KR101506452B1 - Cathode for Secondary Battery - Google Patents
Cathode for Secondary Battery Download PDFInfo
- Publication number
- KR101506452B1 KR101506452B1 KR1020130040224A KR20130040224A KR101506452B1 KR 101506452 B1 KR101506452 B1 KR 101506452B1 KR 1020130040224 A KR1020130040224 A KR 1020130040224A KR 20130040224 A KR20130040224 A KR 20130040224A KR 101506452 B1 KR101506452 B1 KR 101506452B1
- Authority
- KR
- South Korea
- Prior art keywords
- positive electrode
- secondary battery
- lithium
- porosity
- active material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은, 양극 집전체의 일면 또는 양면에 양극 합제가 도포되어 있는 이차전지용 양극으로서, 상기 양극 합제 층의 공극률이 10% 내지 60% 범위인 이차전지용 양극을 제공한다.The present invention provides a positive electrode for a secondary battery in which a positive electrode mixture is coated on one or both surfaces of a positive electrode collector, wherein the positive electrode mixture layer has a porosity ranging from 10% to 60%.
Description
본 발명은 양극 집전체의 일면 또는 양면에 양극 합제가 도포되어 있는 이차전지용 양극으로서, 상기 양극 합제 층의 공극률이 10% 내지 60% 범위인 이차전지용 양극에 관한 것이다.The present invention relates to a cathode for a secondary battery in which a positive electrode mixture is coated on one or both surfaces of a positive electrode collector, wherein the positive electrode mixture layer has a porosity ranging from 10% to 60%.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices have increased, there has been a rapid increase in demand for secondary batteries as energy sources. Among such secondary batteries, lithium secondary batteries, which exhibit high energy density and operational potential, long cycle life, Batteries have been commercialized and widely used.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 되어 있다.In recent years, there has been a growing interest in environmental issues, and as a result, electric vehicles (EVs) and hybrid electric vehicles (HEVs), which can replace fossil-fueled vehicles such as gasoline vehicles and diesel vehicles, And the like. Although a nickel metal hydride (Ni-MH) secondary battery is mainly used as a power source for such an electric vehicle (EV) and a hybrid electric vehicle (HEV), a lithium secondary battery having a high energy density, a high discharge voltage, Research is being actively carried out, and some are commercialized.
리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해질이 함침되어 있는 구조로 이루어져 있다.The lithium secondary battery has a structure in which a non-aqueous electrolyte containing a lithium salt is impregnated in an electrode assembly having a porous separator interposed between a positive electrode and a negative electrode coated with an active material on an electrode current collector.
일반적으로 이차전지용 양극을 제조하기 위하여 양극 집전체에 슬러리 형태의 양극 합제를 도포하고 건조한 후 프레스하는 방법을 사용하고 있다.Generally, in order to manufacture a positive electrode for a secondary battery, a positive electrode current collector in the form of a slurry is applied to a positive electrode collector, followed by drying and pressing.
상기 양극은 공극률이 높은 경우, 전해액 함침성이 뛰어나 이온 전도도가 우수할 수 있으나, 단위 부피당 용량이 저하되고 전자 전도성이 저하되는 문제가 있다. 또한, 양극의 공극률이 낮은 경우에는 전자 전도성이 우수할 수 있으나 전해액 함침성이 저하되고 내부 가스 발생 시 잘 빠져나가지 못해 양극이 부서질 수 있다.When the porosity of the positive electrode is high, it is excellent in impregnation with the electrolyte, and the ion conductivity can be excellent, but the capacity per unit volume is lowered and the electron conductivity is lowered. In addition, when the porosity of the anode is low, the electron conductivity may be excellent, but the impregnability of the electrolyte is decreased, and the anode may be broken due to insufficient escape of internal gas.
따라서, 이온 전도성 및 전자 전도성을 모두 만족할 수 있는 이차전지용 양극에 대한 필요성이 매우 높은 실정이다.Therefore, there is a great need for a cathode for a secondary battery that can satisfy both ion conductivity and electron conductivity.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems of the prior art and the technical problems required from the past.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 양극 합제 층이 특정 공극률을 가지는 경우, 소망하는 효과를 달성할 수 있는 것을 확인하고, 본 발명을 완성하기에 이르렀다.The inventors of the present application have conducted intensive research and various experiments and confirmed that the desired effect can be achieved when the positive electrode mixture layer has a specific porosity as described later, It came.
따라서, 본 발명은 양극 집전체의 일면 또는 양면에 양극 합제가 도포되어 있는 이차전지용 양극으로서, 상기 양극 합제 층의 공극률이 10% 내지 60% 범위인 이차전지용 양극을 제공한다.Accordingly, the present invention provides a positive electrode for a secondary battery in which a positive electrode mixture is coated on one or both surfaces of a positive electrode collector, wherein the positive electrode mixture layer has a porosity ranging from 10% to 60%.
앞에서 설명한 바와 같이, 공극률이 너무 낮은 경우에는 전자 전도성은 뛰어날 수 있으나, 전해액과의 함침성이 떨어지고 이온 전도도가 저하되어 바람직하지 않다. 반대로, 공극률이 너무 큰 경우에는 전해액 함침성과 이온 전도도는 상대적으로 뛰어날 수 있으나, 전자 전도도 및 용량이 저하되므로 바람직하지 않다. 따라서, 상기와 같은 공극률 범위가 바람직하다.As described above, when the porosity is too low, the electron conductivity may be excellent, but the impregnation with the electrolyte is poor and the ionic conductivity is lowered, which is not preferable. Conversely, when the porosity is too large, the electrolyte impregnation and ionic conductivity may be relatively excellent, but the electronic conductivity and capacity are undesirably low. Therefore, the above porosity range is preferable.
상기와 같은 이유로, 상기 양극 합제 층의 공극률은 양극 합제 층 전체 부피를 기준으로 상세하게는 20% 내지 50% 범위일 수 있고, 더욱 상세하게는 25% 내지 45% 범위일 수 있다.For the above reason, the porosity of the positive electrode material mixture layer may be in the range of 20% to 50%, and more particularly, in the range of 25% to 45% based on the total volume of the positive electrode material mixture layer.
상기 이차전지용 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물인 양극 합제를 도포한 후 건조 및 프레싱하여 제조되며, 필요에 따라서는 상기 혼합물에 충진제를 더 첨가하기도 한다.The positive electrode for a secondary battery is prepared by applying a positive electrode mixture, which is a mixture of a positive electrode active material, a conductive material and a binder, on a positive electrode collector, followed by drying and pressing, and if necessary, a filler may be further added to the mixture.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. The cathode current collector generally has a thickness of 3 to 500 mu m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. Examples of the positive electrode current collector include stainless steel, aluminum, nickel, titanium, sintered carbon, aluminum or stainless steel A surface treated with carbon, nickel, titanium, silver or the like may be used. The current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2-xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2 -x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 and Cu 2 V 2 O 7 ; A Ni-site type lithium nickel oxide expressed by the formula LiNi 1-x M x O 2 (where M = Co, Mn, Al, Cu, Fe, Mg, B or Ga and x = 0.01 to 0.3); Formula LiMn 2-x M x O 2 ( where, M = Co, Ni, Fe , Cr, and Zn, or Ta, x = 0.01 ~ 0.1 Im) or Li 2 Mn 3 MO 8 (where, M = Fe, Co, Ni, Cu, or Zn); A lithium manganese composite oxide having a spinel structure represented by LiNi x Mn 2-x O 4 ; LiMn 2 O 4 in which a part of Li in the formula is substituted with an alkaline earth metal ion; Disulfide compounds; Fe 2 (MoO 4 ) 3 , and the like. However, the present invention is not limited to these.
하나의 구체적인 예에서, 상기 양극 활물질은 화학식 1로 표시되는 고전위 산화물인 스피넬 구조의 리튬 망간 복합 산화물일 수 있다. In one specific example, the cathode active material may be a lithium manganese composite oxide having a spinel structure which is a high-potential oxide represented by the general formula (1).
LixMyMn2-yO4-zAz (1) Li x M y Mn 2 - y O 4 - z z (1)
상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고, Wherein 0 < y < 2, 0 z < 0.2,
M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;M is at least one element selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, ;
A는 -1 또는 -2가의 하나 이상의 음이온이다.A is one or more of an anion of -1 or -2.
상세하게는, 상기 리튬 망간 복합 산화물은 하기 화학식 2로 표시되는 리튬 니켈 망간 복합 산화물일 수 있으며, 더욱 상세하게는 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4일 수 있다.Specifically, the lithium manganese composite oxide may be a lithium nickel manganese composite oxide represented by the following formula (2), more specifically, LiNi 0.5 Mn 1.5 O 4 or LiNi 0.4 Mn 1.6 O 4 .
LixNiyMn2-yO4 (2)Li x Ni y Mn 2-y O 4 (2)
상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.In the above formula, 0.9? X? 1.2 and 0.4? Y? 0.5.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is usually added in an amount of 1 to 50% by weight based on the total weight of the mixture including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 50 wt% based on the total weight of the mixture containing the cathode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is optionally used as a component for suppressing the expansion of the anode, and is not particularly limited as long as it is a fibrous material without causing a chemical change in the battery. Examples of the filler include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
본 발명은 상기 양극을 포함하는 이차전지, 상세하게는 리튬 이차전지를 제공한다.The present invention provides a rechargeable battery including the positive electrode, specifically, a lithium secondary battery.
상기 리튬 이차전지는 양극과 음극 사이에 분리막이 개재된 구조의 전극조립체에 리튬염 함유 전해액이 함침되어 있는 구조로 이루어진다.The lithium secondary battery has a structure in which a lithium salt-containing electrolyte is impregnated in an electrode assembly having a separator interposed between an anode and a cathode.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.The negative electrode is prepared by applying, drying and pressing an anode active material on an anode current collector, and may optionally further include a conductive material, a binder, a filler, and the like as described above.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is generally made to have a thickness of 3 to 500 mu m. Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, and examples of the anode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, a surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe’yOz (Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 사용할 수 있다.The negative electrode active material may include, for example, carbon such as non-graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0≤x≤1 ), Li x WO 2 (0≤x≤1), Sn x Me 1-x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si,
하나의 구체적인 예에서, 상기 음극 활물질은 하기 화학식 3으로 표시되는 리튬 금속 산화물일 수 있다. In one specific example, the negative electrode active material may be a lithium metal oxide represented by the following formula (3).
LiaM’bO4-cAc (3)Li a M ' b O 4-ca c (3)
상기 식에서, M’은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고; In the above formula, M 'is at least one element selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al and Zr;
a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M’의 산화수(oxidation number)에 따라 결정되며;a and b are 0.1? a? 4; Is determined according to the oxidation number of M 'in the range of 0.2? B? 4;
c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고;c is determined according to the oxidation number in the range of 0? c <0.2;
A는 -1 또는 -2가의 하나 이상의 음이온이다.A is one or more of an anion of -1 or -2.
상세하게는, 상기 화학식 3의 리튬 금속 산화물은 고속 충전에 용이한, 하기 화학식 4로 표시되는 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)일 수 있고, 구체적으로 Li0.8Ti2.2O4, Li2.67Ti1.33O4, LiTi2O4, Li1.33Ti1.67O4, Li1.14Ti1.71O4 등 일 수 있으나, 리튬 이온을 흡장/방출할 수 있는 것이면 그 조성 및 종류에 있어 별도의 제한은 없으며, 더욱 상세하게는, 충방전시 결정 구조의 변화가 적고 가역성이 우수한 스피넬 구조의 Li1.33Ti1.67O4 또는 LiTi2O4일 수 있다.Specifically, the lithium metal oxide represented by Formula 3 may be Lithium Titanium Oxide (LTO) represented by the following
LiaTibO4 (4)Li a Ti b O 4 (4)
상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.In the above formula, 0.5? A? 3, 1? B? 2.5.
이 경우, LTO의 높은 전위로 인하여 상대적으로 고전위를 가지는 상기 화학식 2로 표시되는 LixNiyMn2-yO4의 스피넬 리튬 니켈 망간 복합 산화물을 양극 활물질로 사용하는 것이 바람직하다.In this case, it is preferable to use the spinel lithium nickel manganese composite oxide of Li x Ni y Mn 2-y O 4 represented by the above formula (2) having a relatively high potential due to the high potential of LTO as the cathode active material.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.The separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally 0.01 to 10 mu m and the thickness is generally 5 to 300 mu m. Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
상기 리튬염 함유 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.The electrolyte solution containing the lithium salt is composed of an electrolyte solution and a lithium salt. The electrolyte solution may be a non-aqueous organic solvent, an organic solid electrolyte, or an inorganic solid electrolyte, but is not limited thereto.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma -Butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane , Acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate Nonionic organic solvents such as tetrahydrofuran derivatives, ethers, methyl pyrophosphate, ethyl propionate and the like can be used.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, A polymer containing an ionic dissociation group and the like may be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI,
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.For the purpose of improving the charge / discharge characteristics and the flame retardancy, the electrolytic solution is preferably mixed with an organic solvent such as pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, . In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further added to impart nonflammability. In order to improve the high-temperature storage characteristics, carbon dioxide gas may be further added. FEC (Fluoro-Ethylene Carbonate, PRS (Propene sultone), and the like.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에In one specific example, LiPF 6, LiClO 4, LiBF 4, LiN (SO 2 CF 3) 2 , such as a lithium salt, a highly dielectric solvent of DEC, DMC or EMC Fig solvent cyclic carbonate and a low viscosity of the EC or PC of In a mixed solvent of linear carbonate
본 발명은 또한, 상기 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.The present invention also provides a battery module including the secondary battery as a unit cell, and a battery pack including the battery module.
상기 전지팩은 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있다.The battery pack may be used as a power source for devices requiring high temperature stability, long cycle characteristics, and high rate characteristics.
상기 디바이스의 구체적인 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Specific examples of the device include a power tool which is powered by an electric motor and moves; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and the like; An electric motorcycle including an electric bike (E-bike) and an electric scooter (E-scooter); An electric golf cart; And a power storage system, but the present invention is not limited thereto.
상기에서 설명한 바와 같이, 본 발명에 따른 이차전지용 양극은 특정 공극률을 가짐으로써, 전해액 함침성, 이온 전도도, 전자 전도도 등이 모두 양호한 효과가 있다.As described above, the positive electrode for a secondary battery according to the present invention has a specific porosity, so that the electrolyte-impregnating property, the ionic conductivity, and the electronic conductivity are both excellent.
도 1은 실험예 1에 따른 시간별 방전 저항 값의 비교 그래프이다.FIG. 1 is a graph showing a comparison of discharge resistance values over time according to Experimental Example 1. FIG.
이하, 본 발명에 따른 실시예들을 참조하여 더욱 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to embodiments thereof, but the scope of the present invention is not limited thereto.
<실시예 1>≪ Example 1 >
양극의 제조Manufacture of anode
평균 입경(D50)이 4.56 ㎛이고, 비표면적(BET)이 0.81 m2/g인 LiNi0.5Mn1.5O4를 양극 활물질로 사용하고 도전재(Denka black), 바인더(PVdF)를 각각 90: 5: 5의 중량비로 NMP에 넣고 믹싱하여 양극 합제를 제조한 후 20 ㎛ 두께의 알루미늄 호일에 코팅하고, 압연 및 건조하여 양극을 제조하였다. 이 때, 프레싱 압력을 조절하여 상기 양극 합제 층이 30% 공극률을 갖도록 하였다.
(Denka black) and a binder (PVdF) were mixed at a ratio of 90: 5 (weight ratio) using LiNi 0.5 Mn 1.5 O 4 having an average particle diameter (D50) of 4.56 탆 and a specific surface area (BET) of 0.81 m 2 / : 5, and the mixture was mixed to prepare a positive electrode mixture. The positive electrode mixture was coated on an aluminum foil having a thickness of 20 탆, rolled and dried to prepare a positive electrode. At this time, the pressing pressure was adjusted so that the cathode mixture layer had a porosity of 30%.
리튬 이차전지의 제조Manufacture of lithium secondary battery
음극은, 음극 활물질(Li1.33Ti1.67O4), 도전재(Denka black), 바인더(PVdF)를 93.5: 2: 4.5의 중량비로 NMP에 넣고 믹싱하여 음극 합제를 제조하고, 20 ㎛ 두께의 구리 호일에 코팅한 후 압연 및 건조하여 제조하였다.The anode was prepared by mixing an anode active material (Li 1.33 Ti 1.67 O 4 ), a conductive material (Denka black) and a binder (PVdF) in NMP at a weight ratio of 93.5: 2: 4.5 and mixing to prepare an anode mixture. Coated on a foil, rolled and dried.
이렇게 제조된 음극과 상기 양극 사이에 분리막(두께: 20 ㎛)을 개재하여 전극조립체를 제조한 후, 상기 전극조립체를 파우치형 전지케이스에 수납하고, 1 M의 LiPF6이 포함된 카보네이트 계열의 복합 용액을 전해질로 주입한 다음, 밀봉하여 리튬 이차전지를 제조하였다.
After the electrode assembly was manufactured with the separator (thickness: 20 占 퐉) interposed between the negative electrode and the positive electrode thus prepared, the electrode assembly was housed in the pouch-shaped battery case, and a carbonate complex containing 1 M of LiPF 6 The solution was injected into the electrolyte and then sealed to prepare a lithium secondary battery.
<실시예 2 및 3>≪ Examples 2 and 3 >
상기 실시예 1에 있어서, 프레싱 압력을 조절하여 상기 양극 합제 층이 25, 및 35% 공극률을 갖도록 한 것을 제외하고 실시예 1과 동일하게 양극 및 리튬 이차전지를 제조하였다.
In Example 1, a positive electrode and a lithium secondary battery were prepared in the same manner as in Example 1, except that the pressing pressure was controlled so that the positive electrode material mixture layer had a porosity of 25 and 35%.
<실험예 1><Experimental Example 1>
실시예 1 내지 3에 따른 이차전지를 2 V ~ 3.35 V 구간에서 1 C로 충방전을 실시하여 용량 및 10초, 0.1초 방전 저항을 각각 측정하고 그 결과를 하기 표 1 및 도 1에 나타내었다. The secondary batteries according to Examples 1 to 3 were charged and discharged at 1 C in the range of 2 V to 3.35 V to measure the capacity and the discharging resistance for 10 seconds and 0.1 second respectively. The results are shown in the following Table 1 and FIG. 1 .
* 상기 방전 저항 값은 동일 면적(13 bicell)의 환산 저항 값이다.
* The discharge resistance value is a conversion resistance of the same area (13 bicell).
표 1 및 도 1을 참조하면, 30% 공극률을 기준으로 더 프레스를 많이 하여 25%의 공극률을 갖는 경우, 전극의 전자 전도도가 유사하여 0.1초 방전 저항은 차이가 거의 없는 반면, 공극률이 낮아 리튬 이온의 전극 내 확산이 어려우므로 시간의 경과에 따라 방전 저항의 차이가 증가함을 볼 수 있다.Referring to Table 1 and FIG. 1, in the case of having a porosity of 25% with more pressing on the basis of the porosity of 30%, the electronic conductivity of the electrode is similar, It is difficult to diffuse the ions in the electrode. Therefore, it can be seen that the difference of discharge resistance increases with time.
반면에, 30% 공극률을 기준으로 프레스를 적게 하여 35%의 공극률을 갖는 경우, 전자 전도도가 낮아짐에 따라 0.1초 방전 저항이 증가하는 반면, 충분한 기공이 이온 전도도를 높여 시간의 경과에 따라 방전 저항의 차이가 크게 변하지 않음을 확인할 수 있다.On the other hand, when the porosity is 35% based on the 30% porosity, when the porosity is 35%, the discharge resistance of 0.1 second increases as the electronic conductivity decreases. On the other hand, sufficient pores increase the ion conductivity, Is not significantly changed.
즉, 특정 범위의 공극율을 기준으로 그 범위를 벗어나는 경우 어느 측면에서의 전지 성능이 조금씩 저하되는 바, 다양한 측면에서 향상된 전지 성능을 갖기 위해서는 전극이 적정 수준의 공극률을 갖는 것이 매우 중요함을 알 수 있다.That is, it is very important that the electrode has an appropriate level of porosity in order to have improved battery performance in various aspects because the cell performance in some aspects is slightly lowered when the porosity of the specific range is out of the range. have.
본 출원의 발명자들은, 상기 실험에서 더 나아가, 공극율이 60%를 초과하는 경우에는, 활물질과 도전재의 원활한 접촉 패스(path) 형성이 어려워 도전성이 떨어짐에 따라 초기 저항이 현저히 증가하여 출력 특성이 저하되고, 반대로 프레스를 많이 하여 공극율을 10% 미만의 매우 낮은 수준으로 떨어트리는 경우에는, 프레스 시 발생하는 큰 힘이 활물질 2차 입자 형상을 깨트려 도전재와 접촉이 나빠지므로 오히려 저항이 증가될 뿐만 아니라, 이온 전도도가 극히 낮아져 시간의 경과에 따라 방전 저항이 크게 상승하는 것을 확인하였다.
The inventors of the present application have further found that when the porosity exceeds 60%, it is difficult to form a smooth contact path between the active material and the conductive material, so that the initial resistance is remarkably increased as the conductivity is lowered, On the contrary, when the press rate is reduced to a very low level of less than 10%, a large force generated at the press breaks the secondary particle shape of the active material and the contact with the conductive material deteriorates, However, it was confirmed that the ionic conductivity was extremely low and the discharge resistance was greatly increased with time.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (12)
음극;
을 포함하는 이차전지로서,
상기 양극은 양극 활물질로 하기 화학식 2로 표시되는 스피넬 구조의 리튬 니켈 망간 복합 산화물(Lithium Nickel Manganese complex Oxide: LNMO)을 포함하고,
상기 음극은 음극 활물질로 하기 화학식 4로 표시되는 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)을 포함하는 것을 특징으로 하는 이차전지;
LixNiyMn2-yO4 (2)
상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다;
LiaTibO4 (4)
상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.A positive electrode having a positive electrode current collector coated with a positive electrode mixture on one surface or both surfaces thereof and having a porosity of 25% to 30% of the positive electrode mixture layer; And
cathode;
The secondary battery comprising:
The positive electrode includes a lithium nickel manganese complex oxide (LNMO) having a spinel structure represented by the following formula (2) as a positive electrode active material,
Wherein the negative electrode comprises lithium-titanium oxide (LTO) represented by the following formula (4) as an anode active material.
Li x Ni y Mn 2-y O 4 (2)
Wherein 0.9? X? 1.2 and 0.4? Y? 0.5;
Li a Ti b O 4 (4)
In the above formula, 0.5? A? 3, 1? B? 2.5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120039143 | 2012-04-16 | ||
KR20120039143 | 2012-04-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130116810A KR20130116810A (en) | 2013-10-24 |
KR101506452B1 true KR101506452B1 (en) | 2015-03-30 |
Family
ID=49635799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130040224A KR101506452B1 (en) | 2012-04-16 | 2013-04-12 | Cathode for Secondary Battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101506452B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101639313B1 (en) * | 2013-10-31 | 2016-07-13 | 주식회사 엘지화학 | Cathode for lithium secondary battery and lithium secondary battery comprising the same |
KR101717220B1 (en) * | 2014-05-09 | 2017-03-16 | 주식회사 엘지화학 | Electrode for Secondary Battery Having Current Collector |
KR102022582B1 (en) * | 2015-09-21 | 2019-09-18 | 주식회사 엘지화학 | Electrode with improved safety and secondary battery comprising the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002216744A (en) | 2001-01-17 | 2002-08-02 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery |
JP2009505929A (en) * | 2005-08-25 | 2009-02-12 | コミツサリア タ レネルジー アトミーク | High voltage positive electrode material based on nickel and manganese for lithium cell batteries with spinel structure |
WO2010086910A1 (en) | 2009-02-02 | 2010-08-05 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
WO2011036759A1 (en) * | 2009-09-25 | 2011-03-31 | トヨタ自動車株式会社 | Lithium secondary battery and process for producing same |
-
2013
- 2013-04-12 KR KR1020130040224A patent/KR101506452B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002216744A (en) | 2001-01-17 | 2002-08-02 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery |
JP2009505929A (en) * | 2005-08-25 | 2009-02-12 | コミツサリア タ レネルジー アトミーク | High voltage positive electrode material based on nickel and manganese for lithium cell batteries with spinel structure |
WO2010086910A1 (en) | 2009-02-02 | 2010-08-05 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
WO2011036759A1 (en) * | 2009-09-25 | 2011-03-31 | トヨタ自動車株式会社 | Lithium secondary battery and process for producing same |
Also Published As
Publication number | Publication date |
---|---|
KR20130116810A (en) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101545886B1 (en) | Multi Layered Electrode and the Method of the Same | |
KR101793270B1 (en) | The Electrodes and the Secondary Battery Comprising the Same | |
KR101542052B1 (en) | The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same | |
KR101445602B1 (en) | Secondary Battery Having Improved Safety | |
KR101527748B1 (en) | The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same | |
KR101502832B1 (en) | Lithium Battery Having Higher Performance | |
KR101603082B1 (en) | The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same | |
KR101495302B1 (en) | Multi Layered Electrode and the Method of the Same | |
KR101510078B1 (en) | Electrode Assembly and Lithium Secondary Battery Comprising the Same | |
KR101506451B1 (en) | Anode for Secondary Battery | |
KR101461169B1 (en) | Cathode Active Material and The Secondary Battery Comprising the Same | |
KR101506452B1 (en) | Cathode for Secondary Battery | |
KR101514303B1 (en) | The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same | |
KR101507450B1 (en) | Lithium Battery Having Higher Performance | |
KR101451193B1 (en) | Lithium Battery Having Higher Performance | |
KR101617418B1 (en) | Secondary Battery Having Crown Ether Compound for Preventing Deposition of Manganese and the Same | |
KR20150014828A (en) | Cathode Mixture with Improved Safety and Secondary Battery Comprising the Same | |
KR101514297B1 (en) | The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same | |
KR101493255B1 (en) | The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same | |
KR20130118243A (en) | Electrode for secondary battery | |
KR20130117710A (en) | Secondary battery comprising electrolytes containing boron-based compound | |
KR101507453B1 (en) | Anode Active Material and The Secondary Battery Comprising the Same | |
KR20130115768A (en) | Multi layered electrode and the method of the same | |
KR101515363B1 (en) | Electrode Active Material for Secondary Battery and the Method for Preparing the Same | |
KR101497351B1 (en) | Lithium Secondary Battery Including Excess Amount of Electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
FPAY | Annual fee payment |
Payment date: 20180116 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190116 Year of fee payment: 5 |