KR101773537B1 - 당화 단백질 측정 방법 - Google Patents

당화 단백질 측정 방법 Download PDF

Info

Publication number
KR101773537B1
KR101773537B1 KR1020140190862A KR20140190862A KR101773537B1 KR 101773537 B1 KR101773537 B1 KR 101773537B1 KR 1020140190862 A KR1020140190862 A KR 1020140190862A KR 20140190862 A KR20140190862 A KR 20140190862A KR 101773537 B1 KR101773537 B1 KR 101773537B1
Authority
KR
South Korea
Prior art keywords
glycated
acid
boronic acid
derivative
amino acid
Prior art date
Application number
KR1020140190862A
Other languages
English (en)
Other versions
KR20160079475A (ko
Inventor
이성동
Original Assignee
(주)타스컴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)타스컴 filed Critical (주)타스컴
Priority to KR1020140190862A priority Critical patent/KR101773537B1/ko
Publication of KR20160079475A publication Critical patent/KR20160079475A/ko
Application granted granted Critical
Publication of KR101773537B1 publication Critical patent/KR101773537B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin

Abstract

효소법을 이용하여 당화 단백질을 측정하는 방법이 개시된다. 이 방법은 당화 단백질 또는 당화 펩타이드 또는 당화 아미노산에 특정 유도체를 결합하여 복합체를 생성하는 과정을 포함한다. 이에 의해, 당화 단백질 측정 오차가 방지된다.

Description

당화 단백질 측정 방법{Method for measuring glycated protein}
본 발명은 당화 단백질(Glycated Protein) 측정 기술에 관한 것이다.
혈액에 존재하는 당화혈색소(glycated hemoglobin), 당화 알부민(gylcated albumin), 프럭토사민(fructosamine) 등의 당화 단백질의 수치는 당뇨병 관리에 중요한 지표로 사용된다. 이러한 당화 단백질의 측정방법으로는 효소법이 잘 알려져 있다.
국내공개특허공보 제10-2007-0023661호 (2007년 2월 28일 공개)
본 발명은 당화 단백질 측정의 정확도를 향상시키는 기술적 방안을 제공함을 목적으로 한다.
일 양상에 따른 효소법을 이용하여 당화 단백질을 측정하는 방법은 당화 단백질 또는 당화 펩타이드 또는 당화 아미노산에 특정 유도체를 결합하여 복합체를 생성하는 과정을 포함한다.
일 양상에 따른 당화 단백질 측정 방법은 당화 단백질(glycated protein)의 cis-diol과 특정 유도체를 결합하여 복합체를 형성하는 단계, 복합체를 단백질분해효소(protease)로 처리하여 당화 펩타이드(glycated peptide) 또는 당화 아미노산(glycated amino acid)을 생성하는 단계, 당화 펩타이드 또는 당화 아미노산에 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 처리하여 과산화수소를 생성하는 단계, 및 생성된 과산화수소를 측정하는 단계를 포함할 수 있다.
일 양상에 따른 당화 단백질 측정 방법은 당화 단백질(glycated protein)을 단백질분해효소(protease)로 처리하여 당화 펩타이드(glycated peptide) 또는 당화 아미노산(glycated amino acid)을 생성하는 단계, 당화 펩타이드 또는 당화 아미노산에 특정 유도체를 결합하여 복합체를 형성하는 단계, 복합체에 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 처리하여 과산화수소를 생성하는 단계, 및 생성된 과산화수소를 측정하는 단계를 포함할 수 있다.
일 양상에 따르면, 특정 유도체는 boric acid 또는 boronic acid 유도체일 수 있다.
일 양상에 따르면, 특정 유도체는 담체(carrier)에 고정될 수 있다.
일 양상에 따르면, 담체는 나노미터 또는 마이크로미터 크기의 입자(particles), 다공성 막(porous membrane), 전도성 전극 표면, 기질의 표면 중 어느 하나일 수 있다.
일 양상에 따르면, 특정 유도체는 물리적 흡착 또는 화학결합에 의해 담체에 고정될 수 있다.
본 발명에 따른 당화 단백질 측정 방법은 분석신호의 세기를 증가시켜 당화 단백질에 대한 측정 정확도를 향상시킨다.
또한, 본 발명에 따른 당화 단백질 측정 방법은 시료에 존재하는 방해종(interferent)의 영향을 최소화할 수 있다.
도 1은 일 실시예에 따른 당화 단백질 측정 방법의 흐름도이다.
도 2는 다른 실시예에 따른 당화 단백질 측정 방법의 흐름도이다.
도 3은 또 다른 실시예에 따른 당화 단백질 측정 방법의 흐름도이다.
도 4는 성능 비교를 위한 그래프이다.
전술한, 그리고 추가적인 본 발명의 양상들은 첨부된 도면을 참조하여 설명되는 바람직한 실시예들을 통하여 더욱 명백해질 것이다. 이하에서는 본 발명을 이러한 실시예를 통해 당업자가 용이하게 이해하고 재현할 수 있도록 상세히 설명하기로 한다.
당화 단백질 측정 방법에 대해 설명한다. 시료에 존재하는 당화 단백질을 단백질분해효소(protease)를 사용하여 당화 펩타이드(glycated peptide) 또는 당화 아미노산(glycated amino acid)을 생성한 후에 당화 펩타이드 또는 당화 아미노산과 반응하는 fructosyl peptide oxidase (EC 1.5.3) 등의 당화 펩타이드 산화효소(glycated peptide oxidase) 또는 fructosyl amino acid oxidase(EC 1.5.3), ketoamine oxidase 등의 당화 아미노산 산화효소(glycated amino acid oxidase)를 사용하여 과산화수소(hydrogen peroxide)를 생성한다. 그리고 생성된 과산화수소를 측정하여 당화 단백질을 측정한다.
일 양상에 따른 당화 단백질 측정 방법은 당화 단백질에 존재하는 당(sugar)의 cis-diol과 화학적으로 결합하는 특정 유도체를 사용하여 복합체를 형성한다. 일 실시예에 있어서, 당화 단백질을 단백질분해효소로 처리하기 이전에 당화 단백질에 특정 유도체를 결합하여 복합체를 형성한다. 다른 실시예에 있어서, 당화 펩타이드 산화효소 또는 당화 아미노산 산화 효소 처리 이전에 당화 펩타이드 또는 당화 아미노산에 특정 유도체를 결합하여 복합체를 형성한다. 일 양상에 따르면, 복합체 형성을 위한 특정 유도체는 boric acid 이거나 boronic acid 유도체일 수 있다.
도 1은 일 실시예에 따른 당화 단백질 측정 방법의 흐름도이다. 당화 단백질에 존재하는 당(sugar)의 cis-diol과 화학적으로 결합하는 특정 유도체를 사용하여 당과 결합한 복합체(complex)를 형성한다(S100). 복합체가 형성되면, 이 복합체에 단백질분해효소(protease)를 처리하여, 즉 혼합하여 당화 펩타이드(glycated peptide) 또는 당화 아미노산(glycated amino acid)를 생성한다(S110). 당화 펩타이드 또는 당화 아미노산이 생성되면, 생성된 당화 펩타이드 또는 당화 아미노산과 반응하는 당화 펩타이드 산화효소(glycated peptide oxidase) 또는 당화 아미노산 산화효소(glycated amino acid oxidase)를 사용하여 과산화수소(H2O2)를 생성한다(S120). 과산화수소가 생성되면, 생성된 과산화수소를 측정하여 당화 단백질을 측정한다(S130). 생성된 과산화수소에 대해 과산화효소(horseradish peroxidase)와 염료(dye)를 이용하여 비색법(colorimetry)으로 측정하거나, 루미놀(luminol) 등을 이용한 화학발광(chemiluminescence), 전기화학발광(electrochemiluminescence), 전기화학(electrochemistry) 방법으로 측정이 가능하다.
도 2는 다른 실시예에 따른 당화 단백질 측정 방법의 흐름도이다. 당화 단백질을 단백질분해효소로 처리하여 당화 펩타이드 또는 당화 아미노산을 생성한다(S200). 당화 펩타이드 또는 당화 아미노산이 생성되면, 생성된 당화 펩타이드 또는 당화 아미노산에 존재하는 cis-diol과 화학적으로 결합하는 특정 유도체를 사용하여 당과 결합한 복합체를 형성한다(S210). 복합체가 형성되면, 복합체에 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 처리하여 과산화수소를 생성한다(S220). 과산화수소가 생성되면, 생성된 과산화수소를 측정하여 당화 단백질을 측정한다(S230).
도 3은 또 다른 실시예에 따른 당화 단백질 측정 방법의 흐름도이다. 당화 단백질의 당에 존재하는 cis-diol 및 당화 펩타이드와 당화 아미노산 중 적어도 하나의 당에 존재하는 cis-diol과 화학적으로 결합하는 특정 유도체를 사용하여 복합체를 형성한다(S300). 복합체가 형성되면, 이 복합체에 당화 펩타이드 산화효소와 당화 아미노산 산화효소 중 적어도 하나를 동시에 혹은 시간 간격을 두고 처리하여 복합체로부터 당화 펩타이드 및/또는 당화 아미노산을 제거한다(S310). 즉, 복합체에 당화 단백질과 당화 펩타이드 및 당화 아미노산 중에서 당화 단백질만 남도록 하는 것이다. S310 단계가 완료되면, 복합체에 단백질분해효소를 처리하여 당화 펩타이드 또는 당화 아미노산을 생성한다(S320). 당화 펩타이드 또는 당화 아미노산이 생성되면, 생성된 당화 펩타이드 또는 당화 아미노산과 반응하는 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 사용하여 과산화수소를 생성한다(S330). 과산화수소가 생성되면, 생성된 과산화수소를 측정하여 당화 단백질을 측정한다(S340).
일 양상에 따르면, 당화 단백질은 당화 혈색소(glycated hemoglobin), 당화 알부민(gylcated albumin), 프럭토사민(fructosamine) 중 어느 하나이다. 일 양상에 따르면, 특정 유도체는 boric acid 이거나 boronic acid 유도체이다. Boronic acid 유도체는 Aryl boronic acid, Heteroaryl boronic acid, Alkyl boronic acid, Alkenyl boronic acid, Alkynyl boronic acid일 수 있다. 또는 (Hydroxymethyl)phenylboronic acid, (Carboxymethyl)phenylboronic acid, Aminophenylboronic acid 등의 phenylboronic acid 유도체일 수도 있다.
일 양상에 따르면, 단백질분해효소는 Neutral protease (Bacillus polymyxa), Proteinase N (Bacillus subtilis), Protease TypeXIV (Bacillus thermoprotelyticus), Neutral proteinase (Bacillus subtilis), Pronase (Streptomyces griseus), Protease TypeX (Streptomyces griseus), Protease 6 (Aspergillus sp.), Protease P (Aspergillus melleus), Proteinase K (Tritirachium album), Carboxypeptidase Y (Yeast), Papin (Carica papaya), Ficin (Ficus carica), Bromelain (Ananas comosus) 중 어느 하나일 수 있다. 일 양상에 따르면, 당화 펩타이드는 fructosyl-valyl-histidine, fructosyl-glycine 또는 fructosyl-L-valine이며, 당화 아미노산은 fructosyl-amino acid인 frustosyl-valine, fructosyl-lysine 또는 fructosyl-glycine이다.
일 양상에 따르면, 당화 펩타이드 산화효소는 fructosyl peptide oxidase (EC 1.5.3.X)이다. Fructosyl peptide oxidase (EC 1.5.3.X)는 fructosyl-valyl-histidine, fructosyl-glycine, fructosyl-L-valine 등과 선택적으로 반응하여 과산화수소(H2O2)를 생성한다.
일 양상에 따르면, 당화 아미노산 산화효소는 Ketoamine Oxidase(EC 1.5.3.X) 또는 Fructosyl-amino acid oxidase(EC 1.5.3.X)이다. Ketoamine Oxidase(EC 1.5.3.X)는 frustosyl-valine, fructosyl-lysine과 선택적으로 반응하여 과산화수소를 생성하며, Fructosyl-amino acid oxidase(EC 1.5.3.X)는 fructosyl-amino acid, fructosyl-glycine, fructosyl-L-valine, fructosyl-L-lysine, fructosyl-L-valine에 선택적으로 반응하여 과산화수소를 생성한다.
그리고 과산화효소와 염료를 이용한 비색법 측정의 경우, 염료로는 4-Aminoantipyrine, N-Ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methoxyaniline, sodium salt, dehydrate (ADOS), N-Ethyl-N-(3-sulfopropyl)-3-methoxyaniline, sodium salt, monohydrate (ADPS), N-Ethyl-N-(3-sulfopropyl)aniline, sodium salt(ALPS), 3,3′-Diaminobenzidine, tetrahydrochloride (DAB), N-Ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline, sodium salt (DAOS), N-(2-Hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline, sodium salt(HDAOS), N,N-Bis(4-sulfobutyl)-3,5-dimethylaniline, disodium salt(MADB), 3,3′-,5,5′-Tetramethylbenzidine(TMBZ), N,N-Bis(4-sulfobutyl)-3-methylaniline, disodium salt(TODB), N-Ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline, sodium salt(TOOS), N-Ethyl-N-(3-sulfopropyl)-3-methylaniline, sodium salt(TOPS), Sodium 10-(carboxymethylaminocarbonyl)-3,7-bis(dimethylamino)phenothiazine (DA-67), N-(Carboxymethylaminocarbonyl)-4,4′-bis(dimethylamino)diphenylamine Sodium Salt (DA-64), 4-Hydroxybenzoic acid 등이 사용 가능하다.
이상의 설명에서와 같이, 당화 단백질 측정 방법에 복합체를 형성하는 과정이 포함되면 분석신호의 세기가 증가한다. 분석신호의 증가는 당화 단백질에 대해 높은 민감도로 검출하는 것을 가능하게 한다. 특히, 저농도의 당화 단백질 검출이 용이하며, 시료에 존재하는 측정 오차를 유발하는 방해종(interferent)의 영향을 감소시킨다. 예를 들어, 당화 단백질의 일종인 당화 혈색소를 분광학적 방법으로 측정하는 경우 혈색소(hemoglobin)의 흡수 스펙트럼(absorption spectrum)이 자외선-가시광선(UV-visible light) 전 영역에 나타나므로, 비색법으로 당화 혈색소를 측정하는 경우 스펙트럼 겹침(spectrum overlap)에 의해 오차가 발생한다. 그러나 당화 단백질을 boric acid 또는 boronic acid 유도체와 결합하여 복합체를 형성하면, 비색법에서 분석신호가 증가하게 되어 스펙트럼 겹침에 따른 측정 오차를 극복할 수 있다.
한편, boric acid 또는 boronic acid 유도체는 그 자체로 당화 단백질, 당화 펩타이드, 당화 아미노산과 결합된 형태의 복합체로 사용하는 것이 가능한데, 담체(carrier)와 결합하여 사용하는 것도 가능하다. 즉, 상술한 당화 단백질 측정 방법을 수행함에 있어 담체에 고정된 특정 유도체를 이용할 수 있다. 다만, boric acid의 경우에는 담체에의 고정 효율이 떨어지는바, boronic acid 유도체의 경우에만 담체와 결합하여 사용할 수 있다. 일 실시예에 있어서, 물리적인 흡착을 이용하거나 화학적인 결합을 이용하여 boronic acid 유도체를 담체에 고정할 수 있다.
일 양상에 따르면, 담체는 나노미터(nano-meter) 또는 마이크로미터(micro-meter) 크기의 입자(particles), 다공성 막(porous membrane), 전도성 전극 표면 또는 기질의 표면일 수 있다. 입자로는 실리카(silica) 입자, 금 입자, 고분자 입자(latex particle), 세파로오스(sepharose) 입자, 아가로오스(agarose) 입자, 자석 입자(magnetic particle) 등을 예로 들 수 있다. 다공성 막으로는 유리섬유(glass fiber), 셀룰로오스(cellulose), 니트로셀룰로오스(nitrocellulose), 나일론(nylon), Polysulfone, Polypropylene, Polyethersulfone, Polyvinylidene fluoride, Hydroxylated polyester, Acrylic copolymer 등의 고분자로 이루어진 다공성 막을 예로 들 수 있다. 전도성 전극으로는 전기화학(electrochemistry)적 산화-환원(oxidation-reduction) 반응을 유도하기 위해 형성된 전도성 탄소(carbon), 흑연(graphite), 금, ITO(indium tin oxide) 등의 전극을 예로 들 수 있다. 그리고 기질로는 플라스틱 고분자나 유리판 등을 예로 들 수 있다.
이하에서는 담체에 고정된 boronic acid 유도체를 이용할 경우에 대해 설명한다. 일 실시예에 있어서, 먼저 시료에 존재하는 당화 단백질과 담체에 고정된 boronic acid 유도체를 결합하여 복합체를 형성한 후, 담체를 시료로부터 분리하여 당화 단백질을 시료로부터 분리할 수 있다. 분리된 담체에는 boronic acid 유도체와 결합된 당화 단백질 복합체가 결합되어 있으므로, 분리된 상태에서 단백질 분해효소를 처리한 후에 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 처리하여 과산화수소를 생성하고 이를 측정한다.
다른 실시예에 있어서, 시료에 존재하는 당화 단백질을 단백질분해효소로 처리하여 당화 펩타이드 또는 당화 아미노산을 생성한다. 이후, 담체에 고정된 boronic acid 유도체를 도입하여 당화 펩타이드 또는 당화 아미노산과 복합체를 형성한다. 그리고 담체를 시료로부터 분리하면 당화 펩타이드 또는 당화 아미노산이 시료로부터 분리된다. 분리된 복합체에 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 반응시켜 과산화수소를 생성하고 이를 측정한다.
이상에서와 같이, 담체에 고정된 유도체를 사용하여 시료로부터 당화 단백질 또는 당화 펩타이드 또는 당화 아미노산을 분리한 후 측정하는 방법은 시료에 존재하는 방해종의 영향을 최소화한다. 이러한 분리 방법은 일례로 입자를 담체로 사용하는 경우에 중력, 원심력, 전자기력 등의 힘을 이용하여 입자를 시료 용액으로부터 분리할 수 있다. 또한 분리된 담체를 세척하여 사용할 수도 있다. 전기화학적으로 산화-환원을 측정하는 전극을 담체로 사용하는 경우 전극 표면에 boronic acid 유도체를 고정하고 시료에 존재하는 당화 단백질 또는 당화 펩타이드 또는 당화 아미노산과 반응하여 전극 표면에 복합체를 형성한다. 이후, 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 처리하여 생성된 생성물질을 산화-환원 반응을 통해 전기적 신호를 측정하여 당화 단백질을 측정한다.
담체가 플라스틱판 또는 유리판일 경우에 표면에 boronic acid 유도체를 고정하고 시료에 존재하는 당화 단백질 또는 당화 펩타이드 또는 당화 아미노산과 반응하여 표면에 복합체를 형성한다. 이후, 표면을 세척한 후 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 표면에 도입하여 반응생성물을 측정하여 당화 단백질을 측정한다.
이하에서는 이상의 당화 혈색소 측정 방법에 따른 실험 예에 대해 설명한다.
- 용혈시약(hemolysis reagent): 0.15%(w/v) SDS, 0.1%(w/v) Tritone X-100를 증류수에 용해
- 제 1 시약: 1U/mL Neutral protease(Roche Diagnostics), 10mM 4-aminophenylboronic acid(Sigma)이 100mM N-cyclohexyl-2-aminoethanesulfonic acid (CHES, Dojindo Laboratories), pH 8.5에 용해됨
- 대조 제 1 시약: 1U/mL Neutral protease이 N-cyclohexyl-2-aminoethanesulfonic acid (CHES, Dojindo Laboratories), pH 8.5에 용해됨
- 제 2 시약: 30U/mL Fructosyl-peptide Oxidase(Kikkoman), 0.2mM 10-(carboxymethylaminocarbonyl)-3,7-bis(dimethylamino)phenothiazine sodium salt ((DA-67, Wako Pure Chemical Industries, Ltd.), 10U/mL Peroxidase(Sigma)를 100mM Tris/HCl, pH8.0에 용해
실험 방법은 전혈시료(whole blood) 10uL를 100uL 용혈시약에 첨가 후 2분 동안 교반하여 용혈을 유도한다. 용혈된 시료 5uL를 100uL의 제 1 시약 또는 대조 제 1 시약에 첨가한 후 5분 동안 교반한다. 제 2 시약 100uL를 각각의 제 1 시약 또는 대조 제 1 시약에 첨가한 후 5분 후에 스펙트럼을 측정한다. 도 4에서 점선은 boronic acid가 첨가되지 않은 대조 제 1 시약을 사용한 것이고, 실선은 boronic acid가 첨가된 제 1 시약을 사용한 것이다. 도 4에서 보듯이, boronic acid가 첨가된 경우 660nm에서 분석신호가 약 2배 정도 강하게 나타난다. 즉, 민감도가 향상된 것을 확인할 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (8)

  1. 삭제
  2. 당화 단백질(glycated protein)의 cis-diol과 유도체를 결합하여 복합체를 형성하는 단계;
    복합체에 단백질분해효소(protease)를 처리하여 당화 펩타이드(glycated peptide) 또는 당화 아미노산(glycated amino acid)을 생성하는 단계;
    당화 펩타이드 또는 당화 아미노산에 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 처리하여 과산화수소를 생성하는 단계; 및
    생성된 과산화수소를 측정하는 단계;
    를 포함하되,
    상기 유도체는 boric acid 또는 boronic acid 유도체이고,
    상기 boronic acid 유도체는 Aryl boronic acid와 Heteroaryl boronic acid와 Alkyl boronic acid와 Alkenyl boronic acid와 Alkynyl boronic acid와 (Hydroxymethyl)phenylboronic acid와 (Carboxymethyl)phenylboronic acid와 Aminophenylboronic acid 중 하나 또는 그 이상을 포함하는 당화 단백질 측정 방법.
  3. 당화 단백질(glycated protein)에 단백질분해효소(protease)를 처리하여 당화 펩타이드(glycated peptide) 또는 당화 아미노산(glycated amino acid)을 생성하는 단계;
    당화 펩타이드 또는 당화 아미노산에 유도체를 결합하여 복합체를 형성하는 단계;
    복합체에 당화 펩타이드 산화효소 또는 당화 아미노산 산화효소를 처리하여 과산화수소를 생성하는 단계; 및
    생성된 과산화수소를 측정하는 단계;
    를 포함하되,
    상기 유도체는 boric acid 또는 boronic acid 유도체이고,
    상기 boronic acid 유도체는 Aryl boronic acid와 Heteroaryl boronic acid와 Alkyl boronic acid와 Alkenyl boronic acid와 Alkynyl boronic acid와 (Hydroxymethyl)phenylboronic acid와 (Carboxymethyl)phenylboronic acid와 Aminophenylboronic acid 중 하나 또는 그 이상을 포함하는 당화 단백질 측정 방법.
  4. 삭제
  5. 제 2 항 내지 제 3 항 중 어느 한 항에 있어서,
    유도체는 담체(carrier)에 고정된 것인 당화 단백질 측정 방법.
  6. 제 5 항에 있어서,
    담체는 나노미터 또는 마이크로미터 크기의 입자(particles), 다공성 막(porous membrane), 전도성 전극 표면, 기질의 표면 중 어느 하나인 당화 단백질 측정 방법.
  7. 제 5 항에 있어서,
    물리적 흡착 또는 화학결합에 의해 담체에 유도체가 고정되는 당화 단백질 측정 방법.
  8. 제 5 항에 있어서,
    유도체는 boronic acid 유도체인 당화 단백질 측정 방법.
KR1020140190862A 2014-12-26 2014-12-26 당화 단백질 측정 방법 KR101773537B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140190862A KR101773537B1 (ko) 2014-12-26 2014-12-26 당화 단백질 측정 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140190862A KR101773537B1 (ko) 2014-12-26 2014-12-26 당화 단백질 측정 방법

Publications (2)

Publication Number Publication Date
KR20160079475A KR20160079475A (ko) 2016-07-06
KR101773537B1 true KR101773537B1 (ko) 2017-09-01

Family

ID=56502427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140190862A KR101773537B1 (ko) 2014-12-26 2014-12-26 당화 단백질 측정 방법

Country Status (1)

Country Link
KR (1) KR101773537B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190098384A (ko) 2018-02-14 2019-08-22 주식회사 에코디자인센터 시선형 인터페이스식 vr용 hmd 및 이를 이용한 수족관 관리 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070023661A (ko) 2004-03-17 2007-02-28 다이이치 가가쿠 야쿠힝 가부시키가이샤 당화 단백질의 측정 방법

Also Published As

Publication number Publication date
KR20160079475A (ko) 2016-07-06

Similar Documents

Publication Publication Date Title
KR101854883B1 (ko) 전기화학적 검출용의 장치 및 방법
EP1693461B1 (en) Method of assaying glycated protein
EP1950309A1 (en) Albumin-denaturing agent
JPWO2007072941A1 (ja) 糖化タンパク質の測定方法
RU2009101049A (ru) Повышенная специфичность детектирования анализируемого вещества путем измерения связанных и не связанных меток
JPWO2007094354A1 (ja) ヘモグロビンA1cセンサ
CA2559908A1 (en) Method of stabilizing oxidizable color-assuming reagent
WO2003064683A1 (fr) Methode de quantification de proteine glycosylee au moyen d'une reaction d'oxydoreduction, et kit de quantification associe
JP3987900B2 (ja) 糖化タンパク質の測定方法
Wei et al. A label-free Exonuclease I-assisted fluorescence aptasensor for highly selective and sensitive detection of silver ions
KR101773537B1 (ko) 당화 단백질 측정 방법
RU2005116827A (ru) Способы и композиции для определения характеристик фермента окислительно-восстановительной системы реагентов
Qin et al. Homogeneous label-free colorimetric strategy for convenient bleomycin detection based on bleomycin enhanced Fe (ii)–H 2 O 2–ABTS reaction
EP2216413A3 (en) Method of preteating sample for measurement of glycated amine and method of measuring glycated amine
JP2000333696A (ja) 糖化アミンの測定方法
JP4925384B2 (ja) N末端糖化蛋白質の定量方法
JP4622836B2 (ja) 分析装置
Wang et al. Homogeneous assay based on the pre-reduction and selective cation exchange for detection of multiple targets by atomic spectrometry
ATE458827T1 (de) Verfahren zur messung von saccharifiziertem amin
Ma et al. A highly sensitive and adjustable colorimetric assay of hydrogen sulfide by signal amplification based on G-quadruplex-Cu 2+ peroxidase mimetics
CN112557384B (zh) 一种基于比色分析的硫化氢检测方法及应用
WO2003046209A3 (de) Verfahren und biosensor zum erfassen von makromolekularen biopolymeren
JPWO2004007760A1 (ja) スルホン酸化合物を用いたタンパク質の分解方法
US11262345B2 (en) Method for measuring glycated protein using interdigitated electrode
Zhang et al. Endonuclease cleavage combined with horseradish peroxidase-assisted signal amplification for electrochemical monitoring of DNA

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant