KR101774366B1 - 무선 통신 시스템에서 파워 세이빙 방법 - Google Patents

무선 통신 시스템에서 파워 세이빙 방법 Download PDF

Info

Publication number
KR101774366B1
KR101774366B1 KR1020100106255A KR20100106255A KR101774366B1 KR 101774366 B1 KR101774366 B1 KR 101774366B1 KR 1020100106255 A KR1020100106255 A KR 1020100106255A KR 20100106255 A KR20100106255 A KR 20100106255A KR 101774366 B1 KR101774366 B1 KR 101774366B1
Authority
KR
South Korea
Prior art keywords
bandwidth
mode
frame
channel
delete delete
Prior art date
Application number
KR1020100106255A
Other languages
English (en)
Other versions
KR20110046378A (ko
Inventor
이일구
이석규
정현규
김대식
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020100106255A priority Critical patent/KR101774366B1/ko
Publication of KR20110046378A publication Critical patent/KR20110046378A/ko
Application granted granted Critical
Publication of KR101774366B1 publication Critical patent/KR101774366B1/ko

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

본 발명은 고속 무선 통신 시스템의 자원 활용률을 높이고 전력 소비 줄이기 위한 방법 및 제어 장치에 관한 것이다.
본 발명의 일 실시 예에 따른 방법은, 서로 다른 둘 이상의 전송 모드를 갖는 무선 통신 시스템에서 채널 상태 정보 및 데이터 프레임 모드 정보를 요청 프레임 혹은 응답 프레임에 포함하여 전송함으로써 주파수 밴드를 효율적으로 활용하는 과정을 포함한다.
본 발명의 일 실시 예에 따른 방법은, 서로 다른 둘 이상의 전송 모드를 갖는 무선 통신 시스템에서 파워 세이빙 방법으로, 제어 프레임 수신 시 상기 3가지 모드 중 가장 낮은 샘플링 속도를 갖는 모드로 제어 프레임을 수신하도록 설정하여 상기 제어 프레임을 수신하는 과정과, 상기 제어 프레임 수신 후 데이터 패킷을 송/수신을 위해 가장 높은 전송률을 갖는 모드로 상기 데이터 패킷의 송/수신하도록 설정하여 상기 데이터 패킷을 송/ 수신하는 과정을 포함한다.

Description

무선 통신 시스템에서 파워 세이빙 방법{METHOD FOR SAVING POWER IN A WIRELESS COMMUNICATION SYSTEM}
본 발명은 고속 무선 통신 시스템의 자원 활용률을 높이고 전력 소비를 줄이기 위한 방법 및 제어 장치에 관한 것이다.
무선 통신 시스템이 발전하고, 이동 중 이용 가능한 고용량 멀티미디어 콘텐츠에 대한 수요가 증가함에 따라 무선 통신 시스템은 전송 속도를 향상시키는 노력을 기울여왔다. 고속 이동 중 인터넷을 이용하기 위한 와이브로(Wibro)와 저속 이동 중 고화질 영상의 실시간 감상이 가능한 무선랜(Wireless LAN)이 대표적인 예이다. 무선랜을 예로 들어 설명하면, IEEE 802.11a/g 표준에서는 단일 안테나로 2.4GHz 혹은 5GHz 대역에서 20MHz 대역폭을 이용하여 54Mbps 물리 계층 전송 속도가 가능해졌으며, IEEE 802.11n 표준에서는 최대 4개의 안테나와 40MHz 대역폭까지 지원 가능하여 600Mbps 물리 계층(Physical Layer) 전송 속도(Data Rate)를 지원하고 있다.
현재 더 높은 전송 속도를 보장하기 위한 차세대 무선랜(Next Generation Wireless LAN)으로 802.11n 표준의 다음 버전에 대한 표준화가 논의되고 있다. 통상IEEE 802.11n 표준을 HT(High Throughput) 모드로 부르고, IEEE 802.11a/b/g 모드를 레거시(Legacy) 모드로 불러왔다. 반면에 IEEE 802.11ac/ad에서 새로 논의 중인 표준은 VHT(Very High Throughput) 모드라고 부른다.
고속의 데이터를 신뢰성 높게 처리하기 위해 최신 무선 통신 시스템은 과거의 기술에 비해 복잡해지고 있다. 전송 속도 향상 기술로서 여러 개의 채널을 묶어 전송하는 채널 본딩 기술이 적용되고, 보다 높은 고차원 변조 방식과 채널 코딩 방식이 도입되었고, 다중 안테나를 사용하여 전송 속도를 높이는 기술에서 더 나아가 다중 사용자에게 동시에 전송하는 기술이 연구 개발되고 있다. 이와 같은 복잡한 송수신 기술로 인해 무선 통신 시스템의 사이즈가 커지고 회로가 복잡해지고 있다. 뿐만 아니라 고속의 데이터 전송을 위해 종래보다 더 넓은 대역폭을 사용하여 데이터를 전송함으로써 디지털-아날로그 변환기(Digital-to-Analog Converter)와 아날로그-디지털 변환기(Analog-to-Digital Converter), 모뎀 프로세서의 요구 동작 주파수(Required Operating Frequency)가 증가되었다. 이와 같은 기술적인 배경으로 제한된 주파수 자원을 효율적으로 사용하고 노이즈를 줄이기 위한 수신기 최적화 기술로서 동적 채널 대역폭 활용 기술 및 고속 데이터 전송이 가능한 무선 통신 시스템 설계를 위한 저전력 설계(Low Power Design)가 중요한 이슈가 되었다.
또한, 무선랜은 제한된 주파수 대역에서 동작하게 되는데, 160MHz 대역폭(20MHz 대역 8개 본딩)은 상대적으로 매우 넓은 대역이며, 이로 인해 간섭 및 다양한 표준을 지원하는 단말 간의 공존(Coexistence) 문제가 발생할 것이다. 이러한 다중 전송 모드 프레임을 신뢰성 높게 검출하기 위해 데이터 프레임 전에 선행 정보를 제어 프레임을 통해 단말에 알려줌으로써 수신단을 최적화시키는 기술이 요구된다.
따라서 본 발명에서는 물리 계층과 MAC 계층에서 동시에 저전력 설계하는 기술과 저전력 기술의 효율성을 향상시키기 위한 전송 방법 및 그 제어 장치를 제공한다.
또한 차세대 무선 랜에서 사용하는 채널 대역폭에 따라 아날로그 디지털 변환 장치 또는 디지털 아날로그 변환 장치와 모뎀 프로세서의 샘플링 속도 및 모뎀 프로세서의 샘플링 속도를 제어하여 전력 소비 효율을 향상시키기 위한 방법 및 그 제어 장치를 제공한다.
또한, 본 발명에서는 노이즈를 절감하고 수신단의 구성을 수신할 프레임의 종류에 따라 최적화시키기 위한 선행 정보를 제어 프레임에 포함하여 전송하는 방법 및 장치를 제공한다.
본 발명의 일 실시 예에 따른 방법은, 서로 다른 둘 이상의 대역폭 전송 모드를 갖는 무선 통신 시스템에서 프레임의 송신 방법으로, 요청 프레임 전송 시 채널 상태 정보 또는 송신할 데이터 프레임 모드 정보를 포함하여 전송하는 과정과, 수신 노드로부터 채널 상태 정보 또는 상기 수신 가능한 데이터 프레임 모드 정보를 포함하는 상기 요청 프레임에 대한 응답 프레임 수신 시 상기 응답 프레임 수신 시 포함된 채널 상태 정보 혹은 수신 가능한 데이터 프레임 모드 정보에 근거하여 상기 데이터 프레임을 생성하여 전송하는 과정을 포함한다.
본 발명의 다른 실시 예에 따른 방법은, 서로 둘 이상의 대역폭 전송 모드를 갖는 무선 통신 시스템에서 파워 세이빙 방법으로, 제어 프레임 수신 시 상기 대역폭 모드 중 가장 낮은 샘플링 속도를 갖는 모드로 제어 프레임을 수신하도록 설정하여 상기 제어 프레임을 수신하는 과정과, 상기 제어 프레임 수신 후 데이터 패킷을 송/수신을 위해 가장 높은 샘플링 속도를 갖는 모드로 상기 데이터 패킷을 송/수신하도록 설정하여 상기 데이터 패킷을 송/ 수신하는 과정을 포함한다.
본 발명의 또 다른 실시 예에 따른 방법은, 캐리어 센싱을 통해 데이터의 송/수신을 수행하는 무선 통신 시스템에서 파워 세이빙 방법으로, 상기 캐리어 센싱이 필요하지 않은 더즈 모드(Doze Mode)에서 상기 더즈 모드 해제를 위한 타이머에만 전원을 투입하고, 물리 계층과 맥(MAC) 계층 전체에 전원을 차단하는 과정과, 상기 캐리어 센싱이 필요한 경우 상기 캐리어 센싱에 필요한 물리(PHY) 계층과 맥(MAC) 계층에만 전원을 투입하는 과정과, 상기 캐리어 센싱 후 데이터 송/수신이 필요한 경우 데이터 송/수신에 필요한 경로에만 전원을 투입하는 과정을 포함한다.
본 발명의 또 다른 실시 예에 따른 방법은, 서로 다른 둘 이상의 전송 모드를 가지며, 캐리어 센싱을 통해 데이터의 송/수신을 수행하는 무선 통신 시스템에서 파워 세이빙 방법으로, 상기 캐리어 센싱이 필요하지 않은 더즈 모드(Doze Mode)에서 상기 더즈 모드 해제를 위한 타이머에만 전원을 투입하고, 물리 계층과 맥(MAC) 계층 전체에 전원을 차단하는 과정과, 상기 캐리어 센싱 필요시 상기 서로 다른 모드 중 가장 낮은 샘플링 속도를 갖는 모드로 캐리어 센싱하도록 설정하여 상기 캐리어 센싱을 수행하는 과정과, 상기 캐리어 센싱 후 데이터 패킷의 송/수신을 위해 가장 높은 전송률을 갖는 모드로 상기 데이터 패킷을 송/수신하도록 설정하여 상기 데이터 패킷을 송/ 수신하는 과정을 포함한다.
본 발명의 구성에 따르면, 고속 무선 통신 시스템의 동작 모드와 프레임 포맷에 따라 단말의 샘플링 속도와 전원 공급 블록을 선택적으로 변환함으로써 전력 소비 효율을 향상시킬 수 있다. 또한 본 발명을 사용함으로써 종래의 MAC 계층의 제어로 이루어진 저전력 모드의 단점을 보완할 수 있고, 더 넓은 대역폭을 사용함과 동시에 복잡해질 차세대 무선랜의 전력 소비 효율을 향상시킬 수 있게 된다.
도 1a 및 도 1b는는 3개의 수신 경로를 갖는 무선 통신 단말의 블록 다이어그램,
도 2는 본 발명에 따른 저전력 모드 변환 천이에 따른 순서도,
도 3은 본 발명에 따른 4가지 수신 모드의 동작 원리의 이해를 돕기 위한 타이밍도,
도 4는 크로스 계층 저전력 모드2의 상태 천이도,
도 5는 본 발명에 따른 전력을 조정 단계의 이해를 돕기 위한 타이밍 다이어 그램,
도 6은 본 발명의 실시 예에 따른 다중 채널 저전력 모드 시의 천이 과정에 따른 흐름도,
도 7 및 도 8은 본 발명의 다른 실시 예에 따라 노이즈 절감 및 다중 모드 프레임의 공존을 위한 타이밍도를 도시한 도면,
도 9는 공존 기본 서비스 셋(OBSS, Overlapped Basic Service Set) 상황에서 본 발명의 동작을 설명하기 위한 도면.
이하 본 발명의 바람직한 실시 예들의 상세한 설명이 첨부된 도면들을 참조하여 설명될 것이다. 하기 설명에서 구체적인 특정 사항들이 나타나고 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해 제공된 것이다. 그리고 본 발명을 설명함에 있어, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명은 고속 무선 통신 시스템을 위한 전력 소비 효율 향상 방법 및 제어 기술에 관한 것이다. 본 발명은 크게 세 가지 구성 요소로 나뉘며, 각각의 구성 요소는 독립적으로 동작 가능하거나 연동되어 동작 가능하다. 첫째는 3가지 크로스 계층 저전력 모드이고, 둘째는 저전력 모드의 효율성 향상을 위한 전송 방법, 셋째는 다중 채널 저전력 모드(Multi Channel Power Save Mode, MC PS Mode)와 공간 다중화 저전력 모드(Spatial Multiplexing Power Save Mode, SM PS Mode)를 이용한 저전력 기술이다.
먼저 일반적인 CMOS 회로의 소비 전력(Power Consumption, P)에 대하여 살펴보기로 한다. CMOS 회로의 소비 전력(P)은 하기 <수학식 1>과 같이 모델링된다.
Figure 112010070226596-pat00001
<수학식 1>에서 Pdynamic은 동적 소비 전력량(Dynamic Power Consumption)을 의미하고, Pstatic은 정적 소비 전력량(Static Power Consumption)을 의미하며, C는 스위칭되는 총 전기 용량(Switched Total Capacitance)을 의미하고, VSig는 전압 스윙폭(Voltage Swing)을 의미하며, VDD는 공급 전력(Supply Power)을 의미하고, fo는 동작 주파수(Operating Frequency)를 의미하며, nt는 클럭 당 하나의 플립플롭(Flip-Flop)이 천이되는 횟수를 의미한다.
위 <수학식 1>에 의하면 Pdynamic은 스위칭되는 총 전기 용량, 전압 스윙폭, 공급 전력, 동작 주파수, 클럭 당 하나의 플립 플롭이 천이되는 횟수에 비례한다. 또한 Pstatic은 접지 혹은 공급 전력의 잔여 전류(Residual Current)와 열잡음(Thermal Noise) 및 공정에 의한 전류에 의해 결정된다. 즉 소비 전력을 결정함에 있어 Pstatic도 중요한 요소이지만 Pstatic는 반도체 공정 및 산업 기반 기술에 의해 결정되는 값인 반면에 Pdynamic은 시스템 설계에 따라 달라지는 값이다. 시스템을 설계자의 입장에서는 동적 소비 전력량을 줄이는 것이 저전력 시스템 설계의 목표이다.
현재 논의 중인 VHT 모드는 8개 안테나 혹은 16개의 안테나까지 이용 가능하며, 80MHz 대역폭을 지원하게 될 가능성이 높다. 예를 들어 접속 중계점은 16개의 안테나를 사용하고, 단말들은 4개의 안테나를 사용하여 다중 사용자 다중 안테나(Multi-User Multiple Antenna) 기술을 적용할 수 있으며, 최대 160MHz 대역폭을 이용하여 다중 채널 전송 (Multi-Channel Transmission) 기술을 적용할 수 있게 될 예정이다.
그러므로 VHT 표준 단말은 종래 표준 단말의 2배에서 8배의 안테나 개수와 대역폭을 갖게 된다. 안테나 증가에 따른 송신 경로의 증가는 회로 및 칩 사이즈의 증가를 의미하고, 이것은 곧 소비 전력의 증가를 초래한다. 또한 사용하는 대역폭의 증가는 요구 동작 주파수의 증가를 의미하며, 마찬가지로 소비 전력이 증가하게 된다.
종래의 802.11a/b/g/n 무선랜 표준에서 사용된 저전력 기술은 802.11 레거시 PSM, 802.11e APSD(Automatic Power Save Delivery), 802.11n PSMP(Power Save Multi Poll), SM(Spatial Multiplexing) 저전력 모드 등을 사용해 왔다. 종래의 기술은 다음과 같은 문제점이 있다.
첫째, 깨어 있는 모드(Awake Mode) 단말은 항상 수신 대기 상태에 있어야 한다. 둘째, PSM, APSD, PSMP 방식은 별도의 제어 신호와 큰 버퍼 사이즈를 요구한다. 셋째, MAC 레벨 저전력 기술은 응답 지연 시간이 소요된다. 넷째, IEEE 802.11n SM 저전력 모드 방식은 다중 안테나 시스템의 경우 효과적이지만, 여전히 단일 경로 회로들의 소비 전력 효율이 나쁘다. 다섯 번째, VHT 모드는 80MHz 대역폭을 사용할 가능성이 크며, 이 경우 아날로그 디지털 변환기와 디지털 아날로그 변환기의 샘플링 속도는 160MHz 이상이 필요하고, 이것은 종래의 11a/g와 비교했을 때 4배이다. 여섯 번째, 소비 전력은 동작 주파수와 회로 사이즈에 비례하므로 동작 주파수와 토글링 횟수 및 동작되는 회로 수를 최소화해야 하는데 종래 기술로는 한계가 있다.
이와 같은 종래의 저전력 기술은 MAC 계층에서 수행되었으나, 앞서 설명한 바와 같이 더 복잡해진 시스템의 전력 소비 효율을 향상시켜 이동 가능한 단말의 배터리 충전 주기를 연장하기 위해서는 물리 계층 기술을 사용하여 MAC 계층의 저전력 기술이 갖는 문제점을 보완하는 크로스 계층 저전력(Cross Layer Power Save) 기술이 요구된다.
따라서 본 발명에서는 우선, 본 발명 첫 번째 구성 요소인 저전력 기술에 관해 살펴보기로 한다. 물리 계층과 MAC 계층의 저전력 모드 기술을 동시에 사용하여 전력 소비 효율을 향상시키기 위해 본 발명의 구성에서는 '크로스 계층 저전력 모드(Cross Layer Power Save Mode, CL PS Mode)'를 저전력 모드로 표현하여 서술하도록 한다.
1. 크로스 계층 저전력 모드 1
단말이 깨어 있는 구간의 수신 대기 상태에서 단말은 아날로그-디지털 변환기 혹은 디지털-아날로그 변환기 및 모뎀 프로세서의 동작 주파수를 최소화 하여 동적 소비 전력의 소비 효율을 향상시킨다. 레거시 모드는 20MHz 대역폭을 사용하고, HT 모드는 40MHz 대역폭까지 가능하며, VHT 모드는 80MHz 대역폭까지 지원 가능하다. 통상 RTS(Request to Send)와 CTS(Clear to Send) 프레임은 레거시 단말도 수신 가능하도록 레거시 모드로 송신하므로 RTS/CTS 송수신시에는 아날로그-디지털 변환기 및 디지털-아날로그 변환기를 40MHz 샘플링 속도로 동작 주파수를 사용하고, 데이터 프레임이 VHT 모드이면 80MHz 대역폭까지 지원하기 위해 160MHz 샘플링 속도를 사용하며, HT 모드이면 40MHz 대역폭까지 지원하기 위해 80MHz 샘플링 속도를 이용하며, 레거시 모드이면 그대로 40MHz 샘플링 속도의 동작 주파수를 전송하는 데이터 포맷에 따라 전환함으로써 전력 소비 효율을 향상시킬 수 있다.
이때, 동시에 아날로그-디지털 변환기와 디지털-아날로그 변환기의 동작 주파수가 바뀌어도 기저대역 신호(Baseband Signal)가 디지털 모뎀에서 정상적으로 처리되기 위해 RF 대역 제한 필터폭(Filter Bandwidth)을 제어하고 인터폴레이터(Interpolator)와 데시메이터(Decimator)의 동작 주파수를 제어하는 과정을 포함한다. 본 발명에 따른 방법은 요청 프레임(Request Frame)과 응답 프레임(Response Frame) 예를 들어 RTS와 CTS 혹은 ACK 프레임 등의 제어 패킷에 의해 모드가 제어되는 방법 및 제어 장치를 포함한다. 즉, 본 발명에 따른 제1크로스 계층 저전력 모드를 사용함으로써 요청/응답 패킷 송수신 전의 수신 대기 상태에서 아날로그-디지털 변환기와 디지털-아날로그 변환기의 동작 주파수, 모뎀 프로세서의 동작 주파수를 최적화함으로써 동적 소비 전력 효율을 향상시킬 수 있다.
그러면 이에 대한 방법을 구체적으로 살펴보기로 한다.
레거시/HT/VHT 혼합 모드 기본 서비스 셋에서는 요청/응답 프레임 등의 제어 신호를 송수신할 경우 호환성을 위해 통상 레거시 모드 포맷으로 전송한다. 따라서 이러한 경우 단말이 깨어 있는 모드에서 수신 대기 상태에 있는 단말은 아날로그-디지털 변환기의 샘플링 속도를 40MHz로 설정하여 소비 효율을 향상시킨다.
이때, RF의 중심 주파수와 아날로그 대역 제한 필터가 재구성 될 수 있다. 또한 디지털 필터의 대역 제한 필터가 재구성 될 수 있다. 또한 동시에 수신부의 데시메이터의 동작 주파수가 재구성된다.
송신부의 경우 RTS/CTS를 전송할 때 디지털-아날로그 변환기의 샘플링 속도를 40MHz 대역폭으로 낮춰서 전송한다. 또한 수신부와 마찬가지로 송신부에서 RF 중심 주파수와 아날로그 대역 제한 필터, 디지털 대역 제한 필터가 재구성될 수 있다. 또한 동시에 송신부의 인터폴레이터의 동작 주파수가 재구성된다.
이후 요청/응답 프레임을 송수신한 단말은 데이터 패킷을 송수신하기 위해 지원 가능한 최대의 동작 주파수로 전환된다. 이때, ACK를 성공적으로 수신한 단말은 전송 기회 구간이 끝나면, 다시 저전력 모드로 전환된다. 또한 ACK를 전송하고 재전송이 없음을 확인한 단말은 다시 저전력 모드로 전환된다. 이상에서 설명한 본 발명의 크로스 계층 저전력 모드 1은 종래의 기술과 함께 사용될 수 있다.
2. 크로스 계층 저전력 모드 2
단말이 깨어 있는 구간(Awake Period)의 수신 대기 상태에서 캐리어 센싱 (Carrier Sensing) 전에는 캐리어 센싱 관련 블록에만 전력이 투입되고, 나머지 모든 블록은 전력을 차단하는 하는 기술이다. 종래의 SM 파워 세이브 기술은 다중 안테나 기술을 사용하는 무선 통신 시스템의 저전력 모드 동작을 위해 RTS와 CTS 패킷을 송수신 전에는 소수의 수신 경로만 켜고 나머지 경로는 끄는 방법을 사용했다. 이 방법은 사용하는 소수의 수신 경로 모두를 켜놓고 수신 대기 상태에 있어야 한다. 반면에 본 발명에 따른 크로스 계층 저전력 모드 2를 사용하는 경우 캐리어 센싱 이전에는 모뎀부 초단의 캐리어 센싱 관련 블록만 전력을 투입하고, 나머지는 전력을 차단하고 있다가 캐리어 센싱 이후에 나머지 부분에 전력을 투입하는 방법이다. 이를 통해 전력 소비 효율을 보다 향상시킬 수 있다. 또한 종래의 SM 파워 세이브 기술은 RTS와 CTS를 반드시 사용해야 적용 가능했지만, 본 발명에 따른 크로스 계층 저전력 모드2는 RTS와 CTS를 사용하지 않아도 적용 가능한 장점이 있다.
그러면 본 발명에 따른 크로스 계층 저전력 모드2에 대하여 좀 더 상세히 살펴보기로 하자.
크로스 계층 저전력 모드2는 대한민국 출원 10-2008-0127376호(US 출원번호 12/561076)의 이용 발명이다. 언급된 특허의 크로스 계층 저전력 모드2에서는 물리 계층 저전력 기술에 초점을 맞췄으나 본 발명에서는 크로스 계층 저전력 모드 기술로 개선하였으며, 크로스 계층 저전력 모드1과 연동하여 그 성능 개선의 효과가 뛰어남을 크로스 계층 저전력 모드3에서 설명할 것이다.
기본적으로 무선 통신 시스템의 수신단은 언제 신호가 입력될지 예측 불가능하므로 깨어있는 상태에서는 항상 수신 대기 상태로 있게 되는데, 이로 인해 수신단 회로의 동적 소비 효율이 저하된다. 본 발명은 캐리어 센싱 이전에는 캐리어 센싱 블록만 전력을 투입하고, 캐리어 센싱 이후에는 나머지 블록에 전력을 투입하는 선행 기술을 이용함과 동시에 MAC 레벨 저전력 모드인 더즈 모드(Doze Mode)일 경우에는 캐리어 센싱 블록도 전력을 차단하는(꺼져 있는) 방법을 사용하여 전력 소비 효율을 보다 향상시키는 방법을 포함한다.
도 1a 및 도 1b는 3개의 수신 경로를 갖는 무선 통신 단말의 블록 다이어그램이다.
먼저 도 1a 및 도 1b에서는 다중 안테나 시스템을 예시한 도면이며, 각각의 안테나로부터 수신되는 신호를 처리하는 동일한 부분에 대하여는 참조부호를 생략하였다. 또한 참조부호가 부여되지 않은 부분은 동일한 다른 부분의 동작과 같은 동작을 수행하므로, 동일한 설명은 생략하기로 한다. 또한 도 1a 및 도 1b는 하나의 도면으로 서로 연결되는 관계를 가진다. 즉, 도 1a에서 출력된 신호는 도 1b로 입력되며, 이러한 입/출력 관계를 함께 도시하였다.
안테나들로부터 수신된 무선 신호를 처리하는 RF 블록(100)에서는 저잡음 증폭기(LNA)(101)와 전압제어 이득 증폭기(AGC)(102)만을 도시하였다. 안테나로부터 수신된 신호는 저잡음 증폭기(101)에서 노이즈를 억제하여 증폭하고, 이후 전압 제어 증폭기(102)에서 증폭 동작이 이루어진다. RF 블록(100)에서는 RF 주파수 대역의 신호를 원하는 대역의 신호로 변환한 후 아날로그-디지털 변환기(ADC)(111)를 통해 아날로그 신호를 디지털 신호로 변환한다. 이와 같이 변환된 디지털 신호는 직류 제어기(DC cancel)(112)와 에너지 검출기(Energy detect)(121)와 자동 이득 제어기(AGC)(131) 및 캐리어 검출 기반 포화 검출기(Saturation based carrier sense)(132)로 입력된다. 먼저 직류 제어기(112)는 디지털 신호에 포함된 직류 성분을 제거하여 출력한다. 이와 같이 직류 성분이 제거된 신호는 I/Q 채널 신호 비교기(I/Q comp.)(113)로 입력된다. I/Q 채널 신호 비교기(113)에서 출력된 신호는 버퍼(buffer)(115)와 채널 믹서(channel mixer)(141)로 입력된다. 버퍼(115)로 입력된 신호는 특정 주기 단위로 읽혀지며, 캐리어 주파수 옵셋(CFO : Carrier Frequency Offset) 조절기(116)로 입력된다. CFO 조절기(116)는 캐리어 주파수 옵셋을 검출하여 이를 조절한다.
CFO 조절기(116)로부터 출력된 신호는 고속 퓨리에 변환기(117)에서 고속 퓨리에 변환된다. 즉, 시간 영역의 신호가 주파수 영역의 신호로 변환된다. 이후 위상 비교기(118)에서 위상 비교되고, MIMO 검출기(119)에서 각 안테나별 또는 각 밴드별 또는 각 스트림별 신호로 검출된다. 이와 같이 MIMO 검출기(119)에서 검출된 신호는 디맵퍼(Soft Demap)(120)에서 각 안테나별 또는 각 밴드별 또는 각 스트림별 신호를 디맵핑한다.
아날로그-디지털 변환기(111)에서 출력된 디지털 신호를 수신한 에너지 검출기(121)는 디지털 신호의 에너지를 검출하고, 이를 CCA(Clear Channel Assessment)(122)로 출력한다. CCA(112)는 채널에 신호가 존재하는지의 유무를 검출하여 MAC 계층으로 알린다. 그리고 아날로그-디지털 변환기(111)에서 출력된 디지털 신호를 수신하는 캐리어 센싱 기반 포화 검출기(132)는 캐리어 신호를 검출함으로써 포화 여부를 결정하고, 또한 자동 이득 제어기(131)로 제공하기 위한 신호 레벨 정보를 제공한다. 그러면 자동 이득 제어기(131)는 수신된 디지털 신호를 캐리어 센싱 기반 포화 검출기(132)로부터 수신된 신호 레벨 정보에 근거하여 저잡음 증폭기(101)와 전압제어 이득 증폭기(102)의 이득 값을 제어한다.
한편, I/Q 채널 비교기(113)에서 출력된 신호를 수신한 채널 믹서(141)는 수신된 신호를 혼합하여 출력한다. 그러면 저역 필터 및 평균기(LPF + deci/2)(142)는 수신된 신호를 저역 통과 필터링한 후 10진수의 값을 1/2로 나누어서 평균을 계산한다. 저역 필터 및 평균기(142)의 출력은 수신전계강도 측정기(W-RSSI)(123)와 캐리어 검출 기반 수신전계강도 측정부(RSSI based carrier sense)(143)와 자동 상관기(Auto correlation)(144) 및 교차 상관기(Cross correlation)(145)로 입력된다. 수신전계강도 측정기(123)는 수신된 신호의 수신전계강도를 측정하여, CCA(122)로 제공한다. 그리고 캐리어 센싱 기반 수신전계강도 측정기(143)는 캐리어가 검출되면, 검출된 캐리어 신호의 수신전계강도를 측정하여 출력한다. 그리고 자동 상관기(144)와 교차 상관기(145)는 각각 상관값을 계산하여 출력한다. CFO 추정기(146)는 CFO를 추정하고, 그 결과를 프레임 동기부(147)로 제공한다. 그러면 프레임 동기부는 캐리어 센싱 기반 수신전계강도 측정기(143)와 교차 상관기(145)와 캐리어 센싱 기반 포화 검출기(132) 및 CFO 추정기(146)로부터의 신호를 수신하여 프레임 동기를 검출한다. 또한 CFO 추정부(146)는 추정된 값을 각 안테나별로 구비되는 CRO correct(117)로 제공한다. 캐리어 센싱 기반 XCR 계산부(148)는 XCR을 계산한다.
또한 고속 퓨리에 변환기(117)는 고속 퓨리에 변환된 정보를 CFO 및 위상 추정기(CFO & phase est. with pilot)(151)로 제공하여 파일럿과 함께 CFO 및 위상을 추정한다. 이와 같이 추정된 위상 정보는 위상 비교기(118)로 제공된다. 뿐만 아니라 고속 퓨리에 변환기(117)는 채널 추정기(CH Est.)(152)로 정보를 제공하여 채널 추정이 이루어지도록 한다. 이와 같이 채널 추정기(152)에서 이루어진 채널 추정 정보를 이용하여 MIMO 검출기(119)는 각 스트림별 신호를 출력하게 된다.
소프트 디맵퍼들은 각 스트림별로 디매핑을 수행하고, 디인터리버는 해당하는 디매퍼의 출력을 디인터리빙한다. 이와 같이 디인터리빙된 정보들은 역파서(Deparser)에서 필요한 정보를 삽입하고, 디코더에서 디코딩된다. 이후 디스크램블러에서 디스크램블링되어 MAC 계층으로 전송된다.
이상에서 설명한 도 1a 및 도 1b의 구성에서 전원부와 이들을 제어하기 위한 구성은 도시하지 않았다. 이들의 제어에 관한 부분은 후술되는 설명에 근거하여 동작한다. 또한 도 1a의 점선으로 표시된 부분(150)은 캐리어 센싱과 관련된 부분으로서 깨어있는 모드에서 이 부분만 전력이 투입되고 있으며(켜져 있으며), 캐리어 센싱이 되면 그 이후 블록들로도 전원이 투입된다. 또한 도 1a 및 도 1b에서 마지막의 MAC 계층을 제외한 나머지 부분은 물리 계층부에 해당한다.
이때, 선행 기술과의 차이점은 다음과 같다.
1) 4 단계 크로스 계층 저전력 모드 무선 통신 시스템은 크게 더즈 모드, 깨어있는 모드의 RTS/CTS 수신 전 상태, 깨어있는 모드의 RTS/CTS 수신 후 데이터 수신 전, 데이터 수신 중 상태의 4가지 상태이다. 본 발명은 이와 같은 4가지 수신 상태에 따라 저전력 모드를 최적화하는 방법이다. 즉, 더즈 모드일 경우는 MAC의 타이머(Timer)를 제외한 모든 블록을 끄고, 깨어있는 모드가 되면, 소수 경로(하나 혹은 둘 이상)의 캐리어 센싱 블록만 켜고, RTS/CTS 수신 후에는 해당 소수 경로의 나머지 블록을 켜고, 데이터 수신시에는 모든 경로의 모든 블록을 켜는 방법이다.
2) 본 발명은 물리 계층의 저전력 기술과 MAC 계층의 저전력 기술을 함께 사용하는 크로스 계층 저전력 기술로서 종래의 단일 계층 저전력 기술에 비해 전력 소비 효율을 향상 시킬 수 있다.
도 2는 본 발명에 따른 저전력 모드 변환 천이에 따른 순서도이다.
무선 랜 기기는 최초 200단계에서 스스로 깨어있는 상태(Awake State)인가를 검사한다. 만일 깨어 있는 상태라면 206단계로 진행하고 그렇지 않은 경우 202단계로 진행한다. 202단계로 진행하면, 무선 랜 기기는 타이머가 만료되었는가를 검사한다. 만일 타이머가 만료된 경우라면 206단계로 진행하고 그렇지 않은 경우 204단계에서 모든 블록의 전원을 오프한 후 200단계를 수행하게 된다.
만일 200단계 도는 202단계에서 206단계로 진행하는 경우는 하나 또는 두 개의 수신 파트 캐리어 센싱 블록에만 전원을 투입한다. 타이머의 만료에 의해 깨어나거나 또는 깨어있는 모드인 경우 모두 캐리어 센싱 이전이므로, 앞에서 언급한 두 번째 수신 상태가 즉, RTS/CTS 수신 전 상태가 된다.
이와 같이 캐리어 센싱 블록에만 전원을 투입한 이후 무선 랜 기기는 208단계로 진행하여 미리 결정된 시간 내에 캐리어 센싱이 이루어지는가를 검사한다. 만일 캐리어 센싱이 이루어지면, 무선 랜 기기는 210단계로 진행하고 그렇지 않은 경우 206단계로 진행한다.
다음으로 캐리어 센싱이 이루어진 경우 무선 랜 기기는 210단계로 진행하여 수신 경로의 남은 블록들에 전원을 투입한다. 그리고 무선 랜 기기는 212단계로 진행하여 패킷 카테고리를 사용할 수 있는지 검사한다. 패킷의 종류 정보를 이용 가능한 경우인가를 검사하는 것이다. 만일 패킷의 카테고리 즉, RTS/CTS 등과 같은 패킷의 카테고리를 이용할 수 있는 경우라면 214단계로 진행하고, 그렇지 않은 경우 216단계로 진행한다.
먼저 무선 랜 기기는 214단계로 진행하면 수신된 패킷의 카테고리가 RTS/CTS 패킷인가를 검사한다. RTS/CTS 카테고리의 패킷인 경우 무선 랜 기기는 218단계로 진행하여 스트림 수에 따라 수신 경로의 해당 블록들에 전원을 투입한다.
반면에 214단계에서 RTS/CTS 카테고리의 패킷이 아니거나 또는 212단계의 검사결과 패킷의 카테고리를 이용할 수 없는 경우 216단계로 진행하여 모든 수신 경로의 블록들에 전원을 투입해야만 한다.
이상에서 설명한 내용을 다시 정리하면, 더즈 모드이면 타이머가 소진될 때까지 모든 블록에 전원을 차단하고(끄고), 타이머가 소진되면 캐리어 센싱에 필요한 경로와 해당 캐리어 센싱 블록만 투입한다(켠다). 깨어있는 상태에서 캐리어 센싱이 되면 캐리어 센싱을 위한 해당 경로의 나머지 블록을 켜고, 패킷 종류 정보가 이용 가능할 경우, 수신 패킷이 RTS/CTS일 때는 데이터 패킷의 캐리어 센싱 결과를 향상시키기 위해 더 많은 경로를 켤 수 있으며, 만약 패킷 종류 정보가 이용 가능하지 않거나 데이터 패킷인 경우에는 모든 경로를 켠다.
도 3은 본 발명에 따른 4가지 수신 모드의 동작 원리의 이해를 돕기 위한 타이밍도이다.
먼저 더즈 모드(300)인 경우 수신기는 모든 블록의 전원이 오프(301)된 상태이다. 그리고 깨어있는 모드(310)의 경우는 3가지로 구분된다. 첫째, 캐리어 센싱을 위해 하나 또는 2개의 수신 경로에 해당하는 캐리어 센싱 블록만 전원이 투입된 상태(311)가 있다. 이러한 경우 수신되는 패킷의 카테고리 또는 패킷의 수신 여부를 검출하여 하나 또는 2개의 수신 경로에 해당하는 블록들에 전원을 투입하는 상태(312)이다. 즉, RTS(321) 프레임이 수신되는 경우 이들을 수신하기 위한 블록들에만 전원을 투입하게 된다. 그리고 데이터 프레임(323)이 수신되면 수신 경로에 해당하는 모든 블록들에 다시 전원이 투입되는 상태(313)가 된다. 이후 데이터 프레임이 모두 수신되고 나면 캐리어 센싱을 위한 블록들만 전원이 투입되는 상태(314)로 천이한다. 이때 응답(ACK) 프레임(324)과 같은 프레임들을 수신할 수 있는 상태이다. 응답 프레임을 수신하고, 이후 일정 시간동안 즉, 미리 설정된 타이머가 만료될 때까지 신호의 수신이 검출되지 않는 경우 다시 더즈 모드(300)로 진입하여 모든 블록을 끄게 된다.
즉, 도 3에서 설명한 바와 같이 RTS, CTS, 데이터, ACK 프레임을 순차적으로 주고받는 상황에서 해당 단말은 더즈 모드 혹은 깨어 있는 모드로 동작할 수 있으며, 깨어 있는 동안 캐리어 센싱 여부와 프레임 종류에 따라 수신 내부 블록들에 전원 혹은 클럭의 공급 여부를 결정할 수 있다.
도 4는 크로스 계층 저전력 모드2의 상태 천이도(Finite State Machine)이다.
도 4에서 아이들(IDLE) 상태(210)는 초기 상태 또는/및 대기상태 또는/및 전원 오프 상태 등 중 하나이거나 전체를 총칭하는 상태이다. 아이들 상태(210)에서 전원이 제공되면(power on) 수행되는 시작 상태(START)(411)를 거치게 된다. 이후 캐리어를 센싱하는 CS 상태(Carrier Sensing)(412)에서 캐리어가 검출되면, 가능한 부가적인 라디오들을 검출하는 상태(Enable Additional Radios)(413)로 진입한다. 이후 카운터 값에 의해 수신 신호의 이득을 제어하는 자동 이득 조절 상태(AGC)(414)로 천이한다. AGC 상태(414)에서는 수신 신호의 이득을 조절한다. 이와 같이 수신 신호의 이득이 조절되면, 짧은 프리엠블을 이용하여 CFO를 추정하는 상태(CFO Est. using Short Preamble)(415)로 천이한다. 여기서 대략적인 CFO의 추정이 완료되면, 시스템에서 제공하는 신호 즉, 프레임의 동기를 맞추기 위한 동기 상태(Synchronization)(416)로 천이한다. 이와 같이 동기가 맞춰지면, 긴 프리엠블을 이용하여 CFO 추정 상태(CFO Est. using Long Preamble)(417)로 천이한다. 즉, CFO를 추정하는 상태(415) 및 동기 상태(416)에서 캐리어 주파수 옵셋을 보상하고 시간적인 동기를 맞추게 된다.
긴 프리엠블을 이용하여 CFO의 추정이 양호하게 완료되면, 시그널 필드의 복호 상태(Signal Field Deconding)(418)로 천이한다. 이를 통해 시그널의 복호를 수행한다. 시그널의 복호가 유효하게 완료되면, 데이터를 복호하는 데이터 복호 상태(Data Decoding)(419)로 천이한다. 여기서 데이터의 복호가 완료되면, 종료 상태(END)(420)로 천이하였다가, 다시 아이들 상태(210)로 천이한다.
캐리어를 센싱하는 CS 상태(412)에서 캐리어가 검출되지 않는 경우 계속하여 캐리어를 검출하는 상태를 유지하게 된다. 그리고 자동 이득 제어를 수행하는 AGC 상태(414)에서 자동 이득의 조절에 실패하면, 아이들 상태(210)로 천이한다. 아이들 상태로 천이하는 다른 경우로 다음과 같은 경우들이 존재한다. 첫째로, 짧은 프리엠블을 이용한 CFO의 추정 상태(415)에서 대략적인 CFO의 추정이 불가능한 경우이다. 둘째로, 동기 상태(416)에서 동기를 맞출 수 없는 경우이다. 셋째로, 긴 프리엠블을 이용하여 CFO를 추정하는 상태(417)에서 CFO를 정확한 CFO의 추정이 불가능한 경우이다. 넷째로, 신호 필드의 복호 상태(418)에서 신호 필드의 복호에 실패한 경우이다.
본 발명은 도 2의 상태 천이도에서 CS 상태에 머무는 동안에는 그 이후의 모든 상태에 해당하는 서브 블록들에 전원 및 클럭 공급을 차단하는 방식을 사용함으로써 전력 소비를 최소화 하도록 했다. 또한 위와 같은 상태 천이를 이용함으로써 본 발명에 따른 캐리어 센싱 방법과 비-캐리어 센싱 방법을 모두 적용할 수 있게 된다.
한편, 아이들 상태(410)는 더즈(Doze) 모드 상태이거나 또는 슬립 모드(Sleep mode)인 경우에도 계속 유지된다. 이와 같이 더즈 모드일 경우에는 캐리어 센싱 블록도 꺼져있고 아이들 상태에 있다가 MAC 계층의 타이머 값이 소진되어 깨어있는 모드로 변환되는 경우 앞에서 언급한 시작(START) 상태(411)를 거쳐 캐리어 센싱(Carrier Sensing) 상태(412)에서 캐리어 센싱이 될 때까지 기다리게 된다. 이 때 단말의 수신단 중 캐리어 센싱 블록만 켜져 있게 되므로 전력 소비 효율을 향상 시킬 수 있다. 캐리어 센싱된 이후에는 해당 경로의 모든 블록이 켜져서 신호를 처리하게 된다.
도 5는 본 발명에 따른 전력을 조정 단계의 이해를 돕기 위한 타이밍 다이어 그램이다.
도 5에 도시한 바와 같이 본 발명에 따른 수신기는 깨어 있는 모드(500)와 더즈 모드(510)가 공존하게 된다. 깨어 있는 모드(500)에서는 물리계층 파워 세이빙 타이밍(PHY PS timing)에서는 캐리어 센싱 구간(CP)과 캐리어 비 센싱 구간(Non-CP)으로 구분된다. 캐리어 센싱 구간(CP)은 캐리어 센싱이 이루어지는 시점(501)에서 종료되고, 캐리어가 센싱된 이후 패킷1(521)을 수신하는 동안 캐리어 비 센싱 구간(Non-CP)이 된다. 그리고 더즈 모드인 경우 모든 블록에 전원이 차단되는 상태이며, 이를 더즈 구간(DP)라 한다.
이와 같이 물리계층에서는 캐리에 센싱 구간(CP)에 전력 소모를 줄이기 위하여 전원이 투입되지 않는 물리계층 블록들로 클럭을 제공하지 않는다. 이는 도 5에 도시되어 있는 물리계층 파워 세이빙 클럭(PHY PS clock)과 물리계층 캐리어 센싱 유효(PHY CS valid) 정보로 확인할 수 있다.
한편, MAC 계층에서는 파워 세이빙 클럭(MAC PS clock)을 캐리어 센싱을 위해 필요한 캐리어 센싱 구간(CP)에서부터만 투입하도록 한다. 그리고 캐리어 센싱을 검출하기 위해 MAC 캐리어 센싱 유효(MAC CS valid) 정보로부터 확인할 수 있다. 이러한 구간들은 더즈 모드가 시작되는 시점까지 이루어진다.
이상에서 살핀 바와 같이 MAC 계층과 물리계층의 저전력 모드가 연동되어 MAC 계층 혹은 물리 계층 단독 모드로 사용될 경우보다 효율적인 전력 소비 효율을 보장할 수 있게 된다.
3. 크로스 계층 저전력 모드 3
본 발명에 따른 크로스 계층 저전력 모드3은 크로스 계층 저전력 모드1과 크로스 계층 저전력 모드2의 혼합 모드이다. 크로스 계층 모드1에서 요청/응답 프레임 및 ACK 프레임 등의 제어 패킷의 도움 없이 크로스 계층 모드2의 캐리어 센싱 결과로 크로스 계층 모드1을 제어한다. 이로 인해 크로스 계층 모드1에 비해 크로스 계층 모드2에 의해 패킷 간 간격(Interframe Space, IFS) 시간(16us)과 캐리어 센싱 시간(약 2us) 동안 동적 소비 전력을 줄여서 전력 소비 효율을 향상시킬 수 있다. 크로스 계층 저전력 모드3은 크로스 계층 저전력 모드1에서 RTS/CTS를 사용한 것과 다르게 RTS/CTS 없이 캐리어 센싱 결과로 저전력 모드 전환이 가능하다.
앞에서 설명한 크로스 계층 저전력 모드1 방식에 의해 무선(RF)부에서 20MHz 대역 제한 필터를 통과한 신호는 40MHz의 샘플링 속도로 디지털 변환되어 캐리어 센싱된다.
또한 크로스 계층 저전력 모드2 방식에 의해 캐리어 센싱된 후 캐리어 센싱 이외의 블록들이 동작한다.
위와 같은 방법으로 패킷이 수신되면, 무선 랜 시스템의 수신기가 지원하는 최대 샘플링 속도를 사용하여 동작한다.
이때, 요청/응답 패킷에 의해 수신할 데이터 패킷의 종류를 사전에 알 수 있는 경우, 최대 샘플링 속도가 아니라 수신 패킷의 모드에 따라 샘플링 속도를 결정할 수 있다.
또한 상기 과정에서는 동시에 인터폴레이터와 데시메이터의 동작 주파수 변환과 RF의 아날로그 대역 제한 필터와 디지털 대역 제한 필터의 재구성 과정을 포함한다.
이러한 본 발명의 제3실시 예에 따른 방법은 기저대역 신호 처리를 위한 모뎀부의 샘플링 속도가 해당 모드에 최적화되어 동작할 수 있다.
여기까지는 본 발명의 크로스 계층 저전력 모드의 구성과 동작에 대해 서술했다. 앞으로는 지금까지 설명한 크로스 계층 저전력 모드의 효율성 향상을 위한 전송 방법을 두 번째 발명의 구성 요소로서 설명하고자 한다.
수신단에서 수신될 프레임의 정보를 요청 프레임 혹은 응답 프레임에 포함시켜 전송함으로써 수신단은 해당 대역폭에 맞는 최적의 상태로 대기할 수 있다. 즉, 요청/응답 프레임 예를 들어 RTS/CTS 등의 프레임 다음에 보내게 될 데이터 프레임의 다음의 전송 모드 정보를 함께 알려줌으로써 아날로그/디지털 필터 설정 혹은 RF 중심 주파수 설정 혹은 동작 주파수 샘플링 속도 등의 수신 모드를 상기 수신할 프레임의 종류에 맞춰 최적화하여 스루풋을 향상시키고, 소비 전력 효율을 향상시킬 수 있다.
1) 이러한 경우 요구되는 성능 지표 값과 송신 스트림 수는 다음과 같다.
- 송신 신호의 스트림 수가 수신 안테나 수 보다 작을 경우 반드시 모든 다중 안테나를 사용할 필요가 없으므로 요구되는 성능 지표 값에 따라 사용할 안테나 수를 선택할 수 있다. 요구되는 성능 지표로는 컨텐츠 카테고리(Contents Category) 혹은 링크 성능 값 예를 들어 신호대 잡음비, 채널 변화 등이 될 수 있다.
2) 송신 패킷 모드 및 사용할 채널 대역폭과 프레임 전송 방법은 아래와 같다.
- 수신기는 요청/응답 패킷 수신 후 수신기에서 지원 가능한 최대 동작 주파수로 변환될 필요없이 해당 패킷 모드를 위한 최적의 동작 주파수를 사용할 수 있다.
- 또한 수신 신호를 위한 최적의 필터를 적용할 수 있으므로 수신단 검출 신뢰도를 향상 시킬 수 있다.
- 또한 전송 기회 구간 동안 데이터 프레임의 그린 필드 모드 동작이 가능하다.
결과적으로 스루풋과 전력 소비 효율을 향상 시킬 수 있다.
여기서 미리 전송을 위한 정보를 알려주기 위한 방법을 살펴보자. 제 1 노드와 제 2 노드간 통신이 이루어진다고 가정하자. 그러면, 상기 제 1 노드 혹은 제 2 노드는 요청 프레임 혹은 응답 프레임의 동적 채널 대역폭 할당 지원 가능 비트 예를 들어 1비트 값에 근거하여, 상대 노드가 상기 채널 상태 정보 혹은 데이터 프레임 모드 정보를 포함하는지 여부를 판별하도록 할 수 있다.
상기 요청/응답 프레임의 전송 모드 정보는 요청/응답 프레임에 다음과 같은 실시 예로 포함되어 전송되어질 수 있다. 하지만, 아래 기술된 실시 예에 국한되지 않고 요청/응답 프레임에 남아 있는 예약 비트를 활용하여 종래의 표준과 호환성을 유지하며 상기 발명을 실현 시킬 수 있음에 유의해야 한다.
1) 물리 계층의 서비스 필드(Service field)
2) MAC 헤더의 듀레이션 필드(Duration field)
3) MAC 헤더의 프레임 컨트롤 필드(Frame control field)
예를 들어, 상기 서비스 필드 혹은 듀레이션 필드에 두 비트를 사용하여 네 가지 대역폭 지원 모드를 설정할 수 있다. 이를 예를 들어 살펴보면, 아래와 같이 구분할 수 있다.
00: 20MHz,
01: 40MHz,
10: 80MHz,
11: 160MHz
상기 요청/응답 프레임에 포함된 상기 요청/응답 프레임 다음에 올 프레임의 정보는 저전력 모드 용도가 아닌 노이즈 절감 및 다중 모드 프레임의 공존 (20/40/80/160MHz 대역폭 혹은 레거시/HT/VHT 모드)을 위해 사용될 수 있다.
도 7과 도 8은 본 발명의 다른 실시 예에 따라 노이즈 절감 및 다중 모드 프레임의 공존을 위한 타이밍도를 도시하였다.
먼저 도 7을 참조하여 살펴보기로 한다. 도 7은 노드1에서 노드 2로 20MHz 대역폭 데이터 프레임을 전송하기 위해, 데이터 프레임 전송 전에 20MHz 대역폭 RTS 4개를 본딩한 프레임(711)을 80MHz 대역 전체로 전송한다. 이를 통해 노드1은 자신의 프레임이 아닌 주변의 20/40/80MHz 대역폭을 지원하는 다양한 모드의 노드들의 NAV(Network Allocation Vector) 값을 설정하여 대기 상태에 있게 한다. 반면 자신의 프레임으로 인식한 노드 2는 RTS 4개를 본딩한 프레임(711)에 설정된 대역폭 값에 기반하여 수신단의 중심 주파수 및 필터를 변경하고, CTS 프레임(712)을 20MHz 대역으로 전송한다. CTS 프레임(712)을 수신한 노드1은 20MHz 대역폭 데이터 프레임(713)을 전송한다. 그러면 데이터 프레임(713) 수신에 적합하게 재구성된 노드2는 데이터 프레임(713)을 수신한 후 올바르게 복원되었을 경우 ACK 프레임(714)을 전송한다.
도 8은 앞서 설명한 도 7의 일 실시 예를 채널 대역폭 별로 나눠 도시한 도면이다. 즉, RTS 프레임들(811, 812, 813, 814)은 80MHz 대역폭으로 전송된다. RTS 프레임들(811, 812, 813, 814)에 설정된 대역폭 정보 값을 활용하여 20MHz 대역폭 모드인 CTS 프레임(821)과 데이터 프레임(831) 및 ACK 프레임(841)의 송신 혹은 수신할 때 노이즈를 절감할 수 있으며, 파워 소비를 줄일 수 있다.
도 9는 공존 기본 서비스 셋(OBSS, Overlapped Basic Service Set) 상황에서 본 발명의 동작을 설명하기 위한 그림이다. BSS1에서 중계접속점1(AP1)이 데이터를 단말(STA)에게 데이터를 전송하기 위해 RTS 프레임을 전송함에 있어서, BSS1은 80MHz 대역까지 지원 가능한 단말이 포함되어 있다고 알려져 있다고 가정하면, 20MHz 대역 RTS 네 개를 동시에 전송한다. 이때 BSS2에서 40MHz 대역의 신호를 전송하고 있는 경우 AP1은 상기 간섭 신호의 존재 여부를 모른다.
이때, 단말(STA)은 상기 간섭 신호가 영향을 미치는 대역을 제외한 나머지 40MHz 대역을 통해 CTS를 보냄으로써 AP1은 CTS를 수신한 40MHz 대역을 통해 데이터 프레임을 전송한다. 여기에서 STA의 경우 간섭 신호와 수신해야 할 신호를 구분할 수 있어야 하는데, AP마다 고유한 BSSID(BSS Identification)가 다르므로, MAC 헤더에 포함된 BSSID에 근거하여 수신한 패킷이 STA이 포함된 BSS에 있는 노드에서 온 것인지 외부 BSS의 것인지를 판별할 수 있다. 상기 판단에 근거하여 간섭 신호를 구분하고 RTS로 확인한 대역에서 간섭 신호 영역을 제외한 나머지 대역으로 CTS를 보낸다. AP1은 CTS를 받은 대역을 통해 데이터를 전송할 수 있게 된다. 더불어서 상기 과정을 통해 점유하는 대역폭을 최소화할 수 있으며, 주파수 자원을 효율적으로 활용함과 동시에 전력 소비 효율을 향상시킬 수 있다.
마지막으로 본 발명은 차세대 무선랜 기술로 사용될 다중 채널 전송 방법의 저전력 모드를 포함한다. 차세대 무선랜 기술은 종래의 20MHz 혹은 40MHz 대역폭 보다 4배 혹은 2배 넓은 80MHz 대역폭을 사용하여 전송함으로써 스루풋을 2배에서 4배 높일 수 있게 되었다. 하지만, 이로 인해 아날로그-디지털 변환기와 디지털-아날로그 변환기의 샘플링 속도도 증가하여 소비 전력이 증가하게 되었다. 뿐만 아니라 모뎀 프로세서(Modem Processor)도 높은 동작 주파수를 사용하게 되어 동적 소비 효율이 저하되는 문제가 발생하게 되었다. 하지만 항상 단말 장치는 높은 샘플링 주파수를 사용할 필요가 없으며, 사용되는 모드와 패킷 종류에 따라 적절한 샘플링 속도를 사용하여 소비 전력 효율을 향상시킬 수 있다.
종래의 공간 다중화 방식을 위한 저전력 모드는 RTS/CTS를 수신하기 전에는 소수의 수신 경로만 켜고 나머지는 꺼 둠으로써 전력 소비 효율을 향상시킬 수 있었으나, 본 발명의 다중 채널 방식을 위한 저전력 모드는 RTS/CTS를 수신하기 전에는 레거시 모드 패킷 수신이 가능할 정도의 샘플링 속도를 사용하고 RTS/CTS를 수신한 후에는 해당 모드 패킷 혹은 사용되는 모드에 따라 샘플링 속도를 제어하는 방식이다. RTS/CTS 패킷에 다음에 수신할 데이터 패킷의 종류 혹은 사용될 모드 정보가 실려 전송될 수 있는 경우에는 해당 모드로 전환될 수 있으며, 만약 패킷 종류 혹은 사용될 모드 정보를 실어 전달 할 수 없다면 해당 단말이 지원하는 모드를 위한 최대 샘플링 속도로 변환되도록 하는 제어 장치를 포함한다.
본 발명은 다중 채널 전송 방식이 연속적이거나 불연속적일 경우 모두 지원 가능하다. 즉, 다중 채널이 연속적일 경우에는 단순한 샘플링 속도의 증감으로 동작되지만, 비연속적일 경우에는 비연속적인 경로의 사용 여부를 결정함으로써 전력 소비 효율을 향상시킬 수 있게 된다.
도 6은 본 발명의 실시 예에 따른 다중 채널 저전력 모드 시의 천이 과정에 따른 흐름도이다.
무선 랜 수신기는 최초 600단계에서 스스로 깨어있는 상태(Awake State)인가를 검사한다. 만일 깨어 있는 상태라면 606단계로 진행하고 그렇지 않은 경우 602단계로 진행한다. 602단계로 진행하면, 무선 랜 기기는 타이머가 만료되었는가를 검사한다. 만일 타이머가 만료된 경우라면 606단계로 진행하고 그렇지 않은 경우 604단계에서 모든 블록의 전원을 오프한 후 600단계를 수행하게 된다.
만일 600단계 도는 602단계에서 606단계로 진행하는 경우는 하나 또는 두 개의 수신 파트 캐리어 센싱 블록에만 전원을 투입한다. 이때, 투입되는 무선 랜 수신기는 레거시 모드(Legacy Mode) 샘플링 율(sampling rate)로 동작하도록 한다. 타이머의 만료에 의해 깨어나거나 또는 깨어있는 모드인 경우 모두 캐리어 센싱 이전이므로, 앞에서 언급한 두 번째 수신 상태가 즉, RTS/CTS 수신 전 상태가 된다.
이와 같이 캐리어 센싱 블록에만 전원을 투입한 이후 무선 랜 기기는 608단계로 진행하여 미리 결정된 시간 내에 캐리어 센싱이 이루어지는가를 검사한다. 만일 캐리어 센싱이 이루어지면, 무선 랜 기기는 610단계로 진행하고 그렇지 않은 경우 606단계로 진행한다.
다음으로 캐리어 센싱이 이루어진 경우 무선 랜 기기는 610단계로 진행하여 수신 경로의 남은 블록들에 전원을 투입한다. 이때, 샘플링 율은 레거시 모드의 샘플링 율을 이용할 수 있다. 이를 통해 샘플링 율을 줄임으로써 소모 전력을 줄일 수 있게 된다. 그리고 무선 랜 수신기는 612단계로 진행하여 패킷 카테고리를 사용할 수 있는지 검사한다. 패킷의 종류 정보를 이용 가능한 경우인가를 검사하는 것이다. 만일 패킷의 카테고리 즉, RTS/CTS 등과 같은 패킷의 카테고리를 이용할 수 있는 경우라면 614단계로 진행하고, 그렇지 않은 경우 216단계로 진행한다.
무선 랜 수신기는 614단계로 진행하면 수신된 패킷의 카테고리가 RTS/CTS 패킷인가를 검사한다. RTS/CTS 카테고리의 패킷인 경우 무선 랜 수신기는 618단계로 진행하여 스트림 수에 따라 수신 경로의 해당 블록들에 전원을 투입한다.
반면에 614단계에서 RTS/CTS 카테고리의 패킷이 아니거나 또는 612단계의 검사결과 패킷의 카테고리를 이용할 수 없는 경우 416단계로 진행하여 모든 수신 경로의 블록들에 전원을 투입해야만 한다.
이후, 무선 랜 수신기는 620단계로 진행하여 모드 정보를 사용 가능한가를 검사한다. 이러한 모드 정보는 앞에서 설명한 바와 같은 방법으로 전송되는 모드 정보이다. 만일 모드 정보의 사용이 가능하지 않은 경우 무선 랜 수신기는 622단계로 진행하여 수신기에서 최대 지원 가능한 데이터 율로 동작하게 된다.
반면에 모드 정보를 사용할 수 있는 경우 무선 랜 수신기는 우선 624단계로 진행하여 현재 모드가 레거시 모드인가를 검사한다. 만일 624단계의 검사결과 레거시 모드인 경우 무선 랜 수신기는 626단계로 진행하여 레거시 모드의 샘플링 율로 동작한다. 그러나 624단계의 검사결과 레거시 모드가 아닌 경우 무선 랜 수신기는 628단계로 진행하여 HT 모드인가를 검사한다. 만일 HT 모드인 경우 무선 랜 수신기는 630단계로 진행하여 HT 모드에 해당하는 샘플링 율로 동작한다.
그러나, 624단계 및 628단계의 검사결과 레거시 모드도 아니고 HT 모드도 아닌 경우 VHT 모드가 된다. 따라서 무선 랜 수신기는 632단계로 진행하여 데이터 스트림이 연속하여(contiguous) 수신되는가를 검사한다. 상기 검사결과 연속하여 데이터 프레임이 전송되는 경우 무선 랜 수신기는 634단계로 진행하여 VHT 모드의 샘플링 율로 동작한다. 그러나 연속하여 수신되지 않는 경우라면 무선 랜 수신기는 636단계로 진행하여 다중 채널 파워 세이빙 동작을 수행하게 된다.
이상에서 설명한 도 6에는 위에서 설명한 4가지 수신 상태에 따른 본 발명의 저전력 모드 변환 순서이다. 즉, 더즈 모드이면 타이머가 소진될 때까지 모든 블록을 끄고 타이머가 소진되면 캐리어 센싱에 필요한 경로와 해당 캐리어 센싱 블록만 켠다. 이때 RTS/CTS는 레거시 모드로 전송되므로 레거시 모드를 위한 동작 주파수로 설정된다. 또한 깨어있는 상태에서 캐리어 센싱이 되면 캐리어 센싱을 위한 해당 경로의 나머지 블록을 켠다. 이후 패킷 종류 정보가 이용 가능할 경우, 수신 패킷이 RTS/CTS일 때는 데이터 패킷의 캐리어 센싱 결과를 향상시키기 위해 더 많은 경로를 켤 수 있다. 그러나 만약 패킷 종류 정보가 이용 가능하지 않거나 데이터 패킷인 경우에는 모든 경로를 켠다. 이때, 해당 단말이 지원 가능한 최대 동작 주파수로 변환하여 어떤 종류의 패킷이 입력되어도 처리 가능하도록 한다. 패킷 종류 정보가 이용 가능하여 RTS/CTS 패킷임을 확인했을 경우, 모드 정보가 이용 가능하다면 해당 모드에 맞는 샘플링 속도로 전환된다. 이때 모드 정보가 이용 불가능하면, 해당 단말이 지원 가능한 최대 샘플링 속도로 변환되어 어떠한 모드의 패킷이 입력되어도 처리 가능하도록 한다. 그리고 모드가 VHT 모드의 패킷일 경우에는 앞서 설명한 다중 채널 전송을 위한 저전력 모드로서 사용하지 않는 비연속적인 채널을 위한 경로에는 전원과 클럭을 공급하지 않을 수 있다.
100 : RF 블록 101 : 저잡음 증폭기(LNA)
102 : 전압제어 이득 증폭기(AGC)
111 : 아날로그-디지털 변환기(ADC)
112 : 직류 제어기 113 : I/Q 채널 신호 비교기
115 : 버퍼
116 : 캐리어 주파수 옵셋(CFO : Carrier Frequency Offset) 조절기
117 : 고속 퓨리에 변환기 118 : 위상 비교기
119 : MIMO 검출기 120 : 디맵퍼(Soft Demap)
121 : 에너지 검출기(Energy detect)
122 : CCA(Clear Channel Assessment)
123 : 수신전계강도 측정기(W-RSSI)
131 : 자동 이득 제어기(AGC)
132 : 캐리어 검출 기반 포화 검출기(Saturation based carrier sense)
141 : 채널 믹서(channel mixer)
142 : 저역 필터 및 평균기(LPF + deci/2)
143 : 캐리어 검출 기반 수신전계강도 측정부(RSSI based carrier sense)
144 : 자동 상관기(Auto correlation)
145 : 교차 상관기(Cross correlation)
146 : CFO 추정기 147 : 프레임 동기부
148 : 캐리어 센싱 기반 XCR 계산부

Claims (37)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 무선랜 시스템에서 채널에 액세스하는 방법에 있어서,
    제 1 노드로부터 제 1 대역폭 상에서 전송되는 RTS(Request To Send) 프레임을 제 2 노드가 수신하는 단계; 및
    상기 RTS 프레임에 응답하여, 상기 제 2 노드가 제 2 대역폭 상에서 CTS(Clear To Send) 프레임을 상기 제 1 노드로 전송하는 단계를 포함하고,
    동적 대역폭 관련 파라미터가 소정의 값을 가지는 경우에, 상기 제 2 대역폭은 동적으로 결정되고,
    4 가지 채널 대역폭 중의 어느 하나를 지시하는 채널 대역폭 관련 파라미터에 의해서 상기 제 2 대역폭이 지시되는, 채널 액세스 방법.
  22. 제 21 항에 있어서,
    상기 제 2 대역폭은 상기 제 1 대역폭 이하인, 채널 액세스 방법.
  23. 제 21 항에 있어서,
    상기 제 1 대역폭은 하나 이상의 20MHz 채널 대역폭에 대응하는, 채널 액세스 방법.
  24. 제 23 항에 있어서,
    상기 제 1 대역폭은 복수의 20MHz 채널 대역폭이 본딩된 채널 대역폭에 대응하는, 채널 액세스 방법.
  25. 제 21 항에 있어서,
    상기 제 2 대역폭은 하나 이상의 20MHz 대역폭에 대응하는, 채널 액세스 방법.
  26. 제 25 항에 있어서,
    상기 제 2 대역폭은 복수의 20MHz 채널 대역폭이 본딩된 채널 대역폭에 대응하는, 채널 액세스 방법.
  27. 제 21 항에 있어서,
    상기 동적 대역폭 관련 파라미터가 소정의 값을 가지는 경우, 동적 대역폭 할당이 지원되는 것을 지시하는, 채널 액세스 방법.
  28. 제 21 항에 있어서,
    상기 4 가지 채널 대역폭은, 20MHz 채널 대역폭, 40MHz 채널 대역폭, 80MHz 채널 대역폭, 및 160MHz 채널 대역폭을 포함하는, 채널 액세스 방법.
  29. 제 21 항에 있어서,
    상기 동적 대역폭 관련 파라미터는 상기 RTS 프레임에 포함되는, 채널 액세스 방법.
  30. 제 29 항에 있어서,
    상기 RTS 프레임은 상기 제 1 대역폭을 지시하는 채널 대역폭 관련 파라미터를 더 포함하는, 채널 액세스 방법.
  31. 제 30 항에 있어서,
    상기 동적 대역폭 관련 파라미터, 또는 상기 제 1 대역폭을 지시하는 채널 대역폭 관련 파라미터 중의 하나 이상은, 상기 RTS 프레임의 물리 계층 서비스 필드에 포함되는, 채널 액세스 방법.
  32. 제 21 항에 있어서,
    상기 채널 대역폭 관련 파라미터는 상기 CTS 프레임에 포함되는, 채널 액세스 방법.
  33. 제 32 항에 있어서,
    상기 채널 대역폭 관련 파라미터는 상기 CTS 프레임의 물리 계층 서비스 필드에 포함되는, 채널 액세스 방법.
  34. 제 21 항에 있어서,
    상기 RTS 프레임은 다른 단말의 NAV(Network Allocation Vector) 설정을 유발하는, 채널 액세스 방법.
  35. 무선랜 시스템에서 채널에 액세스하는 장치에 있어서,
    제 1 노드로부터 제 1 대역폭 상에서 전송되는 RTS(Request To Send) 프레임을 제 2 노드가 수신하도록 설정되는 수신기; 및
    상기 RTS 프레임에 응답하여, 상기 제 2 노드가 제 2 대역폭 상에서 CTS(Clear To Send) 프레임을 상기 제 1 노드로 전송하도록 설정되는 송신기를 포함하고,
    동적 대역폭 관련 파라미터가 소정의 값을 가지는 경우에, 상기 제 2 대역폭은 동적으로 결정되고,
    4 가지 채널 대역폭 중의 어느 하나를 지시하는 채널 대역폭 관련 파라미터에 의해서 상기 제 2 대역폭이 지시되는, 채널 액세스 장치.
  36. 무선랜 시스템에서 채널에 액세스하는 방법에 있어서,
    제 1 노드가 제 1 대역폭 상에서 RTS(Request To Send) 프레임을 제 2 노드로 전송하는 단계; 및
    상기 RTS 프레임에 응답하여, 상기 제 2 노드에 의해서 제 2 대역폭 상에서 전송되는 CTS(Clear To Send) 프레임을 상기 제 1 노드가 수신하는 단계를 포함하고,
    동적 대역폭 관련 파라미터가 소정의 값을 가지는 경우에, 상기 제 2 대역폭은 동적으로 결정되고,
    4 가지 채널 대역폭 중의 어느 하나를 지시하는 채널 대역폭 관련 파라미터에 의해서 상기 제 2 대역폭이 지시되는, 채널 액세스 방법.
  37. 무선랜 시스템에서 채널에 액세스하는 장치에 있어서,
    제 1 노드가 제 1 대역폭 상에서 RTS(Request To Send) 프레임을 제 2 노드로 전송하도록 설정되는 송신기; 및
    상기 RTS 프레임에 응답하여, 상기 제 2 노드에 의해서 제 2 대역폭 상에서 전송되는 CTS(Clear To Send) 프레임을 상기 제 1 노드가 수신하도록 설정되는 수신기를 포함하고,
    동적 대역폭 관련 파라미터가 소정의 값을 가지는 경우에, 상기 제 2 대역폭은 동적으로 결정되고,
    4 가지 채널 대역폭 중의 어느 하나를 지시하는 채널 대역폭 관련 파라미터에 의해서 상기 제 2 대역폭이 지시되는, 채널 액세스 장치.
KR1020100106255A 2009-10-28 2010-10-28 무선 통신 시스템에서 파워 세이빙 방법 KR101774366B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100106255A KR101774366B1 (ko) 2009-10-28 2010-10-28 무선 통신 시스템에서 파워 세이빙 방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020090103008 2009-10-28
KR20090103008 2009-10-28
KR1020100106255A KR101774366B1 (ko) 2009-10-28 2010-10-28 무선 통신 시스템에서 파워 세이빙 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020170109289A Division KR101928475B1 (ko) 2009-10-28 2017-08-29 무선 통신 시스템에서 파워 세이빙 방법

Publications (2)

Publication Number Publication Date
KR20110046378A KR20110046378A (ko) 2011-05-04
KR101774366B1 true KR101774366B1 (ko) 2017-09-04

Family

ID=44241290

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100106255A KR101774366B1 (ko) 2009-10-28 2010-10-28 무선 통신 시스템에서 파워 세이빙 방법

Country Status (1)

Country Link
KR (1) KR101774366B1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281595B (zh) * 2011-06-24 2014-08-06 华为技术有限公司 控制次信道cca的方法、发送设备及接收设备
WO2013069918A1 (ko) * 2011-11-11 2013-05-16 엘지전자 주식회사 Plcp 헤더 전송 모드 지시 방법 및 장치
CN103379657B (zh) * 2012-04-16 2016-08-17 华为技术有限公司 站点接入方法和站点
KR20160074518A (ko) * 2013-10-05 2016-06-28 엘지전자 주식회사 무선랜 시스템에서 섹터화된 전송기회를 이용한 동작 방법 및 장치
KR102202691B1 (ko) * 2014-04-15 2021-01-12 뉴라컴 인코포레이티드 무선랜에서 저전력 통신 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086437A1 (en) 2001-11-07 2003-05-08 Mathilde Benveniste Overcoming neighborhood capture in wireless LANs
US20060120979A1 (en) 2004-12-02 2006-06-08 Joel Rubin Skin care composition comprising hydroquinone and a substantially anhydrous base
US20070230378A1 (en) 2006-03-31 2007-10-04 Clifford Tavares Traffic prediction in wireless communication networks
JP2009171506A (ja) 2008-01-21 2009-07-30 Toshiba Corp 無線通信装置、無線通信装置の制御プログラム、および無線通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086437A1 (en) 2001-11-07 2003-05-08 Mathilde Benveniste Overcoming neighborhood capture in wireless LANs
US20060120979A1 (en) 2004-12-02 2006-06-08 Joel Rubin Skin care composition comprising hydroquinone and a substantially anhydrous base
US20070230378A1 (en) 2006-03-31 2007-10-04 Clifford Tavares Traffic prediction in wireless communication networks
JP2009171506A (ja) 2008-01-21 2009-07-30 Toshiba Corp 無線通信装置、無線通信装置の制御プログラム、および無線通信システム

Also Published As

Publication number Publication date
KR20110046378A (ko) 2011-05-04

Similar Documents

Publication Publication Date Title
KR101928475B1 (ko) 무선 통신 시스템에서 파워 세이빙 방법
CN107360619B (zh) 无线通信的方法、无线控制器装置和无线通信装置
US11770461B2 (en) Methods and arrangements for short beacon frames in wireless networks
JP4288368B2 (ja) 受信制御方法および無線lan装置
US20080165715A1 (en) Wlan systems having reduced power consumption by dynamic setting and related methods thereof
WO2015105392A1 (ko) 무선랜에서 파워 세이브 모드 기반의 동작 방법 및 장치
KR101774366B1 (ko) 무선 통신 시스템에서 파워 세이빙 방법
KR20170012241A (ko) Mcs 값을 사용하는 다중―레이트 무선 시스템에서의 rf 저전력 모드들의 적응형 제어
JP2003332973A (ja) 無線通信装置
KR20170017918A (ko) 무선랜에서 파워 세이브 모드 기반의 주기적 데이터의 송신 및 수신 방법 및 장치
JP2024510041A (ja) ワイヤレスローカルエリアネットワーク(wlan)デバイスのリッスンモード電力消費の低減
KR20230137353A (ko) 적응형 이웃 인식 네트워킹(nan) 데이터 인터페이스

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant