KR101803503B1 - 구조물의 정밀 계측 시스템 및 그 방법 - Google Patents

구조물의 정밀 계측 시스템 및 그 방법 Download PDF

Info

Publication number
KR101803503B1
KR101803503B1 KR1020170016270A KR20170016270A KR101803503B1 KR 101803503 B1 KR101803503 B1 KR 101803503B1 KR 1020170016270 A KR1020170016270 A KR 1020170016270A KR 20170016270 A KR20170016270 A KR 20170016270A KR 101803503 B1 KR101803503 B1 KR 101803503B1
Authority
KR
South Korea
Prior art keywords
information
displacement
acceleration
response
rtk
Prior art date
Application number
KR1020170016270A
Other languages
English (en)
Inventor
권남열
강두영
박승범
김민재
문재민
강진석
손훈
김기영
구건희
최재묵
정준연
Original Assignee
주식회사 풍산에프앤에스
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 풍산에프앤에스, 한국과학기술원 filed Critical 주식회사 풍산에프앤에스
Priority to KR1020170016270A priority Critical patent/KR101803503B1/ko
Application granted granted Critical
Publication of KR101803503B1 publication Critical patent/KR101803503B1/ko
Priority to US16/475,701 priority patent/US10508970B2/en
Priority to CN201880008974.0A priority patent/CN110325833B/zh
Priority to EP18747123.0A priority patent/EP3524954B1/en
Priority to PCT/KR2018/001227 priority patent/WO2018143625A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0075Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

본 발명은 구조물의 정밀 계측 시스템 및 그 방법에 관한 것으로, 고정된 위치에 설치되며, 기준 GPS 모듈을 통해 수신된 GPS 기준정보를 제공하는 기준계측기와, 가속도 센서 및 응답 GPS 모듈을 포함하여 구조물의 복수의 위치에 각각 설치되며, 상기 가속도 센서를 통해 획득된 가속도 정보와, 상기 GPS 기준정보를 이용하여 상기 응답 GPS 모듈을 통해 계측된 복수의 RTK 변위 정보를 전송하는 복수의 응답계측기와, 상기 전송된 가속도 정보 및 복수의 RTK 변위 정보를 이용하여 구조물 응답 정보를 산출하는 연산처리기를 포함함으로써, GPS와 가속도계를 이용하여 고층빌딩, 교량, 댐, 항만 등을 포함하는 구조물의 동적거동을 정밀하게 계측할 수 있다.

Description

구조물의 정밀 계측 시스템 및 그 방법{ACCURATE MEASURING SYSTEM AND ITS METHOD OF STRUCTURE}
본 발명은 GPS와 가속도계를 이용하여 고층빌딩, 교량, 댐, 항만 등을 포함하는 구조물의 동적거동을 정밀하게 계측할 수 있는 구조물의 정밀 계측 시스템 및 그 방법에 관한 것이다.
잘 알려진 바와 같이, GPS(Global Positioning System, 이하 'GPS'라 함)는 미 국방성이 개발하여 미 운수성과 공동 운용 관리하고 있는 인공위성에 의한 전 세계적인 전파 측위 시스템으로, GPS를 이용한 위치 측정 원리는 추적된 궤도에 의해서 정확한 위치를 알고 있는 위성에서 발신하는 전파를 관측지점의 GPS 안테나를 포함한 GPS 수신기가 수신하여 위성에서 GPS 수신기까지의 전파 도달시간을 측정함으로서 공간적 위치를 구할 수 있다.
여기에서, GPS 위성과의 거리를 결정하는 가장 중요한 요소는 시간이며, GPS 위성에 탑재된 시계와 GPS 수신기의 시계가 정확히 일치하면, 3개의 위성과의 거리만으로 3차원적(X, Y, Z)의 위치를 계산할 수 있다.
이러한 GPS 위치 측정 원리는 사회의 다양한 분야에 사용되고 있으며, 특히 고층빌딩, 교량, 댐, 항만 등의 구조물에 GPS 수신기를 설치하여 구조물의 거동을 지속적으로 정밀하게 모니터링하여 지반 및 구조물의 상태를 확인하고, 파괴를 예측함으로써, 지반 및 구조물의 상태 평가, 붕괴에 의한 재해 예방 등에 활용할 수 있다.
이에 대해 고층빌딩, 교량, 댐, 항만 등을 포함하는 구조물의 GPS를 이용한 측지 측량은 계측점의 절대좌표를 획득하는 정적측위가 있으며, 구조물의 동적거동을 모니터링하는 키네매틱 측위가 일반적으로 행해지고 있는데, 구조물 계측지점에 정적측위를 수행하는 경우 GPS 안테나를 부착한 지점이 움직이지 않는다거나, 움직임이 발생하더라도 요구되는 측위 정밀도가 낮아 그 변위를 무시할 수 있다는 가정 아래 진행되며, 구조물 계측지점에 키네매틱 측위를 수행하는 경우 GPS 안테나를 부착한 지점에 발생하는 진동이나 동적하중으로 인한 변위를 계측하여 그 결과를 처리할 수 있어야 한다.
상술한 바와 같이 고층빌딩, 교량, 댐, 항만 등을 포함하는 구조물의 동적거동에 대해 정밀하게 측정하기 위한 다양한 연구가 진행되고 있는 실정이다.
1. 한국공개특허 제10-2004-0030772호(2004.04.09.공개) 2. 한국등록특허 제10-1395695호(2014.05.09.등록)
본 발명은 GPS와 가속도계를 이용하여 고층빌딩, 교량, 댐, 항만 등을 포함하는 구조물의 동적거동을 정밀하게 계측할 수 있는 구조물의 정밀 계측 시스템 및 그 방법을 제공하고자 한다.
또한, 본 발명은 고정된 위치에 설치되어 GPS 기준정보를 제공하는 기준계측기와, 구조물에 복수의 위치에 각각 설치되어 설치 위치에 대응하는 변위 정보를 각각 계측하는 복수의 응답계측기와, 복수의 응답계측기로부터의 각 변위 정보를 통신망을 통해 제공받아 구조물 응답 정보를 산출하는 연산처리기를 포함함으로써, 가속도, 속도, 변위, 각변위 등을 포함하는 구조물의 동적특성을 정밀하게 계측할 수 있는 구조물의 정밀 계측 시스템 및 그 방법을 제공하고자 한다.
아울러, 본 발명은 가속도, 속도, 변위, 각변위 등을 포함하는 구조물의 6자유도 동적특성을 계측함으로써, 데이터의 시각동기화, 통합화 및 호환성 문제를 해결할 수 있고, 구조물이 갖는 저주파수 응답특성에서 수 마이크로G 이하의 저진동에 반응할 뿐만 아니라, 바람, 태양광 등의 유무에 따른 온도변화로 인한 변화를 상시적으로 측정할 수 있는 구조물의 정밀 계측 시스템 및 그 방법을 제공하고자 한다.
본 발명의 실시예들의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따르면, 고정된 위치에 설치되며, 기준 GPS 모듈을 통해 수신된 GPS 기준정보를 제공하는 기준계측기와, 가속도 센서 및 응답 GPS 모듈을 포함하여 구조물의 복수의 위치에 각각 설치되며, 상기 가속도 센서를 통해 획득된 가속도 정보와, 상기 GPS 기준정보를 이용하여 상기 응답 GPS 모듈을 통해 계측된 복수의 RTK 변위 정보를 시간 동기화하여 전송하는 복수의 응답계측기와, 상기 전송된 가속도 정보 및 복수의 RTK 변위 정보를 이용하여 구조물 응답 정보를 산출하는 연산처리기를 포함하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 응답계측기는, 복수의 위성으로부터 상기 응답 GPS 모듈을 통해 수신된 위성신호와 상기 GPS 기준 정보를 이용하여 설치 위치에 대응하는 상기 복수의 RTK 변위 정보를 획득하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 응답계측기는, 상기 GPS 기준 정보를 기준으로 상기 위성신호의 3축 상대 변위를 측정하면서 각 상대 변위데이터에 대응하는 변위시간정보를 각각 부여하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 응답계측기는, 상기 가속도 센서를 통해 상기 구조물에 대한 X축 성분, Y축 성분 및 Z축 성분을 계측하여 상기 가속도 정보를 획득하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 응답계측기는, 상기 GPS 기준 정보를 이용하여 상기 가속도 정보에 대응하는 가속도시간정보를 부여하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 응답계측기는, 상기 가속도 정보에 대응하는 가속도시간정보와 상기 RTK 변위 정보에 대응하는 변위시간정보를 이용하여 다중 샘플링 주파수로 시간 동기화하여 하나의 패킷으로 생성하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 응답계측기는, 온도 센서의 온도 데이터를 이용하여 온도 변화에 따른 상기 가속도 정보의 보정을 수행하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 연산처리기는, 상기 가속도 정보의 3자유도 가속도 및 3자유도 각변위와 상기 RTK 변위 정보의 3자유도 동적변위를 1단계 칼만필터 및 2단계 칼만필터를 통해 연산하여 가속도 내부 바이어스에 대응하는 변위 오차를 제거하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 연산처리기는, 상기 1단계 칼만필터를 통해 상기 가속도 내부 바이어스가 포함된 제 1 변위를 산출하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 연산처리기는, 상기 2단계 칼만필터를 통해 상기 산출된 제 1 변위에서 상기 변위 오차를 산출한 후에, 상기 제 1 변위에서 상기 변위 오차를 제거하여 상기 구조물 응답 정보를 산출하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 연산처리기는, 상기 복수의 RTK 변위 정보와 상기 구조물 응답 정보를 비교 디스플레이하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
본 발명의 다른 측면에 따르면, 고정된 위치에 설치되는 기준계측기에서 GPS 기준정보를 제공하는 단계와, 구조물의 복수의 위치에 각각 설치되는 복수의 응답계측기에서 가속도 센서를 통해 가속도 정보를 획득하는 단계와, 상기 GPS 기준정보를 이용하여 상기 복수의 응답계측기에서 복수의 RTK 변위 정보를 각각 계측하는 단계와, 상기 복수의 응답계측기에서 상기 가속도 정보 및 복수의 RTK 변위 정보를 시간 동기화하여 전송하는 단계와, 상기 전송된 가속도 정보 및 복수의 RTK 변위 정보를 연산처리기에서 수신하여 구조물 응답 정보를 산출하는 단계를 포함하는 구조물의 정밀 계측 방법이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 복수의 RTK 변위 정보를 각각 계측하는 단계는, 복수의 위성으로부터 응답 GPS 모듈을 통해 수신된 위성신호와 상기 GPS 기준 정보를 이용하여 설치 위치에 대응하는 상기 복수의 RTK 변위 정보를 획득하는 구조물의 정밀 계측 방법이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 복수의 RTK 변위 정보를 각각 계측하는 단계는, 상기 GPS 기준 정보를 기준으로 상기 위성신호의 3축 상대 변위를 측정하면서 각 상대 변위데이터에 대응하는 변위시간정보를 각각 부여하는 구조물의 정밀 계측 시스템이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 가속도 정보를 획득하는 단계는, 상기 가속도 센서를 통해 상기 구조물에 대한 X축 성분, Y축 성분 및 Z축 성분을 계측하여 상기 가속도 정보를 획득하는 구조물의 정밀 계측 방법이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 가속도 정보를 획득하는 단계는, 상기 GPS 기준 정보를 이용하여 상기 가속도 정보에 대응하는 가속도시간정보를 부여하는 구조물의 정밀 계측 방법이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 가속도 정보 및 복수의 RTK 변위 정보를 시간 동기화하여 전송하는 단계는, 상기 가속도 정보에 대응하는 가속도시간정보와 상기 RTK 변위 정보에 대응하는 변위시간정보를 이용하여 다중 샘플링 주파수로 시간 동기화하여 하나의 패킷으로 생성하는 구조물의 정밀 계측 방법이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 가속도 정보 및 복수의 RTK 변위 정보를 시간 동기화하여 전송하는 단계는, 온도 센서의 온도 데이터를 이용하여 온도 변화에 따른 상기 가속도 정보의 보정을 수행한 후, 상기 온도 데이터를 상기 하나의 패킷에 포함시켜 생성 및 전송하는 구조물의 정밀 계측 방법이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 구조물 응답 정보를 산출하는 단계는, 상기 가속도 정보의 3자유도 가속도 및 3자유도 각변위와 상기 RTK 변위 정보의 3자유도 동적변위를 1단계 칼만필터 및 2단계 칼만필터를 통해 연산하여 가속도 내부 바이어스에 대응하는 변위 오차를 제거하는 구조물의 정밀 계측 방법이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 구조물 응답 정보를 산출하는 단계는, 상기 1단계 칼만필터를 통해 상기 가속도 내부 바이어스가 포함된 제 1 변위를 산출하는 구조물의 정밀 계측 방법이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 구조물 응답 정보를 산출하는 단계는, 상기 2단계 칼만필터를 통해 상기 산출된 제 1 변위에서 상기 변위 오차를 산출한 후에, 상기 제 1 변위에서 상기 변위 오차를 제거하여 상기 구조물 응답 정보를 산출하는 구조물의 정밀 계측 방법이 제공될 수 있다.
또한, 본 발명의 다른 측면에 따르면, 상기 구조물의 정밀 계측 방법은, 상기 구조물 응답 정보를 산출하는 단계 이후에, 상기 복수의 RTK 변위 정보와 상기 구조물 응답 정보를 비교 디스플레이하는 단계를 더 포함하는 구조물의 정밀 계측 방법이 제공될 수 있다.
본 발명은 GPS와 가속도계를 이용하여 고층빌딩, 교량, 댐, 항만 등을 포함하는 구조물의 동적거동을 정밀하게 계측할 수 있는 구조물의 정밀 계측 시스템 및 그 방법을 제공할 수 있다.
또한, 본 발명은 고정된 위치에 설치되어 GPS 기준정보를 제공하는 기준계측기와, 구조물에 복수의 위치에 각각 설치되어 설치 위치에 대응하는 변위 정보를 각각 계측하는 복수의 응답계측기와, 복수의 응답계측기로부터의 각 변위 정보를 통신망을 통해 제공받아 구조물 응답 정보를 산출하는 연산처리기를 포함함으로써, 가속도, 속도, 변위, 각변위 등을 포함하는 구조물의 동적특성을 정밀하게 계측할 수 있다.
아울러, 본 발명은 가속도, 속도, 변위, 각변위 등을 포함하는 구조물의 6자유도 동적특성을 계측함으로써, 데이터의 시각동기화, 통합화 및 호환성 문제를 해결할 수 있고, 구조물이 갖는 저주파수 응답특성에서 수 마이크로G 이하의 저진동에 반응할 뿐만 아니라, 바람, 태양광 등의 유무에 따른 온도변화로 인한 변화를 상시적으로 측정할 수 있다.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 구조물의 정밀 계측 시스템을 예시한 도면이고,
도 4 내지 도 9는 본 발명의 일 실시예에 따른 구조물의 정밀 계측 시스템에 구비된 연산처리기를 설명하기 위한 도면이며,
도 10은 본 발명의 다른 실시예에 따라 구조물의 동적거동을 정밀하게 계측하는 과정을 나타낸 단계별 흐름도이다.
본 발명의 실시예들에 대한 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 구조물의 정밀 계측 시스템을 예시한 도면이고, 도 4 내지 도 9는 본 발명의 일 실시예에 따른 구조물의 정밀 계측 시스템에 구비된 연산처리기를 설명하기 위한 도면이다.
도 1 내지 도 9를 참조하면, 본 발명의 일 실시예에 따른 구조물의 정밀 계측 시스템은 기준계측기(110), 복수의 응답계측기(120), 연산처리기(130), 통신망(140) 등을 포함할 수 있다.
기준계측기(110)는 고정된 위치에 설치되며, 기준 GPS 모듈(112)을 통해 수신된 GPS 기준정보를 제공하는 것으로, 기준 GPS 모듈(112), 제 1 통신모듈(114) 등을 포함할 수 있다.
이러한 기준계측기(110)에서는 복수의 위성으로부터 기준 GPS 모듈(112)을 통해 위성신호를 수신하여 GPS 기준 정보를 생성한 후, 제 1 통신모듈(114)을 통해 복수의 응답계측기(120) 각각에 전송할 수 있다. 여기에서, GPS 기준 정보는 기준 위치 데이터, 기준 시간 데이터 등을 포함할 수 있다.
복수의 응답계측기(120)는 가속도 센서(121) 및 응답 GPS 모듈(125)을 포함하여 구조물의 복수의 위치에 각각 설치되며, 가속도 센서(121)를 통해 획득된 가속도 정보와, GPS 기준정보를 이용하여 응답 GPS 모듈(125)을 통해 계측된 복수의 RTK 변위 정보를 전송할 수 있다.
이러한 복수의 응답계측기(120)에서는 가속도 센서(121)를 통해 구조물에 대한 X축 성분, Y축 성분 및 Z축 성분을 계측하여 가속도 정보를 획득할 수 있고, GPS 기준 정보(예를 들면, 기준 시간 데이터 등)를 이용하여 가속도 정보에 대응하는 가속도시간정보를 부여할 수 있다.
또한, 복수의 응답계측기(120)에서는 복수의 위성으로부터 응답 GPS 모듈(125)을 통해 수신된 위성신호와 GPS 기준 정보를 이용하여 설치 위치에 대응하는 복수의 RTK 변위 정보를 획득할 수 있고, GPS 기준 정보(예를 들면, 기준 위치 데이터, 기준 시간 데이터 등)를 기준으로 위성신호의 3축 상대 변위를 측정하면서 각 상대 변위데이터에 대응하는 변위시간정보를 각각 부여할 수 있다.
그리고, 복수의 응답계측기(120)는 가속도 정보에 대응하는 가속도시간정보와 RTK 변위 정보에 대응하는 변위시간정보를 이용하여 시간 동기화한된 후, 하나의 패킷으로 하여 통신망(140)을 통해 연산처리기(130)로 전송될 수 있다.
이러한 복수의 응답계측기(120)에서는가속도 정보와 RTK 변위 정보를 다중 샘플링 주파수로 동기화할 수 있으며, 하나의 기준계측기(110)와 연동되어 전체 시스템의 시간 동기화가 이루어질 수 있다.
상술한 바와 같은 복수의 응답계측기(120)는 각각 가속도 센서(121), 온도 센서(122), AD변환기(123), 데이터처리기(124), 응답 GPS 모듈(125), 제 2 통신 모듈(126) 등을 포함할 수 있다.
여기에서, 가속도 센서(121)는 포스 피드백 타입(force feedback type)의 센서로서, 응답계측기(120)가 설치된 설치 위치의 X축 성분, Y축 성분 및 Z축 성분을 센싱하여 그 센싱신호를 AD변환기(123)로 전달할 수 있다.
여기에서, 센싱신호는 X축, Y축 및 Z축에 대응하는 가속도 데이터, XY평면, YZ평면 및 ZX평면에 대응하는 각변위 데이터 등을 포함할 수 있고, 가속도 데이터는 설치 위치에서 제 1 시간에 대응하는 제 1 위치와 일정 시간 경과 후 제 2 시간에 대응하는 제 2 위치 사이의 X축 방향 가속도 데이터, Y축 방향 가속도 데이터 및 Z축 방향 가속도 데이터를 포함할 수 있으며, 각변위 데이터는 제 1 위치를 중심으로 XY평면을 따라 변동하는 XY 각변위 데이터, YZ평면을 따라 변동하는 YZ 각변위 데이터 및 ZX평면을 따라 변동하는 ZX 각변위 데이터를 포함할 수 있다.
이러한 가속도 센서(121)는 대형 구조물 계측을 위해 0-100Hz의 계측 대역폭 및 대략 1μG의 계측분해능을 가질 수 있다. 이러한 센싱신호는 AD변환기(123)에서 대략 100Hz의 샘플링 주파수로 하여 아날로그 신호에서 디지털 신호로 변환될 수 있다.
또한, 온도 센서(122)는 계측기 내부의 온도를 감지하여 그 감지신호를 AD변환기(123)로 전달할 수 있는데, 이러한 온도 센서(122)는 접촉식 방식, 비접촉 방식 등과 같은 다양한 센서가 이미 공개되어 있으므로 그 구체적인 설명은 생략한다.
다음에, AD변환기(123)는 가속도 센서(121)로부터 전달되는 센싱신호를 디지털신호로 변환하여 데이터처리기(124)로 전달하고, 온도 센서(122)로부터 전달되는 감지신호를 디지털 신호로 변환하여 데이터처리기(124)로 전달할 수 있다.
그리고, 데이터처리기(124)는 제 2 통신모듈(125)을 통해 전달되는 GPS 기준 정보(예를 들면, 기준 시간 데이터 등)를 이용하여 AD변환기(124)로부터 전달되는 가속도 정보에 가속도시간정보를 부여하고, 응답 GPS 모듈(125)로부터 전달되는 복수의 RTK 변위 정보와 함께 다중 샘플링 주파수로 동기화하며, 그 가속도 정보(예를 들면, X축, Y축 및 Z축에 대응하는 가속도 데이터, XY평면, YZ평면 및 ZX평면에 대응하는 각변위 데이터, 가속도 시간 데이터 등) 및 복수의 RTK 변위 정보(예를 들면, X축, Y축 및 Z축에 대응하는 동적변위 데이터, 변위 시간 데이터 등)를 하나의 패킷으로 생성하여 제 2 통신모듈(125)을 통해 연산처리기(130)로 전송할 수 있다.
예를 들면, 가속도 정보의 샘플링 주파수가 100Hz이고, RTK 변위 정보의 샘플링 주파수가 10Hz인 경우 도 4에 도시한 바와 같은 방식으로 시간을 동기화하여 가속도 정보와 RTK 변위 정보에 대한 데이터를 융합시킬 수 있다.
또한, 데이터처리기(124)는 AD변환기(124)로부터 전달되는 감지신호에 대응하는 온도 데이터를 이용하여 온도 변화에 따른 가속도 정보의 보정을 수행할 수 있다. 예를 들면, 가속도 센서(121)는 온도 변화에 따라 값이 변하기 때문에, 온도 보정이 필요하게 되는데, 별도의 센서계측장비를 이용하여 가속도 센서만을 측정할 경우 출력전압이 오전과 오후가 상하로 움직일 수 있고, 이 때 온도 변화에 따른 보정값을 산출하여 가속도 정보를 보정할 수 있다.
이러한 온도 데이터는 추가적인 계측기 정보로서 제 2 통신모듈(125)을 통해 연산처리기(130)로 전송할 수 있는데, 상술한 바와 같은 가속도 정보 및 복수의 RTK 변위 정보와 함께 하나의 패킷으로 생성되어 전송될 수 있다.
한편, 응답 GPS 모듈(125)은 복수의 위성으로부터 해당 설치 위치에 대응하는 위성신호를 수신하고, 제 2 통신모듈(124)을 통해 전달되는 GPS 기준 정보와 수신된 위성신호를 이용하여 설치 위치에 대응하는 복수의 RTK 변위 정보(예를 들면, X축, Y축 및 Z축에 대응하는 동적변위 데이터 등)를 획득할 수 있다. 이러한 응답 GPS 모듈(125)은 대략 10Hz의 샘플링주파수에 따라 수cm의 정밀도로 공간좌표를 취득하여 3자유도 변위로 환산할 수 있다.
즉, 응답 GPS 모듈(125)은 GPS 기준 정보(예를 들면, 기준 위치 데이터, 기준 시간 데이터 등)를 기준으로 위성신호의 3축 상대 변위를 측정하면서 각 상대 변위데이터에 대응하는 변위시간정보(즉, 변위 시간 데이터)를 각각 부여할 수 있다. 이러한 복수의 RTK 변위 정보(예를 들면, X축, Y축 및 Z축에 대응하는 동적변위 데이터, 변위 시간 데이터 등)는 데이터처리기(124)에 전달될 수 있다.
예를 들면, 기준 GPS 정보에서 10시 11분 12.5초의 위치 데이터와 위성신호에서 10시 11분 12.5초의 위치 데이터를 이용하여 10시 11분 12.5초의 RTK 변위 정보를 생성할 수 있다.
상술한 바와 같은 복수의 RTK 변위 정보(예를 들면, X축, Y축 및 Z축에 대응하는 동적변위 데이터, 변위 시간 데이터 등)에 대해 설명하면, 가속도를 적분하여 만들어진 변위는 바이어스의 적분으로 누적되는 오차를 가지게 되지만, 본 발명에서는 누적되는 오차가 없고, 누적 오차가 발생하지 않기 때문에, 가속도 적분으로 만들어진 변위를 대상으로 원점 보정 효과를 발생시킬 수 있다.
또한, 상술한 바와 같은 가속도 센서(121)를 통해 획득되는 가속도 정보는 상대적으로 고정밀도 및 고샘플주파수의 3자유도 가속도 데이터와 상대적으로 저정밀도 및 고샘플주파수의 3자유도 각변위 데이터로 제공될 수 있고, 응답 GPS 모듈(125)를 통해 획득되는 복수의 RTK 변위 정보는 상대적으로 저정밀도 및 저샘플주파수의 3자유도 동적변위 데이터로 제공될 수 있다.
연산처리기(130)는 전송된 가속도 정보 및 복수의 RTK 변위 정보를 이용하여 구조물 응답 정보를 산출할 수 있는데, 시간 동기화된 가속도 정보의 3자유도 가속도 및 3자유도 각변위와 RTK 변위 정보의 3자유도 동적변위를 1단계 칼만필터 및 2단계 칼만필터를 통해 연산하여 가속도 내부 바이어스에 대응하는 변위 오차를 제거함으로써, 구조물에 대한 구조물 응답 정보를 획득할 수 있다. 여기에서, 1단계 칼만필터를 통해 가속도 내부 바이어스가 포함된 제 1 변위를 산출할 수 있고, 2단계 칼만필터를 통해 산출된 제 1 변위에서 변위 오차를 산출한 후에, 제 1 변위에서 변위 오차를 제거하여 구조물 응답 정보를 산출할 수 있다.
이러한 연산처리기(130)에서 전송된 가속도 정보 및 복수의 RTK 변위 정보와 산출된 구조물 응답 정보는 별도의 디스플레이기기(도시 생략됨)에서 비교 디스플레이할 수 있다.
상술한 바와 같은 연산처리기(130)는 1단계 칼만필터를 통해 가속도 내부 바이어스가 포함된 제 1 변위를 산출할 수 있고, 2단계 칼만필터를 통해 산출된 제 1 변위에서 변위 오차를 산출한 후에, 제 1 변위에서 변위 오차를 제거하여 구조물 응답 정보(예를 들면, 가속도 데이터, 속도 데이터, 변위 데이터, 각변위 데이터 등)를 산출할 수 있다.
상술한 바와 같은 1단계 칼만필터 및 2단계 칼만필터를 이용한 처리 과정에 대해 더 상세히 설명하면, 1단계 칼만필터를 이용하여 가속도 내부 바이어스가 포함된 제 1 변위를 산출할 수 있는데, 전 처리 과정에서 현재 시간이 (k-1)일 경우 현재 시간의 변위 데이터(x(k-1))를 이용하여 다음 시간의 변위 데이터(x(k))를 아래의 수학식 1과 같이 예측할 수 있다.
Figure 112017012226836-pat00001
그리고, 현재 시간의 변위 데이터가 갖는 통계적 오차(Px(k-1))를 이용하여 다음 시간의 변위 데이터를 예측할 경우 발생하는 통계적 오차(Px(k))를 아래의 수학식 2와 같이 계산할 수 있다.
Figure 112017012226836-pat00002
한편, 후처리 과정에서 현재 시간이 (k)일 경우 현재 시간의 가속도 및 측정 데이터의 잡음(R(k))과 현재 시간의 통계적 오차(Px(k))를 이용하여 보정 가중치(K(k)를 아래의 수학식 3과 같이 계산할 수 있다.
Figure 112017012226836-pat00003
또한, 현재 시간의 가속 및 변위 측정 데이터(y(k))와 현재 시간의 변위 데이터(x(k))의 차이에 보정 가중치(K(k))를 적용하고, 현재 시간의 변위 데이터(x(k))를 보정하여 보정된 현재 시간의 변위 데이터(x+(k))를 아래의 수학식 4와 같이 계산할 수 있다.
Figure 112017012226836-pat00004
한편, 2단계 칼만필터를 이용하여 1단계 칼만필터를 통해 산출된 제 1 변위에서 변위 오차를 산출할 수 있는데, 전 처리 과정에서 현재 시간이 (k-1)일 경우 현재 시간의 가속도 내부 바이어스(b(k-1))를 이용하여 다음 시간의 가속도 내부 바이어스(b(k))를 아래의 수학식 5와 같이 예측할 수 있다.
Figure 112017012226836-pat00005
그리고, 현재 시간의 가속도 내부 바이어스 영향계수(V(k-1))를 이용하여 다음 시간의 가속도 내부 바이어스 영향계수 보정량(S(k))을 아래의 수학식 6과 같이 예측할 수 있다.
Figure 112017012226836-pat00006
또한, 현재 시간의 가속도 내부 바이어스 영향계수(V(k-1)), 상기 수학식 3의 보정 가중치(K(k)) 및 다음 시간의 가속도 내부 바이어스 영향계수의 보정량(S(k))을 이용하여 다음 시간의 가속도 내부 바이어스 영향계수(V(k))를 아래의 수학식 7과 같이 예측할 수 있다.
Figure 112017012226836-pat00007
한편, 후처리 과정에서 현재 시간이 (k)일 경우 상기 수학식 2의 통계적 오차(Px(k))와 현재 시간의 가속도 내부 바이어스 영향계수의 보정량(S(k))을 이용하여 현재 시간의 가속도 내부 바이어스 보정 가중치(Kb(k))를 아래의 수학식 8과 같이 예측할 수 있다.
Figure 112017012226836-pat00008
다음에, 현재 시간의 측정 데이터(y(k))와 현재 시간의 가속도 내부 바이어스(b(k))의 차이에 보정 가중치(Kb(k))를 적용하고, 현재 시간의 가속도 내부 바이어스(b(k))를 보정하여 보정된 현재 시간의 가속도 내부 바이어스(b+(k))를 아래의 수학식 9와 같이 계산할 수 있다.
Figure 112017012226836-pat00009
이어서, 상기 수학식 7과 같은 현재 시간의 가속도 내부 바이어스 영향계수(V(k))를 상기 수학식 9과 같은 보정된 현재 시간의 가속도 내부 바이어스(b+(k))에 곱하고, 그 곱한 값을 상기 수학식 4와 같은 제1단계 칼만필터에서 구한 보정된 변위 데이터(x+(k))와 결합하여 바이어스로 인한 오차를 보정(제거)한 변위 데이터를 아래의 수학식 10과 같이 획득할 수 있다.
Figure 112017012226836-pat00010
상술한 바와 같은 연산처리기(130)에서는 전송된 복수의 RTK 변위 정보와 산출된 구조물 응답 정보를 별도의 디스플레이기기(도시 생략됨)에서 비교 디스플레이할 수 있는데, 도 5에 도시한 바와 같이 복수의 응답계측기(120)로부터 각각 전송되는 복수의 RTK 변위 정보(즉, GPS 측정 변위로 도시됨)를 각각 디스플레이할 수 있고, 도 6에 도시한 바와 같이 복수의 응답계측기(120)로부터 각각 전송되는 가속도 정보(즉, 측정 가속도로 도시됨)를 각각 디스플레이할 수 있다.
그리고, 연산처리기(130)에서는 도 7에 도시한 바와 같이 1단계 칼만필터 및 2단계 칼만필터를 통해 가속도 정보와 RTK 변위 정보를 융합하여 산출된 구조물 응답 정보(즉, 칼만필터 결과로 도시됨)를 각각 디스플레이할 수 있다. 여기에서, 구조물 응답 정보는 가속도 데이터, 속도 데이터, 변위 데이터 및 각변위 데이터에 대응하는 각 항목으로 구분하여 디스플레이될 수 있으며, 칼만필터에서 사용되는 필터의 틀어짐 각도를 입력 설정할 수 있다.
상술한 바와 같은 도 5, 도 6 및 도 7에서 X축은 60초 간격으로 윈도우가 씌어져 이동하고, Y축은 윈도우 내부의 최대 진폭에 대응하여 설정될 수 있다.
또한, 연산처리기(130)에서는 도 8에 도시한 바와 같이 센세별로 GPS 데이터의 상태에 대한 GPS 관련 정보(예를 들면, GPS 위성수, 모드 정보, 모호정수 정보 등)를 각각 디스플레이할 수 있으며, 도 9에 도시한 바와 같이 칼만필터를 통해 도출된 결과 데이터(즉, 구조물 응답 정보)를 저장하기 위한 경로를 설정 및 저장할 수 있다. 여기에서, Save의 'true'는 저장한다는 의미이다.
상술한 바와 같은 연산처리기(130)는 각각의 가속도 정보 및 RTK 변위 정보에 대해 실시간으로 개별적인 칼만필터 연산을 수행할 수 있고, 칼만필터 연산을 통해 도출되는 구조물 응답 정보(예를 들면, 가속도 데이터, 속도 데이터, 변위 데이터, 각변위 데이터 등)를 시각적으로 디스플레이하면서 저장할 수 있다.
예를 들면, 가속도 센서가 10개가 있을 경우 10 세트(set)의 가속도 데이터와 변위 RTK 데이터가 전송되고, 10개의 칼만필터 알고리즘이 개별적으로 작동하여 10개의 정밀한 변위 데이터가 산출될 수 있다. 이러한 각각의 정밀 변위 데이터는 해당 설치 위치에 대응하는 구조물 응답 정보이다.
통신망(140)은 유선 통신망, 무선 통신망 등을 포함하는 것으로, 기준계측기(110), 복수의 응답계측기(120) 및 연산 처리기(130) 간의 유무선 통신 환경을 제공함으로써, 상호 간 데이터 송수신을 담당할 수 있다.
따라서, 본 발명은 GPS와 가속도계를 이용하여 고층빌딩, 교량, 댐, 항만 등을 포함하는 구조물의 동적거동을 정밀하게 계측할 수 있는 구조물의 정밀 계측 시스템을 제공할 수 있다.
또한, 본 발명은 고정된 위치에 설치되어 GPS 기준정보를 제공하는 기준계측기와, 구조물에 복수의 위치에 각각 설치되어 설치 위치에 대응하는 변위 정보를 각각 계측하는 복수의 응답계측기와, 복수의 응답계측기로부터의 각 변위 정보를 통신망을 통해 제공받아 구조물 응답 정보를 산출하는 연산처리기를 포함함으로써, 가속도, 속도, 변위, 각변위 등을 포함하는 구조물의 동적특성을 정밀하게 계측할 수 있다.
아울러, 본 발명은 가속도, 속도, 변위, 각변위 등을 포함하는 구조물의 6자유도 동적특성을 계측함으로써, 데이터의 시각동기화, 통합화 및 호환성 문제를 해결할 수 있고, 구조물이 갖는 저주파수 응답특성에서 수 마이크로G 이하의 저진동에 반응할 뿐만 아니라, 바람, 태양광 등의 유무에 따른 온도변화로 인한 변화를 상시적으로 측정할 수 있다.
다음에, 상술한 바와 같은 구성을 갖는 구조물의 정밀 계측 시스템에서 고정된 위치에 설치되는 기준계측기에서 GPS 기준정보를 제공하고, 구조물의 복수의 위치에 각각 설치되는 복수의 응답계측기에서 가속도 센서를 통해 획득된 가속도 정보를 전송하며, GPS 기준정보를 이용하여 복수의 응답계측기에서 각각 계측된 복수의 RTK 변위 정보를 전송하고, 전송된 가속도 정보 및 복수의 RTK 변위 정보를 연산처리기에서 수신하여 구조물 응답 정보를 산출하는 과정에 대해 설명한다.
도 10은 본 발명의 다른 실시예에 따라 구조물의 동적거동을 정밀하게 계측하는 과정을 나타낸 단계별 흐름도이다.
도 10을 참조하면, 기준계측기(110)에서는 복수의 위성으로부터 기준 GPS 모듈(112)을 통해 위성신호를 수신하여 GPS 기준 정보를 생성한 후, 제 1 통신모듈(114)을 통해 복수의 응답계측기(120) 각각에 전송할 수 있다(단계1002). 여기에서, GPS 기준 정보는 기준 위치 데이터, 기준 시간 데이터 등을 포함할 수 있다.
그리고, 구조물의 복수의 위치에 각각 설치되는 복수의 응답계측기(120)에서는 가속도 센서(121)를 통해 설치 위치에서 구조물에 대한 X축 성분, Y축 성분 및 Z축 성분을 센싱하여 그 센싱신호를 AD변환기(123)로 전달할 수 있다(단계1002). 여기에서, 센싱신호는 X축, Y축 및 Z축에 대응하는 가속도 데이터, XY평면, YZ평면 및 ZX평면에 대응하는 각변위 데이터 등을 포함할 수 있고, 가속도 데이터는 설치 위치에서 제 1 시간에 대응하는 제 1 위치와 일정 시간 경과 후 제 2 시간에 대응하는 제 2 위치 사이의 X축 방향 가속도 데이터, Y축 방향 가속도 데이터 및 Z축 방향 가속도 데이터를 포함할 수 있으며, 각변위 데이터는 제 1 위치를 중심으로 XY평면을 따라 변동하는 XY 각변위 데이터, YZ평면을 따라 변동하는 YZ 각변위 데이터 및 ZX평면을 따라 변동하는 ZX 각변위 데이터를 포함할 수 있다.
또한, AD변환기(123)에서는 가속도 센서(121)로부터 전달되는 센싱신호를 디지털신호로 변환하여 데이터처리기(124)로 전달하고, 데이터처리기(124)에서는 제 2 통신모듈(125)을 통해 전달되는 GPS 기준 정보(예를 들면, 기준 시간 데이터 등)를 이용하여 AD변환기(124)로부터 전달되는 가속도 정보에 가속도시간정보를 부여하는 방식으로 가속도 정보(예를 들면, X축, Y축 및 Z축에 대응하는 가속도 데이터, XY평면, YZ평면 및 ZX평면에 대응하는 각변위 데이터, 가속도 시간 데이터 등)를 획득할 수 있다(단계1006).
한편, 구조물의 복수의 위치에 각각 설치되는 복수의 응답계측기(120)에서는 복수의 위성으로부터 응답 GPS 모듈(125)을 통해 해당 설치 위치에 대응하는 위성신호를 수신하고, 제 2 통신모듈(124)을 통해 전달되는 GPS 기준 정보와 수신된 위성신호를 이용하여 설치 위치에 대응하는 복수의 RTK 변위 정보(예를 들면, X축, Y축 및 Z축에 대응하는 동적변위 데이터 등)를 계측할 수 있다(단계1008).
또한, 응답 GPS 모듈(125)에서는 GPS 기준 정보(예를 들면, 기준 위치 데이터, 기준 시간 데이터 등)를 기준으로 위성신호의 3축 상대 변위를 측정하면서 각 상대 변위데이터에 대응하는 변위시간정보(즉, 변위 시간 데이터)를 각각 부여하는 방식으로 복수의 RTK 변위 정보(예를 들면, X축, Y축 및 Z축에 대응하는 동적변위 데이터, 변위 시간 데이터 등)를 획득할 수 있다(단계1010). 이러한 복수의 RTK 변위 정보는 시간 동기화를 위해 데이터처리기(124)로 전달될 수 있다.
다음에, 데이터처리기(124)에서는 가속도시간정보가 부여된 가속도 정보와 응답 GPS 모듈(125)로부터 전달되는 복수의 RTK 변위 정보를 다중 샘플링 주파수로 동기화하며, 가속도 정보(예를 들면, X축, Y축 및 Z축에 대응하는 가속도 데이터, XY평면, YZ평면 및 ZX평면에 대응하는 각변위 데이터, 가속도 시간 데이터 등) 및 복수의 RTK 변위 정보(예를 들면, X축, Y축 및 Z축에 대응하는 동적변위 데이터, 변위 시간 데이터 등)를 하나의 패킷으로 생성하여 제 2 통신모듈(125)을 통해 연산처리기(130)로 전송할 수 있다(단계1012).
여기에서, 데이터처리기(124)에서는 온도 센서(122)를 통해 센싱된 감지신호에 대응하는 온도 데이터를 이용하여 온도 변화에 따른 가속도 정보의 보정을 수행할 수 있으며, 이러한 온도 데이터는 가속도 정보 및 복수의 RTK 변위 정보와 함께 하나의 패킷으로 하여 연산처리기(130)로 전송될 수 있다.
그리고, 연산처리기(130)에서는 복수의 응답계측기(120)로부터 각각 하나의 패킷으로 생성 및 전송된 가속도 정보의 3자유도 가속도 및 3자유도 각변위와 RTK 변위 정보의 3자유도 동적변위를 1단계 칼만필터 및 2단계 칼만필터를 통해 연산하여 가속도 내부 바이어스에 대응하는 변위 오차를 제거함으로써, 구조물에 대한 구조물 응답 정보를 획득할 수 있다(단계1014). 여기에서, 1단계 칼만필터를 통해 가속도 내부 바이어스가 포함된 제 1 변위를 산출할 수 있고, 2단계 칼만필터를 통해 산출된 제 1 변위에서 변위 오차를 산출한 후에, 제 1 변위에서 변위 오차를 제거하여 구조물 응답 정보를 산출할 수 있다.
상술한 바와 같은 연산처리기(130)에서는 전송된 가속도 정보 및 복수의 RTK 변위 정보와 산출된 구조물 응답 정보를 별도의 디스플레이기기에서 비교 디스플레이할 수 있다(단계1016). 예를 들면, 도 5에 도시한 바와 같은 복수의 RTK 변위 정보(즉, GPS 측정 변위로 도시됨), 도 6에 도시한 바와 같은 가속도 정보(즉, 측정 가속도로 도시됨), 도 7에 도시한 바와 같은 구조물 응답 정보(즉, 칼만필터 결과로 도시됨), 도 8에 도시한 바와 같은 GPS 관련 정보(예를 들면, GPS 위성수, 모드 정보, 모호정수 정보 등), 도 9에 도시한 바와 같은 저장 경로를 설정 등을 디스플레이할 수 있다.
따라서, 본 발명은 GPS와 가속도계를 이용하여 고층빌딩, 교량, 댐, 항만 등을 포함하는 구조물의 동적거동을 정밀하게 계측할 수 있는 구조물의 정밀 계측 방법을 제공할 수 있다.
또한, 본 발명은 고정된 위치에 설치되어 GPS 기준정보를 제공하는 기준계측기와, 구조물에 복수의 위치에 각각 설치되어 설치 위치에 대응하는 변위 정보를 각각 계측하는 복수의 응답계측기와, 복수의 응답계측기로부터의 각 변위 정보를 통신망을 통해 제공받아 구조물 응답 정보를 산출하는 연산처리기를 포함함으로써, 가속도, 속도, 변위, 각변위 등을 포함하는 구조물의 동적특성을 정밀하게 계측할 수 있다.
이상의 설명에서는 본 발명의 다양한 실시예들을 제시하여 설명하였으나 본 발명이 반드시 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함을 쉽게 알 수 있을 것이다.
110 : 기준계측기 120 : 복수의 응답계측기
130 : 연산처리기 140 : 통신망

Claims (22)

  1. 고정된 위치에 설치되며, 기준 GPS 모듈을 통해 수신된 GPS 기준정보를 제공하는 기준계측기와,
    가속도 센서 및 응답 GPS 모듈을 포함하여 구조물의 복수의 위치에 각각 설치되며, 상기 가속도 센서를 통해 획득된 가속도 정보와, 상기 GPS 기준정보를 이용하여 상기 응답 GPS 모듈을 통해 계측된 복수의 RTK 변위 정보를 시간 동기화하여 전송하는 복수의 응답계측기와,
    상기 전송된 가속도 정보 및 복수의 RTK 변위 정보를 이용하여 구조물 응답 정보를 산출하는 연산처리기를 포함하며,
    상기 GPS 기준정보는, 기준 위치 데이터 및 기준 시간 데이터를 포함하고,
    상기 복수의 RTK 변위 정보는, X축, Y축 및 Z축에 대응하는 동적 변위 데이터와 변위 시간 데이터를 포함하며,
    상기 응답계측기는, 상기 가속도 센서를 통해 상기 구조물에 대한 X축 성분, Y축 성분 및 Z축 성분을 계측하여 상기 가속도 정보를 획득하되, 상기 가속도 정보는 X축, Y축 및 Z축에 대응하는 가속도 데이터와 XY 평면, YZ 평면 및 ZX 평면에 대응하는 각변위 데이터를 포함하고, 상기 가속도 정보에 대응하는 가속도 시간 데이터와 상기 변위 시간 데이터를 이용하여 다중 샘플링 주파수로 시간 동기화하여 상기 가속도 정보 및 복수의 RTK 변위 정보를 하나의 패킷으로 생성하는 구조물의 정밀 계측 시스템.
  2. 제 1 항에 있어서,
    상기 응답계측기는, 복수의 위성으로부터 상기 응답 GPS 모듈을 통해 수신된 위성신호와 상기 GPS 기준 정보를 이용하여 설치 위치에 대응하는 상기 복수의 RTK 변위 정보를 획득하는 구조물의 정밀 계측 시스템.
  3. 제 2 항에 있어서,
    상기 응답계측기는, 상기 GPS 기준 정보를 기준으로 상기 위성신호의 3축 상대 변위를 측정하면서 각 상대 변위데이터에 대응하는 변위시간정보를 각각 부여하는 구조물의 정밀 계측 시스템.
  4. 삭제
  5. 제 1 항에 있어서,
    상기 응답계측기는, 상기 GPS 기준 정보를 이용하여 상기 가속도 정보에 대응하는 가속도시간정보를 부여하는 구조물의 정밀 계측 시스템.
  6. 삭제
  7. 제 5 항에 있어서,
    상기 응답계측기는, 계측기 내부의 온도를 감지하는 온도 센서의 온도 데이터를 이용하여 온도 변화에 따른 상기 가속도 정보의 보정을 수행하는 구조물의 정밀 계측 시스템.
  8. 제 1 항 내지 제 3 항, 제 5 항 및 제 7 항 중 어느 한 항에 있어서,
    상기 연산처리기는, 상기 가속도 정보의 3자유도 가속도 및 3자유도 각변위와 상기 RTK 변위 정보의 3자유도 동적변위를 1단계 칼만필터 및 2단계 칼만필터를 통해 연산하여 가속도 내부 바이어스에 대응하는 변위 오차를 제거하는 구조물의 정밀 계측 시스템.
  9. 제 8 항에 있어서,
    상기 연산처리기는, 상기 1단계 칼만필터를 통해 상기 가속도 내부 바이어스가 포함된 제 1 변위를 산출하는 구조물의 정밀 계측 시스템.
  10. 제 9 항에 있어서,
    상기 연산처리기는, 상기 2단계 칼만필터를 통해 상기 산출된 제 1 변위에서 상기 변위 오차를 산출한 후에, 상기 제 1 변위에서 상기 변위 오차를 제거하여 상기 구조물 응답 정보를 산출하는 구조물의 정밀 계측 시스템.
  11. 제 10 항에 있어서,
    상기 연산처리기는, 상기 가속도 정보, 복수의 RTK 변위 정보 및 구조물 응답 정보를 비교 디스플레이하는 구조물의 정밀 계측 시스템.
  12. 고정된 위치에 설치되는 기준계측기에서 GPS 기준정보를 제공하는 단계와,
    구조물의 복수의 위치에 각각 설치되는 복수의 응답계측기에서 가속도 센서를 통해 가속도 정보를 획득하는 단계와,
    상기 GPS 기준정보를 이용하여 상기 복수의 응답계측기에서 복수의 RTK 변위 정보를 각각 계측하는 단계와,
    상기 복수의 응답계측기에서 상기 가속도 정보 및 복수의 RTK 변위 정보를 시간 동기화하여 전송하는 단계와,
    상기 전송된 가속도 정보 및 복수의 RTK 변위 정보를 연산처리기에서 수신하여 구조물 응답 정보를 산출하는 단계를 포함하며,
    상기 GPS 기준정보는, 기준 위치 데이터 및 기준 시간 데이터를 포함하고,
    상기 복수의 RTK 변위 정보는, X축, Y축 및 Z축에 대응하는 동적 변위 데이터와 변위 시간 데이터를 포함하며,
    상기 가속도 정보를 획득하는 단계는, 상기 가속도 센서를 통해 상기 구조물에 대한 X축 성분, Y축 성분 및 Z축 성분을 계측하여 상기 가속도 정보를 획득하되, 상기 가속도 정보는 X축, Y축 및 Z축에 대응하는 가속도 데이터와 XY 평면, YZ 평면 및 ZX 평면에 대응하는 각변위 데이터를 포함하고,
    상기 가속도 정보 및 복수의 RTK 변위 정보를 시간 동기화하여 전송하는 단계는, 상기 가속도 정보에 대응하는 가속도 시간 데이터와 상기 변위 시간 데이터를 이용하여 다중 샘플링 주파수로 시간 동기화하여 상기 가속도 정보 및 복수의 RTK 변위 정보를 하나의 패킷으로 생성하는 구조물의 정밀 계측 방법.
  13. 제 12 항에 있어서,
    상기 복수의 RTK 변위 정보를 각각 계측하는 단계는, 복수의 위성으로부터 응답 GPS 모듈을 통해 수신된 위성신호와 상기 GPS 기준 정보를 이용하여 설치 위치에 대응하는 상기 복수의 RTK 변위 정보를 획득하는 구조물의 정밀 계측 방법.
  14. 제 13 항에 있어서,
    상기 복수의 RTK 변위 정보를 각각 계측하는 단계는, 상기 GPS 기준 정보를 기준으로 상기 위성신호의 3축 상대 변위를 측정하면서 각 상대 변위데이터에 대응하는 변위시간정보를 각각 부여하는 구조물의 정밀 계측 방법.
  15. 삭제
  16. 제 12 항에 있어서,
    상기 가속도 정보를 획득하는 단계는, 상기 GPS 기준 정보를 이용하여 상기 가속도 정보에 대응하는 가속도시간정보를 부여하는 구조물의 정밀 계측 방법.
  17. 삭제
  18. 제 16 항에 있어서,
    상기 가속도 정보 및 복수의 RTK 변위 정보를 시간 동기화하여 전송하는 단계는, 계측기 내부의 온도를 감지하는 온도 센서의 온도 데이터를 이용하여 온도 변화에 따른 상기 가속도 정보의 보정을 수행한 후, 상기 온도 데이터를 상기 하나의 패킷에 포함시켜 생성 및 전송하는 구조물의 정밀 계측 방법.
  19. 제 12 항 내지 제 14 항, 제 16 항 및 제 18 항 중 어느 한 항에 있어서,
    상기 구조물 응답 정보를 산출하는 단계는, 상기 가속도 정보의 3자유도 가속도 및 3자유도 각변위와 상기 RTK 변위 정보의 3자유도 동적변위를 1단계 칼만필터 및 2단계 칼만필터를 통해 연산하여 가속도 내부 바이어스에 대응하는 변위 오차를 제거하는 구조물의 정밀 계측 방법.
  20. 제 19 항에 있어서,
    상기 구조물 응답 정보를 산출하는 단계는, 상기 1단계 칼만필터를 통해 상기 가속도 내부 바이어스가 포함된 제 1 변위를 산출하는 구조물의 정밀 계측 방법.
  21. 제 20 항에 있어서,
    상기 구조물 응답 정보를 산출하는 단계는, 상기 2단계 칼만필터를 통해 상기 산출된 제 1 변위에서 상기 변위 오차를 산출한 후에, 상기 제 1 변위에서 상기 변위 오차를 제거하여 상기 구조물 응답 정보를 산출하는 구조물의 정밀 계측 방법.
  22. 제 21 항에 있어서,
    상기 구조물의 정밀 계측 방법은,
    상기 구조물 응답 정보를 산출하는 단계 이후에, 상기 가속도 정보, 복수의 RTK 변위 정보 및 구조물 응답 정보를 비교 디스플레이하는 단계
    를 더 포함하는 구조물의 정밀 계측 방법.
KR1020170016270A 2017-02-06 2017-02-06 구조물의 정밀 계측 시스템 및 그 방법 KR101803503B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020170016270A KR101803503B1 (ko) 2017-02-06 2017-02-06 구조물의 정밀 계측 시스템 및 그 방법
US16/475,701 US10508970B2 (en) 2017-02-06 2018-01-29 System for precision measurement of structure and method therefor
CN201880008974.0A CN110325833B (zh) 2017-02-06 2018-01-29 用于精确测量结构的系统及其方法
EP18747123.0A EP3524954B1 (en) 2017-02-06 2018-01-29 System for precision measurement of structure and method therefor
PCT/KR2018/001227 WO2018143625A1 (ko) 2017-02-06 2018-01-29 구조물의 정밀 계측 시스템 및 그 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170016270A KR101803503B1 (ko) 2017-02-06 2017-02-06 구조물의 정밀 계측 시스템 및 그 방법

Publications (1)

Publication Number Publication Date
KR101803503B1 true KR101803503B1 (ko) 2017-11-30

Family

ID=60812641

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170016270A KR101803503B1 (ko) 2017-02-06 2017-02-06 구조물의 정밀 계측 시스템 및 그 방법

Country Status (5)

Country Link
US (1) US10508970B2 (ko)
EP (1) EP3524954B1 (ko)
KR (1) KR101803503B1 (ko)
CN (1) CN110325833B (ko)
WO (1) WO2018143625A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880193B1 (ko) * 2017-05-18 2018-07-20 한국과학기술원 동적 변위 계산 장치 및 동적 변위 계산 방법
KR20210060698A (ko) * 2019-11-18 2021-05-27 한국철도기술연구원 교량의 내하력 평가 시스템 및 방법
KR20210155065A (ko) * 2020-06-15 2021-12-22 한국과학기술원 교량의 변위를 추정하는 방법 및 전자 장치
KR20220053333A (ko) 2020-10-22 2022-04-29 중앙대학교 산학협력단 단일가속도와 변형률을 이용한 구조물변위측정시스템 및 변위측정방법
KR20220141160A (ko) * 2021-04-12 2022-10-19 한국과학기술원 비동기 자연 표적 영상 계측데이터와 가속도 데이터의 융합에 기초한 구조물 변위 측정 방법 및 이를 위한 시스템
KR20230124798A (ko) 2022-02-18 2023-08-28 중앙대학교 산학협력단 클라우드 컴퓨팅을 이용한 구조물 모니터링용 스마트 IoT센서 데이터 전처리 방법, 및 딥러닝 기반 이상치 감지 자동화시스템

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20190100049A (el) * 2019-02-01 2020-09-16 Κατασκευες & Αισθητηρες Ιδιωτικη Κεφαλαιουχικη Εταιρεια Μετρητικο-καταγραφικο οργανο επιταχυνσεων για παρακολουθηση δομικης ακεραιοτητας κατασκευων πολιτικου μηχανικου
CN110487277B (zh) * 2019-08-21 2021-07-30 深圳市道通智能航空技术股份有限公司 一种偏航角的融合方法、装置及飞行器
IT201900015887A1 (it) * 2019-09-09 2021-03-09 Nplus S R L Sistema elettronico per rilevare continuativamente dati strutturali relativi ad accelerazioni e deformazioni puntuali in un manufatto edile/civile
KR20210063578A (ko) * 2019-11-25 2021-06-02 (주) 글루시스 다중 센서를 복합적으로 활용하는 휴대용 ai 계측기
JP7323468B2 (ja) * 2020-01-22 2023-08-08 国際航業株式会社 対象物測位システム、及び対象物測位方法
CN112345180B (zh) * 2020-09-30 2022-09-13 上海建工集团股份有限公司 通过结构刚度比进行建筑结构健康诊断的方法
CN112308740A (zh) * 2020-10-30 2021-02-02 杭州今奥信息科技股份有限公司 一种房地智能权调方法和系统
CN112556559B (zh) * 2020-11-30 2022-07-26 湖南联智科技股份有限公司 一种位移及振动监测装置
CN112526978A (zh) * 2020-12-09 2021-03-19 智道网联科技(北京)有限公司 车辆驾驶性能检测方法及系统、电子设备和存储介质

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208937B1 (en) * 1998-07-29 2001-03-27 Litton Systems Inc. Method and apparatus for generating navigation data
JP4436632B2 (ja) * 2003-08-19 2010-03-24 コマツエンジニアリング株式会社 位置誤差補正機能を持つ測量システム
KR20040030772A (ko) 2004-03-22 2004-04-09 한국유지관리 주식회사 의사위성 및 다중안테나 gps 기술을 활용한 산업기간 시설물의 모니터링 시스템
US7286218B2 (en) * 2004-12-19 2007-10-23 Kla-Tencor Technologies Corporation System and method for inspecting a workpiece surface using surface structure spatial frequencies
US9858712B2 (en) * 2007-04-09 2018-01-02 Sam Stathis System and method capable of navigating and/or mapping any multi-dimensional space
KR20080091664A (ko) * 2007-04-09 2008-10-14 중앙대학교 산학협력단 구조물 계측용 다중센서 통합관리 시스템
KR20090112352A (ko) * 2008-04-24 2009-10-28 이근호 구조물 변위 측정 시스템
KR101064620B1 (ko) * 2008-05-26 2011-09-15 (주)밴지스테크 가속도계를 이용한 성토다짐 관리시스템
CN102608625B (zh) * 2012-03-30 2014-04-16 武汉大学 基于惯性辅助定位接收机的实时形变监测预警系统及方法
US10309786B2 (en) * 2012-10-15 2019-06-04 The United States Of America, As Represented By The Secretary Of The Navy Navigational and location determination system
US20140249750A1 (en) * 2012-10-15 2014-09-04 John Hamilton Navigational and location determination system
KR20140048474A (ko) * 2012-10-15 2014-04-24 한국유지관리 주식회사 구조물 시각 동기화 계측 시스템
KR101395695B1 (ko) 2012-12-17 2014-05-16 세종대학교산학협력단 구조물 거동 계측 시스템 및 방법
CN103061323A (zh) * 2013-01-30 2013-04-24 天津大学 土石坝坝料压实质量实时监测装置
HUE043828T2 (hu) * 2013-03-15 2019-09-30 Univ Carnegie Mellon Felügyelt autonóm robot rendszer komplex felületvizsgálathoz és feldolgozáshoz
US20140316708A1 (en) * 2013-04-19 2014-10-23 The Board Of Trustees Of The Leland Stanford Junior University Oriented Wireless Structural Health and Seismic Monitoring
WO2016135688A1 (en) * 2015-02-26 2016-09-01 Smart Structures Solutions S.R.L. Structural integrity monitoring device and method based on wireless sensor network
CN105260568B (zh) * 2015-11-06 2018-05-01 武汉理工大学 基于离散型卡尔曼滤波的超高层建筑风荷载反分析方法
JP6604200B2 (ja) * 2015-12-28 2019-11-13 セイコーエプソン株式会社 加速度センサー、計測システム、および計測装置
US10436759B2 (en) * 2017-01-12 2019-10-08 Fisher Controls International Llc Methods and apparatus to monitor a condition of a structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101880193B1 (ko) * 2017-05-18 2018-07-20 한국과학기술원 동적 변위 계산 장치 및 동적 변위 계산 방법
KR20210060698A (ko) * 2019-11-18 2021-05-27 한국철도기술연구원 교량의 내하력 평가 시스템 및 방법
KR102411980B1 (ko) 2019-11-18 2022-06-24 한국철도기술연구원 교량의 내하력 평가 시스템 및 방법
KR20210155065A (ko) * 2020-06-15 2021-12-22 한국과학기술원 교량의 변위를 추정하는 방법 및 전자 장치
WO2021256749A1 (ko) * 2020-06-15 2021-12-23 한국과학기술원 교량의 변위를 추정하는 방법 및 전자 장치
KR102387166B1 (ko) 2020-06-15 2022-04-18 한국과학기술원 교량의 변위를 추정하는 방법 및 전자 장치
KR20220053333A (ko) 2020-10-22 2022-04-29 중앙대학교 산학협력단 단일가속도와 변형률을 이용한 구조물변위측정시스템 및 변위측정방법
KR20220141160A (ko) * 2021-04-12 2022-10-19 한국과학기술원 비동기 자연 표적 영상 계측데이터와 가속도 데이터의 융합에 기초한 구조물 변위 측정 방법 및 이를 위한 시스템
WO2022220414A1 (ko) * 2021-04-12 2022-10-20 한국과학기술원 비동기 자연 표적 영상 계측데이터와 가속도 데이터의 융합에 기초한 구조물 변위 측정 방법 및 이를 위한 시스템
KR102565719B1 (ko) 2021-04-12 2023-08-11 한국과학기술원 비동기 자연 표적 영상 계측데이터와 가속도 데이터의 융합에 기초한 구조물 변위 측정 방법 및 이를 위한 시스템
KR20230124798A (ko) 2022-02-18 2023-08-28 중앙대학교 산학협력단 클라우드 컴퓨팅을 이용한 구조물 모니터링용 스마트 IoT센서 데이터 전처리 방법, 및 딥러닝 기반 이상치 감지 자동화시스템

Also Published As

Publication number Publication date
EP3524954A1 (en) 2019-08-14
CN110325833A (zh) 2019-10-11
US20190346339A1 (en) 2019-11-14
US10508970B2 (en) 2019-12-17
CN110325833B (zh) 2021-06-25
WO2018143625A1 (ko) 2018-08-09
EP3524954B1 (en) 2020-11-11
EP3524954A4 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
KR101803503B1 (ko) 구조물의 정밀 계측 시스템 및 그 방법
KR100227288B1 (ko) 이동검출장치
US8773303B2 (en) Position tracking device and method
US7844397B2 (en) Method and apparatus for high accuracy relative motion determination using inertial sensors
US8758275B2 (en) Moving body posture angle processing device
US8019538B2 (en) System and method for high accuracy relative navigation
Ding et al. Time synchronization error and calibration in integrated GPS/INS systems
US8593341B2 (en) Position calculation method and position calculation apparatus
TWI454659B (zh) 用於監視機械地耦合結構之系統與方法
US11181402B2 (en) System and method for the assisted calibration of sensors distributed across different devices
US20120232792A1 (en) Positioning apparatus and positioning method
GB2380793A (en) Determining relative and absolute positions of members of group using GPS and I
JP5950425B1 (ja) 移動体測位装置、及び移動体測位方法
Amami The Advantages and Limitations of Low-Cost Single Frequency GPS/MEMS-Based INS Integration
Bischof et al. Vibration detection with 100 Hz GPS PVAT during a dynamic flight
Amami The Integration of Stand-Alone GPS Code Positioning, Carrier Phase Delta Positioning & MEMS-Based INS
KR20080091664A (ko) 구조물 계측용 다중센서 통합관리 시스템
JP2011013228A (ja) 位置算出方法及び位置算出装置
Omidalizarandi et al. MEMS based bridge monitoring supported by image-assisted total station
Mather et al. A man motion navigation system using high sensitivity GPS, MEMS IMU and auxiliary sensors
Moafipoor et al. Development and assessment of a low dynamic vehicle navigation system
Wang et al. Development of a low-cost solution for GPS/gyro attitude determination
Lazarou et al. Assessment of modern smartphone sensors performance on vehicle localization in urban environments
KR20240027440A (ko) 다중 관성 센서 융합을 이용한 양자화 오류 감소 방법
Lardon Development of a low-cost system for direct georeferencing of a helicopter-borne radar system

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant