지 않다.When the tin sulfide light absorbing layer is heat-treated, the band gap of the tin sulfide light absorbing layer is decreased. As the heat treatment temperature is increased, the band gap of the tin sulfide light absorbing layer is decreased. In particular, when the heat treatment is performed in the temperature range of 330 to 340 ° C., a tin sulfide light absorbing layer having a band gap of 1.2 eV can be formed, and this band gap is very suitable for use as a light absorbing layer of a thin film solar cell. However, if the tin sulfide light absorbing layer is heat-treated at a temperature of 350 占 폚 or more, the tin sulfide light absorbing layer is volatilized and disappears, so that it is not suitable to perform heat treatment at 350 占 폚 or more.

이와 같이 기판 상에 증착된 황화주석 광흡수층을 열처리하게 되면, 박막 내에 일황화주석(SnS, tin monosulfide)의 함량이 증가하게 되고, 적절한 온도에서 적정 시간 열처리를 수행하면, 기판 상에 단일상(single phase)의 일황화주석 광흡수층을 형성할 수 있게 된다. 이러한 일황화주석으로 이루어진 황화주석 광흡수층은 1.2 ~ 1.3 eV의 밴드갭을 가지게 된다.When the tin sulfide light absorbing layer deposited on the substrate is subjected to heat treatment, the content of tin monosulfide (SnS) increases in the thin film, and if the heat treatment is performed at an appropriate temperature for a suitable time, single-phase tin sulfide light absorbing layer can be formed. The tin sulfide light absorbing layer made of such tin sulfide has a band gap of 1.2 to 1.3 eV.

황화주석 광흡수층을 열처리하여 밴드갭이 낮은 황화주석 광흡수층을 형성하는 S730 단계는 상술한 도 1의 S120 단계와 유사하므로, 자세한 설명은 S120 단계를 참조하고 여기서는 생략한다.The step S730 of forming the tin sulphide light absorbing layer having a low bandgap by heat-treating the tin sulphide light absorbing layer is similar to the step S120 of FIG. 1 described above, and therefore, the detailed description will be omitted here.

기판 상에 황화주석 광흡수층을 형성하는 S720 단계와 황화주석 광흡수층을 열처리하는 S730 단계는 인-시튜(in-situ)로 수행할 수 있다. 하나의 챔버에서 S720 단계와 S730 단계를 진공을 깨지 않은 상태에서 연속적으로 수행할 수도 있고, 멀티 챔버를 갖는 장비에서 S720 단계와 S730 단계를 각기 다른 챔버에서 수행하되, 진공 상태는 유지하면서 S720 단계와 S730 단계를 수행할 수 있다.The step S720 of forming the tin sulfide light absorbing layer on the substrate and the step S730 of heat treating the tin sulfide light absorbing layer may be performed in-situ. S720 and S730 may be continuously performed in a single chamber without breaking the vacuum. In a multi-chamber apparatus, steps S720 and S730 may be performed in different chambers, while maintaining the vacuum state. Step S730 may be performed.

그리고 원하는 두께의 황화주석 광흡수층을 얻기 위해, S720 단계와 S730 단계를 순차적으로 반복 수행할 수 있다. 예컨대, 500nm 두께의 밴드갭이 작은 황화주석 광흡수층을 형성하고자 할 때, 100nm의 황화주석 광흡수층을 형성한 후(S720), 열처리를 수행하는(S730) 과정을 5번 반복해서 500nm 두께의 밴드갭이 작은 황화주석 광흡수층을 형성할 수 있다.In order to obtain a tin sulfide light absorbing layer having a desired thickness, steps S720 and S730 may be repeated in sequence. For example, when a tin sulphide light absorbing layer having a small band gap of 500 nm is formed, a tin sulphide light absorbing layer having a thickness of 100 nm is formed (S720), and a heat treatment is performed (S730) A tin sulfide light absorbing layer with a small gap can be formed.

다음으로, 광흡수층 상에 투명전극을 형성한다(S740). 투명전극은 산화아연(ZnO), 산화주석(SnO2) 또는 산화-인듐-주석(ITO) 등으로 이루어질 수 있다.Next, a transparent electrode is formed on the light absorption layer (S740). The transparent electrode may be made of zinc oxide (ZnO), tin oxide (SnO 2 ), or oxide-indium-tin (ITO).

상술한 방법으로 제조된 박막 태양전지는 기판 상에 후면전극, 광흡수층, 투명전극이 순차적으로 적층된 구조로, 광흡수층이 밴드갭이 작은 황화주석 박막으로 이루어져 광흡수율이 우수하게 된다. 이때 황화주석 광흡수층은 단일상의 일황화주석으로 이루어지게 되며, 밴드갭은 1.2 ~ 1.3 eV 정도가 된다. 이러한 황화주석 광흡수층은 간단한 이원계 화합물이며, 무독성이고 저가의 범용(earth-abudant) 원소들로 이루어져 저렴한 비용과 간단한 공정으로 형성할 수 있다.The thin film solar cell manufactured by the above-described method has a structure in which a back electrode, a light absorbing layer, and a transparent electrode are sequentially laminated on a substrate, and the light absorbing layer is made of a tin sulfide thin film having a small band gap. At this time, the tin sulfide light absorbing layer is composed of a single phase of tin sulfide and has a band gap of about 1.2 to 1.3 eV. Such a tin sulfide light absorbing layer is a simple binary compound, and it can be formed with low cost and simple process because it is composed of non-toxic and low-cost earth-abundant elements.

이상에서 본 발명의 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be construed as limited to the particular embodiments set forth herein. It will be understood by those skilled in the art that various changes may be made and equivalents may be resorted to without departing from the scope of the appended claims.

Claims (31)

기판 상에 비정질(amorphous) 황화주석(SnSx) 박막을 형성하는 단계; 및
상기 황화주석 박막을 열처리하여 단일상(single phase)의 일황화주석(SnS) 박막을 형성하는 단계;를 포함하며,
상기 황화주석(SnSx) 박막은 TDMASn(Tetrakis(diemethylamino)tin)과 H2S를 이용하여 140℃ 이하의 온도에서 원자층증착법(ALD, Atomic Layer Deposition)에 의해 형성하며,
상기 열처리는, 상기 황화주석(SnSx) 박막의 밴드갭이 1.2 내지 1.3 eV가 되도록, 수소(H2) 분위기에서 330 내지 340℃ 범위의 온도에서 수행하는 것을 특징으로 하는 황화주석 박막 형성 방법.
Forming an amorphous tin sulfide (SnS x ) thin film on a substrate; And
And annealing the tin sulphide thin film to form a single phase tin sulphide (SnS) thin film,
The SnS x thin film is formed by Atomic Layer Deposition (ALD) at a temperature of 140 ° C or below using TDMASn (Tetrakis (diethylamino) tin) and H 2 S,
Wherein the heat treatment is performed in a hydrogen (H 2 ) atmosphere at a temperature ranging from 330 to 340 ° C. so that the band gap of the tin sulfide (SnS x ) thin film is 1.2 to 1.3 eV.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 열처리는 플라즈마를 인가하여 수행되는 것을 특징으로 하는 황화주석 박막 형성 방법.
The method according to claim 1,
Wherein the heat treatment is performed by applying a plasma.
제5항에 있어서,
상기 플라즈마는 수소 플라즈마인 것을 특징으로 하는 황화주석 박막 형성 방법.
6. The method of claim 5,
Wherein the plasma is a hydrogen plasma.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 황화주석 박막 형성 후, 인-시튜(in-situ)로 상기 열처리가 수행되는 것을 특징으로 하는 황화주석 박막 형성 방법.
The method according to claim 1,
Wherein the annealing is performed in-situ after forming the tin sulfide thin film.
제1항에 있어서,
상기 황화주석 박막을 형성하는 단계와 상기 열처리하는 단계를 순차적으로 반복 수행하여, 상기 황화주석 박막을 원하는 두께로 형성하는 것을 특징으로 하는 황화주석 박막 형성 방법.
The method according to claim 1,
Wherein the step of forming the tin sulphide thin film and the step of performing the heat treatment are sequentially repeated to form the tin sulphide thin film to a desired thickness.
삭제delete 삭제delete 기판 상에 후면전극을 형성하는 단계;
상기 후면전극 상에 비정질(amorphous) 황화주석(SnSx) 광흡수층을 형성하는 단계;
상기 황화주석 광흡수층을 열처리하여 단일상(single phase)의 일황화주석(SnS) 광흡수층을 형성하는 단계; 및
상기 일황화주석 광흡수층 상에 투명전극을 형성하는 단계;를 포함하며,
상기 황화주석(SnSx) 광흡수층은 TDMASn(Tetrakis(diemethylamino)tin)과 H2S를 이용하여 140℃ 이하의 온도에서 원자층증착법(ALD, Atomic Layer Deposition)에 의해 형성하며,
상기 열처리는, 상기 황화주석(SnSx) 광흡수층의 밴드갭이 1.2 내지 1.3 eV가 되도록, 수소(H2) 분위기에서 330 내지 340℃ 범위의 온도에서 수행하는 것을 특징으로 하는 태양전지 제조 방법.
Forming a back electrode on the substrate;
Forming an amorphous tin sulfide (SnS x ) light absorbing layer on the rear electrode;
Heat treating the tin sulfide light absorbing layer to form a single phase tin sulphide (SnS) light absorbing layer; And
And forming a transparent electrode on the tin sulfide light absorbing layer,
The tin sulfide (SnS x ) light absorption layer is formed by ALD (Atomic Layer Deposition) at a temperature of 140 ° C or less using TDMASn (Tetrakis (diethylamino) tin) and H 2 S,
Wherein the heat treatment is performed at a temperature ranging from 330 to 340 ° C in a hydrogen (H 2 ) atmosphere such that the band gap of the tin sulfide (SnS x ) light absorption layer is 1.2 to 1.3 eV.
삭제delete 삭제delete 삭제delete 제16항에 있어서,
상기 열처리는 플라즈마를 인가하여 수행되는 것을 특징으로 하는 박막 태양전지 제조방법.
17. The method of claim 16,
Wherein the heat treatment is performed by applying a plasma.
제20항에 있어서,
상기 플라즈마는 수소 플라즈마인 것을 특징으로 하는 박막 태양전지 제조방법.
21. The method of claim 20,
Wherein the plasma is a hydrogen plasma.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제16항에 있어서,
상기 황화주석 광흡수층 형성 후, 인-시튜(in-situ)로 상기 열처리가 수행되는 것을 특징으로 하는 박막 태양전지 제조방법.
17. The method of claim 16,
Wherein the heat treatment is performed in-situ after forming the tin sulfide light absorbing layer.
제16항에 있어서,
상기 황화주석 광흡수층을 형성하는 단계와 상기 열처리하는 단계를 순차적으로 반복 수행하여, 상기 황화주석 광흡수층을 원하는 두께로 형성하는 것을 특징으로 하는 박막 태양전지 제조방법.
17. The method of claim 16,
Wherein the step of forming the tin sulfide light absorbing layer and the step of performing the heat treatment are sequentially repeated to form the tin sulfide light absorbing layer to a desired thickness.
삭제delete 삭제delete 삭제delete
KR1020160051358A 2016-04-27 2016-04-27 Tin sulfide thin film and method of forming the same, thin film solar cell and method of manufacturing the same KR101869337B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160051358A KR101869337B1 (en) 2016-04-27 2016-04-27 Tin sulfide thin film and method of forming the same, thin film solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160051358A KR101869337B1 (en) 2016-04-27 2016-04-27 Tin sulfide thin film and method of forming the same, thin film solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20170122433A KR20170122433A (en) 2017-11-06
KR101869337B1 true KR101869337B1 (en) 2018-06-20

Family

ID=60384095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160051358A KR101869337B1 (en) 2016-04-27 2016-04-27 Tin sulfide thin film and method of forming the same, thin film solar cell and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR101869337B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004095B1 (en) 2018-07-16 2019-07-25 한양대학교 산학협력단 Method of forming tin disulfide thin film
KR20200110848A (en) 2019-03-18 2020-09-28 에이치디씨아이콘트롤스 주식회사 2D SnS Layer with controlled Orientation and 2D SnS Layer
KR20200110849A (en) 2019-03-18 2020-09-28 에이치디씨아이콘트롤스 주식회사 SnS Film Manufacturing Method, SnS Film, and Photovoltaic Device Using It
KR20210014353A (en) 2019-07-30 2021-02-09 한양대학교 산학협력단 Method for controlling crystal growth behavior of thin-film
KR20210157215A (en) 2020-06-19 2021-12-28 김준동 Transparent Photoelectronic Device and Manufacturing Method Thereof
KR20210157211A (en) 2020-06-19 2021-12-28 김준동 Metal Oxide Inorganic Transparent Solar Cells and Manufacturing Method Thereof
KR20230060269A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 Bifacial Color-Tunable Transparent Photovoltaics and their manufacturing methods
KR20230060263A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 A Transparent photovoltaic memory for neuromorphic device and their manufacturing methods
KR20230060272A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 Transparent solar cells with multilayer front electrodes and their manufacturing methods
KR20230060262A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 Transparent solar cells with adjusted thickness of light transmission layer and their manufacturing methods
KR20230060275A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 A Transparent Photovoltaics including a nanodome electrode that condenses light and their manufacturing methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102130274B1 (en) * 2017-12-29 2020-07-08 인천대학교 산학협력단 Photoelectric device and manufacturing method thereof
KR102061501B1 (en) 2018-05-23 2020-01-02 한국과학기술연구원 Method of fabricating tin sulfide thin film
KR102180212B1 (en) * 2019-04-02 2020-11-18 한양대학교 산학협력단 Method for manufacturing high mobility tin disurfide thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655187A (en) * 2012-04-26 2012-09-05 华中科技大学 Method for preparing tin-sulfur compound laminated solar battery
CN104167469A (en) 2014-08-12 2014-11-26 华中科技大学 Method for manufacturing SnS2/SnS heterojunction thin-film solar cell at a time

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167676A (en) * 1997-08-15 1999-03-09 Star Micronics Co Ltd Manufacture of stannous sulfide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655187A (en) * 2012-04-26 2012-09-05 华中科技大学 Method for preparing tin-sulfur compound laminated solar battery
CN104167469A (en) 2014-08-12 2014-11-26 华中科技大学 Method for manufacturing SnS2/SnS heterojunction thin-film solar cell at a time

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Leach et al.: "Tin Sulphide Thin Films Synthesised using a Two Step Process", Energy Procedia 15 (2012) p371-378 (2012.12.31.)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004095B1 (en) 2018-07-16 2019-07-25 한양대학교 산학협력단 Method of forming tin disulfide thin film
KR20200110848A (en) 2019-03-18 2020-09-28 에이치디씨아이콘트롤스 주식회사 2D SnS Layer with controlled Orientation and 2D SnS Layer
KR20200110849A (en) 2019-03-18 2020-09-28 에이치디씨아이콘트롤스 주식회사 SnS Film Manufacturing Method, SnS Film, and Photovoltaic Device Using It
KR20210014353A (en) 2019-07-30 2021-02-09 한양대학교 산학협력단 Method for controlling crystal growth behavior of thin-film
KR20210157215A (en) 2020-06-19 2021-12-28 김준동 Transparent Photoelectronic Device and Manufacturing Method Thereof
KR20210157211A (en) 2020-06-19 2021-12-28 김준동 Metal Oxide Inorganic Transparent Solar Cells and Manufacturing Method Thereof
KR20230060269A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 Bifacial Color-Tunable Transparent Photovoltaics and their manufacturing methods
KR20230060263A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 A Transparent photovoltaic memory for neuromorphic device and their manufacturing methods
KR20230060272A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 Transparent solar cells with multilayer front electrodes and their manufacturing methods
KR20230060262A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 Transparent solar cells with adjusted thickness of light transmission layer and their manufacturing methods
KR20230060275A (en) 2021-10-27 2023-05-04 인천대학교 산학협력단 A Transparent Photovoltaics including a nanodome electrode that condenses light and their manufacturing methods

Also Published As

Publication number Publication date
KR20170122433A (en) 2017-11-06

Similar Documents

Publication Publication Date Title
KR101869337B1 (en) Tin sulfide thin film and method of forming the same, thin film solar cell and method of manufacturing the same
US20160141441A1 (en) Control of composition profiles in annealed cigs absorbers
KR101893411B1 (en) A preparation method of solar cell using ZnS buffer layer
KR101908475B1 (en) A solar cell comprising CZTS Thin film with a oxide buffer layer and a method of manufacturing the same
KR101628312B1 (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
EP2530724A2 (en) Photovoltaic devices and method of making
EP2437316A2 (en) Photovoltaic device and method for making the same
CN103855232B (en) Photovoltaic device and its manufacture method
KR101870236B1 (en) Method for manufacturing a double-sided CZTS solar cell using a transparent conductive oxide film substrate and a solar cell prepared from same
KR101542343B1 (en) Thin film solar cell and method of fabricating the same
KR20180034274A (en) CZTS-based thin film solar cell comprising silver and method the same
US9496446B2 (en) Photovoltaic devices and method of making
US8912037B2 (en) Method for making photovoltaic devices using oxygenated semiconductor thin film layers
EP2538458A2 (en) Methods of making absorber layers for photovoltaic devices and photovoltaic devices
WO2014140875A2 (en) Method of making photovoltaic devices
JP6297038B2 (en) Thin film solar cell and method for manufacturing thin film solar cell
Kodigala Cu (In1− xGax) Se2 and CuIn (Se1− xSx) 2 thin film solar cells
KR101908472B1 (en) Method of manufacturing of CZTS-based absorber layer using metal and compound thin film
CN107735867B (en) Photovoltaic cell and manufacturing method thereof
KR102075633B1 (en) Preparation method for CZTSSe-based film and manufacturing method for film solar cell by using the preparation method
KR101552968B1 (en) Fabrication Method of CIGS Thin Films and its application to Thin Film Solar Cells
KR102057234B1 (en) Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same
US20220246786A1 (en) Method for producing a double graded cdsete thin film structure
US20140060608A1 (en) Photovoltaic device and method of making
KR101811354B1 (en) Method for manufacturing czts-based thin film solar cell by potassium treatment on surface of absorber layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)