KR101852763B1 - Method for Manufacturing Electrodes for Secondary Battery Using Surface Plasmon Resonance - Google Patents

Method for Manufacturing Electrodes for Secondary Battery Using Surface Plasmon Resonance Download PDF

Info

Publication number
KR101852763B1
KR101852763B1 KR1020140128993A KR20140128993A KR101852763B1 KR 101852763 B1 KR101852763 B1 KR 101852763B1 KR 1020140128993 A KR1020140128993 A KR 1020140128993A KR 20140128993 A KR20140128993 A KR 20140128993A KR 101852763 B1 KR101852763 B1 KR 101852763B1
Authority
KR
South Korea
Prior art keywords
group
current collector
pattern
electrode mixture
electrode
Prior art date
Application number
KR1020140128993A
Other languages
Korean (ko)
Other versions
KR20160036855A (en
Inventor
이명기
안지희
김석구
이은주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020140128993A priority Critical patent/KR101852763B1/en
Publication of KR20160036855A publication Critical patent/KR20160036855A/en
Application granted granted Critical
Publication of KR101852763B1 publication Critical patent/KR101852763B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 (a) 집전체 표면의 일부 또는 전부에 나노미터 깊이의 패턴을 형성하는 과정; (b) 상기 패턴이 형성된 집전체 표면에 전극 활물질, 바인더 및 도전재를 포함하는 전극 합제를 도포하는 과정; 및 (c) 상기 전극 합제가 도포된 집전체 표면에 광을 조사하여 표면 플라즈몬 공명을 유도하는 과정;을 포함하는 이차전지용 전극의 제조 방법 및 이에 의해 제조되는 이차전지용 전극에 관한 것이다.(A) forming a pattern of a nanometer depth on a part or all of the surface of the current collector; (b) applying an electrode mixture including an electrode active material, a binder, and a conductive material to a surface of the current collector on which the pattern is formed; And (c) irradiating light on the surface of the current collector coated with the electrode mixture to induce surface plasmon resonance. The present invention also relates to a secondary battery electrode manufactured by the method.

Description

표면 플라즈몬 공명을 이용한 이차전지용 전극의 제조 방법 {Method for Manufacturing Electrodes for Secondary Battery Using Surface Plasmon Resonance}TECHNICAL FIELD [0001] The present invention relates to a surface plasmon resonance

본 발명은 표면 플라즈몬 공명을 이용한 이차전지용 전극의 제조 방법 및 이에 의해 제조되는 이차전지용 전극에 관한 것이다.The present invention relates to a method for manufacturing an electrode for a secondary battery using surface plasmon resonance, and an electrode for a secondary battery manufactured by the method.

화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다.Due to the rapid increase in the use of fossil fuels, the demand for the use of alternative energy or clean energy is increasing. As a part of this, the most active field of research is electric power generation and storage.

현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.At present, a typical example of an electrochemical device utilizing such electrochemical energy is a secondary battery, and the use area thereof is gradually increasing.

최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔으며, 또한 상용화되어 널리 사용되고 있다.2. Description of the Related Art [0002] Recently, as technology development and demand for portable devices such as portable computers, portable phones, and cameras have increased, the demand for secondary batteries as energy sources has increased sharply. Among such secondary batteries, they exhibit high energy density and operating potential, Many researches have been made on a lithium secondary battery having a long self discharge rate, and it has been commercialized and widely used.

일반적으로 리튬 이차전지는 전극 활물질로서 리튬 전이금속 산화물을 포함하는 양극과 카본계 활물질을 포함하는 음극, 및 양극과 음극 사이에 폴리올레핀계 다공성 분리막이 개재되어 있는 전극조립체에 LiPF6 등의 리튬염을 포함하는 비수성 전해액이 함침되어 있는 구조로 이루어져 있다.Generally, a lithium secondary battery includes a lithium salt such as LiPF 6 in an electrode assembly including a cathode including a lithium transition metal oxide as an electrode active material and a cathode including a carbonaceous active material, and a polyolefin porous separator interposed between the anode and the cathode. And a non-aqueous electrolytic solution containing a non-aqueous electrolyte solution is impregnated.

구체적으로, 양극 및 음극은 구리 또는 알루미늄 호일을 집전체로 사용하고, 집전체 상에 전극 활물질, 도전재 및 바인더를 포함하는 전극 합제를 도포한 후 건조하여 제조한다. 특히, 바인더는 전극 활물질을 집전체에 접착시키기 위하여 첨가하는 성분으로, 바인더의 종류 및 함량에 따라 리튬 이차전지의 성능 및 안전성에 영향을 미친다.Specifically, the positive electrode and the negative electrode are prepared by applying an electrode mixture containing an electrode active material, a conductive material, and a binder on a current collector using copper or aluminum foil as a current collector, and drying. In particular, the binder is a component added to adhere the electrode active material to the current collector, and affects the performance and safety of the lithium secondary battery depending on the type and content of the binder.

예를 들어, 리튬 이차전지는 충전 및 방전 시 리튬 이온에 의해 전극 합제의 수축, 팽창이 반복되기 때문에 전극 합제와 집전체 사이의 결합력이 낮아지고, 그 부분의 접촉 저항이 높아지게 된다. 더 나아가, 접촉 저항이 높아진 부분에서 부반응이 발생하여 전지의 수명이 퇴화하며, 높은 저항으로 인해 전지의 출력 특성도 저하된다.For example, the lithium secondary battery is repeatedly shrunk and expanded due to lithium ions during charging and discharging, so that the coupling force between the electrode mixture and the current collector is lowered, and the contact resistance of that portion is increased. Furthermore, a side reaction occurs at a portion where the contact resistance is increased, and the life of the battery deteriorates, and the output characteristics of the battery also deteriorate due to the high resistance.

또한, 전극 합제와 집전체 사이의 결합력이 낮은 경우에는, 전극 합제가 집전체로부터 탈리되어 반대 전극과의 국부적인 단락을 일어날 수도 있으므로 전지의 안전성에도 유해하다.In addition, when the bonding force between the electrode mixture and the current collector is low, the electrode mixture may be separated from the current collector, resulting in a local short circuit with the opposite electrode, which is also detrimental to the safety of the battery.

이러한 문제를 해결하기 위해 바인더의 함량을 높이면, 전기적으로 부도체인 바인더로 인해 전지의 저항이 증가할 뿐만 아니라, 상대적으로 활물질의 양이 줄어 용량이 낮아지는 등 전지의 전반적인 성능이 저하되므로, 바인더의 함량을 높이는 것은 한계가 있다.In order to solve this problem, if the content of the binder is increased, the overall performance of the battery deteriorates due to an increase in the resistance of the battery due to the electrically non-conductive binder and a decrease in the amount of the active material relative to that of the binder. Increasing the content has limitations.

종래에는 전극 합제를 집전체에 도포한 후 건조하는 방법을 달리하여 이러한 문제들을 해결하고자 하는 시도가 있었다. 구체적으로, 전극 합제의 건조 조건이 좋지 못하면 바인더가 전극 합제 내에서 집전체 표면과 반대 방향으로 이동하여, 전극 합제와 집전체 간의 접착력이 저하되는 현상이 발생함을 확인하고, 이러한 현상을 억제하기 위해서 낮은 온도에서 집전체를 건조시키거나, 건조 시간을 매우 길게 유지하려는 시도가 있었다. 하지만, 이러한 경우 전극 제조에 긴 시간이 소요되고, 공정비용이 상승하는 문제가 있었다.Conventionally, attempts have been made to solve these problems by applying a method of applying an electrode mixture to a current collector and drying the electrode mixture. Specifically, it has been confirmed that if the drying condition of the electrode mixture is poor, the binder moves in a direction opposite to the surface of the current collector in the electrode mixture, and the adhesion between the electrode mixture and the current collector is lowered. There has been an attempt to dry the current collector at a low temperature or to keep the drying time very long. However, in this case, it takes a long time to manufacture the electrode, and the process cost is increased.

따라서, 전극의 안전성을 도모하고, 전지의 수명특성, 출력특성을 향상시킬 수 있도록 전극 합제와 집전체의 결합력을 향상시킬 수 있는 기술에 대한 필요성이 높은 실정이다.Therefore, there is a high need for a technique capable of enhancing the bonding force between the electrode assembly and the current collector so as to improve the safety of the electrode and improve the life characteristics and output characteristics of the battery.

본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and the technical problems required from the past.

본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 집전체 표면에 나노미터 깊이의 패턴을 형성하는 과정, 바인더를 포함하는 전극 합제를 도포하는 과정 및 집전체 표면에 광을 조사하여 표면 플라즈몬 공명을 유도하는 과정을 포함하는 경우, 예상치 못하게 우수한 효과를 달성할 수 있는 것을 확인하고, 본 발명을 완성하기에 이르렀다.The inventors of the present application have conducted intensive research and various experiments, and have found that, as will be described later, the process of forming a pattern with a nanometer depth on the surface of a current collector, a process of applying an electrode mixture containing a binder, And irradiating light to the surface plasmon resonance to induce surface plasmon resonance, it has been found that an unexpectedly excellent effect can be achieved, and the present invention has been accomplished.

따라서, 본 발명에 따른 이차전지용 전극의 제조 방법은, (a) 집전체 표면의 일부 또는 전부에 나노미터 깊이의 패턴을 형성하는 과정; (b) 상기 패턴이 형성된 집전체 표면에 전극 활물질, 바인더 및 도전재를 포함하는 전극 합제를 도포하는 과정; 및 (c) 상기 전극 합제가 도포된 집전체 표면에 광을 조사하여 표면 플라즈몬 공명을 유도하는 과정;을 포함하는 것을 특징으로 한다.Accordingly, a method of manufacturing an electrode for a secondary battery according to the present invention includes the steps of: (a) forming a pattern having a nanometer depth on part or all of a surface of a current collector; (b) applying an electrode mixture including an electrode active material, a binder, and a conductive material to a surface of the current collector on which the pattern is formed; And (c) inducing surface plasmon resonance by irradiating light onto the surface of the current collector coated with the electrode mixture.

상기 과정(c)에서 전극 합제가 도포된 집전체 표면에 광을 조사하면서 동시에 전극 합제를 건조시킬 수 있다.In the step (c), the electrode mixture may be dried while irradiating the surface of the collector coated with the electrode mixture.

상기 과정(c) 이후에 하기 과정을 더 포함할 수 있다:After the step (c), the process may further include the following steps:

(d) 상기 광을 조사한 집전체를 건조하는 과정.(d) drying the current collector irradiated with the light.

상기 패턴은 양각 또는 음각의 형상일 수 있으며, 상기 패턴은 1 내지 900 nm의 깊이로 형성되는 구조일 수 있고, 상세하게는 1 내지 200 nm의 깊이로 형성되는 구조일 수 있다.The pattern may be a relief or a relief pattern, and the pattern may be formed to a depth of 1 to 900 nm, and more specifically, a depth of 1 to 200 nm.

상기 패턴은 물리적 또는 화학적 표면처리를 통해서 형성될 수 있으며, 상세하게는, 상기 표면처리는 화학적 에칭일 수 있다.The pattern may be formed through a physical or chemical surface treatment, and in particular, the surface treatment may be a chemical etching.

상기 광의 파장은 10 내지 1000 nm일 수 있으며, 상세하게는 350 내지 500 nm일 수 있다. 또한, 상기 광은 레이저 광일 수 있다.The wavelength of the light may be 10 to 1000 nm, and more specifically 350 to 500 nm. Further, the light may be laser light.

상기 과정(c)에서 광은 1 내지 30초 동안 조사될 수 있다.In step (c), the light may be irradiated for 1 to 30 seconds.

상기 바인더는 1종 이상의 단량체가 중합된 고분자일 수 있고, 상기 단량체는 1종 이상의 방향족 화합물을 포함할 수 있으며, 상기 방향족 화합물은 알콜기, 티올기, 카르복실기, 질산기, 아질산기, 아민기, 이민기, 시안기, 디설파이드기, 황산기 및 아황산기로 이루어진 군으로부터 선택된 1종 이상의 작용기를 포함할 수 있다.The aromatic compound may be an alcohol group, a thiol group, a carboxyl group, a nitrate group, a nitrite group, an amine group, a nitrile group, An imine group, a cyano group, a disulfide group, a sulfuric acid group and a sulfurous group.

상기 집전체는 두께가 3 내지 500 ㎛일 수 있다.The current collector may have a thickness of 3 to 500 mu m.

상기 과정(b)에서 전극 합제는 100 내지 1500 ㎛의 두께로 도포될 수 있다.In the step (b), the electrode mixture may be applied in a thickness of 100 to 1500 μm.

본 발명은 또한, 상기 제조 방법에 의해 제조되는 이차전지용 전극을 제공하며, 상기 이차전지용 전극을 포함하는 리튬 이차전지를 제공한다.The present invention also provides an electrode for a secondary battery manufactured by the above manufacturing method, and provides the lithium secondary battery including the electrode for the secondary battery.

본 발명은 또한, 상기 리튬 이차전지를 단위셀로서 포함하는 전지팩을 제공하며, 상기 전지팩을 포함하는 디바이스를 제공한다.The present invention also provides a battery pack including the lithium secondary battery as a unit cell, and a device including the battery pack.

상기 디바이스는 예를 들어, 컴퓨터, 휴대폰, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle: EV), 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전기 이륜차, 전기 골프 카트, 또는 전력저장용 시스템 등일 수 있다.The device may be, for example, a computer, a mobile phone, a wearable electronic device, a power tool, an electric vehicle (EV), a hybrid electric vehicle, a plug- A power storage system, and the like.

상기에서 설명한 바와 같이, 본 발명에 따른 이차전지용 전극의 제조 방법은, 집전체 표면에 나노미터 깊이의 패턴을 형성하는 과정, 바인더를 포함하는 전극 합제를 도포하는 과정 및 집전체 표면에 광을 조사하여 표면 플라즈몬 공명을 유도하는 과정을 포함하여, 집전체와 전극 합제의 결합력을 향상시킴으로써, 전극의 안전성, 전지의 수명특성 및 출력특성을 향상시킬 수 있다. As described above, the method for manufacturing an electrode for a secondary battery according to the present invention includes the steps of forming a pattern having a nanometer depth on the surface of a current collector, applying an electrode mixture containing a binder, And enhancing the bonding force between the current collector and the electrode mixture, including a process of inducing surface plasmon resonance, thereby improving the safety of the electrode, the lifetime characteristics of the battery, and the output characteristics.

이하에서는, 본 발명의 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
Hereinafter, an embodiment of the present invention will be described, but it is to be understood that the scope of the present invention is not limited thereto.

본 발명에 따른 이차전지용 전극의 제조 방법은, (a) 집전체 표면의 일부 또는 전부에 나노미터 깊이의 패턴을 형성하는 과정; (b) 상기 패턴이 형성된 집전체 표면에 전극 활물질, 바인더 및 도전재를 포함하는 전극 합제를 도포하는 과정; 및 (c) 상기 전극 합제가 도포된 집전체 표면에 광을 조사하여 표면 플라즈몬 공명을 유도하는 과정;을 포함하는 것을 특징으로 한다.A method of manufacturing an electrode for a secondary battery according to the present invention includes the steps of: (a) forming a pattern having a nanometer depth on a part or all of a surface of a current collector; (b) applying an electrode mixture including an electrode active material, a binder, and a conductive material to a surface of the current collector on which the pattern is formed; And (c) inducing surface plasmon resonance by irradiating light onto the surface of the current collector coated with the electrode mixture.

표면 플라즈몬 공명(Surface plasmon resonance, SPR)은, 나노미터 크기의 금속 구조에 광을 조사할 때, 금속 구조의 표면에 전자가 집중되고 진동하여 들뜬 표면 상태가 되는 현상으로, 이렇게 표면 플라즈몬 공명에 의해 들뜬 금속 표면은 근처에 존재하는 물질을 흡인하게 된다.Surface plasmon resonance (SPR) is a phenomenon in which electrons are concentrated on the surface of a metal structure when irradiated with light of a nanometer-sized metal structure, resulting in vibrating and exciting surface states. Thus, surface plasmon resonance The excited metal surface sucks the material present in the vicinity.

따라서, 집전체 표면에 나노미터 깊이의 패턴을 형성하고, 바인더를 포함하는 전극 합제를 도포한 후, 집전체 표면에 광을 조사하면, 집전체 표면의 패턴에 표면 플라즈몬 공명이 발생하고, 이에 의해, 집전체 표면에 도포된 전극 합제, 특히, 바인더를 집전체 표면으로 흡인하게 되어, 집전체와 전극 합제의 결합력이 향상된다.Therefore, when a pattern of a nanometer depth is formed on the surface of the current collector, and an electrode mixture containing a binder is applied, light is irradiated to the surface of the current collector, surface plasmon resonance occurs in the pattern of the surface of the current collector, , The electrode mixture applied on the surface of the current collector, particularly the binder, is attracted to the surface of the current collector, so that the bonding force between the current collector and the electrode mixture is improved.

하나의 구체적인 예에서, 상기 패턴은 표면 플라즈몬 공명을 유발할 수 있는 나노미터 깊이이기만 하면 특별히 한정되지 않지만, 양각 또는 음각의 형상일 수 있고, 1 내지 900 nm의 깊이로 형성되는 구조일 수 있으며, 상세하게는 1 내지 200 nm의 깊이로 형성되는 구조일 수 있다. 상기 패턴의 깊이가 1 nm 미만이거나, 또는 900 nm를 초과하는 경우에는 표면 플라즈몬 공명이 잘 유도되지 않는 문제가 있다.In one specific example, the pattern is not particularly limited as long as it is a nanometer depth that can induce surface plasmon resonance, but it may be a shape with a relief or a depressed shape, a structure formed with a depth of 1 to 900 nm, May be formed at a depth of 1 to 200 nm. When the depth of the pattern is less than 1 nm or exceeds 900 nm, surface plasmon resonance is not induced well.

한편, 상기 패턴은 물리적 또는 화학적 표면처리를 통해서 형성될 수 있고, 상세하게는 화학적 에칭에 의해 형성될 수 있지만, 이에 한정되는 것은 아니다.On the other hand, the pattern may be formed through physical or chemical surface treatment, and in detail, may be formed by chemical etching, but is not limited thereto.

또한, 상기 광의 파장은 10 내지 1000 nm일 수 있고, 상세하게는 350 내지 500 nm일 수 있다. 이러한 광의 파장은 집전체를 이루는 금속물질의 종류 및 패턴의 깊이 및 형상에 따라 적절히 선택할 수 있다.In addition, the wavelength of the light may be 10 to 1000 nm, and more specifically 350 to 500 nm. The wavelength of such light can be appropriately selected depending on the kind of metal material constituting the collector and the depth and shape of the pattern.

상기 광은 레이저 광일 수 있으며, 레이저 광은 일반 광에 비해 강한 에너지를 가지므로, 짧은 시간 내에 표면 플라즈몬 공명을 유도할 수 있는 장점이 있다.The light may be laser light, and the laser light has a stronger energy than that of the ordinary light, so that it can induce surface plasmon resonance in a short time.

하나의 구체적인 예에서, 상기 과정(b)에서 전극 합제는 100 내지 1500 ㎛의 두께로 도포될 수 있다. 100 ㎛ 미만의 두께로 도포되는 경우 전지의 용량을 확보하기 어려우며, 1500 ㎛ 초과하는 두께로 도포되는 경우 전극 합제의 두께가 너무 두꺼워 전지의 레이트 특성이 저하되며, 또한, 전극 합제층을 레이저 광이 투과하여 집전체의 표면에 도달하기 어려우므로, 표면 플라즈몬 공명을 유도하기 어려워진다.In one specific example, the electrode mixture in step (b) may be applied in a thickness of 100 to 1500 [mu] m. It is difficult to secure the capacity of the battery when it is applied to a thickness of less than 100 μm and when the thickness of the electrode mixture is more than 1500 μm, the thickness of the electrode mixture becomes too thick, It is difficult to reach the surface of the current collector through permeation, so that it is difficult to induce surface plasmon resonance.

하나의 구체적인 예에서, 상기 과정(c)에서 전극 합제가 도포된 집전체 표면에 광을 조사하면서 동시에 전극 합제를 건조시킬 수 있다. 이 경우 전극 합제에 광을 조사하는 별도의 단계를 요하지 않으므로, 전극 제조 공정 시간을 단축할 수 있다. In one specific example, in the step (c), the electrode mixture can be dried while simultaneously irradiating the surface of the current collector coated with the electrode mixture. In this case, since no separate step of irradiating light to the electrode mixture is required, it is possible to shorten the electrode manufacturing process time.

상기 과정(c)에서 광은 1 내지 30초 동안 조사될 수 있고 상세하게는 5 내지 20초 동안 조사될 수 있다. 1초 미만으로 조사되는 경우에는 충분한 에너지가 공급되지 않아, 표면 플라즈몬 공명이 유도되기 어려울 수 있고, 30초를 초과하여 조사되는 경우에는, 공정 전체적으로 볼 때 에너지 효율의 저하를 초래할 수 있다.In the process (c), the light can be irradiated for 1 to 30 seconds, and specifically, for 5 to 20 seconds. If irradiation is performed for less than 1 second, sufficient energy is not supplied, surface plasmon resonance may be difficult to induce, and if irradiated for more than 30 seconds, energy efficiency may be lowered in the entire process.

한편, 상기 과정(c) 이후에, 하기 과정(d)를 더 포함할 수도 있다: Meanwhile, after the step (c), the method may further include the following step (d):

(d) 상기 광을 조사한 집전체를 건조하는 과정.(d) drying the current collector irradiated with the light.

상기 과정(d)를 포함하는 경우, 표면 플라즈몬 공명에 의해 집전체가 바인더를 흡인한 상태에서 전극 합제를 건조하므로 결합력 향상 측면에서 유리하고, 광을 조사하여 표면 플라즈몬 공명을 유도하기 위해서 많은 시간이 소요되지는 않으므로 전극 제조 공정을 크게 지연시키지 않는다.When the step (d) is included, the electrode mixture is dried in the state that the current collector sucks the binder by surface plasmon resonance, which is advantageous from the viewpoint of improving the bonding force and it takes much time to induce surface plasmon resonance So that the electrode manufacturing process is not significantly delayed.

하나의 구체적인 예에서, 상기 바인더는 1종 이상의 단량체가 중합된 고분자일 수 있고, 전극 합제 전체 중량을 기준으로 1 중량% 내지 30 중량%로 포함될 수 있다. 또한, 상기 단량체는 1종 이상의 방향족 화합물을 포함 할 수 있고, 상기 방향족 화합물은 알콜기, 티올기, 카르복실기, 질산기, 아질산기, 아민기, 이민기, 시안기, 디설파이드기, 황산기 및 아황산기로 이루어진 군으로부터 선택된 1종 이상의 작용기를 포함할 수 있다.In one specific example, the binder may be a polymer in which one or more monomers are polymerized, and may include from 1 wt% to 30 wt%, based on the total weight of the electrode mixture. Also, the monomer may include at least one aromatic compound, and the aromatic compound may be at least one selected from the group consisting of an alcohol group, a thiol group, a carboxyl group, a nitric group, a nitrite group, an amine group, an imine group, a cyan group, a disulfide group, And at least one functional group selected from the group consisting of

집전체와 전극 합제의 결합력을 향상시키기 위해서는, 바인더를 집전체 방향으로 흡인하는 것이 필요하며, 본 발명의 발명자들이 확인한 바에 의하면, 상기 바인더를 구성하는 단량체가 방향족 화합물을 포함하는 경우 집전체와 전극 합제의 결합력이 향상된다. 이러한 결과는, 표면 플라즈몬 공명에 의하여 집전체 표면에 집중된 전자들이 전자가 풍부한 방향족 화합물과 상호작용하여 흡인력이 증가하였기 때문인 것으로 추정된다.In order to improve the binding force between the current collector and the electrode mixture, it is necessary to attract the binder in the current collecting direction. According to the inventors of the present invention, when the monomer constituting the binder contains an aromatic compound, The bonding force of the mixture improves. These results are presumed to be due to the fact that the electrons concentrated on the surface of the collector by surface plasmon resonance interact with the aromatic compounds rich in electrons to increase the attraction force.

또한, 상기 방향족 화합물이 알콜기, 티올기, 카르복실기, 질산기, 아질산기, 아민기, 이민기, 시안기, 디설파이드기, 황산기 및 아황산기로 이루어진 군으로부터 선택된 1종 이상의 작용기를 포함하는 경우에는 집전체 표면에 집중된 전자들과 바인더 고분자와의 상호 작용이 더욱 증가하여 결합력이 더욱 향상된다.When the aromatic compound includes at least one functional group selected from the group consisting of an alcohol group, a thiol group, a carboxyl group, a nitric acid group, a nitrite group, an amine group, an imine group, a cyan group, a disulfide group, a sulfuric acid group and a sulfurous group, The interaction between the electrons concentrated on the surface and the binder polymer is further increased and the bonding force is further improved.

상기 집전체는 3 내지 500 ㎛의 두께일 수 있다. 이러한 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 양극 집전체로는, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등이 사용될 수 있다.The current collector may have a thickness of 3 to 500 mu m. Such a current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the positive electrode collector include stainless steel, aluminum, nickel, titanium, sintered carbon, or aluminum Carbon, nickel, titanium, silver, or the like may be used on the surface of stainless steel or stainless steel.

또한, 음극 집전체로는, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.Examples of the anode current collector include those obtained by surface-treating a surface of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel with carbon, nickel, Alloys and the like may be used.

상기 양극 또는 음극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode or negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.

상기 전극 활물질은, 양극 활물질 또는 음극 활물질을 의미하는 것으로, 상기 양극 활물질은 예를 들어, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; LiNi1/3Mn1/3Co1/3O2, LiNi0.5Mn0.3Ni0.2 등의 리튬 니켈 망간 코발트 복합 산화물; 디설파이드 화합물; Fe2(MoO4)3 , LiNixMn2-xO4(0.01≤x≤0.6) 등을 사용할 수 있다.The cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or the like, or one or more transition metals, for example, as a cathode active material or an anode active material. Substituted compounds; Lithium manganese oxides such as Li 1 + x Mn 2 -x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 and Cu 2 V 2 O 7 ; A Ni-site type lithium nickel oxide expressed by the formula LiNi 1-x M x O 2 (where M = Co, Mn, Al, Cu, Fe, Mg, B or Ga and x = 0.01 to 0.3); Formula LiMn 2-x M x O 2 ( where, M = Co, Ni, Fe , Cr, and Zn, or Ta, x = 0.01 ~ 0.1 Im) or Li 2 Mn 3 MO 8 (where, M = Fe, Co, Ni, Cu, or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with an alkaline earth metal ion; Lithium nickel manganese cobalt composite oxides such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 and LiNi 0.5 Mn 0.3 Ni 0.2 ; Disulfide compounds; Fe 2 (MoO 4 ) 3 , and LiNi x Mn 2-x O 4 (0.01 ? X? 0.6).

상기 음극 활물질은 예를 들어, 천연 흑연과 같이 층상 결정구조가 완전히 이루어진 그라파이트, 저결정성 층상 결정 구조(graphene structure; 탄소의 6각형 벌집 모양 평면이 층상으로 배열된 구조)를 갖는 소프트 카본 및 이런 구조들이 비결정성 부분들과 혼합되어 있는 하드 카본, 인조 흑연, 팽창 흑연, 탄소섬유, 난흑연화성 탄소, 카본블랙, 카본나노튜브, 플러렌, 활성탄 등의 탄소 및 흑연재료; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등; 상기 화합물들의 복합물이 사용될 수 있다.The negative electrode active material may be, for example, graphite having a completely layered crystal structure such as natural graphite, soft carbon having a low crystalline layered crystal structure (a structure in which hexagonal honeycomb planes of carbon are arranged in layers) Carbon and graphite materials such as hard carbon, artificial graphite, expanded graphite, carbon fiber, hard graphitizable carbon, carbon black, carbon nanotube, fullerene, activated carbon and the like in which structures are mixed with amorphous portions; Li x Fe 2 O 3 (0≤x≤1 ), Li x WO 2 (0≤x≤1), Sn x Me 1-x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen, 0 < x &lt; Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, and Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like; Complexes of the above compounds may be used.

상기 도전재는 통상적으로 전극 활물질을 포함한 전극 합제 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is usually added in an amount of 1 to 30% by weight based on the total weight of the electrode mixture including the electrode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.

상기 전극 합제는 충진제를 더 포함할 수 있으며, 상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용될 수 있다.The electrode mixture may further include a filler. The filler is selectively used as a component for suppressing the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery. For example, , Olefin-based polymerization agents such as polyethylene and polypropylene; Fibrous materials such as glass fiber, carbon fiber and the like can be used.

본 발명은 또한, 상기 제조 방법에 의해 제조되는 이차전지용 전극을 제공하며, 상기 전극, 분리막을 포함하는 전극조립체가 비수 전해액과 함께 전지케이스에 내장되어 있는 리튬 이차전지를 제공한다.The present invention also provides an electrode for a secondary battery manufactured by the above manufacturing method, wherein the electrode assembly including the electrode and the separator is embedded in the battery case together with the non-aqueous electrolyte.

상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.The separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally 0.01 to 10 mu m and the thickness is generally 5 to 300 mu m. Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.

상기 비수 전해액은 비수 전해질과 리튬염으로 이루어져 있으며, 상기 비수 전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.The non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithium salt, and examples of the non-aqueous electrolyte include non-aqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like.

상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma -Butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile , Nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, Tetrahydrofuran derivatives, ether, methyl pyrophosphate, ethyl propionate and the like can be used.

상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, A polymer containing an ionic dissociation group and the like may be used.

상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.

상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a substance that is soluble in the nonaqueous electrolyte and includes, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylate lithium, lithium tetraphenylborate, and imide.

또한, 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.The nonaqueous electrolyte may contain, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride and the like may be added have. In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further added to impart nonflammability. In order to improve the high-temperature storage characteristics, carbon dioxide gas may be further added. FEC (Fluoro-Ethylene Carbonate, PRS (Propene sultone), and the like.

하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수 전해질을 제조할 수 있다.In one specific example, LiPF 6, LiClO 4, LiBF 4, LiN (SO 2 CF 3) 2 , such as a lithium salt, a highly dielectric solvent of DEC, DMC or EMC Fig solvent cyclic carbonate and a low viscosity of the EC or PC of And then adding it to a mixed solvent of linear carbonate to prepare a lithium salt-containing nonaqueous electrolyte.

상기 전지케이스는 내후성 고분자로 이루어진 외부 피복층, 열융착성 고분자로 이루어진 내부 실란트층, 및 상기 외부 피복층과 내부 실란트 층의 사이에 개재되는 베리어층을 포함하는 라미네이트 시트로 이루어진 파우치형 전지케이스일 수 있고, 상세하게는 베리어층이 Al인 알루미늄 라미네이트 시트로 이루어진 파우치형 전지케이스일 수 있다.The battery case may be a pouch-shaped battery case made of a laminate sheet including an outer coating layer made of a weatherproof polymer, an inner sealant layer made of a heat-sealable polymer, and a barrier layer interposed between the outer coating layer and the inner sealant layer Specifically, a pouch-shaped battery case made of an aluminum laminate sheet having a barrier layer of Al.

본 발명은 또한, 상기 리튬 이차전지를 단위셀로 포함하는 전지팩을 제공하고, 상기 전지팩을 포함하는 디바이스를 제공한다.The present invention also provides a battery pack including the lithium secondary battery as a unit cell, and a device including the battery pack.

이러한 상기 디바이스의 구체적인 예로는, 컴퓨터, 휴대폰, 파워 툴(power tool) 등의 소형 디바이스와, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등의 중대형 디바이스를 들 수 있으나, 이에 한정되는 것은 아니다.Specific examples of such a device include a small device such as a computer, a mobile phone, a power tool, a power tool powered by an electric motor, An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter); An electric golf cart; Power storage systems, and the like, but are not limited thereto.

상기 전지팩과 디바이스의 구조 등은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.
The structure of the battery pack and the device is well known in the art, so a detailed description thereof will be omitted herein.

이상 본 발명의 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (22)

이차전지용 전극의 제조 방법으로서,
(a) 집전체 표면의 일부 또는 전부에 나노미터 깊이의 패턴을 형성하는 과정;
(b) 상기 패턴이 형성된 집전체 표면에 전극 활물질, 바인더 및 도전재를 포함하는 전극 합제를 도포하는 과정; 및
(c) 상기 전극 합제가 도포된 집전체 표면에 광을 조사하여 표면 플라즈몬 공명을 유도하는 과정;을 포함하며,
상기 패턴은 1 내지 900 nm의 깊이로 형성되고,
상기 바인더는, 알콜기, 티올기, 카르복실기, 질산기, 아질산기, 아민기, 이민기, 시안기, 디설파이드기, 황산기 및 아황산기로 이루어진 군으로부터 선택된 1종 이상의 작용기를 포함하는 1종 이상의 방향족 화합물이 중합된 고분자인
것을 특징으로 하는 제조 방법.
A method of manufacturing an electrode for a secondary battery,
(a) forming a pattern having a nanometer depth on part or all of the surface of the current collector;
(b) applying an electrode mixture including an electrode active material, a binder, and a conductive material to a surface of the current collector on which the pattern is formed; And
(c) irradiating a surface of the current collector coated with the electrode mixture to light to induce surface plasmon resonance,
The pattern is formed to a depth of 1 to 900 nm,
Wherein the binder contains at least one aromatic compound containing at least one functional group selected from the group consisting of an alcohol group, a thiol group, a carboxyl group, a nitric group, a nitrite group, an amine group, an imine group, a cyan group, a disulfide group, Polymerized polymer
&Lt; / RTI &gt;
제 1 항에 있어서, 상기 과정(c)에서 전극 합제가 도포된 집전체 표면에 광을 조사하면서 동시에 전극 합제를 건조시키는 것을 특징으로 하는 제조 방법.The manufacturing method according to claim 1, wherein in the step (c), the electrode mixture is dried while irradiating the surface of the current collector coated with the electrode mixture. 제 1 항에 있어서, 상기 과정(c) 이후에 하기 과정을 더 포함하는 것을 특징으로 하는 제조 방법:
(d) 상기 광을 조사한 집전체를 건조하는 과정.
The method according to claim 1, further comprising the step of: after the step (c)
(d) drying the current collector irradiated with the light.
제 1 항에 있어서, 상기 패턴은 양각 또는 음각의 형상인 것을 특징으로 하는 제조 방법.2. The method of claim 1, wherein the pattern is a relief or relief pattern. 삭제delete 제 1 항에 있어서, 상기 패턴은 1 내지 200 nm의 깊이로 형성되는 것을 특징으로 하는 제조 방법.The method of claim 1, wherein the pattern is formed to a depth of 1 to 200 nm. 제 1 항에 있어서, 상기 패턴은 물리적 또는 화학적 표면처리를 통해서 형성되는 것을 특징으로 하는 제조 방법.The method of claim 1, wherein the pattern is formed through a physical or chemical surface treatment. 제 7 항에 있어서, 상기 표면처리는 화학적 에칭인 것을 특징으로 하는 제조 방법.8. The method of claim 7, wherein the surface treatment is chemical etching. 제 1 항에 있어서, 상기 광의 파장은 10 내지 1000 nm인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the wavelength of the light is 10 to 1000 nm. 제 1 항에 있어서, 상기 광의 파장은 350 내지 500 nm인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the wavelength of the light is from 350 to 500 nm. 제 1 항에 있어서, 상기 광은 레이저 광인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the light is laser light. 제 1 항에 있어서, 상기 과정(c)에서 광은 1 내지 30초 동안 조사되는 것을 특징으로 하는 제조 방법.2. The method according to claim 1, wherein light is irradiated for 1 to 30 seconds in the step (c). 삭제delete 삭제delete 삭제delete 제 1 항에 있어서, 상기 집전체는 두께가 3 내지 500 ㎛인 것을 특징으로 하는 제조 방법.The manufacturing method according to claim 1, wherein the current collector has a thickness of 3 to 500 탆. 제 1 항에 있어서, 상기 과정(b)에서 전극 합제는 100 내지 1500 ㎛의 두께로 도포되는 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the electrode mixture is applied in a thickness of 100 to 1500 占 퐉 in step (b). 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020140128993A 2014-09-26 2014-09-26 Method for Manufacturing Electrodes for Secondary Battery Using Surface Plasmon Resonance KR101852763B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140128993A KR101852763B1 (en) 2014-09-26 2014-09-26 Method for Manufacturing Electrodes for Secondary Battery Using Surface Plasmon Resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140128993A KR101852763B1 (en) 2014-09-26 2014-09-26 Method for Manufacturing Electrodes for Secondary Battery Using Surface Plasmon Resonance

Publications (2)

Publication Number Publication Date
KR20160036855A KR20160036855A (en) 2016-04-05
KR101852763B1 true KR101852763B1 (en) 2018-04-30

Family

ID=55800121

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140128993A KR101852763B1 (en) 2014-09-26 2014-09-26 Method for Manufacturing Electrodes for Secondary Battery Using Surface Plasmon Resonance

Country Status (1)

Country Link
KR (1) KR101852763B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102207524B1 (en) 2016-09-01 2021-01-26 주식회사 엘지화학 Methode of preparing electrodes for lithium secondary battery and the electrodes for lithium secondary battery manufactured by the same
KR102465439B1 (en) * 2020-03-09 2022-11-08 홍익대학교 산학협력단 Li-battery and method of fabricating the same by surface plasmon resonance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216956A (en) * 2000-02-02 2001-08-10 Toyota Motor Corp Method for manufacturing electrode for battery and capacitor
JP2012142244A (en) * 2011-01-06 2012-07-26 Teijin Techno Products Ltd Binder for electrode mixture comprising aromatic polyamide and electrode sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001216956A (en) * 2000-02-02 2001-08-10 Toyota Motor Corp Method for manufacturing electrode for battery and capacitor
JP2012142244A (en) * 2011-01-06 2012-07-26 Teijin Techno Products Ltd Binder for electrode mixture comprising aromatic polyamide and electrode sheet

Also Published As

Publication number Publication date
KR20160036855A (en) 2016-04-05

Similar Documents

Publication Publication Date Title
KR101545886B1 (en) Multi Layered Electrode and the Method of the Same
KR101793270B1 (en) The Electrodes and the Secondary Battery Comprising the Same
KR101542052B1 (en) The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
KR101455165B1 (en) Electrode Assembly of Improved Stability and Secondary Battery the Same
KR101445602B1 (en) Secondary Battery Having Improved Safety
KR101527748B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101495302B1 (en) Multi Layered Electrode and the Method of the Same
KR20150014397A (en) Anode Mixture for Secondary Battery Having Improved Structural Safety and Secondary Battery Having the Same
KR101461169B1 (en) Cathode Active Material and The Secondary Battery Comprising the Same
KR101506451B1 (en) Anode for Secondary Battery
KR102070907B1 (en) Battery Cell Comprising Non-coating Portion Accommodating Gas Generated During Charge and Discharge
KR101852763B1 (en) Method for Manufacturing Electrodes for Secondary Battery Using Surface Plasmon Resonance
KR101514303B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101506452B1 (en) Cathode for Secondary Battery
KR101445600B1 (en) Secondary Battery Having Improved Safety
KR101527751B1 (en) Cathode Active Material and Lithium Secondary Battery Comprising The Same
KR101631127B1 (en) Anode for Preventing Dissolution of Manganese and Battery Cell Having the Same
KR101666413B1 (en) - Hybrid Stack Folding Typed Electrode Assembly and Secondary Battery Comprising the Same
KR20130117607A (en) The electrodes and the secondary battery comprising the same
KR20130115768A (en) Multi layered electrode and the method of the same
KR101497907B1 (en) The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
KR20130117930A (en) The anode electrodes and the secondary battery comprising the same
KR101507453B1 (en) Anode Active Material and The Secondary Battery Comprising the Same
KR101879015B1 (en) Electrode assembly with inhibition of gas trap and method of manufacturing the same
KR20150014162A (en) Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant