KR101819381B1 - Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BENDABILITY AND METHOD FOR MANUFACTURING SAME - Google Patents

Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BENDABILITY AND METHOD FOR MANUFACTURING SAME Download PDF

Info

Publication number
KR101819381B1
KR101819381B1 KR1020160140342A KR20160140342A KR101819381B1 KR 101819381 B1 KR101819381 B1 KR 101819381B1 KR 1020160140342 A KR1020160140342 A KR 1020160140342A KR 20160140342 A KR20160140342 A KR 20160140342A KR 101819381 B1 KR101819381 B1 KR 101819381B1
Authority
KR
South Korea
Prior art keywords
steel sheet
single phase
zinc alloy
alloy plating
plating layer
Prior art date
Application number
KR1020160140342A
Other languages
Korean (ko)
Other versions
KR20170049422A (en
Inventor
김태철
김상헌
김종상
윤현주
유봉환
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58743980&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101819381(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2018521248A priority Critical patent/JP6983153B2/en
Priority to PCT/KR2016/012098 priority patent/WO2017074030A1/en
Priority to US15/770,615 priority patent/US20180320260A1/en
Publication of KR20170049422A publication Critical patent/KR20170049422A/en
Application granted granted Critical
Publication of KR101819381B1 publication Critical patent/KR101819381B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Abstract

소지강판과 아연합금도금층을 포함하는 아연합금도금강판에 있어서, 상기 아연합금도금층은 미세조직으로 Zn 단상조직과 Zn-Al-Mg계 금속간 화합물을 포함하며, 상기 Zn 단상조직의 하기 관계식 1로 표현되는 (0001) 우선 배향도(f)가 50% 이상인 아연합금도금강판과 이를 제조하는 방법이 개시된다.
[관계식 1]
f(%)=(Ibasal/Itotal) × 100
(여기서, Itotal은 Cu-Kα 소스를 이용하여 X-선 회절 패턴을 2theta 10°~100°까지 측정하였을 때, 모든 Zn 단상의 회절 피크를 적분한 값을 의미하고, Ibasal은 Basal plane과 관계된 Zn 단상의 회절 피크를 적분한 값을 의미함)
A zinc-plated steel sheet comprising a base steel sheet and a zinc alloy plating layer, wherein the zinc alloy plating layer contains a Zn single-phase structure and a Zn-Al-Mg based intermetallic compound in a microstructure, (0001) preferred orientation degree (f) is 50% or more, and a method for producing the same.
[Relation 1]
f (%) = (I basal / I total ) x 100
(Where I total means the value obtained by integrating the diffraction peaks of all Zn single phase when the X-ray diffraction pattern is measured from 2 ° to 10 ° to 100 ° using a Cu-Kα source, and I basal means a value obtained by integrating the basal plane Means a value obtained by integrating the diffraction peak of the related Zn single phase)

Description

굽힘가공성이 우수한 아연합금도금강판 및 그 제조방법{Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BENDABILITY AND METHOD FOR MANUFACTURING SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloyed gold-plated steel sheet having excellent bending workability,

본 발명은 굽힘가공성이 우수한 아연합금도금강판 및 그 제조방법에 관한 것이다.
The present invention relates to an alloyed gold-plated steel sheet excellent in bending workability and a method of manufacturing the same.

음극방식을 통해 철의 부식을 억제하는 아연도금법은 방식 성능 및 경제성이 우수하여 고내식 특성을 갖는 강재를 제조하는데 널리 사용되고 있다. 특히, 용융된 아연에 강재를 침지하여 도금층을 형성하는 용융아연 도금강판은 전기아연 도금강판에 비해 제조공정이 단순하고, 제품가격이 저렴하여 자동차, 가전제품 및 건축자재용 등의 산업전반에 걸쳐 그 수요가 증가하고 있다.
The zinc plating method which suppresses the corrosion of iron through the cathode method is widely used for manufacturing a steel material having excellent corrosion resistance and performance and excellent corrosion resistance. Particularly, the hot-dip galvanized steel sheet which forms the coating layer by immersing the steel into the molten zinc has a simpler manufacturing process than that of the electro-galvanized steel sheet and has a low product price, The demand is increasing.

아연이 도금된 용융아연 도금강판은 부식환경에 노출되었을 때 철보다 산화환원전위가 낮은 아연이 먼저 부식되어 강판의 부식이 억제되는 희생방식(Sacrificial Corrosion Protection)의 특성을 가지며, 이와 더불어 도금층의 아연이 산화되면서 강판 표면에 치밀한 부식생성물을 형성시켜 산화분위기로부터 강재를 차단함으로써 강판의 내부식성을 향상시킨다.
The zinc-plated hot-dip galvanized steel sheet has a characteristic of sacrificial corrosion protection in which corrosion of the steel sheet is firstly inhibited by zinc which is lower in oxidation-reduction potential than iron when exposed to a corrosive environment, Thereby forming a dense corrosion product on the surface of the steel sheet and blocking the steel from the oxidizing atmosphere, thereby improving the corrosion resistance of the steel sheet.

그러나, 산업 고도화에 따른 대기오염의 증가 및 부식환경의 악화가 증가하고 있고, 자원 및 에너지 절약에 대한 엄격한 규제로 인해 종래의 아연 도금강판보다 더 우수한 내식성을 갖는 강재 개발의 필요성이 높아지고 있다.
However, the increase in the air pollution and deterioration of the corrosive environment due to the industrial advancement are increasing, and due to the strict regulations on the resource and energy saving, there is a growing need for the development of steels having better corrosion resistance than the conventional zinc plated steel sheets.

그 일환으로, 아연 도금욕에 알루미늄(Al) 및 마그네슘(Mg) 등의 원소를 첨가하여 강재의 내식성을 향상시키는 아연합금계 도금강판 제조기술의 연구가 다양하게 진행되어 왔다. 대표적인 아연합금계 도금재로서 Zn-Al 도금 조성계에 Mg을 추가로 첨가한 Zn-Al-Mg계 아연합금도금강판 제조기술에 관한 연구가 활발히 진행되고 있다.
As a part of this research, various researches have been made on a technique of manufacturing a steel sheet with a zinc alloy plating which improves the corrosion resistance of a steel material by adding an element such as aluminum (Al) and magnesium (Mg) to the zinc plating bath. Studies on the fabrication technology of Zn-Al-Mg alloyed gold-plated steel sheet in which Mg is additionally added to a Zn-Al plating composition system as a representative Au-based gold plating material are actively studied.

그런데, 이러한 Zn-Al-Mg계 아연합금도금강판은 굽힘 가공성이 열위한 단점이 있다. 즉, 상기 아연합금도금강판은 도금층 내 Zn, Al 및 Mg의 열역학적 상호 반응에 의해 형성된 Zn-Al-Mg계 금속간 화합물을 다량 포함하는데, 이러한 금속간 화합물은 경도가 높기 때문에 굽힘가공시 도금층 내 크랙을 야기하며, 이로 인해 굽힘 가공성이 저하되는 단점이 있다.
However, such a Zn-Al-Mg-based alloy gold-plated steel sheet is disadvantageous in that bending workability is heated. That is, the zinc-coated gold-plated steel sheet contains a large amount of Zn-Al-Mg intermetallic compounds formed by thermodynamic interactions of Zn, Al and Mg in the plating layer. Since such intermetallic compounds have high hardness, Cracks are caused, and the bending workability is deteriorated.

본 발명의 여러 목적 중 하나는, 굽힘가공성이 우수한 아연합금도금강판과 이를 제조하는 방법을 제공하고는 것이다.
One of the objects of the present invention is to provide an alloyed gold-plated steel sheet excellent in bending workability and a method of manufacturing the same.

본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기재되어 있으며, 본 발명이 속하는 기술분야의 통상적인 지식을 가지는 자라면 본 발명의 명세서로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
The object of the present invention is not limited to the above description. Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention.

본 발명의 일 측면은, 소지강판과 아연합금도금층을 포함하는 아연합금도금강판에 있어서, 상기 아연합금도금층은 미세조직으로 Zn 단상조직과 Zn-Al-Mg계 금속간 화합물을 포함하며, 상기 Zn 단상조직의 하기 관계식 1로 표현되는 (0001) 우선 배향도(f)가 50% 이상(100% 포함)인 아연합금도금강판을 제공한다.One aspect of the present invention resides in a zinc alloy plating layer comprising a base steel sheet and a zinc alloy plating layer, wherein the zinc alloy plating layer contains a Zn single phase structure and a Zn-Al-Mg based intermetallic compound as a microstructure, (0001) preferred orientation degree (f) of the single phase structure expressed by the following relational expression 1 is 50% or more (including 100%).

[관계식 1][Relation 1]

f(%)=(Ibasal/Itotal) × 100f (%) = (I basal / I total ) x 100

(여기서, Itotal은 Cu-Kα 소스를 이용하여 X-선 회절 패턴을 2theta 10°~100°까지 측정하였을 때, 모든 Zn 단상의 회절 피크를 적분한 값을 의미하고, Ibasal은 Basal plane과 관계된 Zn 단상의 회절 피크를 적분한 값을 의미함)
(Where I total means the value obtained by integrating the diffraction peaks of all Zn single phase when the X-ray diffraction pattern is measured from 2 ° to 10 ° to 100 ° using a Cu-Kα source, and I basal means a value obtained by integrating the basal plane Means a value obtained by integrating the diffraction peak of the related Zn single phase)

본 발명의 다른 일 측면은, Mg 및 Al을 포함하는 아연합금 도금욕을 준비하는 단계, 상기 아연합금 도금욕에 소지강판을 침지하고, 도금을 행하여 아연합금도금강판을 얻는 단계, 상기 아연합금도금강판을 가스 와이핑하여 도금 부착량을 조절하는 단계, 상기 도금 부착량이 조절된 아연합금도금강판에 물 또는 수용액의 액적을 분사하여 냉각한 후, 공냉하는 단계를 포함하고, 상기 액적 분사시, 액적 분사 개시 온도는 405~425℃이고, 액적 분사 종료 온도는 380~400℃인 아연합금도금강판의 제조방법을 제공한다.
According to another aspect of the present invention, there is provided a method of manufacturing a galvanized steel sheet, comprising the steps of: preparing a zinc alloy plating bath containing Mg and Al; immersing the steel sheet in the zinc alloy plating bath and performing plating to obtain a galvanized steel sheet; A step of adjusting the plating amount by gas wiping the steel sheet, a step of spraying a droplet of water or an aqueous solution on the galvanized steel sheet having the adjusted plating amount and cooling the same, followed by air cooling, Wherein the starting temperature is 405 to 425 ° C and the droplet jetting end temperature is 380 to 400 ° C.

본 발명의 여러 효과 중 하나로서, 본 발명의 일 실시예에 따른 아연합금도금강판은 내식성이 우수할 뿐만 아니라, 굽힘 가공성이 우수한 장점이 있다.As one of various effects of the present invention, the steel sheet according to one embodiment of the present invention is not only excellent in corrosion resistance but also excellent in bending workability.

또한, 본 발명의 여러 효과 중 하나로서, 본 발명의 일 실시예에 따른 아연합금도금강판은 표면 외관이 우수한 장점이 있다.Also, as one of various effects of the present invention, the steel sheet according to one embodiment of the present invention has an advantage of excellent surface appearance.

또한, 본 발명의 여러 효과 중 하나로서, 본 발명의 일 실시예에 따른 아연합금도금강판은 내스크래치성이 우수한 장점이 있다.
Also, as one of various effects of the present invention, the steel sheet according to one embodiment of the present invention has an advantage of excellent scratch resistance.

도 1은 본 발명의 (a) 발명예 1 및 (b) 비교예 5의 표면부 미세조직을 관찰한 결과이다.
도 2는 본 발명의 (a) 발명예 1 및 (b) 비교예 5의 단면부 미세조직을 관찰한 결과이다.
도 3은 본 발명의 발명예 1의 XRD(x-ray diffractometer) 분석 결과이다.
Fig. 1 shows the results of observation of surface microstructure of (a) Inventive Example 1 and (b) Comparative Example 5 of the present invention.
Fig. 2 shows the results of observing the microstructure of the cross section of Inventive Example 1 (a) and Comparative Example 5 (b) of the present invention.
3 is an X-ray diffractometer (XRD) analysis result of Inventive Example 1 of the present invention.

이하, 본 발명의 일 측면인 굽힘가공성이 우수한 아연합금도금강판에 대하여 상세히 설명한다.
Hereinafter, the gold alloy steel sheet excellent in bending workability which is one aspect of the present invention will be described in detail.

본 발명의 일 측면인 아연합금도금강판은, 소지강판 및 아연합금도금층을 포함한다. 본 발명에서는 소지강판의 종류에 대해서는 특별히 한정하지 않으며, 예를 들면, 통상의 아연합금도금강판의 소지로 사용되는 열연강판 또는 냉연강판일 수 있다. 다만, 열연강판의 경우 그 표면에 다량의 산화 스케일을 가지며, 이러한 산화 스케일은 도금 밀착성을 저하시켜 도금 품질을 저하시키는 문제가 있으므로, 산 용액에 의해 미리 산화 스케일을 제거한 열연강판을 소지로 함이 보다 바람직하다. 한편, 아연합금도금층은 상기 소지강판의 일면 또는 양면에 형성될 수 있다.
An alloy gold-plated steel sheet which is one aspect of the present invention includes a base steel sheet and a zinc alloy plating layer. In the present invention, the kind of the base steel sheet is not particularly limited, and it may be, for example, a hot-rolled steel sheet or a cold-rolled steel sheet used as a base of an ordinary zinc alloy-coated steel sheet. However, in the case of a hot-rolled steel sheet, a large amount of oxide scale is present on the surface of the hot-rolled steel sheet. Such an oxide scale has a problem of deteriorating the plating adhesion and deteriorating the plating quality. Therefore, More preferable. On the other hand, the zinc alloy plating layer may be formed on one side or both sides of the base steel sheet.

아연합금도금층은 중량%로, Al: 0.5~3%, Mg: 0.5~3%, 잔부 Zn 및 불가피한 불순물을 포함할 수 있다.
The zinc alloy plating layer may contain 0.5 to 3% of Al, 0.5 to 3% of Mg, and the remainder Zn and unavoidable impurities in weight%.

Mg는 아연합금도금층 내 Zn 및 Al과 반응하여 Zn-Al-Mg계 금속간 화합물을 형성함으로써 도금강판의 내식성 향상에 매우 주요한 역할을 하는 원소로서, 만약, 그 함량이 지나치게 낮을 경우 도금층의 미세조직 내 충분한 양의 Zn-Al-Mg계 금속간 화합물을 확보할 수 없어 내식성 향상 효과가 충분치 못할 우려가 있다. 따라서, 아연합금도금층 내 상기 Mg는 0.5중량% 이상 포함될 수 있고, 바람직하게는 1.0중량% 이상 포함될 수 있다. 다만, 그 함량이 과다할 경우 내식성 향상 효과가 포화될 뿐만 아니라, 도금욕 내에 Mg 산화물 관련 드로스가 형성되어 도금성이 악화될 우려가 있다. 또한, 도금층의 미세조직 내 경도가 높은 Zn-Al-Mg계 금속간 화합물이 지나치게 많이 형성되어 굽힘가공성이 저하될 우려가 있다. 따라서, 아연합금도금층 내 상기 Mg는 3중량% 이하 포함될 수 있고, 바람직하게는 2.9중량% 이하 포함될 수 있다.Mg reacts with Zn and Al in the zinc alloy plating layer to form a Zn-Al-Mg intermetallic compound and thus plays a very important role in improving the corrosion resistance of the coated steel sheet. If the content is excessively low, the microstructure of the plating layer The sufficient amount of Zn-Al-Mg intermetallic compound can not be secured and the corrosion resistance improving effect may not be sufficient. Therefore, the Mg in the zinc alloy plating layer may be contained in an amount of 0.5 wt% or more, and preferably 1.0 wt% or more. However, when the content is excessive, not only the effect of improving the corrosion resistance is saturated but also the Mg oxide-related dross is formed in the plating bath, thereby deteriorating the plating ability. Further, there is a fear that the Zn-Al-Mg based intermetallic compound having a high hardness in the microstructure of the plated layer is excessively formed and the bending workability is lowered. Therefore, the content of Mg in the zinc alloy plating layer may be 3 wt% or less, preferably 2.9 wt% or less.

상기 Al는 Mg 산화물 드로스 형성을 억제하며, 도금층 내 Zn 및 Mg과 반응하여 Zn-Al-Mg계 금속간 화합물을 형성함으로써 도금강판의 내식성 향상에 매우 주요한 역할을 하는 원소로서, 만약, 그 함량이 지나치게 낮을 경우 Mg 드로스 형성 억제능이 부족하고 도금층의 미세조직 내 충분한 양의 Zn-Al-Mg계 금속간 화합물을 확보할 수 없어 내식성 향상 효과가 충분치 못할 우려가 있다 따라서, 아연합금도금층 내 상기 Al은 0.5중량% 이상 포함될 수 있고, 바람직하게는 0.6중량% 이상 포함될 수 있다. 다만, 그 함량이 과다할 경우 내식성 향상 효과가 포화될 뿐만 아니라, 도금욕 온도가 올라가 도금장치의 내구성에 악영향을 미칠 우려가 있다. 더욱이, 도금층의 미세조직 내 경도가 높은 Zn-Al-Mg계 금속간 화합물이 지나치게 많이 형성되어 굽힘가공성이 저하될 우려가 있다. 따라서, 아연합금도금층 내 상기 Al은 3중량% 이하 포함될 수 있고, 바람직하게는 2.6중량% 이하 포함될 수 있다.
The above-mentioned Al suppresses formation of Mg oxide dross and reacts with Zn and Mg in the plating layer to form a Zn-Al-Mg intermetallic compound, and plays an important role in improving the corrosion resistance of the coated steel sheet. Is too low, the ability to inhibit Mg dross formation is insufficient and a sufficient amount of Zn-Al-Mg based intermetallic compound can not be secured in the microstructure of the plating layer, so that there is a possibility that the effect of improving the corrosion resistance may not be sufficient. Al may be contained in an amount of 0.5 wt% or more, and preferably 0.6 wt% or more. However, if the content is excessive, not only the effect of improving the corrosion resistance is saturated but also the plating bath temperature is increased, which may adversely affect the durability of the plating apparatus. Furthermore, there is a fear that the Zn-Al-Mg based intermetallic compound having a high hardness in the microstructure of the plated layer is excessively formed and the bending workability is lowered. Therefore, the content of Al in the zinc alloy plating layer may be 3 wt% or less, preferably 2.6 wt% or less.

일 예에 따르면, 아연합금도금층에 함유된 Mg 및 Al의 함량은 하기 관계식 1을 만족할 수 있다. [Mg]/[Al]이 1.0 이하일 경우, 내스크래치성이 열화될 우려가 있으며, 반면, [Mg]/[Al]이 4.0을 초과할 경우, 용융 도금욕 내 Mg계 드로스가 다량 발생하여 작업성이 열화될 우려가 있다.According to one example, the content of Mg and Al contained in the zinc alloy plating layer may satisfy the following relational expression (1). When [Mg] / [Al] is less than 1.0, the scratch resistance may deteriorate. On the other hand, when [Mg] / [Al] exceeds 4.0, Mg system dross in the hot- There is a possibility that the sex will deteriorate.

[관계식 1][Relation 1]

1.0 < [Mg]/[Al] ≤ 4.01.0 <[Mg] / [Al]? 4.0

(여기서, [Mg], [Al] 각각은 해당 원소의 중량%를 의미함)
(Where each of [Mg] and [Al] represents the weight% of the element)

아연합금도금층은, 그 미세조직으로 Zn 단상조직과 Zn-Al-Mg계 금속간 화합물을 포함할 수 있다. 본 발명에서는 상기 Zn-Al-Mg계 금속간 화합물의 종류에 대해서는 특별히 한정하지 않으나, 예를 들면, Zn/Al/MgZn2 3원 공정조직, Zn/MgZn2 2원 공정조직, Zn-Al 2원 공정조직 및 MgZn2 단상조직로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
The zinc alloy plating layer may contain a Zn single phase structure and a Zn-Al-Mg based intermetallic compound in its microstructure. In the present invention, the kind of the Zn-Al-Mg intermetallic compound is not particularly limited. For example, a Zn / Al / MgZn 2 three-element process structure, a Zn / MgZn 2 two- A primary process structure and a MgZn 2 single phase structure.

본 발명자들은 아연합금도금강판의 굽힘가공성을 향상시키기 위해 깊이 있게 연구 하였으며, 그 결과 상기 아연합금도금층의 미세조직 중 육방밀집구조(HCP, Hexagonal Close Packing)를 가지는 Zn 단상조직을 (0001) 배향으로 성장시킬 경우, 슬립이 용이하여 연성이 증가하며, 이로 인해 굽힘 가공시 크랙 발생을 현저히 저감할 수 있음을 알아내었다.
The inventors of the present invention have studied in depth to improve the bending workability of the zinc alloy-plated steel sheet. As a result, the zinc single phase structure having hexagonal close packing (HCP) among the microstructure of the zinc alloy plating layer is oriented in the (0001) orientation It was found that the slip is easy to grow and the ductility is increased, so that the occurrence of cracks during bending can be remarkably reduced.

본 발명에서 이러한 효과를 얻기 위해서는, 상기 Zn 단상조직의 하기 관계식 1로 표현되는 (0001) 우선 배향도(f)를 50% 이상(100% 포함)으로 제어하는 것이 바람직하고, 60% 이상(100% 포함)으로 제어하는 것이 보다 바람직하다.In order to obtain such an effect in the present invention, it is preferable to control the (0001) preferential orientation degree f of the Zn single phase structure represented by the following relational expression 1 to 50% or more (inclusive) It is more preferable to control it.

[관계식 1][Relation 1]

f(%)=(Ibasal/Itotal) × 100f (%) = (I basal / I total ) x 100

(여기서, Itotal은 Cu-Kα 소스를 이용하여 X-선 회절 패턴을 2theta 10°~100°까지 측정하였을 때, 모든 Zn 단상의 회절 피크를 적분한 값을 의미하고, Ibasal은 Basal plane과 관계된 Zn 단상의 회절 피크를 적분한 값을 의미함)
(Where I total means the value obtained by integrating the diffraction peaks of all Zn single phase when the X-ray diffraction pattern is measured from 2 ° to 10 ° to 100 ° using a Cu-Kα source, and I basal means a value obtained by integrating the basal plane Means a value obtained by integrating the diffraction peak of the related Zn single phase)

또한, 본 발명자들은 상기 아연합금도금층 내 조대하게 형성되는 Zn 단상조직의 크기를 미세화하는 것 또한 굽힘 가공시 크랙 발생 저감에 도움이 됨을 알아내었다.
Further, the inventors of the present invention have found that miniaturizing the size of the Zn single phase structure formed in the zinc alloy plating layer coarsely helps to reduce the occurrence of cracks during the bending process.

본 발명에서 목적하는 효과를 얻기 위해서는, Zn 단상조직의 평균 입경을 15μm 이하로 제어하는 것이 바람직하고, 12μm 이하로 제어하는 것이 보다 바람직하며, 10μm 이하로 제어하는 것이 보다 더 바람직하다. 여기서, Zn 단상조직의 평균 입경이란 도금층의 판 두께 방향 단면을 관찰하여 검출한 Zn 단상조직의 평균 원 상당 직경(equivalent circular diameter)을 의미한다.
In order to obtain the desired effect in the present invention, it is preferable to control the average particle size of the Zn single phase structure to 15 mu m or less, more preferably to 12 mu m or less, and further preferably to 10 mu m or less. Here, the average particle diameter of the Zn single phase structure means the equivalent circular diameter of the Zn single phase structure detected by observing the plate thickness direction section of the plating layer.

본 발명에 따른 아연합금도금강판은 내식성이 매우 우수할 뿐만 아니라, 굽힘 가공성이 매우 우수한 장점이 있다.
The gold-plated steel sheet according to the present invention has not only excellent corrosion resistance but also excellent bending workability.

일 예에 따르면, 본 발명에 따른 아연합금도금강판은 표면 외관 또한 매우 우수할 수 있으며, 보다 구체적으로, 상기 아연합금도금강판 표면에서의 흑점(black spot)의 단위 면적당 개수가 0.1개/cm2 이하일 수 있다.
According to one example, the steel sheet according to the present invention may have a very good surface appearance. More specifically, the number of black spots on the surface of the steel sheet is 0.1 / cm 2 &Lt; / RTI &gt;

본 발명에서 이러한 효과를 얻기 위해서는, 상기 아연합금도금층의 표면에서 관찰되는 Zn 단상조직의 면적분율은 40% 이하(0% 제외)인 것이 바람직하다. 즉, 상기 아연합금도금층의 표면에서 관찰되는 Zn-Al-Mg계 금속간 화합물의 분율을 극대화함으로써, 표면 외관을 극대화할 수 있는 것이다.
In order to obtain this effect in the present invention, it is preferable that the area fraction of the Zn single phase structure observed on the surface of the zinc alloy plating layer is 40% or less (excluding 0%). That is, by maximizing the fraction of the Zn-Al-Mg intermetallic compound observed on the surface of the zinc alloy plating layer, the surface appearance can be maximized.

일 예에 따르면, 본 발명에 따른 아연합금도금강판은 내스크래치성 또한 매우 우수할 수 있다.
According to one example, the steel sheet according to the present invention may have excellent scratch resistance.

본 발명자들의 연구 결과, 아연합금도금층의 표면에서 관찰되는 층상 구조의 Zn/MgZn2 2원 공정조직 및 Zn/Al/MgZn2 3원 공정조직의 면적분율을 극대화할 경우, 내스크래치성을 현저히 향상시킬 수 있다.
If maximizing the findings of the inventors, the area fraction of the layered structure Zn / MgZn 2 2 won process organization and Zn / Al / MgZn 2 3 won step tissues are observed in the surface of the zinc alloy coating layer, improving the scratch resistance remarkably .

본 발명에서 목적하는 효과를 얻기 위해서는, 상기 아연합금도금층의 표면에서 관찰되는 Zn/MgZn2 2원 공정조직 및 Zn/Al/MgZn2 3원 공정조직의 면적분율의 합이 50% 이상(100% 제외)이고, MgZn2 단상조직의 면적분율은 10% 이하(0% 포함)인 것이 바람직하다. MgZn2 단상조직은 경도가 높아 가공시 크랙을 유발하며, 따라서 그 면적분율을 최대한 저감함이 바람직하다.
In order to obtain the desired effect in the present invention, the sum of the area fraction of Zn / MgZn 2 2 won process organization and Zn / Al / MgZn 2 3 won process tissue that is observed at the surface of the zinc alloy plating layer (100% to 50% And the area fraction of the MgZn 2 single phase structure is preferably 10% or less (including 0%). The MgZn 2 single phase structure has a high hardness, which causes cracking during processing, and therefore, it is preferable to reduce the area fraction to the maximum.

이상에서 설명한 본 발명의 아연합금도금강판은 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 바람직한 일 예로써, 용융 상태의 아연합금도금층의 응고시 그 표면에 액적(droplet)을 분사하여 냉각한 후, 공냉할 경우, 상기와 같은 우선 배향도 및 평균 입경을 얻을 수 있다.
The gold-plated steel sheet of the present invention can be produced by various methods, and the production method thereof is not particularly limited. However, as a preferred example, when the zinc alloy plated layer in the molten state is coagulated, it is possible to obtain the preferred orientation degree and the average particle size as described above when the droplets are sprayed on the surface thereof and then cooled.

이때, 액적 분사는, 상기 액적(droplet)이 아연합금도금강판과의 정전기 인력에 의해 부착되도록 대전 분사하는 것일 수 있다. 이와 같은 대전 분사는, 액적을 미세하고 균일하게 형성시키는데 도움이 될 뿐만 아니라, 분사된 액적이 아연합금도금강판의 표면에 충돌한 후, 튕겨져 나오는 양이 감소되어 용융 상태의 아연합금도금층의 급속 냉각에 유리하며, 이로 인해 Zn 단상조직의 (0001) 배향으로의 성장 및 미세화에 보다 효과적이다.
At this time, the droplet jetting may be such that the droplet is jetted so as to be adhered by the electrostatic attraction force with the galvanized steel sheet. Such a jet is not only helpful for finely and uniformly forming a droplet, but also reduces the amount of repulsion after the jetted droplet impinges on the surface of the associated gold-plated steel sheet, thereby rapidly cooling the molten zinc alloy plating layer , Which is more effective for growth and miniaturization of (0001) orientation of Zn single phase texture.

상기 액적(droplet)은 인산염 수용액일 수 있으며, 이러한 인산염 수용액은 흡열반응에 의해 용융 상태의 아연합금도금층을 급속 냉각시킴으로써 Zn 단상조직을 (0001) 배향으로 성장시키고, 미세화시키는데 효과적이다. 예를 들면, 인산수소암모늄((NH4)2HPO4) 수용액, 인산수소암모늄나트륨(NaNH4HPO4) 수용액, 제1 인산아연(Zn(H2PO4)2) 수용액 및 인산칼슘(Ca3(PO4)2) 수용액 등을 들 수 있다.
The droplet may be an aqueous solution of phosphate, and the aqueous phosphate solution is effective for rapidly growing the Zn single phase structure in a (0001) orientation by microwaving the zinc alloy plating layer in a molten state by an endothermic reaction, and refining the microstructure. For example, an aqueous solution of ammonium hydrogenphosphate ((NH 4 ) 2 HPO 4 ), an aqueous solution of sodium hydrogenphosphate (NaNH 4 HPO 4 ), an aqueous solution of zinc phosphate (Zn (H 2 PO 4 ) 2 ) 3 (PO 4 ) 2 ) aqueous solution.

또한, 상기 인산염 수용액의 농도는 1~3중량%일 수 있다. 인산염 수용액의 농도가 1중량% 미만일 경우, 그 효과가 충분치 못할 우려가 있으며, 3중량%를 초과할 경우, 그 효과가 포화될 뿐만 아니라, 연속생산을 하는 경우 노즐 막힘 현상이 발생되어 생산에 지장을 초래할 우려가 있다.
The concentration of the phosphate aqueous solution may be 1 to 3% by weight. If the concentration of the phosphate aqueous solution is less than 1% by weight, the effect may not be sufficient. If the concentration exceeds 3% by weight, the effect is saturated, and when continuous production is performed, nozzle clogging occurs, .

또한, 상기 액적 분사시, 액적 분사 개시 온도는 405~425℃일 수 있고, 보다 바람직하게는 410~420℃일 수 있다. 이때, 액적 분사 개시 온도란, 액적 분사를 개시하는 시점에서의 아연합금도금강판의 표면 온도를 의미한다. 만약, 액적 분사 개시 온도가 405℃ 미만일 경우에는 이미 Zn 단상의 응고가 개시되어 아연합금도금강판의 표면에 흑점을 유발할 우려가 있으며, 반면, 425℃를 초과하는 경우 액적 분사에 의한 흡열반응이 효과적이지 않아 목적하는 조직 확보가 곤란할 우려가 있다.
The droplet jetting start temperature may be 405 to 425 deg. C, and more preferably 410 to 420 deg. C at the droplet jetting. At this time, the droplet jetting start temperature means the surface temperature of the sub-gold-plated steel sheet at the point of time when the droplet jetting starts. If the droplet jetting initiation temperature is lower than 405 ° C, solidification of the Zn single phase is already initiated and black spots may be generated on the surface of the alloyed gold-plated steel sheet. On the other hand, when the temperature exceeds 425 ° C, endothermic reaction by droplet jetting is effective There is a possibility that it is difficult to obtain a desired tissue.

또한, 상기 액적 분사시, 액적 분사 종료 온도는 380~400℃일 수 있고, 보다 바람직하게는 390~400℃일 수 있다. 이 때, 액적 분사 종료 온도란, 액적 분사를 종료하는 시점에서의 아연합금도금강판의 표면 온도를 의미한다. 만약, 액적 분사 종료 온도가 400℃를 초과할 경우 액적 분사에 의한 흡열반응이 효과적이지 않아 목적하는 조직 확보가 곤란할 우려가 있으며, 반면, 380℃ 미만일 경우 Zn/MgZn2 2원공정상 및 Zn/Al/MgZn2 3원공정상의 응고가 개시되는 도중에 과냉에 의해 Mg2Zn11상을 유발하여, 다량의 흑점이 발생함으로 인해 Zn 단상조직의 (0001) 우선 배향도가 낮아질 우려가 있다.
The droplet jetting end temperature at the droplet jetting may be 380 to 400 占 폚, and more preferably 390 to 400 占 폚. At this time, the droplet jet finishing end temperature means the surface temperature of the gold plated steel sheet at the time when the droplet jetting is finished. If the droplet jetting end temperature is higher than 400 ° C, the endothermic reaction due to droplet jetting is not effective and it may be difficult to secure the target structure. On the other hand, when the temperature is lower than 380 ° C, the Zn / MgZn 2 two- There is a fear that Mg 2 Zn 11 phase is induced by subcooling during the initiation of solidification in the Al / MgZn 2 ternary process and a large amount of black spots are generated, thereby lowering the preferential orientation degree of the (0001) Zn single phase structure.

또한, 상기 액적 분사시, 액적 분사 개시 온도와 액적 분사 종료 온도의 차이는 15℃ 이상일 수 있다. 만약, 그 온도의 차이가 15℃ 미만일 경우 액적 분사에 의한 흡열반응이 효과적이지 않아 목적하는 조직 확보가 곤란할 수 있다.
The difference between the droplet jetting start temperature and the droplet jetting ending temperature at the droplet jetting may be 15 ° C or higher. If the temperature difference is less than 15 ° C, the endothermic reaction by droplet jetting is not effective and it may be difficult to secure the desired structure.

또한, 상기 액적 분사시, 액적의 분사량은 50~100g/m2일 수 있다. 만약, 분사량이 50 g/m2 미만인 경우에는 그 효과가 미흡할 우려가 있으며, 한편, 100g/m2을 초과하는 경우에는 그 효과가 포화되므로 바람직하지 않다.
In addition, the droplet injection amount may be 50 to 100 g / m &lt; 2 &gt; If, when the injection amount is 50 g / m 2 is less than, and is a fear that the effect is insufficient, while if it exceeds 100g / m 2 is not preferable because the effect is saturated.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate and specify the present invention and not to limit the scope of the present invention. And the scope of the present invention is determined by the matters described in the claims and the matters reasonably deduced therefrom.

(( 실시예Example 1) One)

도금용 시험편으로 두께 0.8mm, 폭 100mm, 길이 200mm인 저탄소 냉연강판을 소지강판으로 준비한 후, 상기 소지강판을 아세톤에 침지하고 초음파 세척하여 표면에 존재하는 압연유 등의 이물질을 제거하였다. 이후, 일반 용융도금 현장에서 강판의 기계적 특성 확보를 위하여 실시하는 750℃ 환원 분위기 열처리를 실시한 후, 하기 표 1의 조성을 갖는 도금욕(욕 온도: 460℃)에 침지하여 아연합금도금강판을 제조하였다. 이후, 제조된 각각의 아연합금도금강판을 가스 와이핑하여 도금 부착량을 편면당 70g/m2으로 조절하였으며, 하기 표 1의 조건으로 냉각을 실시한 후, 공냉하였다. 한편, 하기 표 1에는 나타내지 않았으나, 비교예 5는 발명예 1과 동일한 도금욕을 이용하여 제조된 아연합금도금강판을 가스 와이핑하여 도금 부착량을 편면당 70g/m2으로 조절한 후, 통상의 냉각장치에 의해 평균 냉각 속도 12℃/sec로 도금층이 완전히 응고되는 시점(약 300℃ 이하)까지 냉각하였다.
A low carbon cold-rolled steel sheet having a thickness of 0.8 mm, a width of 100 mm and a length of 200 mm was prepared as a test piece for plating, and the above-ground steel sheet was immersed in acetone and ultrasonically cleaned to remove foreign substances such as rolling oil present on the surface. Thereafter, the steel sheet was subjected to a heat treatment in a reducing atmosphere at 750 ° C for securing the mechanical properties of the steel sheet at the general hot-dip plating site, and then immersed in a plating bath (bath temperature: 460 ° C) . Thereafter, each of the manufactured gold-plated steel sheets was gas-wiped to adjust the amount of plating adhered to 70 g / m 2 per one side, and then cooled under the conditions shown in Table 1 and then air-cooled. On the other hand, although not shown in the following Table 1, in Comparative Example 5, after the gold-plated steel sheet produced using the same plating bath as in Inventive Example 1 was gas-wiped to adjust the amount of plating adhering to 70 g / m 2 per one side, And cooled to a point of time when the plating layer completely solidified (about 300 DEG C or less) at an average cooling rate of 12 DEG C / sec by a cooling device.

이후, FE-SEM(SUPRA-55VP, ZEISS)에 의해 제조된 아연합금도금강판의 미세조직을 관찰하여 도 1 및 도 2에 나타내었으며, Zn 단상조직의 평균 입경을 측정하여 하기 표 2에 나타내었다.
Thereafter, the microstructure of the zinc alloy-coated steel sheet produced by FE-SEM (SUPRA-55VP, ZEISS) was observed and shown in FIGS. 1 and 2, and the average grain size of the Zn single phase structure was measured and shown in Table 2 .

이후, Zn 단상조직의 (0001) 우선 배향도(f)를 하기 관계식 1에 따라 측정하였으며, 그 결과를 하기 표 2에 함께 나타내었다. Then, the (0001) preferred orientation degree (f) of the Zn single phase structure was measured according to the following relational expression 1, and the results are shown in Table 2 below.

[관계식 1][Relation 1]

f(%)=(Ibasal/Itotal) × 100f (%) = (I basal / I total ) x 100

(여기서, Itotal은 Cu-Kα 소스를 이용하여 X-선 회절 패턴을 2theta 10°~100°까지 측정하였을 때, 모든 Zn 단상의 회절 피크를 적분한 값을 의미하고, Ibasal은 Basal plane과 관계된 Zn 단상의 회절 피크를 적분한 값을 의미함)
(Where I total means the value obtained by integrating the diffraction peaks of all Zn single phase when the X-ray diffraction pattern is measured from 2 ° to 10 ° to 100 ° using a Cu-Kα source, and I basal means a value obtained by integrating the basal plane Means a value obtained by integrating the diffraction peak of the related Zn single phase)

이후, 제조된 아연합금도금강판의 굽힘가공성을 평가하였으며, 그 결과를 하기 표 2에 함께 나타내었다.
After that, the bending workability of the manufactured gold alloy steel sheet was evaluated, and the results are shown in Table 2 below.

내식성은 다음과 같은 방법에 의해 평가하였다. The corrosion resistance was evaluated by the following method.

각각의 아연합금도금강판을 염수분무시험(KS-C-0223에 준하는 염수분무 규격시험)으로 부식촉진시험을 수행한 후, 도금층 표면에 적청 발생면적이 5%가 될 때까지 경과된 시간을 측정하였다.
Each alloyed gold-plated steel sheet was subjected to a corrosion promotion test using a salt spray test (salt spray test according to KS-C-0223), and the elapsed time until the red area of the plating layer surface reached 5% was measured Respectively.

굽힘가공성은 다음과 같은 방법에 의해 평가하였다. The bending workability was evaluated by the following method.

각각의 아연합금도금강판을 3T 굽힘 가공 후, 굽힘 가공 정상부의 길이 1mm를 SEM으로 관찰한 후, Image 분석시스템(analysis)을 활용하여 굽힘 크랙의 면적율을 측정하였다.
After each 3-inch gold-plated steel sheet was observed by SEM with a length of 1 mm at the top of the bending process, the area ratio of the bending cracks was measured using an image analysis system.

No.No. 도금욕 조성
(중량%)
Plating bath composition
(weight%)
액적 분사 개시 온도
(℃)
Droplet injection start temperature
(° C)
액적 분사 종료 온도
(℃)
Drop ejection end temperature
(° C)
액적 종류Droplet type 분사량
(g/m2)
Injection quantity
(g / m 2 )
비고Remarks
AlAl MgMg 1One 1.61.6 1.61.6 410410 390390 인산수소암모늄 수용액,
2중량%
Aqueous ammonium hydrogen phosphate solution,
2 wt%
7070 발명예1Inventory 1
22 1.61.6 1.61.6 420420 400400 인산수소암모늄 수용액,
2중량%
Aqueous ammonium hydrogen phosphate solution,
2 wt%
7070 발명예2Inventory 2
33 1.61.6 1.61.6 430430 400400 인산수소암모늄 수용액,
2중량%
Aqueous ammonium hydrogen phosphate solution,
2 wt%
7070 비교예1Comparative Example 1
44 1.61.6 1.61.6 400400 390390 인산수소암모늄 수용액,
2중량%
Aqueous ammonium hydrogen phosphate solution,
2 wt%
7070 비교예2Comparative Example 2
55 1.61.6 1.61.6 420420 405405 인산수소암모늄 수용액,
2중량%
Aqueous ammonium hydrogen phosphate solution,
2 wt%
7070 비교예3Comparative Example 3
66 1.61.6 1.61.6 410410 375375 인산수소암모늄 수용액,
2중량%
Aqueous ammonium hydrogen phosphate solution,
2 wt%
7070 비교예4Comparative Example 4

No.No. Zn 단상조직의 평균 입경(μm)Average particle size of Zn single phase structure (μm) f(%)f (%) 적청 발생 시간
(h)
Red rush hour
(h)
굽힘 크랙의
면적율(%)
Bending crack
Area ratio (%)
비고Remarks
1One 88 6363 650650 88 발명예1Inventory 1 22 1010 6262 645645 99 발명예2Inventory 2 33 1212 4949 640640 2525 비교예1Comparative Example 1 44 1414 4747 630630 3838 비교예2Comparative Example 2 55 1515 4646 620620 4040 비교예3Comparative Example 3 66 1616 4444 610610 4242 비교예4Comparative Example 4 77 1818 4242 600600 4545 비교예5Comparative Example 5

표 2를 참조할 때, 본 발명이 제안하는 조건을 만족하는 발명예 1 및 2의 경우, 굽힘가공성 모두 우수하게 나타남을 확인할 수 있다.
Table 2 shows that Examples 1 and 2 satisfying the conditions proposed by the present invention exhibit excellent bending workability.

이에 반해, 비교예 1 내지 5는 내식성은 우수하게 나타났으나, f값이 50%에 미달하여 굽힘가공성이 열위하게 나타났다.
On the other hand, Comparative Examples 1 to 5 exhibited excellent corrosion resistance, but the f value was less than 50% and the bending workability was poor.

도 1은 본 발명의 (a) 발명예 1 및 (b) 비교예 5의 표면부 미세조직을 관찰한 결과이며, 도 2는 본 발명의 (a) 발명예 1 및 (b) 비교예 5의 단면부 미세조직을 관찰한 결과이다.
Fig. 1 shows the result of observing the surface microstructure of (a) inventive example 1 and (b) comparative example 5 of the present invention. Fig. 2 (a) And the microstructure of the cross section was observed.

도 3은 본 발명의 발명예 1의 XRD(x-ray diffractometer) 분석 결과이다. 도 1에서 "○" 및 "●"에 해당하는 피크는 모든 Zn 단상의 회절 피크에 해당하며, 이 중 "○"에 해당하는 피크는 Basal plane과 관계된 Zn 단상의 회절 피크에 해당한다.
3 is an X-ray diffractometer (XRD) analysis result of Inventive Example 1 of the present invention. In Fig. 1, the peaks corresponding to &quot;?"And"?&Quot; correspond to the diffraction peaks of all Zn single phases, and the peaks corresponding to "? &Quot; correspond to the diffraction peaks of Zn single phase related to the basal plane.

(( 실시예Example 2) 2)

도금용 시험편으로 두께 0.8mm, 폭 100mm, 길이 200mm인 저탄소 냉연강판을 소지강판으로 준비한 후, 상기 소지강판을 아세톤에 침지하고 초음파 세척하여 표면에 존재하는 압연유 등의 이물질을 제거하였다. 이후, 일반 용융도금 현장에서 강판의 기계적 특성 확보를 위하여 실시하는 750℃ 환원 분위기 열처리를 실시한 후, 하기 표 3의 조성을 갖는 도금욕에 침지하여 아연합금도금강판을 제조하였다. 이후, 제조된 각각의 아연합금도금강판을 가스 와이핑하여 도금 부착량을 편면당 70g/m2으로 조절하였으며, 실시예 1 중 발명예 1과 동일한 조건으로 냉각을 실시하였다.
A low carbon cold-rolled steel sheet having a thickness of 0.8 mm, a width of 100 mm and a length of 200 mm was prepared as a test piece for plating, and the above-ground steel sheet was immersed in acetone and ultrasonically cleaned to remove foreign substances such as rolling oil present on the surface. Thereafter, the steel sheet was subjected to a heat treatment in a reducing atmosphere at 750 캜 for securing the mechanical properties of the steel sheet at the general hot-dip coating site, and then immersed in a plating bath having the composition shown in the following Table 3 to prepare an alloyed gold-plated steel sheet. Thereafter, each of the manufactured gold-plated steel sheets was gas-wiped to adjust the plating adhesion amount to 70 g / m 2 per one side, and cooling was performed under the same conditions as that of Inventive Example 1 in Example 1.

이후, 각각의 아연합금도금강판의 표면에서 관찰되는 미세조직의 상분율을 측정하고, 흑점 개수를 측정하였으며, 그 결과를 각각 표 3 및 표 4에 나타내었다.
Thereafter, the phase fraction of the microstructure observed on the surface of each of the gold-plated steel sheets was measured and the number of black spots was measured. The results are shown in Tables 3 and 4, respectively.

이후, 마찰 특성 시험(linear friction test)을 위해, 툴 헤드(tool head)로 제조된 각각의 아연합금도금강판의 표면에 일정한 압력을 가한 채 총 20회 마찰을 가하였다. 이때 목표하중은 333.3kgf였고, 압력은 3.736MPa였으며, 1회 마찰시 툴 헤드(tool head)의 이동 거리는 200mm였고, 툴 헤드(tool head)의 이동 속도는 20mm/s였다.
Then, for a linear friction test, friction was applied to the surface of each alloyed gold-plated steel sheet manufactured with a tool head for 20 times while applying a constant pressure. At this time, the target load was 333.3 kgf, the pressure was 3.736 MPa, the movement distance of the tool head was 200 mm and the movement speed of the tool head was 20 mm / s.

마찰 후, 각각의 아연합금도금강판에 대해 박리 시험을 실시하였다. 보다 구체적으로는, 10R로 굽힘 가공된 각각의 아연합금도금강판의 굽힘 가공부에 셀로판 점착 테이프(Ichiban사 NB-1)를 밀착시킨 후 이를 순간적으로 박리하였으며, 광학 현미경(50배율)을 이용하여 도금층 결함 개수를 측정하였다. 측정 결과, 도금층 결함 개수가 5개/m2 이하인 경우, "○", 도금층 결함 개수가 5개/m2를 초과하는 경우 "X"로 평가하였으며, 그 결과를 하기 표 4에 함께 나타내었다.
After the rubbing, the peel test was performed on each of the subassembled gold-plated steel sheets. More specifically, a cellophane adhesive tape (Ichiban Corp. NB-1) was closely adhered to the bending portion of each alloyed gold-plated steel sheet bended at 10R, and then instantaneously peeled off. Using an optical microscope (50 magnification) The number of plating layer defects was measured. If the measurement result, the plating layer number is 5 / m 2 or less defects, "○", the coating layer Number of defects were evaluated as "X", if it exceeds 5 / m 2, it is shown with the results in Table 4 below.

또한, 마찰 후, 각각의 아연합금도금강판을 염수 분무 시험기에 장입하였으며, 국제 규격(ASTM B117-11)에 의해 적청 발생 시간을 측정하였다. 이때, 5% 염수(온도 35℃, pH 6.8)을 이용하였으며, 시간 당 2ml/80cm2의 염수를 분무하였다. 적청 발생 시간이 500시간 이상인 경우 "○", 500 시간 미만인 경우 "X"로 평가하였으며, 그 결과를 하기 표 4에 함께 나타내었다.
Further, after the rubbing, each of the alloyed gold-plated steel sheets was charged into a salt spray tester and the time of occurrence of red rust was measured by an international standard (ASTM B117-11). At this time, 5% brine (temperature 35 ° C, pH 6.8) was used, and 2 ml / 80 cm 2 of brine was sprayed per hour. "○" when the red rusting time was 500 hours or more, and "X" when the red rusting time was less than 500 hours, and the results are shown in Table 4 below.

No.No. 합금 조성(중량%)Alloy composition (% by weight) 표면조직 면적분율(면적%)Surface texture area fraction (area%) 비고Remarks AlAl MgMg Mg/AlMg / Al ZnZn Zn/MgZn2 Zn / MgZn 2 Zn/Al/MgZn2 Zn / Al / MgZn 2 MgZn2 MgZn 2 Zn/AlZn / Al Zn/Al/MgZn2 + Zn/MgZn2 Zn / Al / MgZn 2 + Zn / MgZn 2 1One 0.60.6 2.32.3 3.83 3.83 2828 4141 3131 00 00 7272 발명예AInventory A 22 1.51.5 2.82.8 1.87 1.87 2020 5757 2121 1One 1One 7878 발명예BInventory B 33 22 2.92.9 1.45 1.45 88 6363 2828 1One 00 9191 발명예CHonor C 44 2.22.2 2.72.7 1.23 1.23 44 5858 3434 22 22 9292 발명예DInventory D 55 2.62.6 2.92.9 1.12 1.12 44 3939 5151 33 33 9090 발명예EE 66 00 00  -- 100100 00 00 00 00 00 비교예AComparative Example A 77 1.41.4 1One 0.71 0.71 8282 77 1111 00 00 1818 비교예BComparative Example B 88 2.52.5 1.21.2 0.48 0.48 66 2121 2626 4646 1One 4747 비교예CComparative Example C 99 55 00 0.00 0.00 7676 00 00 00 2424 00 비교예DComparative Example D 1010 55 1One 0.20 0.20 5959 99 1111 00 2121 2020 비교예EComparative Example E 1111 88 33 0.38 0.38 1313 77 1313 1818 4949 2020 비교예FComparative Example F 1212 5555 00 0.00 0.00 1414 00 00 00 8686 00 비교예GComparative Example G * 여기서, 표면조직이란 아연합금도금층의 표면에서 관찰되는 미세조직을 의미함Here, surface texture refers to the microstructure observed on the surface of the zinc alloy plating layer.

No.No. 흑점 개수
(개/cm2)
Number of sunspots
(Pieces / cm 2 )
마찰 후, 박리 시험 결과After rubbing, peeling test result 마찰 후, 염수 분무 시험 결과After rubbing, salt water spray test results 비고Remarks
결함 개수(개/m2)Number of defects (pieces / m 2 ) 평가 결과Evaluation results 탈락 면적(%)Dropout area (%) 평가 결과Evaluation results 1One 0.050.05 33 520520 발명예AInventory A 22 0.080.08 22 550550 발명예BInventory B 33 0.040.04 44 600600 발명예CHonor C 44 0.080.08 33 650650 발명예DInventory D 55 0.040.04 22 580580 발명예EE 66 1.21.2 22 120120 XX 비교예AComparative Example A 77 0.80.8 33 230230 X X 비교예BComparative Example B 88 0.050.05 2323 XX 620620 비교예CComparative Example C 99 1.11.1 33 350350 XX 비교예DComparative Example D 1010 0.60.6 22 420420 XX 비교예EComparative Example E 1111 0.060.06 1515 XX 650650 비교예FComparative Example F 1212 0.050.05 1111 XX 200200 XX 비교예GComparative Example G

표 4를 참조할 때, 본 발명이 제안하는 조건을 만족하는 발명예 A 내지 발명예 E의 경우, 표면 외관 및 내스크래치성이 모두 우수하게 나타남을 확인할 수 있다.
Referring to Table 4, it can be confirmed that both of the surface appearance and the scratch resistance are excellent in Inventive Examples A to E satisfying the conditions proposed by the present invention.

이에 반해, 비교예 A, 비교예 B, 비교예 D 및 비교예 E는 도금층 표면에서 관찰되는 Zn 단상조직의 면적분율이 과다하여 표면외관이 열위하게 나타났으며, 비교예 A 내지 비교예 G는 Zn/MgZn2 2원 공정조직 및 Zn/Al/MgZn2 3원 공정조직의 면적분율이 과소하여 내스크래치성이 열위하게 나타났다.On the other hand, Comparative Example A, Comparative Example B, Comparative Example D, and Comparative Example E exhibited poor surface appearance due to excessive Zn single-phase structure in the surface of the plating layer, The scratch resistance of the Zn / MgZn 2 binary structure and the Zn / Al / MgZn 2 three-element structure were inferior due to the low area fraction.

Claims (18)

소지강판과 아연합금도금층을 포함하는 아연합금도금강판에 있어서,
상기 아연합금도금층은 미세조직으로 Zn 단상조직과 Zn-Al-Mg계 금속간 화합물을 포함하며,
상기 Zn 단상조직의 하기 관계식 1로 표현되는 (0001) 우선 배향도(f)가 50% 이상(100% 포함)인 아연합금도금강판.
[관계식 1]
f(%)=(Ibasal/Itotal) × 100
(여기서, Itotal은 Cu-Kα 소스를 이용하여 X-선 회절 패턴을 2theta 10°~100°까지 측정하였을 때, 모든 Zn 단상의 회절 피크를 적분한 값을 의미하고, Ibasal은 Basal plane과 관계된 Zn 단상의 회절 피크를 적분한 값을 의미함)
In an alloyed gold-plated steel sheet comprising a base steel sheet and a zinc alloy plating layer,
The zinc alloy plating layer is a microstructure comprising Zn single phase structure and Zn-Al-Mg intermetallic compound,
(0001) preferred orientation degree (f) expressed by the following relational expression 1 of the Zn single phase structure is 50% or more (including 100%).
[Relation 1]
f (%) = (I basal / I total ) x 100
(Where I total means the value obtained by integrating the diffraction peaks of all Zn single phase when the X-ray diffraction pattern is measured from 2 ° to 10 ° to 100 ° using a Cu-Kα source, and I basal means a value obtained by integrating the basal plane Means a value obtained by integrating the diffraction peak of the related Zn single phase)
제1항에 있어서,
상기 Zn 단상조직의 하기 관계식 1로 표현되는 (0001) 우선 배향도(f)가 60% 이상(100% 포함)인 아연합금도금강판.
[관계식 1]
f(%)=(Ibasal/Itotal) × 100
(여기서, Itotal은 Cu-Kα 소스를 이용하여 X-선 회절 패턴을 2theta 10°~100°까지 측정하였을 때, 모든 Zn 단상의 회절 피크를 적분한 값을 의미하고, Ibasal은 Basal plane과 관계된 Zn 단상의 회절 피크를 적분한 값을 의미함)
The method according to claim 1,
Wherein the (0001) preferred orientation degree (f) of the Zn single phase structure expressed by the following relational expression 1 is 60% or more (including 100%).
[Relation 1]
f (%) = (I basal / I total ) x 100
(Where I total means the value obtained by integrating the diffraction peaks of all Zn single phase when the X-ray diffraction pattern is measured from 2 ° to 10 ° to 100 ° using a Cu-Kα source, and I basal means a value obtained by integrating the basal plane Means a value obtained by integrating the diffraction peak of the related Zn single phase)
제1항에 있어서,
상기 Zn-Al-Mg계 금속간 화합물은 Zn/MgZn2 2원 공정조직, Zn/Al 2원 공정조직, MgZn2 단상조직 및 Zn/Al/MgZn2 3원 공정조직로 이루어진 군으로부터 선택된 1종 이상인 아연합금도금강판.
The method according to claim 1,
The Zn-Al-Mg intermetallic compound is one selected from the group consisting of a Zn / MgZn 2 binary process structure, a Zn / Al binary process structure, a MgZn 2 single phase structure, and a Zn / Al / MgZn 2 three- Au alloy gold plated steel plate.
제1항에 있어서,
상기 아연합금도금층의 표면에서 관찰되는 상기 Zn 단상조직의 면적분율이 40% 이하(0% 제외)인 아연합금도금강판.
The method according to claim 1,
Wherein the area fraction of the Zn single phase structure observed on the surface of the zinc alloy plating layer is 40% or less (excluding 0%).
제1항에 있어서,
상기 아연합금도금층의 표면에서 관찰되는 Zn/MgZn2 2원 공정조직 및 Zn/Al/MgZn2 3원 공정조직의 면적분율의 합이 50% 이상(100% 제외)인 아연합금도금강판.
The method according to claim 1,
Wherein the sum of the area percentages of the Zn / MgZn 2 original structure and the Zn / Al / MgZn 2 original structure observed on the surface of the zinc alloy plating layer is 50% or more (excluding 100%).
제1항에 있어서,
상기 아연합금도금층의 표면에서 관찰되는 MgZn2 단상조직의 면적분율은 10% 이하(0% 포함)인 아연합금도금강판.
The method according to claim 1,
Wherein the area fraction of the MgZn 2 single phase structure observed on the surface of the zinc alloy plating layer is 10% or less (including 0%).
제1항에 있어서,
상기 아연합금도금층의 판두께 방향 단면에서 관찰되는 상기 Zn 단상조직의 평균 입경이 15μm 이하(0μm 제외)인 아연합금도금강판.
The method according to claim 1,
Wherein the average grain size of the Zn single phase structure observed in the plate thickness direction cross section of the zinc alloy plating layer is 15 占 퐉 or less (excluding 0 占 퐉).
제1항에 있어서,
상기 아연합금도금층은, 중량%로, Al: 0.5~3%, Mg: 0.5~3%, 잔부 Zn 및 불가피한 불순물을 포함하는 아연합금도금강판.
The method according to claim 1,
Wherein the zinc alloy plating layer contains 0.5 to 3% of Al, 0.5 to 3% of Mg, and the balance of Zn and unavoidable impurities in terms of% by weight.
제1항에 있어서,
상기 아연합금도금층은 하기 관계식 1을 만족하는 아연합금도금강판.
[관계식 1]
1.0 < [Mg]/[Al] ≤ 4.0
(여기서, [Mg] 및 [Al] 각각은 해당 원소의 중량%를 의미함)
The method according to claim 1,
Wherein the zinc alloy plating layer satisfies the following relational expression (1).
[Relation 1]
1.0 <[Mg] / [Al]? 4.0
(Where each of [Mg] and [Al] represents the weight% of the element)
제1항에 있어서,
상기 아연합금도금강판 표면에서의 흑점(black spot)의 단위 면적당 개수가 0.1개/cm2 이하인 아연합금도금강판.
The method according to claim 1,
Wherein the number of black spots on the surface of the alloy gold-plated steel sheet is 0.1 per cm 2 or less per unit area.
Mg 및 Al을 포함하는 아연합금 도금욕을 준비하는 단계;
상기 아연합금 도금욕에 소지강판을 침지하고, 도금을 행하여 아연합금도금강판을 얻는 단계;
상기 아연합금도금강판을 가스 와이핑하여 도금 부착량을 조절하는 단계;
상기 도금 부착량이 조절된 아연합금도금강판에 물 또는 수용액의 액적을 분사하여 냉각한 후, 공냉하는 단계를 포함하고,
상기 액적 분사시, 액적 분사 개시 온도는 405~425℃이고, 액적 분사 종료 온도는 380~400℃인 아연합금도금강판의 제조방법.
Preparing a zinc alloy plating bath containing Mg and Al;
Immersing the base steel sheet in the zinc alloy plating bath and performing plating to obtain a galvanized steel sheet;
Adjusting the plating adhesion amount by gas wiping the zinc-coated gold-plated steel sheet;
A step of spraying a droplet of water or an aqueous solution onto the galvanized gold-plated steel sheet whose plating amount is adjusted, cooling the steel sheet,
Wherein the droplet jetting start temperature and the droplet jetting end temperature are in the range of 405 to 425 캜 and 380 to 400 캜, respectively.
제11항에 있어서,
상기 액적 분사시, 액적 분사 개시 온도와 액적 분사 종료 온도의 차이는 15~45℃인 아연합금도금강판의 제조방법.
12. The method of claim 11,
Wherein the difference between the droplet jetting start temperature and the droplet jetting end temperature at the droplet jetting is 15 to 45 ° C.
제11항에 있어서,
상기 액적 분사시, 상기 액적이 아연합금도금강판과의 정전기 인력에 의해 부착되도록 대전 분사하는 것을 특징으로 하는 아연합금도금강판의 제조방법.
12. The method of claim 11,
Wherein the droplet is jetted so that the droplet is adhered to the steel sheet by electrostatic attraction with the gold plated steel sheet when the droplet is sprayed.
제11항에 있어서,
상기 액적 분사시, 액적의 분사량은 50~100g/m2인 아연합금도금강판의 제조방법.
12. The method of claim 11,
Wherein the spray amount of the droplet is 50 to 100 g / m 2 when the droplet is sprayed.
제11항에 있어서,
상기 수용액은, 인산염 수용액인 것을 특징으로 하는 아연합금도금강판의 제조방법.
12. The method of claim 11,
Wherein the aqueous solution is a phosphate aqueous solution.
제15항에 있어서,
상기 인산염 수용액은, 인산수소암모늄((NH4)2HPO4) 수용액, 인산수소암모늄나트륨(NaNH4HPO4) 수용액, 제1 인산아연(Zn(H2PO4)2) 수용액 및 인산칼슘(Ca3(PO4)2) 수용액으로 이루어진 군으로부터 선택된 1종 또는 2종 이상인 아연합금도금강판의 제조방법.
16. The method of claim 15,
The aqueous phosphate solution is prepared by adding an aqueous solution of ammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), an aqueous solution of sodium hydrogenphosphate (NaNH 4 HPO 4 ), an aqueous solution of zinc phosphate (Zn (H 2 PO 4 ) 2 ) Ca 3 (PO 4 ) 2 ) aqueous solution.
제15항에 있어서,
상기 인산염 수용액의 농도는 0.5~5중량%인 것을 특징으로 하는 아연합금도금강판의 제조방법.
16. The method of claim 15,
Wherein the concentration of the phosphate aqueous solution is 0.5 to 5 wt%.
제11항에 있어서,
상기 아연합금 도금욕은, 중량%로, Al: 0.5~3%, Mg: 0.5~3%, 잔부 Zn 및 불가피한 불순물을 포함하는 아연합금도금강판의 제조방법.
12. The method of claim 11,
Wherein the zinc alloy plating bath comprises 0.5 to 3% of Al, 0.5 to 3% of Mg, and the balance of Zn and unavoidable impurities, in weight percent.
KR1020160140342A 2015-10-26 2016-10-26 Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BENDABILITY AND METHOD FOR MANUFACTURING SAME KR101819381B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018521248A JP6983153B2 (en) 2015-10-26 2016-10-26 Zinc alloy plated steel sheet with excellent bendability and its manufacturing method
PCT/KR2016/012098 WO2017074030A1 (en) 2015-10-26 2016-10-26 Zinc alloy plated steel sheet having excellent bending workability and manufacturing method therefor
US15/770,615 US20180320260A1 (en) 2015-10-26 2016-10-26 Zinc alloy plated steel sheet having excellent bending workability and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150148793 2015-10-26
KR1020150148793 2015-10-26

Publications (2)

Publication Number Publication Date
KR20170049422A KR20170049422A (en) 2017-05-10
KR101819381B1 true KR101819381B1 (en) 2018-01-18

Family

ID=58743980

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160140342A KR101819381B1 (en) 2015-10-26 2016-10-26 Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BENDABILITY AND METHOD FOR MANUFACTURING SAME

Country Status (5)

Country Link
US (1) US20180320260A1 (en)
EP (1) EP3369838B1 (en)
JP (1) JP6983153B2 (en)
KR (1) KR101819381B1 (en)
CN (1) CN108350555A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101847567B1 (en) 2015-12-24 2018-04-10 주식회사 포스코 Coated steel sheet
JP6176424B1 (en) * 2017-01-16 2017-08-09 新日鐵住金株式会社 Plated steel
KR102568545B1 (en) * 2019-04-19 2023-08-21 닛폰세이테츠 가부시키가이샤 plated steel
JP7290757B2 (en) * 2019-06-26 2023-06-13 ポスコホールディングス インコーポレーティッド Plated steel wire and its manufacturing method
WO2021038102A1 (en) 2019-08-30 2021-03-04 Rijksuniversiteit Groningen Characterization method of formability properties of zinc alloy coating on a metal substrate
CN111155044B (en) * 2019-12-13 2021-09-21 首钢集团有限公司 Method for improving surface quality of zinc-aluminum-magnesium coated steel and zinc-aluminum-magnesium coating
WO2023238940A1 (en) * 2022-06-10 2023-12-14 日本製鉄株式会社 Zn-Al-Mg-BASED HOT-DIPPED STEEL SHEET

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU736197B2 (en) * 1996-12-13 2001-07-26 Nisshin Steel Company, Ltd. Hot-dip Zn-Al-Mg plated steel sheet good in corrosion resistance and surface appearance and method for producing the same
JP3179401B2 (en) * 1996-12-13 2001-06-25 日新製鋼株式会社 Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same
JP3149129B2 (en) * 1997-03-04 2001-03-26 日新製鋼株式会社 Hot-dip Zn-Al-Mg-based coated steel sheet with good corrosion resistance and surface appearance and method for producing the same
JP3888784B2 (en) * 1998-09-21 2007-03-07 日新製鋼株式会社 Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet
JP4522552B2 (en) * 2000-07-10 2010-08-11 日新製鋼株式会社 Black-denatured minimized spangled galvanized steel sheet, treatment liquid and use thereof
JP3580261B2 (en) * 2001-03-23 2004-10-20 住友金属工業株式会社 Hot-dip Zn-Al-Mg plated steel sheet and method for producing the same
JP3732141B2 (en) * 2001-11-09 2006-01-05 新日本製鐵株式会社 Hot-dip galvanized-Al alloy-plated steel sheet with excellent corrosion resistance after processing and method for producing the same
JP4546884B2 (en) * 2004-07-07 2010-09-22 新日本製鐵株式会社 Surface treated galvanized steel sheet with excellent corrosion resistance
EP1831419B1 (en) * 2004-12-28 2012-06-13 Posco Galvanized steel-sheet without spangle, manufacturing method thereof and device used therefor
KR20120075235A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Hot dip zn alloy plated steel sheet having excellent anti-corrosion and method for manufacturing the steel sheet using the same
EP2666882B1 (en) * 2011-01-20 2021-04-28 Posco Hot dipped galvanized steel sheet with excellent deep drawing properties and ultra-low temperature adhesive brittleness, and preparation method thereof
KR101417304B1 (en) * 2012-07-23 2014-07-08 주식회사 포스코 HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
KR20150052376A (en) * 2013-10-30 2015-05-14 주식회사 포스코 HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. Pistofidisa, G. Vourliasb, et al.. A combined microscopical and XRD study of zinc coatings. Solid State Phenomena. Vol. 163 (2010). pp 93-96 (Online available since 2010/Jun/07)*

Also Published As

Publication number Publication date
KR20170049422A (en) 2017-05-10
EP3369838A1 (en) 2018-09-05
EP3369838A4 (en) 2018-09-05
JP2018532889A (en) 2018-11-08
US20180320260A1 (en) 2018-11-08
CN108350555A (en) 2018-07-31
JP6983153B2 (en) 2021-12-17
EP3369838B1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
KR101819381B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BENDABILITY AND METHOD FOR MANUFACTURING SAME
KR101767788B1 (en) Plating steel material having excellent friction resistance and white rust resistance and method for manufacturing same
KR101758529B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT PHOSPHATABILITY AND SPOT WELDABILITY AND METHOD FOR MANUFACTURING SAME
EP2659017B1 (en) High corrosion resistant hot dip zn alloy plated steel sheet and method of manufacturing the same
EP2816139B1 (en) Plated steel plate for hot pressing and hot pressing method of plated steel plate
EP3561135B1 (en) Hot-dipped galvanized steel material having excellent weldability and press workability and manufacturing method therefor
KR101456346B1 (en) Hot-dip zinc-coated steel sheet
TWI521092B (en) Hot dip a1-zn plated steel sheet and method of manufacturing the same
EP3396008B1 (en) Hot-dip galvanized steel sheet with excellent surface quality and resistance to low temperature brittle fracture
KR101657843B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT WELDABILITY AND PROCESSED PART CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
EP4079924A1 (en) Hot-dip zn-al-mg-based alloy-plated steel material having excellent corrosion resistance of processed portion, and method for manufacturing same
KR101568510B1 (en) GI Steel Plate of Spangle-Free and Solution Thereof
JP2803566B2 (en) Alloyed galvanized steel sheet with excellent film destruction resistance
JPH0681099A (en) Galvannealed steel sheet
KR101746955B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT SCRATCH RESISTANCE AND BENDABILITY AND METHOD FOR MANUFACTURING SAME
JP2004277839A (en) Zinc based metal-coated steel
US11866828B2 (en) Plated steel sheet for hot stamping
KR101325400B1 (en) Semi-alloyed hot-rolled hot-dip galvanizing steel sheet and method for manufacturing the same
JP3279063B2 (en) Surface-treated steel sheet which is thin and excellent in corrosion resistance and method for producing the same
JPH0641707A (en) Galvannealed steel sheet and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant