JP3149129B2 - Hot-dip Zn-Al-Mg-based coated steel sheet with good corrosion resistance and surface appearance and method for producing the same - Google Patents

Hot-dip Zn-Al-Mg-based coated steel sheet with good corrosion resistance and surface appearance and method for producing the same

Info

Publication number
JP3149129B2
JP3149129B2 JP05744698A JP5744698A JP3149129B2 JP 3149129 B2 JP3149129 B2 JP 3149129B2 JP 05744698 A JP05744698 A JP 05744698A JP 5744698 A JP5744698 A JP 5744698A JP 3149129 B2 JP3149129 B2 JP 3149129B2
Authority
JP
Japan
Prior art keywords
weight
phase
steel sheet
hot
dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05744698A
Other languages
Japanese (ja)
Other versions
JPH10306357A (en
Inventor
厚志 小松
太佳夫 辻村
敦司 安藤
敏晴 橘高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP05744698A priority Critical patent/JP3149129B2/en
Publication of JPH10306357A publication Critical patent/JPH10306357A/en
Application granted granted Critical
Publication of JP3149129B2 publication Critical patent/JP3149129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,耐食性と表面外観
の良好な溶融Zn−Al−Mg系めっき鋼板およびその
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-dip Zn-Al-Mg plated steel sheet having good corrosion resistance and surface appearance, and a method for producing the same.

【0002】[0002]

【従来の技術】Zn中にAlとMgを適量含有させため
っき浴を用いた溶融Zn−Al−Mgめっき鋼板は耐食
性に優れるので,従来より種々の開発研究が進められて
きた。しかし,現在のところ工業製品としての商業的成
功例を見ない。
2. Description of the Related Art Various developmental researches have been conducted on a hot-dip Zn-Al-Mg plated steel sheet using a plating bath containing Zn and an appropriate amount of Al and Mg because of its excellent corrosion resistance. However, there is no commercial success as an industrial product at present.

【0003】例えば米国特許第3,505,043 号明細書にお
いてAl:3〜17重量%,Mg:1〜5%重量%,残
部がZnからなる溶融めっき浴を用いた耐食性に優れた
溶融Zn−Al−Mgめっき鋼板が提案されて以来,こ
の種の基本浴組成に対して各種の添加元素を配合したり
製造条件を規制することにより,一層の耐食性や製造性
を改善する提案が特公昭64−8702号公報,特公昭
64−11112号公報,特開平8−60324号公報
等になされている。
For example, in US Pat. No. 3,505,043, molten Zn—Al—Mg having excellent corrosion resistance using a hot-dip plating bath composed of 3 to 17% by weight of Al, 1 to 5% by weight of Mg, and the balance of Zn. Since the proposal of plated steel sheets, a proposal has been made to further improve corrosion resistance and productivity by blending various additional elements with the basic bath composition of this type and regulating the production conditions (Japanese Patent Publication No. 64-8702). And Japanese Patent Publication No. Sho 64-11112 and Japanese Patent Laid-Open Publication No. Hei 8-60324.

【0004】[0004]

【発明が解決しようとする課題】かような溶融Zn−A
l−Mgめっき鋼板の工業的な製造にあたっては,得ら
れる溶融めっき鋼板が優れた耐食性を有することはもと
より,耐食性と表面外観が良好な帯成品を製造性よく生
産できることが必要である。すなわち,インライン焼鈍
型の連続溶融めっき設備を用いて,耐食性と表面外観の
良好な溶融Zn−Al−Mgめっき鋼板が安定して連続
生産できることが必要である。
SUMMARY OF THE INVENTION Such molten Zn-A
In the industrial production of 1-Mg plated steel sheets, it is necessary that not only the obtained hot-dip coated steel sheets have excellent corrosion resistance, but also that a strip having good corrosion resistance and surface appearance can be produced with good productivity. That is, it is necessary to be able to stably and continuously produce a hot-dip Zn-Al-Mg plated steel sheet having good corrosion resistance and surface appearance using an in-line annealing type continuous hot-dip plating apparatus.

【0005】Zn−Al−Mgの三元平衡状態図上で
は,Alが約4重量%付近,Mgが約3重量%近傍にお
いて,融点が最も低くなる三元共晶点(融点=343
℃)が見られる。したがって,Zn−Al−Mgの三元
合金を基本とした溶融Zn−Al−Mgめっき鋼板の製
造にあたっては,一見したところ,この三元共晶点の近
傍の組成とすることが有利である。
[0005] In the ternary equilibrium diagram of Zn-Al-Mg, the ternary eutectic point (melting point = 343) at which the melting point is lowest when Al is about 4% by weight and Mg is about 3% by weight.
° C). Therefore, in producing a hot-dip Zn-Al-Mg plated steel sheet based on a ternary alloy of Zn-Al-Mg, at first glance, it is advantageous to have a composition near this ternary eutectic point.

【0006】しかし,この三元共晶点近傍の浴組成を採
用した場合に,めっき層の組織中にZn11Mg2系の相
(詳細は後述するが,Al/Zn/Zn11Mg2の三元
共晶の素地自体或いは該素地中に〔Al初晶〕または
〔Al初晶〕と〔Zn単相〕が混在してなるZn11Mg
2系の相)が局部的に晶出する現象が起きる。この局部
的に晶出したZn11Mg2系の相は他の相(例えばZn2
Mg系の相・詳細は後述する)よりも変色しやすく,放
置しておくと,この部分が非常に目立った色調となり,
表面外観を著しく悪くする。したがって,溶融Zn基め
っき鋼板としての製品価値を著しく低下させる。
However, when the bath composition near the ternary eutectic point is employed, the structure of the Zn 11 Mg 2 system (details will be described later, but the Al / Zn / Zn 11 Mg 2 The ternary eutectic material itself or Zn 11 Mg in which [Al primary crystal] or [Al primary crystal] and [Zn single phase] are mixed.
The phenomenon of local crystallization of the 2 phase) occurs. This locally crystallized Zn 11 Mg 2 -based phase is replaced with another phase (for example, Zn 2 Mg 2
(Mg-based phase and details will be described later), and it is more likely to discolor.
Significantly degrade surface appearance. Therefore, the product value as a hot-dip Zn-based plated steel sheet is significantly reduced.

【0007】加えて,本発明者らの経験によると,この
Zn11Mg2系の相が局部的に晶出した場合に,この晶
出部分が優先的に腐食される現象が起きることも明らか
となった。このような問題を解決する有効な手段は前記
の公報類を含め,これまで見いだされていない。
In addition, according to the experience of the present inventors, when the Zn 11 Mg 2 phase is locally crystallized, it is apparent that the crystallized portion is preferentially corroded. It became. No effective means for solving such a problem has been found so far, including the above-mentioned publications.

【0008】したがって,本発明の課題はこのような問
題を解決し,耐食性と表面外観の良好な溶融Zn−Al
−Mgめっき鋼板を提供しようとするものである。
Accordingly, an object of the present invention is to solve such a problem and to provide a molten Zn—Al alloy having good corrosion resistance and good surface appearance.
-To provide an Mg-plated steel sheet.

【0009】[0009]

【課題を解決するための手段】本発明によれば,Al:
4.0〜10.0重量%,Mg:1.0〜4.0重量%,T
i:0.002〜0.1重量%,B:0.001〜0.04
5重量%,残部がZnおよび不可避的不純物からなる溶
融めっき層を鋼板表面に形成した溶融Zn基めっき鋼板
であって,当該めっき層が,〔Al/Zn/Zn2Mg
の三元共晶組織〕の素地中に〔初晶Al相〕,または
〔初晶Al相〕と〔Zn単相〕が混在した金属組織を有
する耐食性および表面外観の良好な溶融Zn−Al−M
gめっき鋼板を提供する。
According to the present invention, Al:
4.0 to 10.0% by weight, Mg: 1.0 to 4.0% by weight, T
i: 0.002 to 0.1% by weight, B: 0.001 to 0.04
A hot-dip Zn-base coated steel sheet in which a hot-dip coating layer composed of 5% by weight, the balance being Zn and unavoidable impurities is formed on the surface of the steel sheet, and the coating layer is [Al / Zn / Zn 2 Mg
Ternary eutectic structure], and a metal structure in which [primary crystal Al phase] and [primary crystal Al phase] and [Zn single phase] are mixed in a molten Zn—Al— alloy having good corrosion resistance and surface appearance. M
Provide a g-plated steel sheet.

【0010】当該めっき層の金属組織は,好ましくは,
〔初晶Al相〕と〔Al/Zn/Zn2Mgの三元共晶
組織〕の合計量:80容積%以上,〔Zn単相〕:15
容積%以下(0容積%を含む)である。
The metal structure of the plating layer is preferably
Total amount of [primary Al phase] and [ternary eutectic structure of Al / Zn / Zn 2 Mg]: 80% by volume or more, [Zn single phase]: 15
% By volume (including 0% by volume).

【0011】この金属組織のめっき層を有する溶融めっ
き鋼板は,めっき浴の浴温を融点以上410℃未満とし
且つめっき後の冷却速度を7℃/秒以上に制御するか,
またはめっき浴の浴温を410℃以上で且つめっき後の
冷却速度を0.5℃/秒以上に制御することによって製
造することができる。
In the hot-dip coated steel sheet having the metallized coating layer, the bath temperature of the plating bath is set to a melting point or higher and lower than 410 ° C., and the cooling rate after plating is controlled to 7 ° C./sec or higher.
Alternatively, it can be manufactured by controlling the bath temperature of the plating bath to 410 ° C. or higher and the cooling rate after plating to 0.5 ° C./sec or higher.

【0012】ここで,〔Al/Zn/Zn2Mgの三元
共晶組織〕とは,例えば図2の電子顕微鏡写真にその代
表例を示すように,Al相と,Zn相と,金属間化合物
Zn2Mg相との三元共晶組織であり,この三元共晶組
織を形成しているAl相は実際にはAl−Zn−Mgの
三元系平衡状態図における高温での「Al”相」(Zn
を固溶するAl固溶体であり,少量のMgを含む)に由
来するものである。この高温でのAl”相は常温では通
常は微細なAl相と微細なZn相に分離して現れる。ま
た,該三元共晶組織中のZn相は少量のAlを固溶し,
場合によってはさらに少量のMgを固溶したZn固溶体
である。該三元共晶組織中のZn2Mg相は,Zn−M
gの二元系平衡状態図のZn:約84重量%の付近に存
在する金属間化合物相である。この3つの相からなる三
元共晶組織を本明細書では〔Al/Zn/Zn2Mgの
三元共晶組織〕と表す。
Here, the "ternary eutectic structure of Al / Zn / Zn 2 Mg" means, for example, an Al phase, a Zn phase and a metal as shown in the electron micrograph of FIG. The compound has a ternary eutectic structure with a Zn 2 Mg phase, and the Al phase forming this ternary eutectic structure is actually “Al—Zn—Mg” at a high temperature in a ternary system diagram of Al—Zn—Mg. "Phase" (Zn
(Al solid solution containing a small amount of Mg). The Al ″ phase at a high temperature usually appears at room temperature as being separated into a fine Al phase and a fine Zn phase. The Zn phase in the ternary eutectic structure dissolves a small amount of Al,
In some cases, it is a Zn solid solution in which a small amount of Mg is further dissolved. The Zn 2 Mg phase in the ternary eutectic structure is Zn-M
g in the binary equilibrium diagram for Zn: an intermetallic compound phase present at around 84% by weight. In the present specification, the ternary eutectic structure composed of these three phases is referred to as [ternary eutectic structure of Al / Zn / Zn 2 Mg].

【0013】また,〔初晶Al相〕とは,例えば図1の
電子顕微鏡写真にその代表例を示すように,前記の三元
共晶組織の素地中に明瞭な境界をもって島状に見える相
であり,これはAl−Zn−Mgの三元系平衡状態図に
おける高温での「Al”相」( Znを固溶するAl固溶
体であり,少量のMgを含む)に由来するものである。
この高温でのAl”相はめっき浴のAlやMg濃度応じ
て固溶するZn量やMg量が相違する。この高温でのA
l”相は常温では通常は微細なAl相と微細なZn相に
分離するが,常温で見られる島状の形状は高温でのA
l”相の形骸を留めたものであると見てよい。この高温
でのAl”相(Al初晶と呼ばれる)に由来し且つ形状
的にはAl”相の形骸を留めている相を本明細書では
〔初晶Al相〕と呼ぶ。この〔初晶Al相〕は前記の三
元共晶組織を形成しているAl相とは顕微鏡観察におい
て明瞭に区別できる。
[0013] The "primary Al phase" is, for example, a phase which looks like an island with a clear boundary in the ternary eutectic structure as shown in the electron micrograph of FIG. This is derived from the “Al” phase at high temperature in the ternary equilibrium diagram of Al—Zn—Mg (an Al solid solution that dissolves Zn and contains a small amount of Mg).
The Al "phase at this high temperature differs in the amount of Zn and Mg dissolved in solid solution depending on the Al and Mg concentrations in the plating bath.
The l ″ phase usually separates into a fine Al phase and a fine Zn phase at room temperature, but the island-like shape seen at room temperature is
It can be seen that the phase remains in the form of the 1 ″ phase. The phase originating from the Al ″ phase at this high temperature (referred to as an Al primary crystal) and retaining the form in the form of the Al ″ phase is referred to as a book. In the specification, this is referred to as “primary Al phase.” This “primary Al phase” can be clearly distinguished from the Al phase forming the ternary eutectic structure by microscopic observation.

【0014】また,〔Zn単相〕とは,例えば図3の電
子顕微鏡写真にその代表例を示すように,前記の三元共
晶組織の素地中に明瞭な境界をもって島状に見える相
(前記の初晶Al相よりはやや白く見える)であり,実
際には少量のAlさらには少量のMgを固溶しているこ
ともある。この〔Zn単相〕は前記の三元共晶組織を形
成しているZn相とは顕微鏡観察において明瞭に区別で
きる。
The [Zn single phase] refers to a phase which looks like an island with a clear boundary in the ternary eutectic structure as shown in a typical example in an electron micrograph of FIG. (It looks a little whiter than the primary Al phase), and in fact, a small amount of Al and a small amount of Mg may be dissolved. This [Zn single phase] can be clearly distinguished from the Zn phase forming the ternary eutectic structure by microscopic observation.

【0015】本明細書において〔Al/Zn/Zn2
gの三元共晶組織〕の素地中に〔初晶Al相〕,または
〔初晶Al相〕と〔Zn単相〕が混在した金属組織のこ
とを「Zn2Mg系の相」と略称して呼ぶことがある。
また,本明細書において「Zn11Mg2系の相」と呼ぶ
ものは,〔Al/Zn/Zn11Mg2の三元共晶組織〕
の素地自体の金属組織,或いはこの素地中に〔初晶Al
相〕,または〔初晶Al相〕と〔Zn単相〕が混在した
金属組織を表す。後者のZn11Mg2系の相が目視可能
な大きさの斑点状として現れると表面外観を著しく悪く
し,耐食性も低下する。本発明に従うめっき層は,目視
可能な大きさの斑点状のZn11Mg2系の相が実質上存
在しない点に特徴がある。
In this specification, [Al / Zn / Zn 2 M
g of the ternary eutectic structure), and a metal structure in which [primary Al phase] or [Zn single phase] is mixed in the base material is abbreviated as “Zn 2 Mg-based phase”. Sometimes called.
Further, what is called “Zn 11 Mg 2 -based phase” in this specification is [ternary eutectic structure of Al / Zn / Zn 11 Mg 2 ].
Metallographic structure of the base itself or in this base [primary crystal Al
Phase) or a mixed metal structure of [primary Al phase] and [Zn single phase]. When the latter Zn 11 Mg 2 -based phase appears as spots of visible size, the surface appearance is significantly deteriorated and the corrosion resistance is also reduced. The plating layer according to the present invention is characterized in that there is substantially no spot-like Zn 11 Mg 2 -based phase of a size that is visible.

【0016】[0016]

【発明の実施の形態】本発明に従う溶融Zn−Al−M
gめっき鋼板は,そのめっき層の組成(溶融めっき浴の
組成に実質的に対応する)がAl:4.0〜10.0重量
%,Mg:1.0〜4.0重量%,Ti:0.002〜0.
1重量%,B:0.001〜0.045重量%,残部がZ
nおよび不可避的不純物からなる。そして,そのめっき
層の組織を,〔Al/Zn/Zn2Mgの三元共晶組
織〕の素地中に〔初晶Al相〕が混在した金属組織とし
た点,または該素地中に〔初晶Al相〕および〔Zn単
相〕が混在した金属組織とした点に特徴があり,これに
より,耐食性,表面外観および製造性を同時に改善した
ものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Fused Zn-Al-M according to the present invention
g-plated steel sheet, the composition of the plating layer (substantially corresponding to the composition of the hot-dip bath) is Al: 4.0 to 10.0% by weight, Mg: 1.0 to 4.0% by weight, Ti: 0.002-0.00.
1% by weight, B: 0.001 to 0.045% by weight, the balance being Z
n and unavoidable impurities. Then, the structure of the plating layer was changed to a metal structure in which [primary Al phase] was mixed in the base material of [Al / Zn / Zn 2 Mg ternary eutectic structure] It is characterized by having a metal structure in which a crystalline Al phase] and a [Zn single phase] are mixed, thereby simultaneously improving corrosion resistance, surface appearance and manufacturability.

【0017】めっき層の組成がAl:4.0〜10.0重
量%,Mg:1.0〜4.0重量%,残部がZnおよび不
可避的不純物からなり,めっき層の組織を,〔Al/Z
n/Zn2Mgの三元共晶組織〕の素地中に〔初晶Al
相〕が混在した金属組織とした点,または該素地中に
〔初晶Al相〕および〔Zn単相〕が混在した金属組織
とすると,耐食性,表面外観および製造性が同時に改善
できることを本発明者らは知見し,その内容を先の特願
平8−352467号(出願日平成8年12月13日)
に記載した。この出願後も本発明者らは当溶融Zn−A
l−Mgめっき鋼板についての研究を続けてきたが,こ
の基本組成および組織をもつめっき層に適量のTiとB
を添加すると,Zn11Mg2系の相の生成・成長を一層
抑制できることを今回新たに知見した。この知見による
と,Ti・B無添加の場合に比べて浴温や冷却速度の制
御範囲をより広くしても,前記の組織をもつめっき層を
形成できることになり,前記の先願の場合よりも,一層
有利に耐食性,表面外観性の優れた溶融めっき鋼板が安
定して製造できる。
The composition of the plating layer is 4.0 to 10.0% by weight of Al, 1.0 to 4.0% by weight of Mg, and the remainder is Zn and unavoidable impurities. / Z
n / Zn 2 Mg ternary eutectic structure]
The present invention has the advantage that corrosion resistance, surface appearance, and manufacturability can be simultaneously improved by using a metal structure in which [metal phase] is mixed, or a metal structure in which [primary Al phase] and [Zn single phase] are mixed in the substrate. The applicants found out the contents and filed the contents of the earlier Japanese Patent Application No. 8-352467 (filing date: December 13, 1996).
It described in. Even after the filing of this application, the present inventors have determined that the molten Zn-A
We have been conducting research on 1-Mg plated steel sheets.
It has now been newly found that the addition of Ni can further suppress the formation and growth of Zn 11 Mg 2 -based phases. According to this finding, it is possible to form a plating layer having the above structure even when the control range of the bath temperature and the cooling rate is wider than in the case where no Ti / B is added. In addition, it is possible to more stably produce a hot-dip coated steel sheet having excellent corrosion resistance and surface appearance.

【0018】溶融Znめっき層に適量のTiとBを添加
しためっき層の合金組成自体は,例えば特開昭59−1
66666号公報(Ti・B添加によるZn−Al合金
の結晶粒の微細化),特開昭62−23976号公報
(スパングルの微細化),特開平2−138451号公
報(塗装後の衝撃による被膜剥離の抑制),特開平2−
274851号公報(伸びと衝撃値の向上)等に記載さ
れているが,いずれも,本発明で対象とするようなZn
−Al−Mg系溶融めっきのものではなく,したがっ
て,Zn2Mg相生成とZn11Mg2相抑制といった組織
挙動に及ぼすTi・Bの作用効果は未知であった。なお
特開平2−274851号公報には0.2重量%までの
Mgを含有しても良いと記載されているが,本発明が対
象とするような1.0重量%以上のMgを含むことまで
は意図していない。本発明者らの知見によると,当該Z
n−Al−Mg系溶融めっきにおいて,Zn11Mg2
の相が生成するような浴温・冷却速度であっても,Ti
・Bの適量添加によってZn11Mg2系の相のサイズが
非常に小さくなり,TiとBはZn2Mg系の相を安定
して成長させることができることがわかった。
The alloy composition itself of a plating layer obtained by adding appropriate amounts of Ti and B to a hot-dip Zn plating layer is disclosed in, for example,
No. 66666 (fine grain refinement of Zn-Al alloy by adding Ti and B), Japanese Unexamined Patent Publication (Kokai) No. 62-23976 (fine refining of spangles), and Japanese Unexamined Patent Publication (Kokai) No. 2-138451 (coating by impact after painting) Suppression of peeling)
No. 2,748,851 (improvement of elongation and impact value) and the like.
-Al-Mg-based hot-dip coating was not used. Therefore, the effect of Ti / B on microstructural behavior such as Zn 2 Mg phase formation and Zn 11 Mg 2 phase suppression was unknown. JP-A-2-274851 discloses that Mg may be contained in an amount of up to 0.2% by weight. Not intended until. According to the findings of the present inventors, the Z
In the n-Al-Mg hot-dip plating, even if the bath temperature and cooling rate are such that a Zn 11 Mg 2 -based phase is formed, Ti
Size of Zn 11 Mg 2 system phase by adding an appropriate amount of B is very small, Ti and B were found to be able to stably grow a Zn 2 Mg-based phase.

【0019】このように,本願発明は,先願の特願平8
−352467号に提案した溶融Zn−Al−Mgめっ
き鋼板とは,溶融めっき層の組成においてTi・Bを適
量添加した点で相違があるが,めっき層の組織の点では
実質的な相違はない。すなわち,Ti・Bの適用添加に
よってZn11Mg2系の相の生成・成長が抑制された結
果として,先願発明のものと同様のZn2Mg系の相か
らなる金属組織をより有利に得ることができたものであ
り,得られた金属組織においてはTi・Bはその添加量
が微量であることもあり,Ti・Bを含む相の存在は現
在のところ識別できていない。したがって,本願発明の
溶融Zn−Al−Mgめっき鋼板は,めっき層中に適量
のTi・Bを含有するものではあるが,その金属組織の
面では,先願発明と同様に,〔Al/Zn/Zn2Mg
の三元共晶組織〕の素地中に〔初晶Al相〕が混在した
金属組織,または該素地中に〔初晶Al相〕および〔Z
n単相〕が混在した金属組織を有するものとして説明す
る。
As described above, the present invention is based on Japanese Patent Application No.
It differs from the hot-dip Zn-Al-Mg coated steel sheet proposed in -352467 in that the composition of the hot-dip coating layer contains Ti and B in an appropriate amount, but there is no substantial difference in the structure of the coating layer. . That is, as a result of suppressing the generation and growth of the Zn 11 Mg 2 phase by the application of Ti · B, a metal structure composed of the Zn 2 Mg phase similar to that of the prior application can be obtained more advantageously. In the obtained metal structure, the addition amount of Ti.B may be very small, and the existence of a phase containing Ti.B has not been identified at present. Therefore, the hot-dip Zn-Al-Mg-plated steel sheet of the present invention contains an appropriate amount of Ti · B in the plating layer. / Zn 2 Mg
[Ternary eutectic structure], a metal structure in which [primary Al phase] is mixed in the matrix, or [primary Al phase] and [Z
n single phase] will be described as having a mixed metal structure.

【0020】以下にまず,本発明の溶融Zn−Al−M
gめっき鋼板のめっき層の基本組成(めっき浴に実質的
に対応する)における各成分量の限定理由から説明す
る。
First, the molten Zn-Al-M of the present invention
The reason for limiting the amount of each component in the basic composition of the plating layer of the g-plated steel sheet (substantially corresponding to the plating bath) will be described.

【0021】めっき層中のAlは,当該めっき鋼板の耐
食性の向上と当該めっき鋼板製造時のドロス発生を抑制
する作用を供する。Al含有量が4.0重量%未満では
耐食性向上効果が十分ではなく,またMg酸化物系のド
ロス発生を抑制する効果も低い。他方,Al含有量が1
0.0重量%を越えると,めっき層と母材鋼板との界面
でFe−Al合金層の成長が著しくなり,めっき密着性
が悪くなる。好ましいAl含有量は4.0〜9.0重量
%,更に好ましいAl含有量は5.0〜8.5重量%,一
層好ましいAl含有量は5.0〜7.0重量%である。
The Al in the plating layer serves to improve the corrosion resistance of the plated steel sheet and to suppress dross generation during the production of the plated steel sheet. If the Al content is less than 4.0% by weight, the effect of improving corrosion resistance is not sufficient, and the effect of suppressing the generation of dross of Mg oxide is low. On the other hand, when the Al content is 1
If the content exceeds 0.0% by weight, the growth of the Fe-Al alloy layer becomes remarkable at the interface between the plating layer and the base steel sheet, and the plating adhesion deteriorates. The preferred Al content is 4.0 to 9.0% by weight, the more preferred Al content is 5.0 to 8.5% by weight, and the more preferred Al content is 5.0 to 7.0% by weight.

【0022】めっき層中のMgは,めっき層表面に均一
な腐食生成物を生成させて当該めっき鋼板の耐食性を著
しく高める作用を供する。Mg含有量が1.0%未満で
はかような腐食生成物を均一に生成させる作用が十分で
はなく,他方,Mg含有量が4.0%を越えてもMgに
よる耐食性向上効果は飽和し,かえってMg酸化物系の
ドロスが発生しやすくなるので,Mg含有量は1.0〜
4.0%とする。好ましいMg含有量は1.5〜4.0重
量%,さらに好ましいMg含有量は2.0〜3.5重量
%,一層好ましいMg含有量は2.5〜3.5重量%であ
る。
The Mg in the plating layer has a function of generating a uniform corrosion product on the surface of the plating layer and significantly increasing the corrosion resistance of the plated steel sheet. If the Mg content is less than 1.0%, the effect of uniformly producing such corrosion products is not sufficient, while if the Mg content exceeds 4.0%, the effect of improving the corrosion resistance by Mg is saturated, On the contrary, Mg oxide-based dross is likely to be generated.
4.0%. The preferred Mg content is 1.5-4.0% by weight, the more preferred Mg content is 2.0-3.5% by weight, and the more preferred Mg content is 2.5-3.5% by weight.

【0023】めっき層中のTiは,Zn11Mg2相の生
成・成長を抑制する作用を供する。Ti含有量が0.0
02重量%未満ではこのような効果が十分ではない。他
方,Ti含有量が0.1重量%を越えると,めっき層中
にTi−Al系の析出物が成長し,めっき層に凹凸が生
じ(現場用語でブツと呼ばれるものに対応する),外観
を損ねるようになるので好ましくはない。したがって,
Ti含有量は0.002〜0.1重量%とする。
The Ti in the plating layer serves to suppress the formation and growth of the Zn 11 Mg 2 phase. Ti content is 0.0
If it is less than 02% by weight, such effects are not sufficient. On the other hand, if the Ti content exceeds 0.1% by weight, Ti-Al-based precipitates grow in the plating layer, and the plating layer has irregularities (corresponding to what is called spots in the field terms). This is not preferable because it causes damage to the image. Therefore,
The Ti content is 0.002 to 0.1% by weight.

【0024】めっき層中のBは,Zn11Mg2相の生成
・成長を抑制する作用を供する。B含有量が0.001
重量%未満ではこのような効果が十分ではない。他方,
B含有量が0.045重量%を越えると,めっき層中に
Ti−BあるいはAl−B系の析出物が成長し,めっき
層に凹凸(同ブツ)が生じ,外観を損ねるようになるの
で好ましくはない。したがって,B含有量は0.001
〜0.045重量%とするのがよい。なお,このB含有
量の範囲では浴中にTi−B系の化合物例えばTiB2
が存在しても,その存在量が僅かであるので,めっき層
に凹凸を生じさせるといった問題も起きないことがわか
った。したがって,浴へのBとTiの添加にさいして
は,その一部はTiB2の形態で添加することもでき,
これによってもZn11Mg2系の相の生成・成長を抑制
することができる。
B in the plating layer serves to suppress the formation and growth of the Zn 11 Mg 2 phase. B content 0.001
If the amount is less than the percentage by weight, such an effect is not sufficient. On the other hand,
If the B content exceeds 0.045% by weight, a Ti-B or Al-B-based precipitate grows in the plating layer, and irregularities (spots) occur in the plating layer, and the appearance is impaired. Not preferred. Therefore, the B content is 0.001.
The content is preferably set to 0.045% by weight. In this range of the B content, Ti-B-based compounds such as TiB 2
It was found that even if there was, there was no problem of causing irregularities in the plating layer because the amount of the presence was small. Therefore, when B and Ti are added to the bath, a part of them can be added in the form of TiB 2 ,
This can also suppress the generation and growth of the Zn 11 Mg 2 -based phase.

【0025】該溶融Zn−Al−Mg系めっき鋼板にお
いて,Zn11Mg2が晶出すると前記したように表面外
観を悪くすると共に耐食性も悪くすることがわかった。
他方,めっき層の組織を,〔Al/Zn/Zn2Mgの
三元共晶組織〕の素地中に〔初晶Al相〕,または〔初
晶Al相〕と〔Zn単相〕が混在した金属組織としたも
のでは,表面外観が極めて良好で且つ耐食性にも優れる
ことがわかった。
In the hot-dip Zn-Al-Mg plated steel sheet, it was found that the crystallization of Zn 11 Mg 2 deteriorates the surface appearance and the corrosion resistance as described above.
On the other hand, the structure of the plating layer is such that [primary Al phase] or [primary Al phase] and [Zn single phase] are mixed in the matrix of [ternary eutectic structure of Al / Zn / Zn 2 Mg]. It was found that the metal structure had an extremely good surface appearance and excellent corrosion resistance.

【0026】ここで〔Al/Zn/Zn2Mgの三元共
晶組織〕の素地中に〔初晶Al相〕が混在した組織と
は,前記したように,めっき層断面をミクロ的に観察し
たときに,〔Al/Zn/Zn2Mgの三元共晶組織〕
の素地中に最初に析出した〔初晶Al相〕が混在した金
属組織である。図1は,その代表的な金属組織を示すめ
っき層断面の電子顕微鏡2次電子像(倍率:2000
倍)であり,下方の鋼板母材(黒っぽく見える部分)の
表面に溶融めっきされためっき層の基本組成は6Al−
3Mg−Zn(Ti・B添加材)である。図1の写真の
組織を描写し,組織中の相を解説した図を右側に示した
が,同図に示すように〔Al/Zn/Zn2Mgの三元
共晶組織〕の素地中に〔初晶Al相〕が混在した状態に
ある。図2は,図1における〔Al/Zn/Zn2Mg
の三元共晶組織〕の素地部分を拡大した電子顕微鏡2次
電子像(倍率:10000倍)であり,同右の描写解説
図に示したように,この素地は,Zn(白色部)とAl
(黒っぽく粒状に見える部分)とZn2Mg(残部の棒
状に見える部分)とからなる三元共晶組織を有してい
る。
Here, the structure in which the [primary Al phase] is mixed in the matrix of [Al / Zn / Zn 2 Mg ternary eutectic] refers to the microscopic observation of the cross section of the plating layer as described above. Ternary eutectic structure of Al / Zn / Zn 2 Mg]
This is a metal structure in which [primary Al phase] precipitated first in the base material. FIG. 1 is a secondary electron image (magnification: 2000) of a cross section of a plating layer showing a typical metal structure.
The basic composition of the plating layer hot-dip coated on the surface of the lower steel base material (the part that looks dark) is 6Al-
3Mg-Zn (Ti / B additive). The structure of the photograph shown in FIG. 1 is depicted on the right side, and the diagram explaining the phases in the structure is shown on the right. As shown in the figure, the ternary eutectic structure of Al / Zn / Zn 2 Mg [Primary Al phase] is in a mixed state. FIG. 2 shows [Al / Zn / Zn 2 Mg in FIG.
Ternary eutectic structure] is a secondary electron image (magnification: 10000 times) of an electron microscope in which the substrate is enlarged. As shown in the descriptive diagram on the right, the substrate is composed of Zn (white portion) and Al
It has a ternary eutectic structure composed of (a part that looks dark and granular) and Zn 2 Mg (the remaining part that looks like a rod).

【0027】また〔Al/Zn/Zn2Mgの三元共晶
組織〕の素地中に〔初晶Al相〕と〔Zn単相〕が混在
した組織とは,めっき層断面をミクロ的に観察したとき
に,〔Al/Zn/Zn2Mgの三元共晶組織〕の素地
中に〔初晶Al相〕と〔Zn単相〕が混在した金属組織
である。すなわち,少量の〔Zn単相〕が晶出している
以外は前者の金属組織と変わりはなく,この〔Zn単
相〕が少量晶出していても耐食性や外観は前者の組織と
実質的に同様に優れている。
The microstructure of [Al / Zn / Zn 2 Mg ternary eutectic] in which [primary Al phase] and [Zn single phase] are mixed in the base material is a microscopic observation of the plating layer cross section. Then, a metal structure in which [primary Al phase] and [Zn single phase] coexist in the [Al / Zn / Zn 2 Mg ternary eutectic structure] base material. That is, there is no difference from the former metallographic structure except that a small amount of [Zn single phase] is crystallized, and even if a small amount of [Zn single phase] is crystallized, the corrosion resistance and appearance are substantially the same as the former structure. Is excellent.

【0028】図3は,その代表的な金属組織を示すめっ
き層断面の電子顕微鏡2次電子像(倍率:2000倍)
であり,めっき層の基本組成は6Al−3Mg−Zn
(Ti・B添加材)である。図3に見られるように,
〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に
〔初晶Al相〕が混在している点は図1のものと同じで
あるが,さらに島状の〔Zn単相〕(初晶Al相よりや
や薄い灰色をした部分)が存在している。
FIG. 3 is a secondary electron image (magnification: 2000 times) of a cross section of the plating layer showing a typical metal structure thereof.
The basic composition of the plating layer is 6Al-3Mg-Zn.
(Ti / B additive material). As can be seen in FIG.
The point that the [primary Al phase] is mixed in the [Al / Zn / Zn 2 Mg ternary eutectic structure] matrix is the same as that of FIG. ] (A portion slightly grayer than the primary Al phase).

【0029】図4は,図3のものより,溶融めっき後の
冷却速度を速くした場合に得られた金属組織のめっき層
断面の電子顕微鏡2次電子像(倍率:2000倍)であ
り,めっき層の組成は図3のものと同じである。図4の
組織では,図3のものよりも〔初晶Al相〕がやや小さ
くなり,その近傍に〔Zn単相〕が存在しているが,
〔初晶Al相〕と〔Zn単相〕が〔Al/Zn/Zn2
Mgの三元共晶組織〕の素地中に混在している点では変
わりはない。
FIG. 4 is a secondary electron image (magnification: 2000 times) of the cross section of the plating layer of the metal structure obtained when the cooling rate after the hot-dip plating was increased from that of FIG. The composition of the layers is the same as in FIG. In the structure of FIG. 4, the [primary Al phase] is slightly smaller than that of FIG. 3, and a [Zn single phase] exists in the vicinity thereof.
[Primary Al phase] and [Zn single phase] are [Al / Zn / Zn 2
Mg ternary eutectic structure].

【0030】めっき層全体に占めるこれらの組織の割合
は,前者のもの,すなわち〔Al/Zn/Zn2Mgの
三元共晶組織〕の素地中に最初に析出した〔初晶Al
相〕が点在した金属組織では,〔Al/Zn/Zn2
gの三元共晶組織〕+〔初晶Al相〕の合計量が80%
容積%以上,好ましくは95容積%以上である。残部に
はZn/Zn2Mgの二元共晶またはZn2Mgが少量混
在してしてもよい。
The proportion of these structures in the entire plating layer is the former, that is, the first precipitate in the matrix of [ternary eutectic structure of Al / Zn / Zn 2 Mg] [primary crystal Al
[Al / Zn / Zn 2 M]
g ternary eutectic structure] + [primary crystal Al phase] is 80%
% Or more, preferably 95% by volume or more. Binary eutectic of Zn / Zn 2 Mg or a small amount of Zn 2 Mg may be mixed in the remainder.

【0031】後者のもの,すなわち,〔Al/Zn/Z
2Mgの三元共晶組織〕の素地中に〔初晶Al相〕が
点在し且つ〔Zn単相〕が晶出した金属組織では,〔A
l/Zn/Zn2Mgの三元共晶組織〕+〔初晶Al
相〕の合計量が80%容積%以上,〔Zn単相〕が15
容積%以下である。残部にはZn/Zn2Mgの二元共
晶またはZn2Mgが少量混在していてもよい。
The latter, ie, [Al / Zn / Z
In a metal structure in which [primary Al phase] is scattered in the base material of [n 2 Mg ternary eutectic structure] and [Zn single phase] is crystallized, [A
1 / Zn / Zn 2 Mg ternary eutectic structure] + [primary crystal Al
Phase] is 80% by volume or more and [Zn single phase] is 15% by volume.
% By volume or less. The remainder may be a binary eutectic of Zn / Zn 2 Mg or a small amount of Zn 2 Mg.

【0032】前者および後者の両組織とも,Zn11Mg
2系の相は実質的に存在しないことが望ましい。このZ
11Mg2系の相は,本発明に従うめっき組成範囲で
は,通常の連続溶融めっき設備で連続的に溶融めっき鋼
板を製造しようとすると,〔Al/Zn/Zn11Mg2
の三元共晶組織〕の素地中に〔Al初晶〕または〔Al
初晶〕と〔Zn単相〕が混在した金属組織の相として
“斑点状”に現れやすくなることがわかった。
In both the former and latter structures, Zn 11 Mg
Desirably, substantially no two phases are present. This Z
In the range of the plating composition according to the present invention, if the n 11 Mg 2 phase is to continuously produce hot-dip coated steel sheets with a normal continuous hot-dip coating equipment, [Al / Zn / Zn 11 Mg 2
Ternary eutectic structure] in the substrate
It has been found that it tends to appear as a “spotted” as a phase of the metal structure in which the primary crystal and the Zn single phase are mixed.

【0033】図5は,Zn11Mg2系の相が斑点状に現
れためっき鋼板(後記実施例3の表3中のNo.2のも
の)の表面外観を写した写真である。図5に見られるよ
うに,半径が約2〜7mmの斑点(青く変色したもの)
が母相中に点々と現れている。この斑点の大きさは浴温
と溶融めっき層の冷却速度に依存して異なってくる。
FIG. 5 is a photograph showing the surface appearance of a plated steel sheet (No. 2 in Table 3 of Example 3 described later) in which Zn 11 Mg 2 -based phase appeared in a spot-like manner. As shown in FIG. 5, spots with a radius of about 2 to 7 mm (discolored blue)
Appear in the mother phase. The size of the spots differs depending on the bath temperature and the cooling rate of the hot-dip layer.

【0034】図6は,図5に現れた斑点部分を通るよう
に試料を剪断し,その断面を見た電子顕微鏡2次電子像
(倍率:2000倍)である。図6に見られるように,
この斑点部分の組織は,〔Al/Zn/Zn11Mg2
三元共晶組織〕の素地中に〔Al初晶〕が混在したもの
である。なお試料によっては,該素地中に〔Al初晶〕
と〔Zn単相〕が混在することもある。
FIG. 6 is a secondary electron image (magnification: 2,000 times) of the cross section of the sample obtained by shearing the sample so as to pass through the spots appearing in FIG. As can be seen in FIG.
The structure of the spot portion is such that [Al primary crystal] is mixed in the base material of [ternary eutectic structure of Al / Zn / Zn 11 Mg 2 ]. In some samples, [Al primary crystal]
And [Zn single phase] may be mixed.

【0035】図7は,図6の素地部分(Al初晶を含ま
ない部分)だけを倍率を上げて見た電子顕微鏡2次電子
像(倍率:10000倍)であり,白っぽく縞状に伸び
るZnの間にZn11Mg2とAl(やや黒っぽく粒状に
見える部分)が存在した三元共晶組織すなわち〔Al/
Zn/Zn11Mg2の三元共晶組織〕が明瞭に現れてい
る。
FIG. 7 is a secondary electron image (magnification: 10000 times) of the electron microscope (magnification: 10000 times) obtained by increasing only the substrate portion (portion not including the primary Al crystal) in FIG. A ternary eutectic structure in which Zn 11 Mg 2 and Al (a part that looks slightly darker and granular) existed, ie, [Al /
Ternary eutectic structure of Zn / Zn 11 Mg 2 ] clearly appears.

【0036】図8は,図5のように現れた斑点部分につ
いて,母相と斑点相の境界部分を見た電子顕微鏡2次電
子像(倍率:10000倍)であり,図8の写真におい
て左半分は母相部分,右半分は斑点相である。左半分の
母相部分は,図2のものと同様の〔Al/Zn/Zn2
Mgの三元共晶組織〕であり,右半分は図7と同様の
〔Al/Zn/Zn11Mg2の三元共晶組織〕が写って
いる。両者の金属間化合物の部分だけを比較すると,Z
11Mg2はZn2Mgよりもやや腐食している状況が理
解される得る。
FIG. 8 is a secondary electron image (magnification: 10000 times) of the spot portion appearing as shown in FIG. 5 as viewed from the boundary between the mother phase and the spot phase. The half is the parent phase and the right half is the spot phase. The left half of the matrix portion is similar to that of FIG. 2 [Al / Zn / Zn 2
Mg ternary eutectic structure], and the right half shows the same [ternary eutectic structure of Al / Zn / Zn 11 Mg 2 ] shown in FIG. Comparing only the two intermetallic compounds, Z
It can be seen that n 11 Mg 2 is slightly more corrosive than Zn 2 Mg.

【0037】これらの図5〜図8から,斑点状のZn11
Mg2系の相は,実際には〔Al/Zn/Zn11Mg2
三元共晶組織〕の素地中に〔Al初晶〕または〔Al初
晶〕と〔Zn単相〕が混在した金属組織を有するもので
あること,そして,このZn11Mg2系の相は,Zn2
g系の相の母地中に,すなわち〔Al/Zn/Zn2
gの三元共晶組織〕の素地中に〔初晶Al相〕または
〔初晶Al相〕と〔Zn単相〕が混在した金属組織の母
地中に,目視可能な大きさの斑点として点々と出現する
ことがわかる。
From these FIGS. 5 to 8, it can be seen that spot-like Zn 11
As for the Mg 2 phase, [Al primary crystal] or [Al primary crystal] and [Zn single phase] are mixed in a matrix of [Al / Zn / Zn 11 Mg 2 ternary eutectic structure]. It has a metal structure, and the Zn 11 Mg 2 phase is Zn 2 M
In the matrix of the g-phase, ie, [Al / Zn / Zn 2 M
g ternary eutectic structure] in the matrix of [primary Al phase] or a metal structure in which [primary Al phase] and [Zn single phase] are mixed, as spots of visible size It can be seen that it appears in dots.

【0038】図9は,前記のような金属組織を特定する
根拠となったX線回折の代表例を示したものである。図
中の○印のピークはZn2Mg金属間化合物のもの,×
印のピークはZn11Mg2金属間化合物のものである。
いずれのX線回折も,17mm×17mmの方形のめっ
き層サンプルを採取し,この方形サンプル表面にCu−
Kα管球,管電圧150Kv,管電流40mAの条件で
X線を照射して行ったものである。
FIG. 9 shows a typical example of X-ray diffraction which is the basis for specifying the above metal structure. The peaks marked with a circle in the figure are those of the Zn 2 Mg intermetallic compound,
The peaks marked are those of the Zn 11 Mg 2 intermetallic compound.
In each case of X-ray diffraction, a square plating layer sample of 17 mm × 17 mm was sampled, and Cu-
X-ray irradiation was performed under the conditions of a Kα tube, a tube voltage of 150 Kv, and a tube current of 40 mA.

【0039】図9の上段のチャートは後記実施例5の表
4中のNo.10のもの,中段と下段のチャートは同表4
中のNo.1のものであり,中段と下段のものは,Zn11
Mg2系の相の斑点が試料面積中に一部含まれるように
してサンプルを採取したものである。採取サンプル面積
内の斑点面積の割合は目視観察で,中段のものは約15
%,下段のものは約70%である。これらのX線回折か
ら,図2に見られる三元共晶組織は〔Al/Zn/Zn
2Mgの三元共晶組織〕であること,図7に見られる三
元共晶組織は〔Al/Zn/Zn11Mg2〕であること
が明らかである。
The upper chart of FIG. 9 is No. 10 in Table 4 of Example 5 described later, and the middle and lower charts are those of Table 4.
No. 1 in the middle, and those in the middle and lower are Zn 11
The sample was collected so that the spots of the Mg 2 -based phase were partially included in the sample area. The percentage of the spot area in the sample area was visually observed.
%, The lower one is about 70%. From these X-ray diffractions, the ternary eutectic structure shown in FIG. 2 is [Al / Zn / Zn
2 ternary eutectic structure], and the ternary eutectic structure shown in FIG. 7 is [Al / Zn / Zn 11 Mg 2 ].

【0040】このような金属組織上の観点から,後記の
実施例の表3〜4,更には後述の図10において,Zn
11Mg2系の相が実質上存在しない本発明に従うめっき
層は「Zn2Mg」と表示し,Zn2Mg系の相の母地中
に目視可能な大きさの斑点状のZn11Mg2系の相が現
れたものは「Zn2Mg+Zn11Mg2」として表示して
いる。このような斑点状のZn11Mg2系の相が現れる
と耐食性を劣化させると共に表面外観を著しく低下させ
る。したがって,本発明に従うめっき層は,目視観察で
きるような大きさのZn11Mg2系の相が実質的に存在
しない金属組織,すなわち実質上Zn2Mg系の相から
なることことが望ましい。
From the viewpoint of such a metal structure, in Tables 3 to 4 in Examples described later and further in FIG.
A plating layer according to the present invention in which substantially no 11 Mg 2 -based phase is present is denoted as “Zn 2 Mg”, and a spot-like spot-like Zn 11 Mg 2 having a size visible in the base of the Zn 2 Mg-based phase. Those in which the system phase appeared are indicated as “Zn 2 Mg + Zn 11 Mg 2 ”. The appearance of such a spot-like Zn 11 Mg 2 phase deteriorates the corrosion resistance and significantly lowers the surface appearance. Therefore, it is desirable that the plating layer according to the present invention be made of a metal structure substantially free of a Zn 11 Mg 2 phase having a size that can be visually observed, that is, a substantially Zn 2 Mg phase.

【0041】より具体的には,本発明に従う前記範囲の
組成をもつ溶融Zn−Al−Mgめっき鋼板のめっき層
は,〔Al/Zn/Zn2Mgの三元共晶組織〕の素地
が50容積%以上100容積%未満の範囲で存在し,こ
の共晶組織の素地中に〔初晶Al相〕が0容積%を超え
50容積%以下の範囲で存在し,場合によっては,さら
に島状の〔Zn単相〕が0〜15容積%存在したもので
あって,めっき層の表面を肉眼で観察したときに,斑点
状に現れるZn11Mg2系の相(Al/Zn/Zn11
2の三元共晶組織の素地をもつ相)は,目視可能な大
きさでは存在しないものである。すなわち,当該めっき
層の金属組織は, 〔Al/Zn/Zn2Mgの三元共晶組織〕の素地:5
0〜100容積%未満, 〔初晶Al相〕:0を超え〜50容積%以下,および 〔Zn単相〕:0〜15容積% から実質的になる。
More specifically, the plated layer of the hot-dip Zn—Al—Mg plated steel sheet having the composition in the above-mentioned range according to the present invention has a base material of [ternary eutectic structure of Al / Zn / Zn 2 Mg] of 50%. In the range of not less than 100% by volume and less than 100% by volume, and [primary Al phase] exists in the range of more than 0% by volume and not more than 50% by volume in the eutectic structure, and in some cases, the [Zn single phase] was present in an amount of 0 to 15% by volume, and when the surface of the plating layer was observed with the naked eye, a Zn 11 Mg 2 -based phase (Al / Zn / Zn 11 M
phase with matrix of a ternary eutectic structure of g 2) are those which do not exist in the visible size. That is, the metallographic structure of the plating layer is a base material of [ternary eutectic structure of Al / Zn / Zn 2 Mg]: 5
0 to less than 100% by volume, [primary Al phase]: more than 0 to 50% by volume, and [Zn single phase]: 0 to 15% by volume.

【0042】ここで,“実質的になる”とは,他の相,
代表的には斑点状のZn11Mg2系の相が外観に影響を
与えるような量では存在しないということであり,目視
観察で判別できないような少量のZn11Mg2系の相は
存在していても,このような少量である限り,耐食性お
よび表面外観に特に影響を及ぼさないので許容され得
る。すなわち,Zn11Mg2系の相が肉眼で斑点状に観
察されるような量で存在する場合には,外観と耐食性に
悪い影響を与えるので,本発明の範囲外である。また,
Zn2Mg系の二元共晶やZn11Mg2系の二元共晶など
も,肉眼で目視観察では判別できないような微量で存在
することも許容され得る。
Here, “become substantially” means that the other phases,
Typically, a spot-like Zn 11 Mg 2 -based phase is not present in an amount that affects the appearance, and a small amount of Zn 11 Mg 2 -based phase that cannot be distinguished by visual observation exists. However, such a small amount is acceptable because it does not particularly affect the corrosion resistance and surface appearance. That is, if the Zn 11 Mg 2 phase is present in an amount which is observed in the form of spots with the naked eye, the appearance and corrosion resistance are adversely affected, and thus are outside the scope of the present invention. Also,
A Zn 2 Mg-based binary eutectic, a Zn 11 Mg 2 -based binary eutectic, and the like can be allowed to exist in a trace amount that cannot be discriminated by visual observation with the naked eye.

【0043】本発明に従う金属組織の溶融Zn−Al−
Mg(Ti・B)めっき鋼板を製造するには,前記組成
の溶融めっき浴の浴温とめっき後の冷却速度を代表的に
は図10に示した斜線域の範囲に制御すればよいことが
わかった。この範囲は,先の特願平8−352467号
に記載した範囲より広い。これはTi・B添加による効
果であると見てよい。
According to the present invention, the molten Zn—Al—
In order to manufacture a Mg (Ti · B) -plated steel sheet, the bath temperature of the hot-dip bath having the above composition and the cooling rate after plating may be typically controlled within the range of the hatched area shown in FIG. all right. This range is wider than the range described in Japanese Patent Application No. 8-352467. This may be considered to be the effect of the addition of Ti.B.

【0044】すなわち,図10に見られるように,また
後記の実施例で示すように,浴温が410℃より低く且
つ冷却速度が7℃/秒より遅いと,前記のZn11Mg2
系の相が斑点状に現れ,本発明の目的が達成できないの
である。このようなZn11Mg2系の相が現れること自
体は,Zn−Al−Mg三元平衡状態図上における三元
共晶点近傍の平衡相を見れば或る程度は理解できる。
That is, as shown in FIG. 10 and as shown in the examples described below, when the bath temperature is lower than 410 ° C. and the cooling rate is lower than 7 ° C./sec, the above-mentioned Zn 11 Mg 2
The phases of the system appear as spots, and the object of the present invention cannot be achieved. The appearance of such a Zn 11 Mg 2 phase itself can be understood to some extent by looking at the equilibrium phase near the ternary eutectic point on the Zn—Al—Mg ternary equilibrium diagram.

【0045】ところが,浴温が410℃以上では冷却速
度の影響は少なくなり,冷却速度が0.5℃/秒のよう
な遅いところでも,前記のZn11Mg2系の相は現れ
ず,本発明で規定する金属組織が得られることがわかっ
た。同様に,浴温が410℃未満でも,冷却速度を7℃
/秒以上とした場合には,本発明で規定する金属組織が
得られることがわかった。これは,Zn−Al−Mgの
三元平衡状態図からは予期できない組織状態であり,平
衡論的には説明できない現象である。
However, when the bath temperature is 410 ° C. or higher, the influence of the cooling rate is reduced, and the Zn 11 Mg 2 phase does not appear even at a slow cooling rate such as 0.5 ° C./sec. It has been found that the metal structure specified in the invention can be obtained. Similarly, even if the bath temperature is lower than 410 ° C, the cooling rate is set to 7 ° C.
It was found that the metal structure specified by the present invention could be obtained when the rate was set to / sec or more. This is a structure state that cannot be expected from the ternary equilibrium diagram of Zn—Al—Mg, and is a phenomenon that cannot be explained in terms of equilibrium theory.

【0046】この現象を利用すると,インライン焼鈍型
の溶融めっき設備において,Al:4.0〜10.0重量
%,Mg:1.0〜4.0重量%,Ti:0.002〜0.
1重量%,B:0.001〜0.045重量%,残部がZ
nおよび不可避的不純物からなる溶融めっき浴とし,こ
のめっき浴の浴温を融点以上410℃未満とし且つめっ
き後の冷却速度を7℃/秒以上に制御するか,またはめ
っき浴の浴温を410℃以上で且つめっき後の冷却速度
を任意として(実際には実操業上の下限値である0.5
℃/秒以上として)鋼板表面に溶融めっきを施せば,前
記した本発明に従う金属組織のめっき層をもつ耐食性お
よび表面外観の良好な溶融Zn−Al−Mg(Ti・
B)めっき鋼板を工業的に製造することができる。
By utilizing this phenomenon, in an in-line annealing type hot-dip plating facility, Al: 4.0 to 10.0% by weight, Mg: 1.0 to 4.0% by weight, Ti: 0.002 to 0.00%.
1% by weight, B: 0.001 to 0.045% by weight, the balance being Z
A hot-dip plating bath consisting of n and unavoidable impurities. The bath temperature of the plating bath is set to a melting point or higher and lower than 410 ° C., and the cooling rate after plating is controlled to 7 ° C./sec or higher. C. or higher and the cooling rate after plating is arbitrary (actually, the lower limit of 0.5 in actual operation is 0.5).
If the surface of the steel sheet is hot-dip coated (at a temperature of at least ° C / sec or more), the molten Zn-Al-Mg (Ti.
B) A plated steel sheet can be manufactured industrially.

【0047】なお,AlとMgの浴組成を三元共晶組成
(三元平衡状態図上では,Al=4重量%,Mg=3重
量%,Zn=93重量%)に完全に一致させたものにす
れば融点が最低となるので有利となると考えられたが,
実際には最終凝固部が引けて凹凸のある表面状態とな
り,外観が悪くなるので,完全三元共晶組成は避けた方
がよい。またAlの組成に関しては亜共晶側の組成では
一層Zn11Mg2が晶出しやすくなるので,前記の組成
範囲において過共晶側の組成とするのがよい。
The bath composition of Al and Mg was completely matched with the ternary eutectic composition (in the ternary equilibrium diagram, Al = 4% by weight, Mg = 3% by weight, Zn = 93% by weight). It was thought that it would be advantageous if it had the lowest melting point.
Actually, the final solidified portion is closed and the surface state becomes uneven, and the appearance is deteriorated. Therefore, it is better to avoid the complete ternary eutectic composition. Regarding the composition of Al, Zn 11 Mg 2 is more easily crystallized in the composition on the hypoeutectic side, so that the composition on the hypereutectic side in the above composition range is preferable.

【0048】また,浴温については,あまり高くなると
めっき密着性が低下するので,本発明の浴組成において
は浴温の上限は550℃とし,これ以下の浴温で溶融め
っきするのがよい。
As for the bath temperature, if the bath temperature is too high, the plating adhesion will decrease. Therefore, in the bath composition of the present invention, the upper limit of the bath temperature is set to 550 ° C., and the hot-dip plating is preferably performed at a bath temperature lower than this.

【0049】以下に,前記のめっき層の組成,組織およ
びめっき条件が溶融Zn−Al−Mgめっき鋼板の耐食
性,密着性および表面外観に及ぼす作用効果を,実施例
によって,具体的に示す。
The effects of the composition, structure, and plating conditions of the plating layer on the corrosion resistance, adhesion, and surface appearance of the hot-dip Zn—Al—Mg plated steel sheet will be specifically described below with reference to examples.

【0050】[0050]

【実施例】【Example】

〔実施例1〕組成(特にMg量)が耐食性および製造性
に及ぼす関係について。
[Example 1] Relationship between composition (particularly Mg content) on corrosion resistance and manufacturability.

【0051】処理設備:ゼンジマータイプの連続溶融め
っきライン(試験機) 処理鋼板:中炭素鋼の熱延鋼板(厚み:3.2mm) 還元炉最高到達板温:600℃,露点:−40℃ めっき浴組成: Al=4.0〜9.2重量%, Mg=0〜5.2重量%, Ti:0.003 〜0.041 重量%, B:0.002 〜0.02, 残部=Zn めっき浴温:430℃ 浸漬時間:3秒 めっき後の冷却速度:空冷方式で3℃/秒(冷却速度は
めっき浴温からめっき層凝固温度までの平均値)
Processing equipment: Sendzimer-type continuous hot-dip galvanizing line (testing machine) Treated steel sheet: Medium-carbon steel hot-rolled steel sheet (thickness: 3.2 mm) Maximum temperature of reduction furnace reached 600 ° C, dew point: -40 ° C Plating bath composition: Al = 4.0 to 9.2 wt%, Mg = 0 to 5.2 wt%, Ti: 0.003 to 0.041 wt%, B: 0.002 to 0.02, balance = Zn Plating bath temperature: 430 ° C Immersion time: 3 seconds After plating Cooling rate: 3 ° C / sec by air cooling (cooling rate is the average value from plating bath temperature to plating layer solidification temperature)

【0052】以上の条件で溶融Zn−Al−Mg(Ti
・B)めっき鋼板を製造し,その際の浴表面の酸化物
(ドロス)の発生量を観察すると共に,得られた溶融め
っき鋼板の耐食性試験を行った。耐食性はSST(JI
S−Z−2371に従う塩水噴霧試験)を800時間行
った後の腐食減量(g/m2) で評価した。またドロスの発
生量は目視により多いものを×, やや多いものを△, 少
ないものを◎で評価した。それらの結果を表1に示し
た。
Under the above conditions, the molten Zn—Al—Mg (Ti
-B) A plated steel sheet was manufactured, and the amount of oxide (dross) generated on the bath surface at that time was observed, and a corrosion resistance test of the obtained hot-dip coated steel sheet was performed. Corrosion resistance is SST (JI
(Salt spray test according to S-Z-2371) was carried out for 800 hours, and the weight loss (g / m 2 ) was evaluated. Further, the amount of dross generated was visually evaluated as ×, those with a relatively large amount as Δ, and those with a small amount as ◎. The results are shown in Table 1.

【0053】[0053]

【表1】 [Table 1]

【0054】表1の結果から,Mg量が1%以上となる
と急激に耐食性が向上すること,しかし,4%を越えて
添加しても耐食性は飽和することがわかる。また,4%
を越えるMg量ではAlを含有していても浴表面の酸化
物(ドロス)が増加することがわかる。なお,Ti・B
無添加では冷却速度が3℃/秒ではZn11Mg2が晶出
し,この部分が優先腐食している。
From the results shown in Table 1, it can be seen that the corrosion resistance is sharply improved when the amount of Mg is 1% or more, but that the corrosion resistance is saturated even when the content exceeds 4%. Also, 4%
It can be seen that when the amount of Mg exceeds the above, the oxide (dross) on the bath surface increases even if Al is contained. In addition, Ti ・ B
With no addition, Zn 11 Mg 2 is crystallized at a cooling rate of 3 ° C./sec, and this portion is preferentially corroded.

【0055】〔実施例2〕組成(特にAl量)が耐食性
および密着性に及ぼす関係について。
[Example 2] The relationship of the composition (particularly the amount of Al) on the corrosion resistance and adhesion.

【0056】処理設備:ゼンジマータイプの連続溶融め
っきライン(試験機) 処理鋼板:中炭素鋼の熱延鋼板(厚み:1.6mm) 還元炉最高到達板温:600℃,露点:−40℃ めっき浴組成: Al=0.15〜13.0重量%, Mg=3.0重量%, Ti=0.05重量%, B=0.025 重量%, 残部=Zn めっき浴温:440℃ 浸漬時間:3秒 めっき後の冷却速度:空冷方式で4℃/秒(冷却速度は
めっき浴温からめっき層凝固温度までの平均値)
Processing equipment: Continuous hot-dip galvanizing line of Sendzimer type (testing machine) Treated steel sheet: Hot-rolled steel sheet of medium carbon steel (thickness: 1.6 mm) Maximum temperature of reduction furnace reached: 600 ° C, dew point: -40 ° C Plating bath composition: Al = 0.15 to 13.0% by weight, Mg = 3.0% by weight, Ti = 0.05% by weight, B = 0.025% by weight, balance = Zn Plating bath temperature: 440 ° C Immersion time: 3 seconds Cooling rate after plating: 4 ° C / sec by air cooling (cooling rate is the average value from plating bath temperature to plating layer solidification temperature)

【0057】以上の条件で溶融Zn−Al−Mg(Ti
・B)めっき鋼板を製造し,得られた溶融めっき鋼板の
耐食性試験と密着性試験を行った。耐食性は実施例1と
同じくSSTによる800時間後の腐食減量(g/m2) で
評価し,密着性は試片を密着曲げし,曲げ部のセロテー
プ剥離テストにより,剥離なしを◎,剥離量5%未満を
△,剥離量5%以上を×で評価した。その結果を表2に
示した。
Under the above conditions, the molten Zn—Al—Mg (Ti
・ B) A plated steel sheet was manufactured, and a corrosion resistance test and an adhesion test were performed on the obtained hot-dip coated steel sheet. Corrosion resistance was evaluated by corrosion loss (g / m 2 ) after 800 hours by SST as in Example 1. Adhesion was measured by bending the test piece tightly. Less than 5% was rated as Δ, and 5% or more of peeling was rated as ×. The results are shown in Table 2.

【0058】[0058]

【表2】 [Table 2]

【0059】表2の結果に見られるように,Al量が
4.0%以上で耐食性に優れるようになるが,10%を
越えると密着性不良が生じる。これは合金層(Fe−A
l合金層)の異常発達によるものである。
As can be seen from the results in Table 2, when the Al content is 4.0% or more, the corrosion resistance becomes excellent, but when it exceeds 10%, poor adhesion occurs. This is the alloy layer (Fe-A
1 alloy layer).

【0060】〔実施例3〕組成(特にTi・B量)が耐
食性および密着性に及ぼす関係について。
[Example 3] Relationship between composition (particularly Ti and B contents) on corrosion resistance and adhesion.

【0061】処理設備:ゼンジマータイプの連続溶融め
っきライン(試験機) 処理鋼板:弱脱酸鋼の熱延鋼板(インライン酸洗),板
厚:2.3mm 還元炉最高到達板温:580℃,露点:−30℃ めっき浴組成: Al=6.2 重量% Mg=3.0重量%, Ti= 0〜0.135 重量% B= 0〜0.081 重量%, 残部=Zn めっき浴温:450℃ 浸漬時間:4秒以内 めっき後の冷却速度:空冷方式で4℃/秒(冷却速度は
めっき浴温からめっき層凝固温度までの平均値)
Processing equipment: Sendzimer-type continuous hot-dip galvanizing line (testing machine) Treated steel sheet: Hot rolled steel sheet of weakly deoxidized steel (in-line pickling), thickness: 2.3 mm Maximum temperature of reduction furnace reached: 580 ° C , Dew point: −30 ° C. Plating bath composition: Al = 6.2% by weight Mg = 3.0% by weight, Ti = 0 to 0.135% by weight B = 0 to 0.081% by weight, balance = Zn Plating bath temperature: 450 ° C. Immersion time: 4 seconds Cooling rate after plating: 4 ° C / sec by air cooling (cooling rate is the average value from plating bath temperature to plating layer solidification temperature)

【0062】以上の条件で溶融Zn−Al−Mg(Ti
・B)めっき鋼板を製造し,得られためっき鋼板のめっ
き層の組織と表面外観を調べ, その結果を表3に示し
た。
Under the above conditions, the molten Zn—Al—Mg (Ti
・ B) A plated steel sheet was manufactured, and the structure and surface appearance of the plated layer of the obtained plated steel sheet were examined. The results are shown in Table 3.

【0063】表3のめっき層組織の表示において〔Zn
2Mg〕と表示したものは,本発明で規定する金属組
織,すなわち〔Al/Zn/Zn2Mgの三元共晶組
織〕の素地中に〔初晶Al相〕または〔初晶Al相〕と
〔Zn単相〕が混在した金属組織を有するものであり,
実際には,〔初晶Al相〕と〔Al/Zn/Zn2Mg
の三元共晶組織〕との合計が80容積%以上,〔Zn単
相〕が15容積%以下のものである。
In the display of the plating layer structure in Table 3, [Zn
The 2 Mg] as that displayed, the metal structure specified by the present invention, namely [Al / Zn / Zn in the matrix of 2 Mg ternary eutectic structure] [primary crystal Al phase] or [primary crystal Al phase] And a [Zn single phase] mixed metal structure,
Actually, [primary Al phase] and [Al / Zn / Zn 2 Mg
Ternary eutectic structure] and the Zn single phase is 15% by volume or less.

【0064】また〔Zn2Mg+Zn11Mg2〕と表示し
たものは,前記の〔Zn2Mg〕系組織の中に,斑点状
のZn11Mg2系の相が目視判断できるような大きさに
現れたものである。この斑点状のZn11Mg2系の相と
は,本文で説明したように,〔Al/Zn/Zn11Mg
2の三元共晶組織〕の素地中に〔Al初晶〕または〔A
l初晶〕と〔Zn単相〕が混在した斑点状の相である。
このZn11Mg2系の相はその周囲のものよりも光沢が
あるため目立った模様となり,かつこの部分は室内で2
4時間程度放置しておくと他の部分より先に酸化されて
薄い茶色に変色するので更に目立つようになる。表3に
おける外観評価の表示において,斑点〔有〕としたもの
は,めっき直後とめっき後24時間経過後の表面を目視
で観察し,このZn11Mg2系の斑点が見られたものを
指し,斑点〔無〕はこの斑点が見られなかったものであ
る。またブツとはめっき層中で粗大に成長した析出物に
よりめっき層に凹凸が発生したものを指す。
Further, the material indicated as [Zn 2 Mg + Zn 11 Mg 2 ] has a size such that a spot-like Zn 11 Mg 2 -based phase can be visually judged in the [Zn 2 Mg] -based structure. It has appeared. This spot-like Zn 11 Mg 2 phase is, as described in the text, [Al / Zn / Zn 11 Mg 2
In the matrix of the second three-way eutectic structure] [Al primary crystal] or [A
1 primary crystal] and [Zn single phase].
This Zn 11 Mg 2 phase has a glossy pattern than its surroundings, so it has a prominent pattern, and this part is
If left undisturbed for about 4 hours, it becomes more noticeable because it is oxidized earlier than the other parts and changes color to light brown. In the appearance evaluation display in Table 3, those with spots (existing) indicate those where the Zn 11 Mg 2 -based spots were observed immediately after plating and 24 hours after plating. , Spots [absent] are those in which these spots were not seen. In addition, bumps refer to those in which unevenness is generated in the plating layer due to a precipitate that has grown coarsely in the plating layer.

【0065】[0065]

【表3】 [Table 3]

【0066】表3の結果から,Ti・Bの添加により,
Zn11Mg2系の斑点が晶出し難くなり,表面性状の良
好なものが得られたことがわかる。とくに,B単独では
このような効果は薄く,TiとBの複合添加の効果が現
れている。しかし,Ti・B量が本発明で規定する範囲
より多くなるとブツが発生し,表面性状を悪化させてい
る。
From the results shown in Table 3, the addition of Ti.B
It can be seen that Zn 11 Mg 2 -based spots are less likely to be crystallized, and that good surface properties are obtained. In particular, such an effect is small when B alone is used, and the effect of the composite addition of Ti and B appears. However, when the amount of Ti.B exceeds the range specified in the present invention, irregularities occur and the surface properties are deteriorated.

【0067】〔実施例4〕 浴組成として,次の(1) 〜(5) のもの, すなわち, (1) Al= 4.0重量% Mg= 1.2重量%, Ti= 0〜0.135 重量% B= 0〜0.081 重量%, 残部=Zn (2) Al= 4.2重量% Mg= 3.2重量%, Ti= 0〜0.135 重量% B= 0〜0.081 重量%, 残部=Zn (3) Al= 6.2重量% Mg= 1.1重量%, Ti= 0〜0.135 重量% B= 0〜0.081 重量%, 残部=Zn (4) Al= 6.1重量% Mg= 3.9重量%, Ti= 0〜0.135 重量% B= 0〜0.081 重量%, 残部=Zn (5) Al= 9.5重量% Mg= 3.8重量%, Ti= 0〜0.135 重量% B= 0〜0.081 重量%, 残部=Zn とした以外は,実施例3を繰り返した。その結果,これ
ら(1) 〜(5) のように,Al量とMg量を変化させた場
合も,表3に示した各Ti量・B量のものと全く同様の
めっき層組織および外観評価のものが得られた。すなわ
ち,TiとBの添加効果は,本発明で規定するAlとM
gの添加範囲においてAl量およびMgに係わらず発揮
されることがわかった。
Example 4 The composition of the bath was as follows (1) to (5): (1) Al = 4.0% by weight Mg = 1.2% by weight, Ti = 0 to 0.135% by weight B = 0 0.02% by weight, balance = Zn (2) Al = 4.2% by weight Mg = 3.2% by weight, Ti = 0 to 0.135% by weight B = 0 to 0.081% by weight, balance = Zn (3) Al = 6.2% by weight Mg = 1.1% by weight, Ti = 0 to 0.135% by weight B = 0 to 0.081% by weight, balance = Zn (4) Al = 6.1% by weight Mg = 3.9% by weight, Ti = 0 to 0.135% by weight B = 0 to 0.081% by weight Example 3 was repeated except that the balance was Zn (5) Al = 9.5% by weight Mg = 3.8% by weight, Ti = 0 to 0.135% by weight B = 0 to 0.081% by weight, and the balance = Zn. As a result, when the amounts of Al and Mg were changed as shown in (1) to (5), the plating layer structure and appearance evaluation were exactly the same as those of each of the amounts of Ti and B shown in Table 3. Was obtained. That is, the effect of the addition of Ti and B depends on Al and M specified in the present invention.
It was found that the effect was exerted regardless of the amount of Al and Mg in the addition range of g.

【0068】〔実施例5〕浴温と冷却速度が組織に及ぼ
す関係と,組織と表面外観との関係について。
Example 5 The relationship between the bath temperature and the cooling rate exerted on the structure, and the relationship between the structure and the surface appearance.

【0069】処理設備:ゼンジマータイプの連続溶融め
っきライン(試験機) 処理鋼板:弱脱酸鋼の熱延鋼板(インラインで酸洗),
板厚:2.3mm 還元炉最高到達板温:580℃,露点:−30℃ めっき浴組成: Al= 6.2重量%, Mg= 3.0重量%, Ti=0 または 0.030重量%, B =0 または 0.015重量%, 残部=Zn めっき浴温:390〜500℃ 浸漬時間:5秒以内 めっき後の冷却速度:空冷方式で0.5〜10℃/秒
(冷却速度はめっき浴温からめっき層凝固温度までの平
均値)
Processing equipment: Sendzimer-type continuous hot-dip coating line (testing machine) Treated steel sheet: Hot rolled steel sheet of weakly deoxidized steel (in-line pickling),
Sheet thickness: 2.3mm Maximum temperature of reduction furnace reached: 580 ° C, dew point: -30 ° C Plating bath composition: Al = 6.2% by weight, Mg = 3.0% by weight, Ti = 0 or 0.030% by weight, B = 0 or 0.015 Weight%, balance = Zn Plating bath temperature: 390-500 ° C Immersion time: within 5 seconds Cooling rate after plating: 0.5-10 ° C / sec by air cooling (cooling rate from plating bath temperature to plating layer solidification temperature) Average)

【0070】以上の条件で,めっき浴温とめっき後の冷
却速度を変化させて溶融めっき鋼板を製造し,得られた
めっき鋼板のめっき層の組織と表面外観を調べ, その結
果を表4に示した。表4におけるめっき層組織の表示お
よび外観評価の斑点の有無は表3で説明したものと同じ
である。
Under the above conditions, a hot-dip coated steel sheet was manufactured by changing the plating bath temperature and the cooling rate after the plating, and the structure and surface appearance of the coating layer of the obtained coated steel sheet were examined. The results are shown in Table 4. Indicated. The indication of the plating layer structure and the presence or absence of spots in the appearance evaluation in Table 4 are the same as those described in Table 3.

【0071】[0071]

【表4】 [Table 4]

【0072】表4の結果から,Ti・B無添加の比較例
に比べて,Ti・B添加のものは低い浴温・遅い冷却速
度でもZn11Mg2系の斑点が現れないことがわかる。
すなわち,本発明に従うめっき組成のものは,図5に示
した斜線域の浴温と冷却速度で溶融めっき処理すれば,
実質的に〔初晶Al相〕と〔Al/Zn/Zn2Mgの
三元共晶組織〕となり,Zn11Mg2系の斑点のない均
一な外観を呈する製品を得ることができる。これに対
し,Ti・B無添加の場合は,先の特願平8−3524
67号に記したように,浴温を好ましくは470℃以上
とするか,470℃未満では冷却速度を10℃/秒以上
としなければZn11Mg2系の斑点が現れる。
[0072] From Table 4 results in comparison with the comparative example of Ti-B no additives, those Ti-B addition it can be seen that does not appear patches of Zn 11 Mg 2 system even at low bath temperature & low cooling rate.
That is, the plating composition according to the present invention is subjected to hot-dip plating at a bath temperature and a cooling rate in a hatched area shown in FIG.
Substantially [primary crystal Al phase] and [ternary eutectic structure of Al / Zn / Zn 2 Mg] can be obtained, and a product having a Zn 11 Mg 2 -based uniform appearance without spots can be obtained. On the other hand, in the case where no Ti · B is added, the above-mentioned Japanese Patent Application No. 8-3524 is used.
As described in No. 67, Zn 11 Mg 2 -based spots appear unless the bath temperature is preferably 470 ° C. or higher or the cooling rate is 10 ° C./sec or higher when the bath temperature is lower than 470 ° C.

【0073】[0073]

【発明の効果】以上説明したように,本発明によると,
耐食性と表面外観に優れた溶融Zn−Al−Mg系めっ
き鋼板とその有利な製造法を提供でき,その優れた耐食
性ゆえに従来の溶融Zn基めっき鋼板のものではなし得
なかった新たな分野への用途の拡大ができる。とくに,
Ti・Bの複合添加によってZn11Mg2系の斑点の生
成が抑制された結果,先の特願平8−352467号の
発明よりもこの系統の溶融Zn基めっき鋼板の製造が一
層容易となった。
As described above, according to the present invention,
We can provide a hot-dip Zn-Al-Mg-based coated steel sheet with excellent corrosion resistance and surface appearance, and an advantageous manufacturing method for it. Applications can be expanded. In particular,
As a result of the suppression of the formation of Zn 11 Mg 2 -based spots due to the addition of Ti and B, the production of a hot-dip Zn-based coated steel sheet of this type becomes much easier than the invention of Japanese Patent Application No. 8-352467. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う溶融Zn−Al−Mgめっき鋼板
のめっき層の断面の金属組織を示す電子顕微鏡2次電子
像の写真とその説明図である。
FIG. 1 is a photograph of a secondary electron image of an electron microscope showing a metal structure of a cross section of a plating layer of a hot-dip Zn—Al—Mg plated steel sheet according to the present invention and an explanatory diagram thereof.

【図2】図1の金属組織のうちの〔Al/Zn/Zn2
Mgの三元共晶組織〕からなる素地部分を拡大した電子
顕微鏡2次電子像の写真とその説明図である。
2] [Al / Zn / Zn 2 of the metal structure shown in FIG.
FIG. 3 is a photograph of a secondary electron image of an electron microscope and an explanatory diagram thereof, in which a base portion made of [ternary eutectic structure of Mg] is enlarged.

【図3】本発明に従う溶融Zn−Al−Mgめっき鋼板
のめっき層の断面の金属組織(Zn単相を含む以外は図
1のものと同じ組織)を示す電子顕微鏡2次電子像の写
真とその説明図である。
FIG. 3 is a photograph of a secondary electron image of an electron microscope showing a metal structure (the same structure as that of FIG. 1 except for including a Zn single phase) in a cross section of a plating layer of a hot-dip Zn—Al—Mg plated steel sheet according to the present invention. FIG.

【図4】本発明に従う溶融Zn−Al−Mgめっき鋼板
のめっき層の断面の金属組織(Zn単相を含む以外は図
1のものと同じ組織であり,図3よりも初晶Al相が小
さい組織)を示す電子顕微鏡2次電子像の写真とその説
明図である。
FIG. 4 shows the metallographic structure of the cross section of the plating layer of the hot-dip Zn—Al—Mg plated steel sheet according to the present invention (the structure is the same as that of FIG. 1 except that a Zn single phase is included. FIG. 2 is a photograph of a secondary electron image of an electron microscope showing a (small tissue) and an explanatory diagram thereof.

【図5】目視可能な大きさの斑点状のZn11Mg2系の
相が点々と現れた溶融Zn−Al−Mgめっき鋼板の金
属組織を写した写真である。
FIG. 5 is a photograph showing the metallographic structure of a hot-dip Zn-Al-Mg plated steel sheet in which spot-like Zn 11 Mg 2 -based phases of visible size are scattered.

【図6】図5の斑点の部分を裁断した断面の金属組織を
示す電子顕微鏡2次電子像写真(倍率2000倍)であ
る。
6 is a secondary electron image photograph (magnification: 2000 times) of an electron microscope showing a metal structure of a cross section obtained by cutting a spot portion of FIG. 5;

【図7】図6の組織のうち三元共晶部分を拡大して写し
た金属組織を示す電子顕微鏡2次電子像写真(倍率10
000倍)である。
FIG. 7 is a secondary electron image photograph (magnification: 10 magnifications) showing a metal structure obtained by enlarging and copying a ternary eutectic portion in the structure of FIG.
000 times).

【図8】図5の斑点の境界部分の金属組織を示す電子顕
微鏡2次電子像写真(倍率10000倍)であり,左半
分はZn2Mg系の相の素地部分,右半分は斑点部分の
Zn11Mg2系の相の素地部分である。
8 is a secondary electron image photograph (magnification: 10,000 times) of an electron microscope showing a metal structure at a boundary portion of a spot in FIG. 5, in which a left half is a base portion of a Zn 2 Mg phase and a right half is a spot portion. This is the base portion of the Zn 11 Mg 2 phase.

【図9】実施例5の表4中のNo.10とNo.1のめっき
鋼板から17mm×17mmのサンプルを採取して測定
したX線回折図であり,図9の上段のチャートは該No.
10のもの,また,中段と下段のものは該No.1のZn
11Mg2系の相の斑点が試料面積中に一部含まれるよう
にしてサンプルを採取したものである。
FIG. 9 is an X-ray diffraction diagram obtained by measuring a sample of 17 mm × 17 mm from the plated steel sheets of No. 10 and No. 1 in Table 4 of Example 5 and measuring the X-ray diffraction. .
10 and those in the middle and lower stages are the Zn
The sample was collected in such a manner that spots of 11 Mg 2 -based phase were partially included in the sample area.

【図10】本発明の溶融Zn−Al−Mgめっき鋼板の
有利な製造条件の範囲を示す図である。
FIG. 10 is a diagram showing a range of advantageous production conditions for the hot-dip Zn—Al—Mg plated steel sheet of the present invention.

フロントページの続き (72)発明者 橘高 敏晴 大阪府堺市石津西町5番地 日新製鋼株 式会社技術究所内 (56)参考文献 特開 平3−281766(JP,A) 特開 平2−274851(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 2/00 - 2/40 C22C 18/04 EPAT(QUESTEL)Continuation of the front page (72) Inventor Toshiharu Tachibana Taka 5th Ishizu Nishimachi, Sakai City, Osaka Pref. Nisshin Steel Co., Ltd. Technical Research Institute (56) References JP-A-3-281766 (JP, A) JP-A-2-274851 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 2/00-2/40 C22C 18/04 EPAT (QUESTEL)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Al:4.0〜10.0重量%,Mg:
1.0〜4.0重量%,Ti:0.002〜0.1重量%,
B:0.001〜0.045重量%,残部がZnおよび不
可避的不純物からなる溶融めっき層を鋼板表面に形成し
た溶融Zn基めっき鋼板であって,当該めっき層が,
〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に
〔初晶Al相〕が混在した金属組織を有する耐食性およ
び表面外観の良好な溶融Zn−Al−Mg系めっき鋼
板。
1. Al: 4.0 to 10.0% by weight, Mg:
1.0 to 4.0% by weight, Ti: 0.002 to 0.1% by weight,
B: 0.001 to 0.045% by weight, the balance being a hot-dip Zn-base coated steel sheet in which a hot-dip coating layer composed of Zn and unavoidable impurities is formed on the surface of the steel sheet,
A hot-dip Zn-Al-Mg-based coated steel sheet having good corrosion resistance and surface appearance having a metal structure in which [primary Al phase] is mixed in a base material of [ternary eutectic structure of Al / Zn / Zn 2 Mg].
【請求項2】 Al:4.0〜10.0重量%,Mg:
1.0〜4.0重量%,Ti:0.002〜0.1重量%,
B:0.001〜0.045重量%,残部がZnおよび不
可避的不純物からなる溶融めっき層を鋼板表面に形成し
た溶融Zn基めっき鋼板であって,当該めっき層が,
〔Al/Zn/Zn2Mgの三元共晶組織〕の素地中に
〔初晶Al相〕と〔Zn単相〕が混在した金属組織を有
する耐食性および表面外観の良好な溶融Zn−Al−M
g系めっき鋼板。
2. Al: 4.0 to 10.0% by weight, Mg:
1.0 to 4.0% by weight, Ti: 0.002 to 0.1% by weight,
B: 0.001 to 0.045% by weight, the balance being a hot-dip Zn-base coated steel sheet in which a hot-dip coating layer composed of Zn and unavoidable impurities is formed on the surface of the steel sheet,
Good melting of the corrosion resistance and surface appearance in the matrix of [Al / Zn / Zn 2 Mg ternary eutectic structure] and [primary crystal Al phase] is [Zn single phase] having the metal structure mixed Zn-Al- M
g-based plated steel sheet.
【請求項3】 めっき層の金属組織は,〔初晶Al相〕
と〔Al/Zn/Zn2Mgの三元共晶組織〕の合計
量:80容積%以上,〔Zn単相〕:15容積%以下
(0容積%を含む)である請求項1または2に記載の溶
融Zn−Al−Mg系めっき鋼板。
3. The metal structure of the plating layer is [primary Al phase].
And the total amount of [Al / Zn / Zn 2 Mg ternary eutectic structure]: not less than 80% by volume and [Zn single phase]: not more than 15% by volume (including 0% by volume). The described hot-dip Zn-Al-Mg-based plated steel sheet.
【請求項4】 めっき層の金属組織は,〔Al/Zn/
Zn11Mg2の三元共晶組織〕の素地中に〔Al初晶〕
または〔Al初晶〕と〔Zn単相〕が混在してなるZn
11Mg2系の相を実質上含まないものである請求項1,
2または3に記載の溶融Zn−Al−Mg系めっき鋼
板。
4. The metallographic structure of the plating layer is [Al / Zn /
[Al ternary eutectic structure of Zn 11 Mg 2 ]
Or Zn in which [Al primary crystal] and [Zn single phase] are mixed.
11. The method according to claim 1, which is substantially free of a Mg 2 -based phase.
4. The hot-dip Zn-Al-Mg-based plated steel sheet according to 2 or 3.
【請求項5】 Al:4.0〜10.0重量%,Mg:
1.0〜4.0重量%,Ti:0.002〜0.1重量%,
B:0.001〜0.045重量%,残部がZnおよび不
可避的不純物からなる溶融Zn−Al−Mg系めっき鋼
板の製造法において,該めっき浴の浴温を融点以上41
0℃未満とし且つめっき後の冷却速度を7℃/秒以上に
制御することを特徴とする耐食性および表面外観の良好
な溶融Zn−Al−Mg系めっき鋼板の製造法。
5. Al: 4.0 to 10.0% by weight, Mg:
1.0 to 4.0% by weight, Ti: 0.002 to 0.1% by weight,
B: In the method for producing a hot-dip Zn—Al—Mg-based coated steel sheet composed of 0.001 to 0.045% by weight, with the balance being Zn and unavoidable impurities, the bath temperature of the plating bath was set to 41 ° C. or higher.
A method for producing a hot-dip Zn-Al-Mg-based coated steel sheet having good corrosion resistance and surface appearance, wherein the temperature is set to less than 0 ° C and the cooling rate after plating is controlled to 7 ° C / second or more.
【請求項6】 Al:4.0〜10.0重量%,Mg:
1.0〜4.0重量%,Ti:0.002〜0.1重量%,
B:0.001〜0.045重量%,残部がZnおよび不
可避的不純物からなる溶融Zn−Al−Mg系めっき鋼
板の製造法において,該めっき浴の浴温を410℃以上
としめっき後の冷却速度を0.5℃/秒以上に制御する
ことを特徴とする耐食性および表面外観の良好な溶融Z
n−Al−Mg系めっき鋼板の製造法。
6. Al: 4.0 to 10.0% by weight, Mg:
1.0 to 4.0% by weight, Ti: 0.002 to 0.1% by weight,
B: In a method for producing a hot-dip Zn—Al—Mg-based coated steel sheet composed of 0.001 to 0.045% by weight, the balance being Zn and unavoidable impurities, the bath temperature of the plating bath is set to 410 ° C. or higher, and cooling after plating is performed. Melting Z with good corrosion resistance and surface appearance characterized by controlling the speed to 0.5 ° C./sec or more
A method for producing an n-Al-Mg-based plated steel sheet.
【請求項7】 めっき鋼板のめっき層が,〔Al/Zn
/Zn2Mgの三元共晶組織〕の素地中に〔初晶Al
相〕,または〔初晶Al相〕と〔Zn単相〕が混在した
金属組織を有する請求項5または6に記載の溶融Zn−
Al−Mg系めっき鋼板の製造法。
7. The method according to claim 7, wherein the plating layer of the plated steel sheet is [Al / Zn
/ Zn 2 into a green body in the ternary eutectic structure] in Mg [primary crystal Al
7. The molten Zn- according to claim 5, wherein the molten Zn-
A method for producing an Al-Mg-based plated steel sheet.
【請求項8】 めっき浴へのTiとBの添加は,それら
の少なくとも一部がTiB2の形態で添加される請求項
5または6に記載の溶融Zn−Al−Mg系めっき鋼板
の製造法。
8. The method for producing a hot-dip Zn—Al—Mg-based steel sheet according to claim 5, wherein Ti and B are added to the plating bath at least in part in the form of TiB 2. .
JP05744698A 1997-03-04 1998-02-23 Hot-dip Zn-Al-Mg-based coated steel sheet with good corrosion resistance and surface appearance and method for producing the same Expired - Lifetime JP3149129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05744698A JP3149129B2 (en) 1997-03-04 1998-02-23 Hot-dip Zn-Al-Mg-based coated steel sheet with good corrosion resistance and surface appearance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6392397 1997-03-04
JP9-63923 1997-03-04
JP05744698A JP3149129B2 (en) 1997-03-04 1998-02-23 Hot-dip Zn-Al-Mg-based coated steel sheet with good corrosion resistance and surface appearance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10306357A JPH10306357A (en) 1998-11-17
JP3149129B2 true JP3149129B2 (en) 2001-03-26

Family

ID=26398496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05744698A Expired - Lifetime JP3149129B2 (en) 1997-03-04 1998-02-23 Hot-dip Zn-Al-Mg-based coated steel sheet with good corrosion resistance and surface appearance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3149129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187197A1 (en) 2012-06-14 2013-12-19 日新製鋼株式会社 Process for producing arc-welded structural member

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409007B2 (en) * 1999-10-12 2010-02-03 日新製鋼株式会社 Method for producing highly corrosion-resistant hot-dip Zn-Al-Mg plated steel sheet with excellent surface properties
JP2001164194A (en) * 1999-12-13 2001-06-19 Nippon Steel Corp Zinc-rich coating excellent in corrosion-resistant property and coated metal plate
JP2001295015A (en) 2000-02-09 2001-10-26 Nisshin Steel Co Ltd HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
JP4555491B2 (en) * 2000-03-16 2010-09-29 新日本製鐵株式会社 Hot-dip zinc-aluminum alloy-plated steel sheet with excellent chemical conversion and its manufacturing method
JP4555499B2 (en) * 2000-04-11 2010-09-29 新日本製鐵株式会社 Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties and method for producing the same
JP4102035B2 (en) * 2000-04-18 2008-06-18 新日本製鐵株式会社 Plating product with excellent corrosion resistance and manufacturing method thereof
KR20020041029A (en) * 2000-11-25 2002-06-01 이구택 Hot-dip zinc alloy coating steel sheet with superior corrosion resistance
JP3371107B2 (en) * 2001-03-06 2003-01-27 日新製鋼株式会社 Painted steel sheet with excellent corrosion and stain resistance
JP4683764B2 (en) * 2001-05-14 2011-05-18 日新製鋼株式会社 Hot-dip Zn-Al-Mg alloy-plated steel with excellent corrosion resistance
JP3715220B2 (en) * 2001-06-22 2005-11-09 日新製鋼株式会社 Zn-Al-Mg hot-dip galvanized steel with excellent corrosion resistance
JP2003277903A (en) * 2002-03-20 2003-10-02 Nisshin Steel Co Ltd Precoated galvanized steel sheet having excellent workability and corrosion resistance of worked portion
US6677058B1 (en) 2002-07-31 2004-01-13 Nisshin Steel Co., Ltd. Hot-dip Zn plated steel sheet excellent in luster-retaining property and method of producing the same
JP4102144B2 (en) * 2002-09-13 2008-06-18 新日本製鐵株式会社 Hot-dip galvanized steel material excellent in uniform paintability and corrosion resistance and method for producing the same
JP3793522B2 (en) * 2002-11-27 2006-07-05 新日本製鐵株式会社 High corrosion-resistant coated steel sheet with excellent sharpness
US7182824B2 (en) 2003-06-17 2007-02-27 Nisshin Steel Co., Ltd. Method of manufacturing zinc alloy ingot
JP4585224B2 (en) 2004-04-28 2010-11-24 新日本製鐵株式会社 High corrosion resistance zinc-based alloy coated steel coating
JP2006193776A (en) * 2005-01-12 2006-07-27 Nisshin Steel Co Ltd STEEL SHEET PLATED WITH Zn-Al-Mg ALLOY SUPERIOR IN SLIDABILITY, AND SLIDING MEMBER
JP4542434B2 (en) * 2005-01-14 2010-09-15 新日本製鐵株式会社 A molten Zn—Al—Mg—Si plated steel sheet excellent in surface appearance and a method for producing the same.
JP4528187B2 (en) * 2005-04-01 2010-08-18 新日本製鐵株式会社 Hot-dip steel sheet with good appearance
JP5335159B1 (en) * 2012-04-25 2013-11-06 日新製鋼株式会社 Method for producing black-plated steel sheet and method for producing molded body of black-plated steel sheet
JP2015193879A (en) * 2014-03-31 2015-11-05 日新製鋼株式会社 Manufacturing method of molten-zinc/aluminum/magnesium alloy plated steel sheet
WO2016105157A1 (en) * 2014-12-24 2016-06-30 주식회사 포스코 Zinc alloy plated steel sheet having excellent phosphatability and spot weldability and method for manufacturing same
KR101758529B1 (en) 2014-12-24 2017-07-17 주식회사 포스코 Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT PHOSPHATABILITY AND SPOT WELDABILITY AND METHOD FOR MANUFACTURING SAME
KR101819381B1 (en) * 2015-10-26 2018-01-18 주식회사 포스코 Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BENDABILITY AND METHOD FOR MANUFACTURING SAME
KR101847567B1 (en) 2015-12-24 2018-04-10 주식회사 포스코 Coated steel sheet
WO2018139619A1 (en) 2017-01-27 2018-08-02 新日鐵住金株式会社 Plated steel
PT3575434T (en) * 2017-01-27 2023-01-10 Nippon Steel Corp Plated steel
US11236409B2 (en) * 2017-03-17 2022-02-01 Nippon Steel Corporation Coated steel sheet
SG11201908425UA (en) 2017-03-17 2019-10-30 Nippon Steel Corp Coated steel sheet
WO2019009003A1 (en) 2017-07-05 2019-01-10 Jfeスチール株式会社 MOLTEN Zn-Al-Mg PLATED STEEL SHEET WITH EXCELLENT SURFACE APPEARANCE AND PRODUCTION METHOD THEREFOR
JP6950666B2 (en) * 2018-03-01 2021-10-13 Jfeスチール株式会社 Manufacturing method of hot-dip Zn-Al-Mg-based plated steel sheet with excellent surface appearance and manufacturing line of hot-dip Zn-Al-Mg-based plated steel sheet
JP7356069B2 (en) * 2020-06-09 2023-10-04 日本製鉄株式会社 Hot-dip Zn-Al-Mg plated steel material
EP4163413A4 (en) * 2021-07-09 2023-08-16 Nippon Steel Corporation Plated steel material
JP7436945B1 (en) * 2022-04-20 2024-02-22 日本製鉄株式会社 Hot-dipped steel
CN115948677A (en) * 2022-12-26 2023-04-11 首钢集团有限公司 Alloy, preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187197A1 (en) 2012-06-14 2013-12-19 日新製鋼株式会社 Process for producing arc-welded structural member

Also Published As

Publication number Publication date
JPH10306357A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
JP3149129B2 (en) Hot-dip Zn-Al-Mg-based coated steel sheet with good corrosion resistance and surface appearance and method for producing the same
JP3179401B2 (en) Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same
TWI664315B (en) Coated steel
JP5482914B2 (en) High corrosion resistance hot-dip galvanized steel sheet with excellent appearance uniformity and method for producing the same
US6709770B2 (en) Steel sheet hot dip coated with Zn-Al-Mg having high Al content
KR20190099064A (en) Plated steels
CN113508186B (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same
CN117026132A (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same
JP2003268519A (en) Galvanized steel sheet having excellent corrosion resistance after coating and image clarity in coating
WO1998026103A1 (en) HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF
JP7445128B2 (en) Hot-dip Zn-Al-Mg coated steel with excellent workability and corrosion resistance
JP2020503442A (en) Hot-dip galvanized steel excellent in weldability and press workability and method for producing the same
CN113728121B (en) Coated steel sheet
JP2023504496A (en) Hot-dip galvanized steel sheet with excellent bending workability and corrosion resistance, and method for producing the same
JP2895346B2 (en) Hot-dip aluminized steel sheet with excellent corrosion resistance
KR101629260B1 (en) Composition for hot dipping bath
JP2001107212A (en) HIGH CORROSION RESISTANT HOT-DIP Zn-Al-Mg BASE COATED STEEL SHEET EXCELLENT IN SURFACE CHARACTERISTIC
WO2004033745A1 (en) HOT-DIPPED Sn-Zn PLATING PROVIDED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JP7291860B1 (en) Hot-dip Al-Zn-based plated steel sheet and manufacturing method thereof
JP3139353B2 (en) Manufacturing method of thin galvanized steel sheet
TWI787118B (en) Molten Al-Zn system coated steel sheet and its manufacturing method
WO2022085287A1 (en) Plated steel sheet
WO2023191027A1 (en) Plated steel wire
JP2004131819A (en) Hot-dip tin-zinc base coated steel sheet having good corrosion resistance
KR20230141174A (en) Galvanizing steel having excellent bendability and corrosion resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term