KR101767644B1 - 차등 발현 유전자를 이용한 돼지의 산자수 예측용 조성물 및 예측방법 - Google Patents
차등 발현 유전자를 이용한 돼지의 산자수 예측용 조성물 및 예측방법 Download PDFInfo
- Publication number
- KR101767644B1 KR101767644B1 KR1020150142422A KR20150142422A KR101767644B1 KR 101767644 B1 KR101767644 B1 KR 101767644B1 KR 1020150142422 A KR1020150142422 A KR 1020150142422A KR 20150142422 A KR20150142422 A KR 20150142422A KR 101767644 B1 KR101767644 B1 KR 101767644B1
- Authority
- KR
- South Korea
- Prior art keywords
- pigs
- genes
- gene
- pig
- kit
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/124—Animal traits, i.e. production traits, including athletic performance or the like
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 차등 발현 유전자를 이용한 돼지의 산자수 예측용 조성물 및 예측방법에 관한 것으로, 더욱 상세하게는 유전자의 차등 발현 프로필을 이용하여 돼지의 산자수를 예측하고 다산 개체의 조기 선발을 종의 개량에 이용할 수 있는 돼지의 산자수 예측용 조성물 및 예측방법에 관한 것이다.
Description
본 발명은 차등 발현 유전자를 이용한 돼지의 산자수 예측용 조성물 및 예측방법에 관한 것으로, 더욱 상세하게는 유전자의 차등 발현 프로필을 이용하여 돼지의 산자수를 예측하고 다산 개체의 조기 선발을 종의 개량에 이용할 수 있는 돼지의 산자수 예측용 조성물 및 예측방법에 관한 것이다.
돼지의 산자수는 다른 형질에 비하여 매우 높게 평가되기 때문에 양돈 산업가와 사육자들의 주요 관심의 대상이 되고 있다. 하지만 돼지의 산자수는 다른 형질에 비하여 상대적으로 낮은 유전력과 성의 제한 등 기술적인 한계가 있어서 개량이 쉽지 않다. 산자수는 매우 복잡한 형질로서 배란율, 초기 배아의 생존율, 태아의 생존율, 자궁의 용량과 능력, 젖꼭지 수 등의 형질에 의해서 결정된다.
산자수를 증가시키기 위해서 적합한 영양공급과 암퇘지의 관리, 유전적 요소 등에 노력을 기울이고 있는데 유전학적 선발은 산자수를 증진 시켜 다산능을 가진 암퇘지를 생산하는데 크게 기여하고 있다.
최근에는 산자수와 이유두수 개량을 위한 돼지 산자능력 검정사업의 중요성이 재인식되고 있다. 이에 국내는 물론 유럽에서도 산자수가 많은 모돈의 집단을 만들어 그 집단에서 계속적으로 우수계통을 육성하고 있는데, 이를 하이퍼 프로리픽 라인(Hyper-prolific line)이라고 한다. 미국, 영국, 일본 등의 선진국에서도 다산성 계통의 육성을 위하여 중국 재래종인 메이시안(Meishan)종의 유전자를 수입하여 돼지 산자수 개량에 많은 연구가 활발히 진행되고 있지만, 아직은 실효성 있는 결과를 얻지 못하고 있다.
본 발명의 목적은 유전자의 차등 발현 프로필을 이용하여 저비용으로 단기간에 돼지의 산자수를 효과적으로 예측하고 다산 개체의 조기 선발을 종의 개량에 이용할 수 있는 돼지의 산자수 예측용 조성물 및 예측방법을 제공하는 것이다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 더욱 명확하게 된다.
이와 같은 기술적 배경 하에서, 본 발명자들은 예의 노력한 결과 본 발명을 완성하기에 이르렀다. 본 발명자들은 산자수가 우수한 흑돼지 품종을 유전자원으로 개량하기 위해 산자수가 우수한 모돈과 산자수가 열등한 모돈의 자궁으로부터 RNA을 분석하여 DEG(Differentially Expressed Gene)를 얻고, 이들 유전자와 산자수와의 연계성을 정립하여 산자수가 우수한 흑돼지 계통 조성을 위한 예측 및 진단기술을 제공한다.
따라서 본 발명의 일 측면에 따르면, 본 발명은 돼지 유전자 PTGER2(XM_003353488.3), ABCA1(XM_013993722.1), SAL1(NM_213814.1), SLC28A3(NM_001244637.1), Nptx1(XM_003131134.4), PITPNC1(NM_001143722.1), APOD(XM_001926063.6), SIK1(XM_005657164.1), ATP13A4(XM_003483299.3), HPGD(NM_001190248.1), KSR2(XM_005657319.2), NOS1(XM_013990334.1), PCDH15(XM_013983505.1), DKK1(NM_001145384.1), FFAR4, STC1(NM_001103212.1), RBP4(NM_214057.1), DEFB1(NM_214442.2), MFSD6(XM_013984344.1), FAM124B(XM_003359664.4), C2orf72(XM_005657589.2), Kif1b(XM_013998969.1), Gria1(XM_003359841.4), TUBA4B, UPTI(XM_013985430.1), CYP24A1(NM_214075.2), TRPV6(EU793997.1), Trpv5(XM_013985569), SYT13(XM_003122846.5), LAO, SLC12A2(XM_005661615.2), SLC27A6(XM_013995081.1), SPON1(XM_003465713.3), ANKRD34B(XM_005661523.2), Pol, BAIAP3(XM_003124723.4), XDH(NM_001285974.1), CDH17(XM_013996607.1), CA2(XM_001927805.2), PREX2(XM_013996690.1), KIAA1324, ERBB3(XM_013988320.1), CD69(NM_214091.2), ADAMTS18, MEP1B(XM_013999277.1), MOCOS, FCGBP(XM_013988568.1), Slc30a2(NM_001139475.1), GCNT2(XM_005665562.2), SLC24A4(XM_003128693.5), UABP-2(NM_213845.1), NMU(XM_003129032.3), FAM13A(XM_013979027.1), COLCA1(XM_013989513.1), MFSD4(XM_003357394.3), AGR2(NM_001244968.1), LHFPL3(XM_003357503.3), SLC26A4, CACNA1E(XM_013979914.1), ETV1(XM_013979740.1), COBL(XM_005667899.2), MUC6(XM_013989729.1), Dclk2(XM_013991619.1), CACNA1B, ATL3(XM_013994185.1), SLC39A2(NM_001244460.1), ACP5(NM_214209.1), KCNJ16, GRIA1(XM_003359841.4), CYP26A1(XM_003483530.3), FIGF(XM_001928382.4), LIPG(NM_001243029.1), PIF1(XM_013992892.1), CEL, ZPLD1(XM_005657114.2), KIF5C(XM_003359416.3), CCNB1(NM_001170768.1), SDCBP2(NM_001244863.1), GDF5(NM_001244297.1), GLRX(NM_214233.1), HBA, FBXO32(NM_001044588.1), UPK3A(XM_013997468.1), HBB(NM_001144841.1), CENPF(XM_003130395.5), ADCY8 및 MYD88(NM_001099923.1)로 이루어진 그룹에서 선택되는 1 종 이상 유전자의 발현수준을 측정하는 제제를 포함하는, 돼지의 산자수 예측용 조성물을 제공한다.
본 발명의 다른 측면에 따르면, 본 발명은 상기 조성물을 포함하는 돼지의 산자수 예측용 키트를 제공한다.
본 발명의 다른 측면에 따르면, 본 발명은 2마리 이상의 돼지로부터 각각 mRNA를 추출하여 각 유전자의 발현량을 정량화하고 각 유전자별 평균 발현량을 구하는 단계; 및 검체의 유전자 발현 프로필 중 PTGER2(XM_003353488.3), ABCA1(XM_013993722.1), SAL1(NM_213814.1), SLC28A3(NM_001244637.1), Nptx1(XM_003131134.4), PITPNC1(NM_001143722.1), APOD(XM_001926063.6), SIK1(XM_005657164.1), ATP13A4(XM_003483299.3), HPGD(NM_001190248.1), KSR2(XM_005657319.2), NOS1(XM_013990334.1), PCDH15(XM_013983505.1), DKK1(NM_001145384.1), FFAR4, STC1(NM_001103212.1), RBP4(NM_214057.1), DEFB1(NM_214442.2), MFSD6(XM_013984344.1), FAM124B(XM_003359664.4), C2orf72(XM_005657589.2), Kif1b(XM_013998969.1), Gria1(XM_003359841.4), TUBA4B, UPTI(XM_013985430.1), CYP24A1(NM_214075.2), TRPV6(EU793997.1), Trpv5(XM_013985569), SYT13(XM_003122846.5), LAO, SLC12A2(XM_005661615.2), SLC27A6(XM_013995081.1), SPON1(XM_003465713.3), ANKRD34B(XM_005661523.2), Pol, BAIAP3(XM_003124723.4), XDH(NM_001285974.1), CDH17(XM_013996607.1), CA2(XM_001927805.2), PREX2(XM_013996690.1), KIAA1324, ERBB3(XM_013988320.1), CD69(NM_214091.2), ADAMTS18, MEP1B(XM_013999277.1), MOCOS, FCGBP(XM_013988568.1), Slc30a2(NM_001139475.1), GCNT2(XM_005665562.2), SLC24A4(XM_003128693.5), UABP-2(NM_213845.1), NMU(XM_003129032.3), FAM13A(XM_013979027.1), COLCA1(XM_013989513.1), MFSD4(XM_003357394.3), AGR2(NM_001244968.1), LHFPL3(XM_003357503.3), SLC26A4, CACNA1E(XM_013979914.1), ETV1(XM_013979740.1), COBL(XM_005667899.2), MUC6(XM_013989729.1), Dclk2(XM_013991619.1), CACNA1B, ATL3(XM_013994185.1), SLC39A2(NM_001244460.1), ACP5(NM_214209.1), KCNJ16, GRIA1(XM_003359841.4), CYP26A1(XM_003483530.3) 및 FIGF(XM_001928382.4) 중 적어도 하나의 유전자가 상기 평균 발현량보다 높게 발현되거나, LIPG(NM_001243029.1), PIF1(XM_013992892.1), CEL, ZPLD1(XM_005657114.2), KIF5C(XM_003359416.3), CCNB1(NM_001170768.1), SDCBP2(NM_001244863.1), GDF5(NM_001244297.1), GLRX(NM_214233.1), HBA, FBXO32(NM_001044588.1), UPK3A(XM_013997468.1), HBB(NM_001144841.1), CENPF(XM_003130395.5), ADCY8 및 MYD88(NM_001099923.1)중 적어도 하나의 유전자가 상기 평균 발현량보다 적게 발현된 경우를 산자수가 더 높은 돼지로 예측하는 단계를 포함하는 돼지의 산자수 예측방법을 제공한다.
본 발명의 일 실시예에 따르면, 유전자의 차등 발현 프로필을 이용하여 저비용으로 단기간에 돼지의 산자수를 효과적으로 예측하고 다산 개체의 조기 선발을 종의 개량에 이용할 수 있는 효과를 도모할 수 있다.
도 1은 높은 산자수 (TN1410R3382)와 낮은 산자수 그룹(TN1410R3379)에 대한 DEG 클러스트링을 보여주는 도면이다.
도 2는 산자수가 낮은 그룹과 높은 그룹에서 나타난 게놈(genome)과 유전자(gene)의 리드(read) 수를 보여주는 도면이다.
도 3은 산자수가 높은 그룹에서 발현이 증가한 DEG 중에서 생물학적 프로세스(biological process)에 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
도 4는 산자수가 높은 그룹에서 발현이 증가한 DEG 중에서 세포 구성성분(cellular component)에 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
도 5는 산자수가 높은 그룹에서 발현이 증가한 DEG 중에서 분자 기능(molecular function)과 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
도 6은 산자수가 높은 그룹에서 발현이 감소한 DEG 중에서 생물학적 프로세스(biological process)에 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
도 7은 산자수가 높은 그룹에서 발현이 감소한 DEG 중에서 분자 기능(molecular function)에 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
도 2는 산자수가 낮은 그룹과 높은 그룹에서 나타난 게놈(genome)과 유전자(gene)의 리드(read) 수를 보여주는 도면이다.
도 3은 산자수가 높은 그룹에서 발현이 증가한 DEG 중에서 생물학적 프로세스(biological process)에 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
도 4는 산자수가 높은 그룹에서 발현이 증가한 DEG 중에서 세포 구성성분(cellular component)에 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
도 5는 산자수가 높은 그룹에서 발현이 증가한 DEG 중에서 분자 기능(molecular function)과 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
도 6은 산자수가 높은 그룹에서 발현이 감소한 DEG 중에서 생물학적 프로세스(biological process)에 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
도 7은 산자수가 높은 그룹에서 발현이 감소한 DEG 중에서 분자 기능(molecular function)에 연관되어 유의미를 가지는 유전자의 카테고리 및 유전자들을 보여주는 도면이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명의 일 측면에 따르면, 돼지 유전자 PTGER2(XM_003353488.3), ABCA1(XM_013993722.1), SAL1(NM_213814.1), SLC28A3(NM_001244637.1), Nptx1(XM_003131134.4), PITPNC1(NM_001143722.1), APOD(XM_001926063.6), SIK1(XM_005657164.1), ATP13A4(XM_003483299.3), HPGD(NM_001190248.1), KSR2(XM_005657319.2), NOS1(XM_013990334.1), PCDH15(XM_013983505.1), DKK1(NM_001145384.1), FFAR4, STC1(NM_001103212.1), RBP4(NM_214057.1), DEFB1(NM_214442.2), MFSD6(XM_013984344.1), FAM124B(XM_003359664.4), C2orf72(XM_005657589.2), Kif1b(XM_013998969.1), Gria1(XM_003359841.4), TUBA4B, UPTI(XM_013985430.1), CYP24A1(NM_214075.2), TRPV6(EU793997.1), Trpv5(XM_013985569), SYT13(XM_003122846.5), LAO, SLC12A2(XM_005661615.2), SLC27A6(XM_013995081.1), SPON1(XM_003465713.3), ANKRD34B(XM_005661523.2), Pol, BAIAP3(XM_003124723.4), XDH(NM_001285974.1), CDH17(XM_013996607.1), CA2(XM_001927805.2), PREX2(XM_013996690.1), KIAA1324, ERBB3(XM_013988320.1), CD69(NM_214091.2), ADAMTS18, MEP1B(XM_013999277.1), MOCOS, FCGBP(XM_013988568.1), Slc30a2(NM_001139475.1), GCNT2(XM_005665562.2), SLC24A4(XM_003128693.5), UABP-2(NM_213845.1), NMU(XM_003129032.3), FAM13A(XM_013979027.1), COLCA1(XM_013989513.1), MFSD4(XM_003357394.3), AGR2(NM_001244968.1), LHFPL3(XM_003357503.3), SLC26A4, CACNA1E(XM_013979914.1), ETV1(XM_013979740.1), COBL(XM_005667899.2), MUC6(XM_013989729.1), Dclk2(XM_013991619.1), CACNA1B, ATL3(XM_013994185.1), SLC39A2(NM_001244460.1), ACP5(NM_214209.1), KCNJ16, GRIA1(XM_003359841.4), CYP26A1(XM_003483530.3), FIGF(XM_001928382.4), LIPG(NM_001243029.1), PIF1(XM_013992892.1), CEL, ZPLD1(XM_005657114.2), KIF5C(XM_003359416.3), CCNB1(NM_001170768.1), SDCBP2(NM_001244863.1), GDF5(NM_001244297.1), GLRX(NM_214233.1), HBA, FBXO32(NM_001044588.1), UPK3A(XM_013997468.1), HBB(NM_001144841.1), CENPF(XM_003130395.5), ADCY8 및 MYD88(NM_001099923.1)로 이루어진 그룹에서 선택되는 1 종 이상 유전자의 발현수준을 측정하는 제제를 포함하는, 돼지의 산자수 예측용 조성물이 제공될 수 있다.
본 발명에 있어서, 상기의 '발현수준을 측정하는 것'은 mRNA 수준 또는 단백질 수준을 측정하는 것일 수 있다.
상기에서 'mRNA의 수준을 측정하는 것'은 RT-PCR, 경쟁적 RT-PCR, 실시간 RT-PCR, RNase 보호분석법, 노던 블롯팅, DNA 마이크로어레이 등을 포함한 종래 알려진 임의의 방법에 의하여 분석될 수 있다. 바람직하게는, 상기 유전자로 이루어진 군으로부터 선택된 하나 이상의 마커 유전자에 특이적인 프로브가 고정화되어 있는 마이크로어레이 상에 상기 생물학적 시료로부터 분리된 mRNA 또는 그로부터 유도된 cDNA를 혼성화시키고, 그 결과 얻어진 혼성화 정도를 측정함으로써 이루어질 수 있다. 상기 혼성화 정도는 형광 측정 및 전기적 측정과 같은 당업계에 알려진 임의의 측정 방법에 의하여 측정될 수 있다. 이 경우, 상기 프로브 또는 표적 핵산은 검출가능한 적절한 표지로 표지되어 있을 수 있다. 여기에서, 상기 cDNA는 상기 유전자로 이루어진 군으로부터 선택된 하나 이상의 마커 유전자를 표적으로 하는 센스 및 안티 센스 프라이머 쌍을 프라이머로 한 RT-PCR에 의하여 직접적으로 증폭된 것일 수 있다.
상기에서 '단백질의 수준을 측정하는 것'은 종래 알려진 임의의 단백질 측정 또는 검출 방법이 사용될 수 있다. 예를 들면, 상기 유전자로 이루어진 군으로부터 선택된 하나 이상의 마커 유전자로부터 발현된 단백질에 특이적으로 결합하는 항체를 이용한 분석방법이 사용될 수 있다. 항체를 이용한 단백질 분석 방법에는, 웨스턴 블롯팅, ELISA, 방사선 면역분석, 방사면역확산법, 오우크테로니 면역확산법, 로케트 면역전기영동, 조직면역기염색, 면역침전 분석법, 보체 고정 분석법, FACS 등이 포함되나, 이들 예에 한정되는 것은 아니다. 상기 ELISA에는 직접적 ELISA, 간접적 ELISA, 직접적 샌드위치 ELISA, 간접적 샌드위치 ELISA 등이 포함된다. 웨스턴 블롯팅이란, 전체 단백질을 분리하고, 전기영동하여, 단백질을 크기에 따라 분리한 다음, 니트로셀룰로즈 막으로 이동시켜 항체와 반응시키고, 생성된 항원-항체 복합체의 양을 표지된 항체를 이용하여 확인하는 방법이다. 그 외에 단백질 수준을 측정하는 방법에는, 표적 단백질에 특이적으로 결합하는 효소, 기질, 조효소, 리간드 등을 이용하는 방법이 사용될 수 있다.
본 발명에 있어서, 상기 유전자의 발현 수준은 상기 시료로부터 분리된 RNA를 주형으로 한, 역전사 중합효소 연쇄 반응 (RT-PCR)에 의하여 수행된 핵산 증폭에 의하여 얻어진 증폭 산물의 양을 측정함으로써 결정되는 것일 수 있다.
상기 조성물에는 시료 중의 상기 마커 유전자 또는 그로부터 발현된 핵산 발현 산물과의 혼성화 반응에 필요한 시약을 더 포함할 수 있다. 또한, 상기 조성물에는 상기 프로브를 안정화시키고, 반응의 매질이 되는 버퍼, 용매 등을 더 포함할 수 있다.
본 명세서 전체에 있어서, '프로브'라는 용어는, 표적 핵산과 부분적으로 또는 완전히 상보적인 핵산 가닥으로서, 표적 핵산과 염기 특이적인 방식으로 결합할 수 있는 올리고뉴클레오티드이다. 바람직하게는, 표적 핵산에 완전 상보적인 올리고뉴클레오티드이다. 상기 프로브는 핵산뿐만 아니라, 펩티드 핵산을 포함한 상보적 결합을 할 수 있는 종래 알려진 임의의 핵산 유도체가 포함된다.
상기 프로브와 표적 핵산의 결합 (일반으로, 혼성화라고도 함)은, 서열 의존적으로 일어나는 것으로 다양한 조건에서 수행될 수 있다. 일반적으로 혼성화 반응은 특정한 이온 강도 및 pH에서 특정 서열에 대한 Tm 보다 약 5℃ 낮은 온도에서 이루어진다. 상기 Tm 은 표적 서열에 상보적인 프로브의 50%가 표적 서열에 결합한 상태를 의미한다. 혼성화 반응 조건의 예는, pH 7.0 내지 8.3, 0.01 내지 1.0M Na+ 이온 농도일 수 있다. 또한, 표적 핵산과 프로브의 특이성을 높이기 위하여는, 표적 핵산과 프로브의 결합을 불안정하게 하는 조건, 예를 들면, 높은 온도, 높은 농도의 불안정화제 (예를 들면 포름아미드)의 존재하에서 수행되는 것일 수 있다.
상기 프로브의 길이는 표적 핵산과 서열 특이적으로 결합할 수 있는 것이며, 어떠한 길이의 폴리뉴클레오티드도 포함된다. 예를 들면, 상기 프로브의 길이는, 7 내지 200 뉴클레오티드, 7 내지 150 뉴클레오티드, 7 내지 100 뉴클레오티드, 7 내지 50 뉴클레오티드, 또는 전장 유전자의 일 가닥의 길이일 수 있으나, 이들 예에 한정되는 것은 아니다.
상기 프로브는 검출가능한 표지로 표지된 것일 수 있다. 상기 검출가능한 표지에는, Cy3 또는 Cy5와 같은 형광표지, 방사성 물질 표지, 기질을 발색 물질로 전환시키는 효소 등이 포함되나, 이들 예에 한정되는 것은 아니다.
본 발명에 있어서, 돼지의 종류에는 특별한 제한이 없으나, 흑돼지가 바람직하다.
본 발명의 다른 측면에 따르면, 상기 조성물을 포함하는 돼지의 산자수 예측용 키트가 제공될 수 있다.
본 발명의 일 실시예에 있어서, 상기 키트가 RT-PCR 키트, 마이크로어레이 칩 키트 또는 단백질 칩 키트일 수 있다.
본 발명의 일 실시예에 있어서, 상기 키트는 돼지의 자궁 유래 검체 검사에 이용되는 돼지의 산자수 예측용 키트일 수 있다.
본 발명의 다른 측면에 따르면, 2마리 이상의 돼지로부터 각각 mRNA를 추출하여 각 유전자의 발현량을 정량화하고 각 유전자별 평균 발현량을 구하는 단계; 및 검체의 유전자 발현 프로필 중 PTGER2(XM_003353488.3), ABCA1(XM_013993722.1), SAL1(NM_213814.1), SLC28A3(NM_001244637.1), Nptx1(XM_003131134.4), PITPNC1(NM_001143722.1), APOD(XM_001926063.6), SIK1(XM_005657164.1), ATP13A4(XM_003483299.3), HPGD(NM_001190248.1), KSR2(XM_005657319.2), NOS1(XM_013990334.1), PCDH15(XM_013983505.1), DKK1(NM_001145384.1), FFAR4, STC1(NM_001103212.1), RBP4(NM_214057.1), DEFB1(NM_214442.2), MFSD6(XM_013984344.1), FAM124B(XM_003359664.4), C2orf72(XM_005657589.2), Kif1b(XM_013998969.1), Gria1(XM_003359841.4), TUBA4B, UPTI(XM_013985430.1), CYP24A1(NM_214075.2), TRPV6(EU793997.1), Trpv5(XM_013985569), SYT13(XM_003122846.5), LAO, SLC12A2(XM_005661615.2), SLC27A6(XM_013995081.1), SPON1(XM_003465713.3), ANKRD34B(XM_005661523.2), Pol, BAIAP3(XM_003124723.4), XDH(NM_001285974.1), CDH17(XM_013996607.1), CA2(XM_001927805.2), PREX2(XM_013996690.1), KIAA1324, ERBB3(XM_013988320.1), CD69(NM_214091.2), ADAMTS18, MEP1B(XM_013999277.1), MOCOS, FCGBP(XM_013988568.1), Slc30a2(NM_001139475.1), GCNT2(XM_005665562.2), SLC24A4(XM_003128693.5), UABP-2(NM_213845.1), NMU(XM_003129032.3), FAM13A(XM_013979027.1), COLCA1(XM_013989513.1), MFSD4(XM_003357394.3), AGR2(NM_001244968.1), LHFPL3(XM_003357503.3), SLC26A4, CACNA1E(XM_013979914.1), ETV1(XM_013979740.1), COBL(XM_005667899.2), MUC6(XM_013989729.1), Dclk2(XM_013991619.1), CACNA1B, ATL3(XM_013994185.1), SLC39A2(NM_001244460.1), ACP5(NM_214209.1), KCNJ16, GRIA1(XM_003359841.4), CYP26A1(XM_003483530.3), FIGF(XM_001928382.4), LIPG(NM_001243029.1), PIF1(XM_013992892.1), CEL, ZPLD1(XM_005657114.2), KIF5C(XM_003359416.3), CCNB1(NM_001170768.1), SDCBP2(NM_001244863.1), GDF5(NM_001244297.1), GLRX(NM_214233.1), HBA, FBXO32(NM_001044588.1), UPK3A(XM_013997468.1), HBB(NM_001144841.1), CENPF(XM_003130395.5), ADCY8 및 MYD88(NM_001099923.1) 중 적어도 하나의 유전자가 상기 평균 발현량보다 적게 발현된 경우를 산자수가 더 높은 돼지로 예측하는 단계를 포함하는 돼지의 산자수 예측방법이 제공될 수 있다.
본 발명에 의한 예측 및 진단은 다음과 같이 수행될 수 있다.
본 발명은 복수의 돼지로부터 얻어진 유전자별 평균 발현량을 대조군으로 한다. 상기 평균 발현량을 산출하기 위한 모집단 돼지는 되도록 유사한 게놈을 갖는 것이 바람직하므로 같은 종인 것일 수 있고, 개체간의 유전자 발현의 다양성을 확보하기 위해 서로 다른 가계로부터 수집된 것이 바람직하다. 또한, 통계의 정확성과 유의성을 높이기 위해 2 이상의 최대한 많은 개체로부터 평균 발현량을 얻는 것이 바람직하다.
다음, 산자수를 알지 못하는 검사 대상 돼지(검체)의 유전자 발현 프로필을 얻어, 이를 상기 대조군인 유전자별 평균 발현량과 대비하여 상기 본 발명에 의한 특정 유전자 발현량과 대조한다.
상기에서 '평균 발현량보다 높게 발현'이라는 것은, 2 이상의 돼지들에서 수집된 유전자의 평균 발현량과 비교하여 유전자의 발현이 유의적으로 증가한 것을 의미한다. 즉, 산자수를 알 수 없는 검사 대상 돼지의 유전자 프로필을 얻었을 때, 상기 나열된 유전자 목록에서 높은 산자수의 돼지에서 발현이 증가한 유전자와 발현이 감소한 유전자의 목록을 참고하고, 검사 대상 돼지의 발현량이 유의적으로 증가하였는지를 조사함으로써, 검사대상 돼지의 산자수를 예측할 수 있다.
따라서 본 발명에 의하면 검체로부터 얻어진 유전자 발현 프로필은 상기 대조군과 비교하여 검체가 대조군에 비해 산자수가 더 높거나, 더 낮은 것으로 예측할 수 있다.
상기 예측은 검체의 유전자 프로필이 나타내는 양상을 통계적으로 분석하여 처리하는 것일 수 있다.
이때, 상기 산자수를 보다 더 정확하게 예측하기 위한 다양한 방법이 사용될 수 있다.
예를 들어, 하기 표 1 및 표 2에 기재되어 있는 DEG를 발현량의 차이에 따른 순서에 따라 서열을 정하고, 검체로부터 얻어진 유전자의 프로필을 조사하여 상기 서열에 따른 중요도의 관점으로 차등을 두어 산자수의 예측에 적용할 수 있다.
또한, 하기 표 1 및 표 2에 기재되어 있는 DEG를 유전자 온톨로지에 따라 카테고리별로 분류하고, 검체로부터 얻어진 유전자의 프로필을 조사하여 카테고리별로 차등을 두어 이를 산자수의 예측에 적용할 수 있다.
본 발명의 일 실시예에서, 상기 방법은 돼지의 자궁 유래 검체를 이용하는 것을 특징으로 하는 돼지의 산자수 예측방법을 제공한다.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
실험 방법
자궁 시료 채취 및 mRNA 시퀀싱
흑돼지 모돈으로부터 산자수 연관 차트를 참조하여 평균 산자수 11두(higher litter size)와 7두(lower litter size)에 대해 도축 직후에 자궁을 수거하고 동일 부위에 일정량을 절취한 후 액체질소로 급냉동하였다. 총 RNA는 자궁조직의 일정량을 절취한 후 TRI-시약(Molecular Research Center, Cincinnati, OH, USA)을 사용하여 분리하였다. mRNA는 RNA-Seq 샘플 프레퍼레이션 키트(Illumina, Inc., San Diego, CA; Jung et al., 2012)에 의해 분리되었다.
RNA 정제도는 총 RNA 추출물의 1μl를 NanoDrop8000 분광광도계에서 분석하여 결정하였다. 총 RNA의 온전성(integrity)은 Agilent Technologies 2100 Bioanalyzer로 체크하였으며, RNA 온전성 지수(integrity Number, RIN)는 8이상의 값을 기준으로 하였다. mRNA 시퀀싱 라이브러리는 제조업체의 설명서(Illumina TruSeq RNA Prep kit v2)에 따라서 조제되었다. mRNA는 총 RNA 2μg을 사용하여 2회 반복 정제하였으며, poly-T 올리고 뉴클레오티드가 부착된 자성 비드(Magnetic bead)를 사용하여 정제 및 단편화하였다. 단편화된 RNA 조각은 무작위 헥사머(random hexamers)로 프라이밍(priming)하였고, 역전사효소(reverse transcriptase)로 1st cDNA를 역전사하였다. 이후 RNA 주형을 제거하고, dsDNA를 합성하였다. 말단 수복(end repair), A-테일링(A-tailing), 어뎁터 라이게이션(adaptor ligation), cDNA 주형 정제 및 PCR에 의해 정제된 cDNA의 증폭(enrichment)을 수행하였다. 증폭된 라이브러리의 질은 모세관 전기영동(capillary electrophoresis, Bioanalyzer, Agilent)을 통해 확인하였다.
SYBR 그린 PCR 마스터 믹스(Applied Biosystems)를 사용하여 qPCR을 수행한 다음, 생성된 풀(pool)을 이와 동일한 양으로 태깅(tagging)된 라이브러리와 병합하였다.
클러스터 생성(Cluster generation)은 cBot 자동화 클러스터 생성시스템(automated cluster generation system, Illumina)의 플로우 셀(flow cell)에서 수행되었다. 플로우 셀은 HISEQ 2500 시퀀싱 시스템(Illumina)에 로딩되었고, 2x100 bp 리드 길이로 시퀀싱이 수행되었다.
RNA 시퀀싱 결과
낮은 산자수(TN1410R3382)와 높은 산자수(TN1410R3379)의 각 3두로부터 RNA를 분리하여 풀링(pooling) 후 RNA-seq을 수행하였다. 수행된 결과로서 총 리드수는 38,312,494(낮은 산자수)와 52,584,638(높은 산자수)로 나타났으며, 이 중에서 적합한 페어드 리드(properly paired read)는 각각 22,649,360(59.12%)와 31,915,162(60.69%)의 리드수를 보였다(도 1).
낮은 품질의 서열을 제거하기 위해, 서열 정보 중 N으로 나타난 염기의 비율이 전체 서열의 10% 이상 포함되어 있거나, Q20 미만의 염기가 40%이상인 리드를 제거하였으며, 평균 품질이 Q20 이하인 리드 역시 제거하였다. 필터링 전 과정은 내부 제작된 프로그램에 의해서 수행되었다. 서열 정렬 및 분석에 사용된 참조 유전체는 Ensembl (Flicek P. et al., 2013)에서 제공된 정보를 이용하였으며 72버전이 사용되었다. 필터링된 서열은 STAR 2.3.0e (Dobin et al, 2013)를 이용하여 유전체 서열에 정렬되었으며, 서열 정렬과정에서 ensembl 72버전의 유전자 정보가 사용되었다. 레퍼런스 게놈(Reference genome)에 의한 총 돼지(Sus scrofa) 유전자의 수는 25,323개로 예측되었고, 전사체(transcripts)의 수는 30,587개로 나타났다(도 2).
DEG 분석 결과
발현량 측정은 Cufflinks v2.1.1 (Trapnell C. et al, 2010)를 이용하였다. 발현량 측정을 위해서 ensembl 72 버전의 유전자 정보를 사용하였으며, 논코딩(non-coding) 유전자 영역은 -mask 옵션을 이용하여 발현량 측정에서 제외하였다. 발현량 측정의 정확성을 높이기 위하여 다중-리드-보정(multi-read-correction)과 프랙-바이어스-보정(frag-bias-correct) 옵션을 추가로 사용하였으며, 다른 옵션은 기본값으로 사용하였다.
특이발현 유전자 분석을 위해서 HTSeq-count v0.5.4p3 (Anders S. et al, 20140)을 이용하여 각 유전자의 리드 숫자를 계산하였으며, 인터섹션-논엠프티(intersection-nonempty) 규칙과 페어드-엔드(Paired-end) 서열을 고려하여 계산을 수행하였다. 계산된 각 유전자의 리드 숫자를 이용하여 TCC(Sun J. et al, 2013)를 이용한 특이 발현 유전자 분석을 수행하였다. TCC 옵션은 반복을 고려한 iDEGES/edgeR 방법을 이용하였으며, 특이발현 유전자 선택은 다중 테스트(multiple-testing) 과정에서 생기는 오류를 보정한 Q-밸류를 기준으로 0.05 미만을 기준값으로 하였다.
DEG를 분석해 본 결과, 유의적으로 DEG에 해당되는 유전자는 총 789개로 나타났다. 이들 유전자 중 p<0.01와 q<0.05를 만족하는 유의한 DEG를 선발 하여서 높은 산자수 그룹의 유전자 중 낮은 산자수 그룹의 경우와 비교하여 높은 발현을 보이는 유전자는 70개이며, 낮은 발현을 보이는 유전자는 16개로 나타났다. DEG에 따른 클러스터링 결과는 도 2에 나타나 있으며, 양 그룹에 대한 클러스터링이 잘 이루어짐을 알 수 있다.
DEG의 피어슨 상관관계(Pearson correlation)의 분석 결과, 0.87의 비교적 높은 상관관계가 있는 것으로 나타났다.
유전자 온톨로지 분석
유전자 온톨로지(Gene Ontology, GO)는 유전자의 특성을 생물학적 프로세스(Biological process, BP), 세포 구성성분(Cellular Component, CC), 분자 기능(Molecular Function, MF)의 3가지 기준으로 분류하여 데이터베이스화하고, 현재 선택된 유전자가 가지고 있는 기능에 대한 정보를 제공해 준다.
특이발현 유전자 분석을 통해 선택된 유전자의 특성을 알기 위해서 유전자 온톨로지를 이용한 경향성 분석을 수행하였으며, Fisher의 정확성 검증(Fisher R. A., 1922)을 이용하여 p-value가 0.001 미만인 유전자를 기준으로 유의미한 유전자 온톨로지 분류를 선택하였다. DEG 유전자들은 분자 기능, 생물학적 프로세스, 세포 구성성분의 기준에 따라 기능별로 분류하였다. 총 790 유전자로 온톨로지 분석을 하였고 이들 중 산자수가 높은 그룹에서 발현량이 증가한 DEG로 온톨로지를 분석하면 분자 기능, 생물학적 프로세스, 세포 구성성분의 기준에 대해 각각 6, 21, 10개가 존재하였다.
분자기능 (molecular function)에서 SLC12A2를 포함하는 6개 유전자가 공수송체 활성 (symporter activity), LPL을 포함하는 13개의 유전자는 패턴 결합 (pattern binding), STEAP3를 포함하는 3개 유전자는 산소 환원화 활성(oxidoreductase activity)의 카테고리로 나눌 수 있으며 이외에 사이토카인 수용체 활성 (cytokine receptor activity), 레티노이드 결합 (retinoid binding), 증식 요소 활성 (growth factor activity)의 온톨로지로 분류 할 수 있다.
생물학적 프로세스 (biological process)에서 세포 분열 (proliferation)에 연관된 유전자가 34개로 가장 많은 수를 유지하였고, 구체적인 기능적 분류는 EPAS1을 포함한 4개 유전자는 조직 항상성 (tissue homeostasis), GRIK1를 포함한 3개 유전자는 신경 임펄스의 조절 (positive regulation of transmission of nerve impulse), NTRK3를 포함한 29개 유전자는 효소 결합 수용체 단백질 신호 전달 (enzyme linked receptor protein signaling pathway), FRK를 포함한 34개 유전자는 세포 분열 (cell proliferation) 의 카테고리로 구분할 수 있다. 그 외 세포 부착 (cell adhesion), 비뇨생식기 발생 (urogenital system development), 세포내 자극에 대한 반응 (response to endogenous stimulus) 등의 카테고리로 온톨로지를 분석할 수 있었다.
세포 구성성분(cellular component)에서 CLDN8을 포함한 57개 유전자가 본질적 세포막 (intrinsic to membrane), GCNT2을 포함한 16개 유전자가 세포막 부분 (membrane fraction), CLDN8을 포함한 29개 유전자는 세포외막 부분 (plasma membrane part), STX3를 포함한 11개 유전자는 세포 연결 (cell junction) 카테고리에 해당하고 그 외에 바소레터랄 세포외막 (basolateral plasma membrane), 세포외부분 (extracellular region part) 등의 온톨로지로 구분된다.
DEG 유전자의 발현 변화 분석
산자수의 차이에 다른 유전자의 차등 발현을 분석 해 본 결과 산자수가 높은 그룹에서 낮은 그룹에 비해 발현량이 증가한 DEG는 70개, 감소한 DEG는 16개로 밝혀졌다. 증가한 DEG 중 가장 차이가 많은 유전자로는 CACNA1B 로 29.58 배로 약 760배 이상의 발현량이 차이나는 것으로 확인되었다. 또한 PTGER2와 RBP4 유전자는 기존의 인간 연구에서도 번식과 연관 있다고 알려져 있으며 산자수가 높은 그룹에서 각각 8.9배 118배 이상 발현이 증가되었다. 또한 Pol, TUBA4B, LAO, FCGBP, UABP-2, MUC6, Dclk2, Cacna1b, ATL3 유전자는 산자수가 낮은 그룹에서 발현량이 전혀 측정 되지 않았고 산자수가 높은 그룹에서만 발현되는 유전자로 확인되었다.
산자수가 높은 그룹에서 낮은 그룹에 비해서 발현량이 감소한 DEG중에 가장 차이가 큰 유전자로는 HBA 이고 7.1배 감소한 것으로 확인이 되었다. CCNB1과 ADCY8 유전자는 산자수에 영향을 미친다고 이전 보고 되어진 유전자이며 각각 4.69배 5.65배 감소하는 것으로 나타났다. PIF1, CEL, ZPLD1, GDF5, ADCY8, MYD88 유전자는 산자수가 높은 유전자에서는 발현량이 전혀 확인되지 않았다. 이들 유전자는 산자수를 억제하는 역할을 담당할 것으로 생각된다.
이상의 결과를 종합하면, 산자수에 따른 그룹으로부터 자궁을 채취하여 RNA 시퀀싱을 수행한 결과, 총 789개의 DEGs를 확보하였다. 분석결과, 높은 산자수에서 상향조절된 유전자 70개가 조사되었으며, 하향조절된 유전자는 16개가 존재하는 것으로 나타났다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
Claims (9)
- 돼지 유전자 PTGER2(XM_003353488.3), TUBA4B, LAO, Pol, UABP-2(NM_213845.1), MUC6(XM_013989729.1), Dclk2(XM_013991619.1), CACNA1B, 및 ATL3(XM_013994185.1)의 유전자의 발현수준을 측정하는 제제를 포함하는, 흑돼지의 산자수 예측용 조성물.
- 제1항에 있어서,
상기 돼지 유전자는 HBA, PIF1(XM_013992892.1), CEL, ZPLD1(XM_005657114.2), GDF5(NM_001244297.1), ADCY8 및 MYD88(NM_001099923.1) 유전자의 발현수준을 측정하는 제제를 더 포함하는, 흑돼지의 산자수 예측용 조성물. - 제1항에 있어서,
상기 돼지 유전자 ABCA1(XM_013993722.1), SAL1(NM_213814.1), SLC28A3(NM_001244637.1), Nptx1(XM_003131134.4), PITPNC1(NM_001143722.1), APOD(XM_001926063.6), SIK1(XM_005657164.1), ATP13A4(XM_003483299.3), HPGD(NM_001190248.1), KSR2(XM_005657319.2), NOS1(XM_013990334.1), PCDH15(XM_013983505.1), DKK1(NM_001145384.1), FFAR4, STC1(NM_001103212.1), DEFB1(NM_214442.2), MFSD6(XM_013984344.1), FAM124B(XM_003359664.4), C2orf72(XM_005657589.2), Kif1b(XM_013998969.1), UPTI(XM_013985430.1), CYP24A1(NM_214075.2), TRPV6(EU793997.1), Trpv5(XM_013985569), SYT13(XM_003122846.5), SLC12A2(XM_005661615.2), SLC27A6(XM_013995081.1), SPON1(XM_003465713.3), ANKRD34B(XM_005661523.2), BAIAP3(XM_003124723.4), XDH(NM_001285974.1), CDH17(XM_013996607.1), CA2(XM_001927805.2), PREX2(XM_013996690.1), KIAA1324, ERBB3(XM_013988320.1), CD69(NM_214091.2), ADAMTS18, MEP1B(XM_013999277.1), MOCOS, FCGBP(XM_013988568.1), Slc30a2(NM_001139475.1), GCNT2(XM_005665562.2), SLC24A4(XM_003128693.5), NMU(XM_003129032.3), FAM13A(XM_013979027.1), COLCA1(XM_013989513.1), MFSD4(XM_003357394.3), AGR2(NM_001244968.1), LHFPL3(XM_003357503.3), SLC26A4, CACNA1E(XM_013979914.1), ETV1(XM_013979740.1), COBL(XM_005667899.2), SLC39A2(NM_001244460.1), ACP5(NM_214209.1), KCNJ16, CYP26A1(XM_003483530.3), FIGF(XM_001928382.4), LIPG(NM_001243029.1), KIF5C(XM_003359416.3), CCNB1(NM_001170768.1), SDCBP2(NM_001244863.1), GLRX(NM_214233.1), FBXO32(NM_001044588.1), UPK3A(XM_013997468.1), HBB(NM_001144841.1) 및 CENPF(XM_003130395.5) 유전자의 발현수준을 측정하는 제제를 더 포함하는, 흑돼지의 산자수 예측용 조성물. - 제1항 내지 제3항 중 어느 한 항에 따른 기재의 조성물을 포함하는 흑돼지의 산자수 예측용 키트.
- 제4항에 있어서, 상기 키트가 RT-PCR 키트, 마이크로어레이 칩 키트 또는 단백질 칩 키트인 흑돼지의 산자수 예측용 키트.
- 제4항에 있어서, 상기 키트는 돼지의 자궁 유래 검체 검사에 이용되는 흑돼지의 산자수 예측용 키트.
- 2마리 이상의 돼지로부터 각각 mRNA를 추출하여 각 유전자의 발현량을 정량화하고 각 유전자별 평균 발현량을 구하는 단계; 및
검체의 유전자 발현 프로필 중 PTGER2(XM_003353488.3), TUBA4B, LAO, Pol, UABP-2(NM_213845.1), MUC6(XM_013989729.1), Dclk2(XM_013991619.1), CACNA1B, 및 ATL3(XM_013994185.1) 유전자가 상기 평균 발현량보다 높게 발현된 경우를 산자수가 더 높은 돼지로 예측하는 단계를 포함하는 흑돼지의 산자수 예측방법. - 제7항에 있어서,
HBA, PIF1(XM_013992892.1), CEL, ZPLD1(XM_005657114.2), GDF5(NM_001244297.1), ADCY8 및 MYD88(NM_001099923.1)의 유전자가 상기 평균 발현량보다 적게 발현된 경우를 산자수가 더 높은 돼지로 예측하는 단계를 더 포함하는 흑돼지의 산자수 예측방법. - 제7항에 있어서,
ABCA1(XM_013993722.1), SAL1(NM_213814.1), SLC28A3(NM_001244637.1), Nptx1(XM_003131134.4), PITPNC1(NM_001143722.1), APOD(XM_001926063.6), SIK1(XM_005657164.1), ATP13A4(XM_003483299.3), HPGD(NM_001190248.1), KSR2(XM_005657319.2), NOS1(XM_013990334.1), PCDH15(XM_013983505.1), DKK1(NM_001145384.1), FFAR4, STC1(NM_001103212.1), DEFB1(NM_214442.2), MFSD6(XM_013984344.1), FAM124B(XM_003359664.4), C2orf72(XM_005657589.2), Kif1b(XM_013998969.1), UPTI(XM_013985430.1), CYP24A1(NM_214075.2), TRPV6(EU793997.1), Trpv5(XM_013985569), SYT13(XM_003122846.5), SLC12A2(XM_005661615.2), SLC27A6(XM_013995081.1), SPON1(XM_003465713.3), ANKRD34B(XM_005661523.2), BAIAP3(XM_003124723.4), XDH(NM_001285974.1), CDH17(XM_013996607.1), CA2(XM_001927805.2), PREX2(XM_013996690.1), KIAA1324, ERBB3(XM_013988320.1), CD69(NM_214091.2), ADAMTS18, MEP1B(XM_013999277.1), MOCOS, FCGBP(XM_013988568.1), Slc30a2(NM_001139475.1), GCNT2(XM_005665562.2), SLC24A4(XM_003128693.5), NMU(XM_003129032.3), FAM13A(XM_013979027.1), COLCA1(XM_013989513.1), MFSD4(XM_003357394.3), AGR2(NM_001244968.1), LHFPL3(XM_003357503.3), SLC26A4, CACNA1E(XM_013979914.1), ETV1(XM_013979740.1), COBL(XM_005667899.2), SLC39A2(NM_001244460.1), ACP5(NM_214209.1), KCNJ16, CYP26A1(XM_003483530.3) 및 FIGF(XM_001928382.4)의 유전자가 높게 발현된 경우이고,
LIPG(NM_001243029.1), KIF5C(XM_003359416.3), CCNB1(NM_001170768.1), SDCBP2(NM_001244863.1), GLRX(NM_214233.1), FBXO32(NM_001044588.1), UPK3A(XM_013997468.1), HBB(NM_001144841.1) 및 CENPF(XM_003130395.5)의 유전자가 적게 발현되는 경우를 산자수가 더 높은 돼지로 예측하는 단계를 더 포함하는 흑돼지의 산자수 예측방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150142422A KR101767644B1 (ko) | 2015-10-12 | 2015-10-12 | 차등 발현 유전자를 이용한 돼지의 산자수 예측용 조성물 및 예측방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150142422A KR101767644B1 (ko) | 2015-10-12 | 2015-10-12 | 차등 발현 유전자를 이용한 돼지의 산자수 예측용 조성물 및 예측방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170043052A KR20170043052A (ko) | 2017-04-20 |
KR101767644B1 true KR101767644B1 (ko) | 2017-08-11 |
Family
ID=58705804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150142422A KR101767644B1 (ko) | 2015-10-12 | 2015-10-12 | 차등 발현 유전자를 이용한 돼지의 산자수 예측용 조성물 및 예측방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101767644B1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200074372A (ko) * | 2018-12-14 | 2020-06-25 | 대한민국(농촌진흥청장) | 돼지 발정주기 탐지용 자궁내막 유전자 및 그의 용도 |
WO2021128950A1 (zh) * | 2019-12-23 | 2021-07-01 | 四川省人民医院 | 一种阵发性室上性心动过速的筛查试剂盒 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110157809B (zh) * | 2018-02-11 | 2020-12-04 | 河南农业大学 | 一种鸡CEL基因启动子99bp indel多态性标记检测试剂盒及其应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5939264A (en) | 1996-07-19 | 1999-08-17 | Iowa State University Research Foundation, Inc. | Genes and genetic markers for improved reproductive traits in animals |
WO2000042218A1 (en) * | 1999-01-15 | 2000-07-20 | Iowa State University Research Foundation, Inc. | Retinol binding protein 4 as a genetic marker for increased litter size |
-
2015
- 2015-10-12 KR KR1020150142422A patent/KR101767644B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5939264A (en) | 1996-07-19 | 1999-08-17 | Iowa State University Research Foundation, Inc. | Genes and genetic markers for improved reproductive traits in animals |
WO2000042218A1 (en) * | 1999-01-15 | 2000-07-20 | Iowa State University Research Foundation, Inc. | Retinol binding protein 4 as a genetic marker for increased litter size |
Non-Patent Citations (2)
Title |
---|
DNA Research, 2015, pp. 1-9 |
PLoS ONE 10(10):e0139514 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200074372A (ko) * | 2018-12-14 | 2020-06-25 | 대한민국(농촌진흥청장) | 돼지 발정주기 탐지용 자궁내막 유전자 및 그의 용도 |
KR102255691B1 (ko) | 2018-12-14 | 2021-05-26 | 대한민국 | 돼지 발정주기 탐지용 자궁내막 유전자 및 그의 용도 |
WO2021128950A1 (zh) * | 2019-12-23 | 2021-07-01 | 四川省人民医院 | 一种阵发性室上性心动过速的筛查试剂盒 |
US11795509B2 (en) | 2019-12-23 | 2023-10-24 | Sichuan Provincial People's Hospital | Screening kit for paroxysmal supraventricular tachycardia |
Also Published As
Publication number | Publication date |
---|---|
KR20170043052A (ko) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170363628A1 (en) | Means and methods for non-invasive diagnosis of chromosomal aneuploidy | |
CN113278709A (zh) | 贵州黑山羊多羔主效基因应用及引物对和试剂盒 | |
KR101767644B1 (ko) | 차등 발현 유전자를 이용한 돼지의 산자수 예측용 조성물 및 예측방법 | |
JP2015526099A (ja) | 乳房炎抵抗性の遺伝子マーカ | |
CN108893540B (zh) | circRNA_14707及其在分子辅助育种中应用 | |
KR101735075B1 (ko) | Dmr를 이용한 돼지의 산자수 예측용 조성물 및 예측방법 | |
KR101796158B1 (ko) | 돼지의 산자수 예측용 nat9 유전자의 snp 마커 및 이를 이용한 돼지 다산 개체 선발 방법 | |
KR101557071B1 (ko) | 한우의 육질 등급 예측용 유전자 마커 | |
KR101472025B1 (ko) | 한우의 근내지방조직 특이적 발현 유전자 테노모둘린 및 이중특이적 탈인산화효소 27을 이용한 한우의 근내지방조직 검출용 키트 및 이를 이용한 검출 방법 | |
CN113174441B (zh) | 一种鸭剩余采食量相关的lncRNA及其应用 | |
KR101723188B1 (ko) | 소의 도체중량 예측용 조성물 및 이를 이용한 소의 도체중량 예측방법 | |
KR101683086B1 (ko) | 유전자의 발현량 및 메틸화 프로필을 활용한 돼지의 산자수 예측방법 | |
JP2013188216A (ja) | 臓器特異的遺伝子、その同定方法およびその用途 | |
KR101735762B1 (ko) | 유전자의 발현프로필을 이용한 돼지의 산자수 예측방법 | |
CN108034732B (zh) | 一种预测绵羊繁殖能力的方法及其应用 | |
KR20220123246A (ko) | 핵산 서열 분석 방법 | |
CN108103207B (zh) | Brca1、jaml及其调控基因在品种选育中的应用 | |
KR101584601B1 (ko) | 한우의 근내지방도 예측용 유전자 마커 | |
KR102382857B1 (ko) | 재래 흑염소 개체 식별 및 친자 확인용 초위성체 마커 | |
US20150344952A1 (en) | Dna markers for beef tenderness in cattle | |
KR101796160B1 (ko) | 돼지의 산자수 예측용 dact3 유전자의 snp 마커 및 이를 이용한 돼지 다산 개체 선발 방법 | |
KR101510164B1 (ko) | 한우의 육량 지수 예측용 유전자 마커 | |
KR101557069B1 (ko) | 한우의 육량 지수 예측용 유전자 마커 | |
KR101557065B1 (ko) | 한우의 육질 등급 예측용 유전자 마커 | |
KR101546456B1 (ko) | 한우의 육질 등급 예측용 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |