KR101765736B1 - 직교 주파수 분할 다중-오프셋 직교 진폭 변조를 위한 시스템 및 방법 - Google Patents

직교 주파수 분할 다중-오프셋 직교 진폭 변조를 위한 시스템 및 방법 Download PDF

Info

Publication number
KR101765736B1
KR101765736B1 KR1020157025667A KR20157025667A KR101765736B1 KR 101765736 B1 KR101765736 B1 KR 101765736B1 KR 1020157025667 A KR1020157025667 A KR 1020157025667A KR 20157025667 A KR20157025667 A KR 20157025667A KR 101765736 B1 KR101765736 B1 KR 101765736B1
Authority
KR
South Korea
Prior art keywords
oqam
ofdm
time
weighted
generate
Prior art date
Application number
KR1020157025667A
Other languages
English (en)
Other versions
KR20160002722A (ko
Inventor
모하매드-자바드 압돌리
밍 지아
지앙레이 마
Original Assignee
후아웨이 테크놀러지 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후아웨이 테크놀러지 컴퍼니 리미티드 filed Critical 후아웨이 테크놀러지 컴퍼니 리미티드
Publication of KR20160002722A publication Critical patent/KR20160002722A/ko
Application granted granted Critical
Publication of KR101765736B1 publication Critical patent/KR101765736B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • H04L27/2698Multicarrier modulation systems in combination with other modulation techniques double density OFDM/OQAM system, e.g. OFDM/OQAM-IOTA system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/26362Subcarrier weighting equivalent to time domain filtering, e.g. weighting per subcarrier multiplication

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

직교 주파수 분할 다중(orthogonal frequency division multiplexing; OFDM)/오프셋 직교 진폭 변조(offset quadrature amplitude modulation; OQAM)를 수행하는 방법은, 데이터 버스트를 획득하는 단계를 포함한다. 상기 방법은 상기 데이터 버스트에 가중 순환 회선 필터링 변조(weighted circularly convolved filtering modulation)를 수행하여 출력 신호를 생성하는 단계를 포함한다. 상기 방법은 제1 무선 장치가 상기 출력 신호를 제2 무선 장치에 전송하는 단계를 추가로 포함한다. 상기 제2 무선 장치는 상기 제1 무선 장치로부터 입력 신호를 수신하고, 상기 제2 무선 장치는 상기 입력 신호에 가중 순환 회선 복조 필터링을 수행하여 상기 데이터 버스트를 생성한다.

Description

직교 주파수 분할 다중-오프셋 직교 진폭 변조를 위한 시스템 및 방법{SYSTEM AND METHOD FOR ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING-OFFSET QUADRATURE AMPLITUDE MODULATION}
본 발명은 무선 통신을 위한 시스템 및 방법에 관한 것으로서, 구체적으로, 직교 주파수 분할 다중(orthogonal frequency division multiplexing; OFDM)/오프셋 직교 진폭 변조(offset quadrature amplitude modulation; OQAM)를 위한 시스템 및 방법에 관한 것이다.
삭제
무선 통신에서, 직교 주파수 분할 다중(OFDM)은 파형 구조에 사용될 수 있다. OFDM은, 고속 푸리에 변환(fast Fourier transform; FFT) 및 역 FFT(IFFT)를 이용하여 구현을 용이하게 하고, 다중 경로 페이딩에 대해 강인성(robustness)을 가지는 것을 포함한 여러 이점을 가진다. 그러나, OFDM은, 사이클릭 프리픽스(cyclic-prefix) 및 주파수 가드 밴드(frequency guard band)로 인한 스팩트럼 비효율과 같은 문제를 가진다.
OFDM-오프셋 직교 진폭 변조(OQAM)는, 루트-레이즈드-코사인(root-raised cosine; RRC) 및 등방성 직교 변환 알고리즘(isotropic orthogonal transform algorithm; IOTA) 펄스 파형과 같은, 직교 프로토타입 필터를 적용시킨 시간-주파수를 사용한 멀티-캐리어 전송 테크닉이다. OFDM/OQAM은 OFDM과 비교하여 더 우수한 파워 스펙트럼 밀도(power spectral density; PSD) 사이드-로브 감소를 가진다. 그러므로, OFDM/OQAM은 OFDM과 비교하여 가드 밴드 오버헤드를 줄일 수 있다. 예를 들어, 롱 텀 에볼루션(LTE) 시스템에서, 오버헤드가 10% 감소될 수 있고, 또한 CP 제거로 인해 스팩트럼 효율을 향상시킬 수 있다. 그러나, OFDM/OQAM는 버스트 전송(transmission burst)의 양 단에서의 전송 시간의 미부에서 오버헤드가 발생한다. OFDM/OQAM는 OQAM 심볼 사이의 T/2 시간 오프셋으로 인한 오버헤드를 가지며, 여기서 T는 심볼 지속 기간이다. 총 오버헤드 지속 기간은, T/2를 뺀 프로토타입 필터의 길이와 동일하다. 프로토타입 필터의 길이는 허용 가능한 ISI(inter-symbol interference) ICI(inter-carrier interference)를 보유하기 위해 적어도 4T일 수 있다. 28개의 OQAM 심볼의 버스트 길이에 대해, 이것은 시간의 7/28=25% 오버헤드이다.
직교 주파수 분할 다중(orthogonal frequency division multiplexing; OFDM)/오프셋 직교 진폭 변조(offset quadrature amplitude modulation; OQAM)를 수행하는 일 방법 실시예는, 데이터 버스트를 획득하는 단계를 포함한다. 상기 방법은 상기 데이터 버스트에 가중 순환 회선 필터링 변조(weighted circularly convolved filtering modulation)를 수행하여 출력 신호를 생성하는 단계를 포함한다. 상기 방법은 제1 무선 장치가 상기 출력 신호를 제2 무선 장치에 전송하는 단계를 추가로 포함한다.
OFDM/OQAM를 수행하는 다른 방법 실시예는, 제2 무선 장치로부터 입력 신호를 수신하는 제1 무선 장치를 포함한다. 상기 방법은 상기 입력 신호에 가중 순환 회선 복조 필터링을 수행하여 데이터 버스트를 생성하는 단계를 추가로 포함한다.
제1 무선 장치 실시예는, 프로세서 및 상기 프로세서에 의해 실행되는 프로그래밍을 저장하는 컴퓨터 판독 가능 저장 매체를 포함한다. 상기 프로그래밍은, 데이터 버스트를 획득하는 명령; 상기 데이터 버스트에 가중 순환 회선 필터링 변조를 수행하여 출력 신호를 생성하는 명령; 및 제2 무선 장치에 상기 출력 신호를 전송하는 명령을 포함한다.
전술한 내용은, 본 발명의 상세한 설명을 보다 용이하게 이해할 수 있도록 하기 위해, 본 발명의 실시예의 특징을 포괄적으로 개념화한 것이다. 본 발명의 추가적인 특징 및 이점은 아래에서 설명될 것이며, 이는 본 발명의 청구항의 목적을 형성한다. 개시된 개념 및 구체적인 실시예는 본 발명의 동일한 목적을 가지는 다른 구조 또는 프로세스를 변형하거나 설계하는 기초로써 용이하게 이용될 수 있다는 것을 통상의 기술자는 이해할 것이다. 또한, 이러한 등가 구성은, 첨부된 청구항에서 출발하는 본 발명의 범위로부터 벗어나지 않는다는 것을 통상의 기술자는 이해할 것이다.
본 발명 및 이들의 이점의 보다 완전한 이해를 위해, 첨부된 도면과 함께 이하의 설명을 참조한다.
도 1은 데이터를 통신하는 무선 네트워크의 다이어그램을 도시한다.
도 2는 선형 회선 직교 주파수 분할 다중(OFDM)/오프셋 직교 진폭 변조(OQAM) 변조기의 일 예시를 도시한다.
도 3은 선형 회선 OFDM/OQAM 신호를 도시한다.
도 4는 다른 선형 회선 OFDM/OQAM 신호를 도시한다.
도 5는 OFDM/OQAM 변조기 다상 구조의 일 예시를 도시한다.
도 6은 OFDM/OQAM 복조기 다상 구조의 일 예시를 도시한다.
도 7은 가중 순환 회선(weighted circularly convolved) OFDM/OQAM 변조기의 일 예시를 도시한다.
도 8은 가중 순환 회선 OFDM/OQAM 변조를 도시한다.
도 9는 가중 순환 회선 OFDM/OQAM 변조를 도시한다.
도 10은 가중 순환 회선 OFDM/OQAM 변조를 도시한다.
도 11은 가중 순환 회선 OFDM/OQAM 변조를 도시한다.
도 12는 가중 순환 회선 OFDM/OQAM 변조를 도시한다.
도 13은 가중 시간 윈도잉을 도시한다.
도 14는 가중 순환 회선 OFDM/OQAM 변조의 일 방법 실시예의 흐름도를 도시한다.
도 15는 크롭핑(cropping) 및 시프팅(shifting)을 수행하는 일 방법 실시예의 흐름도를 도시한다.
도 16은 가중 순환 회선 OFDM/OQAM 복조의 일 방법 실시예의 흐름도를 도시한다.
도 17은 가중 순환 회선 후의 OFDM/OQAM 신호를 도시한다
도 18은 OFDM/OQAM 변조기 다중 구조의 다른 예시를 도시한다.
도 19는 OFDM/OQAM 복조기 다중 구조의 다른 예시를 도시한다.
도 20은 파워 스펙트럼 밀도(power spectral density; PSD) - 베이스밴드 주파수의 그래프를 도시한다.
도 21은 PSD - 베이스밴드 주파수의 다른 그래프를 도시한다.
도 22는 시간-변화 채널을 통해 전송된 전송 버스트를 도시한다.
도 23은 고 이동성(high mobility) UE을 위한 전송 블록의 예비단(reserving edge) OQAM 심볼을 도시한다.
도 24는 범용 컴퓨터 시스템의 일 예시의 블록도를 도시한다.
다른 도면 내의 대응하는 번호 및 부호는 일반적으로 다른 지시가 없는 한 대응하는 부분을 나타낸다. 도면은 실시예의 관련 측면을 명확하게 설명하기 위해 도시되었고 반드시 스케일을 도시하는 것은 아니다.
하나 이상의 실시예의 예시적인 실시예는 아래에 제공되어 있으나, 개시된 시스템 및/또는 방법은 현재 공지되거나 또는 존재하는 임의의 테크닉을 이용하여 구현될 수 있다는 것을 처음부터 이해해야 한다. 본 개시는, 여기서 설명되고 도시된 예시적인 설계 및 구현을 포함하는, 아래에 도시된 예시적인 구현, 도면, 및 테크닉에 한정되지 않으나, 등가물의 전체 범위와 함께 첨부된 청구항의 범위 내에서 변형될 수 있다.
직교 주파수 분할 다중(OFDM)/오프셋 직교 진폭 변조(OQAM)는 전송 버스트의 양 단에서의 전송 시간 또는 미부에서 오버헤드를 야기시키는 멀티-캐리어 전송 테크닉이다. 일 예시에서, OFDM/OQAM는 프로토타입 필터의 주파수-변조 버전의 뱅크를 가지는 입력 업-샘플링된 OQAM 시퀀스의 선형 회선으로 표현된다. 필터링 오버헤드를 생성하는 선형 회선 필터가 사용될 수 있다. 일 예시에서, 엄격한 절단(hard truncation)이 오버헤드를 줄이는데 사용된다. 엄격한 절단은 오버헤드를 완전히 제거한다. 그러나, 이것은 OQAM 심볼 상에 ISI(inter-symbol interference) 및 ICI(inter-carrier interference)를 야기시켜, 신호의 시간 에지에 가까이에서 변조된 심볼의 펄스 파형을 왜곡시킴으로써, 비-직교하게 된다. 나아가, OFDM/OQAM 신호의 스팩트럼 사이드-로브 감소는 절단에 의해 신호의 에지에서의 확실한 전이(sharp transition)에 부정적인 영향을 준다. 절단은 스팩스럼 사이드-로브 및 신호 에러 벡터 크기(error vector magnitude; EVM) 문제를 모두 가진다.
일 실시예에서, 가중 순환 회선 필터링은 OFDM/OQAM 내의 오버헤드를 줄이는데 이용된다. 순환 회선 필터링으로, 가중 데이터 블록의 시퀀스는 OFDM/OQAM 변조를 위한 입력으로 사용된다. 가중치는 변조기의 출력이 주기적이되도록 결정된다. 이것은 변조기와 복조기의 가중 순환 회선에 해당한다.
도 1은 데이터를 통신하는 네트워크(100)를 도시한다. 네트워크(100)은 커버리지 영역(106)을 가지는 통신 제어기(102), UE 104 및 UE 105를 포함하는 복수의 사용자 장치(UE), 및 백홀 네트워크(108)를 포함한다. 2개의 UE만 도시하였으나, 더 많은 UE가 존재할 수 있다. 통신 제어기(102)는, 지기국, eNB, 피코셀, 펨토셀, 및 다른 무선 가능한 장치와 같은, UE 104 및 UE 105와 업링크(파선) 및/또는 다운링크(점선) 연결을 구축하는 중에서 무선 액세스를 제공할 수 있는 임의의 컴포넌트일 수 있다. UE 104 및 UE 105는, 셀폰, 스마트폰, 태블릿, 센서 등과 같은, 통신 제어기(102)와 무선 통신을 구축할 수 있는 임의의 컴포넌트일 수 있다. 백홀 네트워크(108)는 통신 제어기(102)와 원격 단(도시되지 않음) 사이에 교환될 데이터를 허용하는 임의의 컴포넌트 또는 컴포넌트의 집합일 수 있다. 일부 실시예에서, 네트워크(100)는 릴레이, 펨토셀, 등과 같은 다양한 다른 무선 장치를 포함할 수 있다.
도 2는 선형 회선 변조의 방법의 흐름도를 도시한다. 입력 데이터 버스트 D는 출력 신호 s(t)를 생성하기 위해 선형 회선 OFDM/OQAM 변조기(130)에 의해 선형 회선된다. 일 예시 데이터 버스트는 다음과 같다:
Figure 112015090679966-pct00001
여기서 컬럼(column)은 주파수에 대응하고 로(row)는 시간에 대응한다. 데이터 버스트 D에서는 2M개의 서브캐리어가 있고, N은 시간을 나타낸다.
도 3은 설명의 목적으로 과장된 커브(142)로 도시된 출력 신호 s(t)를 도시한다. 커브(142)는 각각 LT/2의 길이를 가지는 미부(144)를 가진다. 커브(142)의 총 시간은 다음과 같다:
Figure 112015090679966-pct00002
.
그러나, 커브(142)의 시간은 바람직하게는 다음과 같이 줄어든다:
Figure 112015090679966-pct00003
.
도 4는, 커브(262)에 의해 도시된, 다른 출력 신호
Figure 112015090679966-pct00004
- 시간의 보다 현실적인 그래프를 도시한다. 커브(262)는 오버헤드(264)를 포함한다.
선형 회선 변조에서, OQAM 심볼의 시퀀스는 실제 직교 펄스 파형의 설정으로 변조된다. 펄스 파형은 시간 및 주파수 내의 대칭적인 실수값(real-valued) 프로토타입 필터 p(t)를 시프팅하여 획득된다. 연속적인 시간 OFDM/OQAM 신호에 대해, 변조기 출력은 다음과 같을 수 있다:
Figure 112015090679966-pct00005
Figure 112015090679966-pct00006
Figure 112015090679966-pct00007
Figure 112015090679966-pct00008
.
실수값 컨스텔레이션(constellation) 포인트는 d k,n 으로 주어진다. 실수값 컨스텔레이션 포인트는, 예컨대, 펄스-진폭 변조(pulse-amplitude modulating; PAM) 심볼 또는 직교 진폭 변조(quadrature amplitude modulation; QAM) 심볼의 실수부 또는 허수부일 수 있다. 서브캐리어의 수는 2M이고, 서브캐리어 간격은 1/T이고, 2개의 연속된 OQAM 심볼 사이의 시간 간격은 T/2이다. 실제 직교성은 다음과 같이 나타난다:
Figure 112015090679966-pct00009
Figure 112015090679966-pct00010
여기서,
Figure 112015090679966-pct00011
이다.
OFDM/OQAM 전송의 이산 시간 공식은,
Figure 112015090679966-pct00012
의 샘플링 주기로 연속적인 시간 신호를 샘플링하여 실현된다.
즉,
Figure 112015090679966-pct00013
이다.
도 5는, OFDM/OQAM 변조를 구현하는데 이용되는 OFDM/OQAM 변조기 다상(poly-phase) 구조(110)를 도시한다. 입력 데이터 포인트는 d k,n 이고, 여기서 k는 서브캐리어를 나타내고, n은 시간인 부호를 나타낸다. 멀티플라이어 블록(112)에서 입력에 jn +k가 곱해진다. 그 후, IFFT 블록(114), 2M-포인트 IFFT가 IFFT를 수행한다. IFFT 블록(114) 후에, 선형 회선 필터(116)는 전달 함수 Gk(z2)를 이용하여 선형 회선을 수행한다. 확장 블록(118)은 선형 회선 필터(116)의 출력을 인자 M으로 확장한다. 확장 블록(118)의 출력은 그 후 시간 시프트 블록(120)에 의해 시간 시프트되고, 가산기(122)에 의해 가산되어 출력 신호 s(n)을 생성한다.
도 6은 OFDM/OQAM 복조기 다상 구조(150)를 도시한다. 수신된 신호 s(n)은 시간 시프트 블록(152)에 의해 시간 시프트된다. 시간 시프트된 신호는 그 후 데이메이터 블록(154)에 의해 데이메이팅된다. 필터 블록(156)은 필터 Gk(z2)을 이용하여 데이메이팅된 출력을 필터링한다. 필터 블록(156)은 필터의 뱅크일 수 있으며, 각각은 그것의 입력 신호에 선형 회선을 적용한다. 그 다음, 2M-포인트 IFFT는 IFFT 블록(158)에 의해 필터링된 신호에 대해 수행된다. IFFT 블록(158)의 출력은 그 후 곱셈 블록(160)에서 (-j)n+k에 의해 곱해진다. 마지막으로, 실수부는 실수 추출기 블록(162)에 의해 추출되어 출력
Figure 112015090679966-pct00014
을 생성한다.
OFDM/OQAM 신호는 OQAM 심볼의 무한 시퀀스로 표현되나, 실제 시퀀스의 길이는 유한하다. 실제로는, 지연 고려는 길지 않은 전송 버스트를 촉진한다. 반면, 프로토타입 필터의 길이는, 적정한 스팩트럼 사이드-로브 성능을 가지는 동안 허용 가능한 근사값을 가지는 실제-직교성 조건을 만족하기 위해 적어도 4T일 수 있다. 따라서, OQAM 심볼의 길이 N 버스트에 대해, 시간의 오버헤드는 다음과 같다:
Figure 112015090679966-pct00015
.
도 4는 25% 오버헤드를 가지는 N=28인 OQAM 심볼의 버스트를 가지는 OFDM/OQAM 신호를 도시한다.
시간 시프트에 의한 각각의 다상 필터의 선형 회선으로 인해 미부의 집합은 변조된 신호 s(n)의 전반적인 오버헤드를 야기한다. 가중 순환 회선을 가산하는 것은 ICI/ISI를 증가하지 않으면서 OFDM/OQAM 신호의 오버헤드를 제거할 수 있다. 다상 필터의 종래의 순환 회선을 이용하는 것은, OQAM 신호 버스트의 길이가 홀수일 때 OFDM/OQAM 신호의 실제-직교성을 파괴한다. 따라서, 종래의 순환 회선은, 특히 시간-도메인 신호의 에지 주변에 변조된 심볼 상에, ICI/ISI를 야기한다.
OFDM/OQAM 변조기는, 인자 j n +k 에 의한 곱셈 및 인자-M 업-샘플링으로 인한 선형 시간 변화 시스템이다. 실제, s(n) 이 입력 신호
Figure 112015090679966-pct00016
에 대한 변조기의 출력이면:
입력 신호에 대한 변조기의 출력 d (n-n o )
Figure 112015090679966-pct00017
으로 나타낼 수 있거나, 또는
연속 시간 도메인에서,
Figure 112015090679966-pct00018
으로 나타낼 수 있다.
d (n)이 실제 OQAM 신호의 길이의 버스트라고 가정하면, 즉,
Figure 112015090679966-pct00019
이고, 변조기는 d (n)의 가중 모듈로(modulo)-N 순환 버전으로 제공된다. 즉:
Figure 112015090679966-pct00020
여기서, α i 는 실수값 가중치이고, 변조기의 출력은 다음과 같다:
Figure 112015090679966-pct00021
.
s c (t)이, N이 짝수인 경우 NT/2의 주기로 주기적이고, N이 홀수인 경우 2NT의 주기로 주기적이 되도록 가중치 계수 α i 가 획득될 수 있다. N이 홀수이면, 가중치 계수가 실수로 한정되기 때문에 s c (t)는 주기 NT/2로 주기적일 수 없다. 그러나, s c (t)가 인터벌 2NT로 구조화되도록 α i가 선택될 수 있다.
도 7은 OFDM/OQAM에 적용될 수 있는 가중 순환 회선 필터링을 도시한다. 입력 데이터 버스트 D는 계수 α i이 곱해지고, 시프트되어 ... α -1D α 0D α 1D α 2D...를 생성한다. 인자 α ix(t)가 주기적이거나 구조화되도록 선택된 실수 계수이다. 이론적으로, 무한 인자 α i가 있으나, 실제로는 인자 α i의 유한한 수가 사용된다. 곱해지고 시프트된 파형이 선형 회선 OFDM/OQAM 변조기(170)에 의해 선형 회선된다. 그러므로, 생성된 출력은,
Figure 112015090679966-pct00022
이고, 여기서,
Figure 112015090679966-pct00023
이다. 이 출력 x(t)는 전송을 위해 준비된다.
도 8은 x(t)의 생성을 일 예시를 도시한다. 전송은 T N 의 길이로 주기적이다. 4개의 시프트된 커브, 커브 182, 커브 184, 커브 186 및 커브 188이 함께 가산된다. 커브 182는 인자 α - 1 j - N 에 의해 생성되고, 커브 184는 인자 α 0 에 의해 생성되고, 커브 186은 인자 α 1 j N 에 의해 생성되고 커브 188은 인자 α 2 j 2 N 에 의해 생성된다. 주기부 TN만 전송될 때, 오리지널 신호는 이 주기성에 기초하여 복원될 수 있다.
N이 짝수이면, 주기 TN를 가지는 주기적 x(t)가 될 수 있다. N 모듈로 4가 0이면, α i =1이고, N 모듈로 4가 2이면, α i =(-1) i 이다. 2가지 경우 모두, 파형은
Figure 112015090679966-pct00024
의 주기로 주기적이다.
따라서:
Figure 112015090679966-pct00025
이고,
Figure 112015090679966-pct00026
이다.
도 9는, 파형이 주기 TN/2로 주기적인 파형 구조(190)의 일 예시를 도시하며, 여기서 N은 짝수이다.
도 10은 N이 짝수일 때 변조를 위한 구현(210)을 도시한다. 오리지널 파형은, 도 9와 마찬가지로, 시프트되고, 4번 가산된다. 그 후 결과 파형은 크롭핑된다. N이 크면, 예컨대
Figure 112015090679966-pct00027
, 프로토타입 필터의 길이가 LT일 때 2번의 반복이 수행된다. N이 작으면, 예컨대
Figure 112015090679966-pct00028
, 2번 이상의 반복이 수행될 수 있다.
N이 홀수이면, 증배 인자는 파형이 특별한 구조를 가지도록 선택될 수 있다. 구조는 4T N 의 주기를 가진다. 그러나, 이 구조로 인하여 전체 파형이 NT/2의 시간 인터벌로부터 복원될 수 있다. N 모듈로 4가 1이면, α i =1이고, N 모듈로 4가 3이면, α i =(-1) i 이다. 도 11은 파형 구조(200)를 도시하며, 여기서, 2NT의 주기를 가지는 주기적 신호인,
Figure 112015090679966-pct00029
이다.
이것은 다음과 같이 나타낼 수 있다:
Figure 112015090679966-pct00030
이 구조로부터, 오리지널 파형이 인터벌 TN으로부터 복원될 수 있다. 일 예시로, 전술한 제1 방정식의 증명은 다음과 같다:
Figure 112015090679966-pct00031
.
따라서,
Figure 112015090679966-pct00032
.
도 12는 N이 홀수인 경우 변조를 위한 구현(220)을 도시한다. 파형은 시프트되고, 1, j, -1, 및 -j이 곱해진다. NT/2 부분은 전송을 위해 유지된다.
시간 도메인에서의 날카로운 신호 에지로 인해, 가중 순환 회선 OFDM/OQAM은 선형 회선 OFDM/OQAM에 비해 열등한 스팩트럼 사이드-로브 성능을 가진다. 가중 시간 도메인 윈도잉은 신호의 에지 상의 변이를 부드럽게 하는데 이용될 수 있다. 시간 윈도잉이 가중 순환 회선 OFDM/OQAM 신호의 시작과 종단에 2개의 부드러운 변이 윈도우를 부가하여 수행되기 때문에, 신호 왜곡이 발생하지 않는다. 도 13은 가중 시간 도메인 윈도잉을 설명하는 그래프(300)를 도시한다.
N이 짝수이면, 신호의 시작부(302)로부터의 길이 부분 0.5T w 가 그것의 종단부(304)에 부가된다. 유사하게, 신호의 종단부(306)로부터의 길이 부분 0.5T w 가 그것의 시작부(308)에 부가된다. 이것은 그것의 에지에서의 신호의 연속성을 보장한다. 그 후, 적절한 길이 T w 의 롤링 오프 윈도우, 예컨대 레이즈드 코사인 윈도우가 신호의 시작부와 종단부에 적용되어 부가된다.
N이 홀수이면, 신호의 시작부(302)로부터의 길이 부분 0.5T w 에 먼저 j가 곱해지고, 그 후 그것의 종단부(304)에 부가된다. 유사하게, 신호의 종단부(306)로부터의 길이 부분 0.5T w 에 먼저 -j가 곱해지고, 그 후 그것의 시작부(308)에 부가된다. 그 후, 윈도잉이 신호에 적용된다.
도 14는 OFDM/OQAM 변조를 수행하는 방법에 대한 흐름도(230)를 도시한다. 초기에, 단계 232에서, 선형 회선 변조가 수행된다. 예를 들어, 선형 회선 변조는, 도 5의 OFDM/OQAM 변조기 다상 구조(110)에 의해 도시된 것처럼, 수행될 수 있다.
그 다음, 단계 234에서, 크롭핑 및 시프팅이 선형 회선 변조된 출력에 수행된다. 파형 시프팅 및 가산을 통해, 주기적이거나 구조화된 파형이 생성된다. 이 파형은 그 후 전송을 위해 보다 작은 부분으로 크롭핑될 수 있다. 오리지널 파형은, 크롭핑 전의 파형의 구성 또는 주기성으로 인해, 크롭핑된 파형으로부터 복원될 수 있다. 프로토타입 필터 기간이 LT이면, s(t)는 기간
Figure 112015090679966-pct00033
를 가진다.
그러면,
Figure 112015090679966-pct00034
이고,
여기서, [x]는 가장 작은 정수≥x이다. 오버헤드가 제거된 신호가 s(t)로부터 획득된다. N이 짝수이면:
Figure 112015090679966-pct00035
에 대해,
Figure 112015090679966-pct00036
이다.
N이 홀수이면,
Figure 112015090679966-pct00037
에 대해,
Figure 112015090679966-pct00038
이다.
마지막으로, 단계 236에서, 크롭핑된 파형이 전송된다. 일 예시에서, 파형은 통신 제어기에 의해 UE에 전송된다. 다른 예시에서, 파형은 UE로부터 통신 제어기에 전송된다.
도 15는 크롭핑 및 시프팅을 수행하는 방법에 대한 흐름도(24)를 도시한다. 초기에 단계 242에서, 파형에 계수 α i 가 곱해진다.
그 후, 단계 244에서, 파형은 i에 의해 시프트되고, 오리지널 파형에 가산된다.
그 다음, 단계 246에서, 장치는 반복이 더 있는지 결정한다. 반복이 있는 경우, 단계 242를 실행하여 다시 파형을 가산하고 시프트한다. 반복이 없는 경우, 단계 248을 실행하고, 여기서 파형은 크롭핑된다. 크롭핑된 파형은 복원될 오리지널 파형에 대한 충분한 정보를 포함한다.
단계 249에서, 가중 시간 도메인 윈도잉이 수행될 수 있다. 가중 시간 도메인 윈도잉은 전송 시간이 부드럽게 제로가 되도록 한다. 일부 시간이 부가되고, 가중 시간 도메인 윈도잉이 이용된다. 그러나, 부가된 시간은 상대적으로 적은 시간의 양이다.
도 16은 OFDM/OQAM 복조의 방법에 대한 흐름도(25)를 도시하며, 여기서 순환 회선 필터링이 이용된다. 초기에, 단계 252에서, 순환 회선 필터링을 이용하여 변조된 메시지가 수신된다. 일 예시에서, UE는 통신 제어기로부터 메시지를 수신한다. 다른 예시에서, 통신 제어기는 UE로부터 메시지를 수신한다.
그 다음, 단계 254에서, 가중 부가가 파형에 적용된다. N이 짝수이면, 오리지널 신호는 수신기를 순환하는 모듈로 NT/2에 의해 복원될 수 있다. 신호 기간은:
Figure 112015090679966-pct00039
이다.
N이 짝수이면, i max 번에 대해,
Figure 112015090679966-pct00040
이다.
N이 홀수이면, i max 번에 대해,
Figure 112015090679966-pct00041
이다. 또한, 가중 시간 도메인 윈도잉은 제거될 수 있다.
선형 회선 변조는 단계 256에서 수행된다. 이것은, 예컨대, 도 6에 도시된 OFDM/OQAM 복조기 다상 구조(150)를 이용하여 완료될 수 있다.
Figure 112015090679966-pct00042
는 복조기를 통해 결과 신호를 전달하여 획득될 수 있다. 이상적인 노이즈 없는 채널에서는, OFDM/OQAM의 실제 직교성으로 인해, n=0,...,N-1에 대해,
Figure 112015090679966-pct00043
이다.
도 17은, 가중 순환 회선 OFDM/OQAM을 이용하여, 커브 292에 의해 나타난, 신호-시간의 오버헤드가 제거된 버전의 그래프를 도시한다.
다른 예시에서, OFDM/OQAM 변조기 및 복조기의 다상 필터는 모듈로-N 가중 순환 회선 필터로 대체된다. 시간 시프트는 모듈로-N M 가중 순환 시간 시프트로 대체된다.
도 18은, OFDM/OQAM 순환 회선 변조을 위해 이용될 수 있는, OFDM/OQAM 변조기 다상 구조(330)를 도시한다. 입력 d k,n 에서, k는 서브 캐리어를 나타내고, n은 시간의 부호를 나타낸다. 멀티플라이어 블록(112)에서 입력에 j n + k 를 곱한다. 그 후 IFFT 블록(114)은 곱해진 값에 IFFT를 수행한다. IFFT 블록(114) 후, 모듈로-N 필터(332)가 전달 함수 Gk(z2)로 가중 순환 회선을 수행한다. 모듈로-N 필터의 입력은 x(n)이고, 출력은 y(n)이다. N이 짝수이면,
Figure 112015090679966-pct00044
이다.
N이 홀수이면,
Figure 112015090679966-pct00045
이다.
확장 블록(118)은 인자 M으로 필터링된 파형을 확장한다. 출력은 모듈로-M N 시간 시프트 블록(334) DMN에 의해 시간 시프트되고, 가산기(122)에 의해 가산된다. 모듈로-M N 시간 시프트 블록(334)에 대한 입력은 a(n)이고, 출력은 b(n)이다.
N이 짝수이면,
Figure 112015090679966-pct00046
이다.
N이 홀수이면,
Figure 112015090679966-pct00047
이다.
도 19는, 순환 회선 변조로 OFDM/OQAM 복조하는데 이용되는, OFDM/OQAM 복조기 다상 구조(340)를 도시한다. 수신된 신호 s(n)은 모듈로-N M 시간 시프트 블록(342) DMN에 의해 시간 시프트된다. 그 후, 시간 시프트된 신호는 데시메이터 블록(154)에 의해 데이메이팅된다. 필터 블록(344)은 Gk(z2)를 이용하여 데이메이팅된 출력을 필터링한다. 그 다음, 2M-포인트 IFFT가 IFFT 블록(158)에 의해 수행된다. 그 후 곱셈 블록(160)에서 출력에 (-j)n+k이 곱해진다. 마지막으로, 실수 추출 블록(162)에 의해 실수부가 추출된다.
도 20 및 도 21은, 데시빌(dB) 단위의 파워 스팩트럼 밀도(PSD) 대 MHz 단위의 베이스밴드 주파수의 그래프를 도시한다. 2개의 OQAM 심볼은 이러한 그래프를 생성하는데 이용되어, 에지 심볼에 대한 가중 순환 회선 OFDM/OQAM의 성능을 평가한다. 15 kHz의 서브캐리어 간격을 가지는 600개의 서브캐리어가 사용되고, 이는 약 66.67 μs의 시간 간격 T의 OQAM 심볼에 대응된다. 사용된 프로토타입 필터는 β=1의 롤-오프 인자를 가지는 길이 4T의 루트-레이즈드-코사인이다. 시간 윈도잉에 대해, T w =T/ 2 의 윈도잉 길이가 도 20의 그래프(310)에 대해 사용되었고, T w =T/4 의 윈도잉 길이가 도 21의 그래프(320)에 대해 사용되었다. 양 그래프는 시간-도메인 윈도우 가중 순환 회선 OFDM/OQAM 신호의 PSD를 절단된 경우와 절단되지 않은 경우 모두를 가지는 선형 회선 OFDM/OQAM 신호의 것과 비교된다. 절단에 대해, 신호의 중간부부터의 길이의 부분
Figure 112015090679966-pct00048
은 유지되고 나머지는 절단된다. T w 윈도잉은 절단된 신호에 적용된다. 이 윈도잉은 신호의 왜곡을 댓가로 절단된 신호의 스팩트럼 사이드-로브 성능을 향상시킨다.
도 20은 T w =T/2의 윈도잉 길이에 대한 그래프(310)를 도시한다. 커브 312(파선으로 표시됨)는 절단된 PSD를 도시하고, 커브 314(별개의 파선으로 표시됨)는 선형 콘벌루션된 PSD를 도시하고, 커브 316(실선으로 표시됨)은 윈도잉과 가중 순환 콘벌루션된 PSD를 도시하고, 커브 318(별도의 실선으로 표시됨)은 절단 및 윈도잉된 PSD를 도시한다. 변조된 OQAM 콘스텔레이션(constellation) 포인트의 에러 벡터 크기(EVM)는 이러한 4개의 커브에 대해 계산된다. 선형 콘벌루션에 대한 EVM은 -69.47 dB이고, 윈도잉과 순환 콘벌루션에 대한 EVM은 -43.83 dB이고, 절단에 대한 EVM은 -30.77 dB이고, 절단 및 윈도잉에 대한 EVM은 -21.46 dB이다.
도 21은 T w =T/4의 윈도잉 길이에 대한 그래프(320)를 도시한다. 커브 322(파선으로 표시됨)는 절단된 PSD를 도시하고, 커브 324(별개의 파선으로 표시됨)는 선형 콘벌루션된 PSD를 도시하고, 커브 326(실선으로 표시됨)은 윈도잉과 가중 순환 콘벌루션된 PSD를 도시하고, 커브 328(별도의 실선으로 표시됨)은 절단 및 윈도잉된 PSD를 도시한다. 변조된 OQAM 콘스텔레이션 포인트의 EVM는 이러한 4개의 커브에 대해 계산된다. 선형 콘벌루션에 대한 EVM은 -69.47 dB이고, 윈도잉과 순환 콘벌루션에 대한 EVM은 -43.83 dB이고, 절단에 대한 EVM은 -20.16 dB이고, 절단 및 윈도잉에 대한 EVM은 -17.11 dB이다.
양 그래프에 대해, 윈도우 가중 순환 회선 신호의 PSD는 선형 회선의 PSD와 매우 유사하고, 메인 로브에 가깝다는 점에서 더 우수하다. 선형 회선 신호의 열악한 사이드 로브 선능과 그것의 열악한 성능은, 사이드 로브를 야기시키는, 프로토타입 필터의 절단으로 인해, 윈도잉를 가지는 절단과 비교된다. 프로토타입 필터 길이의 증가는 사이드 로브 성능을 향상시킬 수 있다.
가중 순환 회선 OFDM/OQAM 변조와 관련하여 한가지 잠재적 관심사는 고 이동성 UE에 관한 것이다. 고 이동성 UE는, 전송 버스트을 통해 시간-변화 전송 채널을 가지기에 충분한 이동성을 가지는 UE이다. 전송 채널의 변화로 인해, 수신기에서의 가중 부가 후(예컨대, 도 16의 단계 254), 채널 불연속성은 고 이동성 UE의 전송 버스트의 에지에서 나타날 수 있다. 예를 들어, 도 22는, 고 이동성 UE의 시간-변화 전송 채널(400)을 통해 전송된 전송 버스트(402)를 변조하는 가중 순환 회선 OFDM/OQAM를 도시한다. 수신기에서, 전송 버스트(402)의 가중 부가 후(화살표 404로 표시됨), 불연속(406)은 시간-변화 전송 채널(400)으로 인해 전송 버스트(402)의 에지에서 나타난다. 불연속(406)은 전송 블록의 에지에서의 OQAM 심볼 상의 ISI/ICI로 이어질 수 있다. 저(low) SNR 체제에서, 부가 백색 가우스 잡음(AWGN)이 ISI/ICI보다 지배적일 수 있기 때문에, 에지 위치에서의 OQAM 심볼 상의 ISI/ICI는 특히, 노이즈 비율(SNR) 통신 체제에 대해서, 고신호의 고 이동성 UE에 대한 문제를 일으킬 수 있다.
고 이동성 UE에 대한 전송 블록 에지에서의 ISI/ICI는 전송 블록 에지에서의 심볼을 가드 심볼로 보유함으로써 해결될 수 있다. 즉, 고 이동성 UE에 대한 전송 블록의 양 에지에서의 OQAM 심볼상에 아무것도 전송되지 않을 수 있다. 도 23은, 고 이동성 UE에 대한 가드 심볼의 구현을 도시한다. 고 이동성 UE에 대한 전송 블록(408)은 시간-주파수 도메인의 복수의 OQAM 심볼(410)을 포함한다. 전송 블록(408)의 에지에서의 OQAM 심볼(예컨대, OQAM 심볼(410'))DMS 가드 심볼(410')로 보유되고, 심볼(410')에 아무것도 전송되지 않는다. 그러므로, 이러한 에지 위치 상의 ISI/ICI를 방지할 수 있다. 가드 심볼이, 네트워크에서 일반적으로 UE 중 적은 퍼센트인, 고 이동성 UE에 대해서만 보유될 수 있기 때문에, 네트워크 상의 스팩트럼 효율 손실은 매우 작거나 무시할 수 있는 정도이다. 나아가, 가드 심볼은 투명하고, 네트워크 내의 고 이동성이 아닌 다른 UE에 영향을 주지 않을 수 있다. 다양한 다른 실시예에서, 가드 심볼의 구현은 고 SNR 통신 체제 내의 고 이동성 UE에만 적용될 수 있다.
제시된 오버헤드 제거 테크닉은 절단 접근을 능가한다. 제시된 테크닉과 선형 회선 OFDM/OQAM 신호 사이의 EVM 차이는 프로토타입의 비-이상성으로 인한 것이다. 사실, 프로토타입 필터는 루트-레이즈드-코사인 필터의 절단된 버전이기 때문에 거의 직교한다. 그러므로, 선형 회선 신호에서도 남은 ISI/ICI가 존재한다. 제시된 오버헤드 제거 동작은 유한한 길이 버스트의 중간부부터 신호의 부분을 유지시키므로, 선형 회선 신호의 에지 OQAM 심볼보다 남은 ISI/ICI를 항상 더 경험한다. 이 남은 간섭은 보다 직교하도록 하기 위해 프로토타입 필터 길이를 증가시킴으로써 경감될 수 있다.
도 24는 여기서 개시된 장치 및 방법을 구현하는데 이용될 수 있는 프로세싱 시스템(270)의 블록도를 도시한다. 구체적인 장치는 도시된 구성 요소들을 모두 이용할 수 있거나, 또는 구성 요소의 일부분만을 이용할 수 있고, 통합의 레벨은 장치마다 다양할 수 있다. 나아가, 장치는, 복수의 프로세싱 유닛, 프로세서, 메모리, 송신기, 수신기 등과 같은 구성 요소의 복수의 경우를 포함할 수 있다. 프로세싱 시스템은, 마이크로폰, 마우스, 터치스크린, 키패드, 키보드, 및 이와 유사한 것과 같은, 하나 이상의 입력 장치가 장착된 프로세싱 유닛을 포함할 수 있다. 또한, 프로세싱 시스템(270)은, 스피커, 프린터, 디스플레이 및 이와 유사한 것과 같은, 하나 이상의 출력 장치가 장착될 수 있다. 프로세싱 유닛은, 버스에 연결되어 있는 중앙 운영 체제(CPU)(274), 메모리(276), 대용량 기억 장치(278), 비디오 어댑터(280), 및 I/O 인터페이스(288)를 포함할 수 있다.
버스는 메모리 버스 또는 메모리 제어기, 주변 버스, 비디오 버스, 또는 이와 유사한 것을 포함하는 임의의 유형의 여러 버스 아키텍처 중 하나 이상일 수 있다. CPU(274)는 임의의 유형의 전기적 데이터 프로세서를 포함할 수 있다. 메모리(276)는, 스태틱 랜덤 액세스 메모리(SRAM), 다이내믹 랜덤 액세스 메모리(DRAM), 동기 DRAM(SDRAM), 리드-온리 메모리(ROM), 이들의 조합 또는 이와 유사한 것과 같은 임의의 유형의 시스템 메모리를 포함할 수 있다. 일 실시예에서, 메모리는 부트-업에서 사용되는 ROM, 프로그램이 실행되는 동안 프로그램 및 데이터 저장에 사용되는 DRAM를 포함할 수 있다.
대용량 저장 장치(278)는 데이터, 프로그램, 및 다른 정보를 저장하고, 버스를 통해 데이터, 프로그램, 및 다른 정보에 액세스하도록 구성되어 있는 임의의 유형의 저장 장치를 포함할 수 있다. 대용량 저장 장치(278)는, 예컨대, 하나 이상의 솔리드 스테이트 드라이브, 하드 디스크 드라이브, 마그네틱 디스크 드라이브, 광 디스크 드라이브, 또는 이와 유사한 것을 포함할 수 있다.
비디오 어댑터(280) 및 I/O 인터페이스(288)는 프로세싱 유닛에 외부 입력 및 출력 장치를 연결하는 인터페이스를 포함한다. 도시된 바와 같이, 입력 및 출력 장치의 예시는, 비디오 어댑터에 연결되어 있는 디스플레이 및 I/O 인터페이스에 연결되어 있는 마우스/키보드/프린터를 포함한다. 다른 장치는 프로세싱 유닛에 연결되어 있을 수 있고, 추가적인 일부 인터페이스 카드가 이용될 수 있다. 예를 들어, 직렬 인터페이스 카드(도시되지 않음)가 프린터에 대한 직렬 인터페이스를 제공하는데 이용될 수 있다.
프로세싱 유닛은 또한, 이더넷 케이블 또는 이와 유사한 것과 같은 유선 링크, 및/또는 노드 또는 상이한 네트워크에 액세스하는 무선 링크를 포함할 수 있는 하나 이상의 네트워크 인터페이스(284)를 포함한다. 네트워크 인터페이스(284)는 프로세싱 유닛이 네트워크를 통해 원격 유닛과 통신하도록 한다. 예를 들어, 네트워크 인터페이스는 하나 이상의 송신기/송신 안테나 및 하나 이상의 수신기/수신 안테나를 통해 무선 통신을 제공할 수 있다. 일 실시예에서, 프로세싱 유닛은, 다른 프로세싱 유닛, 인터넷, 원격 저장 설비 또는 이와 유사한 것과 같은 원격 장치와 통신하고 데이터 프로세싱을 하도록, 로컬-영역 네트워크 또는 광대역 네트워크에 연결되어 있다.
여러 실시예가 본 개시에서 제공되는 동안, 개시된 시스템 및 방법은 본 개시의 범위로부터 벗어나지 않는 다른 많은 구체적 형상으로 구현될 수 있다는 것을 이해해야 한다. 본 예시는 설명을 위한 것이고 제한하는 것은 아니라고 생각되어야 하며, 그 의도는 여기서 제시된 상세 내용에 제한되지 않는다. 예를 들어, 다양한 구성 요소 및 구성 부품은 다른 시스템에서 조합되거나 통합될 수 있거나, 또는 특정 특징은 생략되거나 구현되지 않을 수 있다. 또한, 다양한 실시예에서 설명되고 도시된 테크닉, 시스템, 서브시스템, 및 방법은 별개로 또는 개별적으로 본 발명의 범위에서 벗어나지 않는 다른 시스템, 모듈, 테크닉, 또는 방법에 조합되거나 통합될 수 있다. 서로 연결되거나 직접적으로 연결되거나 통신하는 것으로 도시되거나 논의된 다른 사항은 일부 인터페이스, 장치 또는 중간 구성 요소를 통해, 전기적, 기계적, 또는 다른 방법으로든, 간접적으로 연결되거나 통신할 수 있다. 변경, 대체 및 개조의 다른 예시는 통상의 기술자에 의해 확인될 수 있고, 여기서 개시된 범위로부터 벗어나지 않고 만들어 질 수 있다.

Claims (23)

  1. 직교 주파수 분할 다중(orthogonal frequency division multiplexing)-오프셋 직교 진폭 변조(offset quantization amplitude modulation)(OFDM-OQAM)를 수행하는 방법으로서,
    데이터 버스트를 획득하는 단계;
    상기 데이터 버스트에 가중 순환 회선 필터링 변조(weighted circularly convolved filtering modulation)를 수행하여 출력 신호를 생성하는 단계 - 변조기의 출력이 주기적이 되도록 가중된 데이터 블록들의 시퀀스가 OFDM-OQAM 변조에 대한 입력으로 사용됨 - ;
    크롭핑(cropping)된 파형을 생성하기 위해 상기 출력 신호를 크롭핑하는 단계; 및
    제1 무선 장치가 상기 크롭핑된 파형을 제2 무선 장치에 전송하는 단계
    를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  2. 제1항에 있어서,
    가중 순환 회선 필터링 변조를 수행하는 단계는:
    상기 데이터 버스트에 선형 회선 필터링(linearly convolved filtering)을 수행하여 선형 회선 신호를 생성하는 단계; 및
    상기 출력 신호를 생성하기 위해 상기 선형 회선 신호에 크롭핑(cropping) 및 시프팅(shifting)을 수행하는 단계
    를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  3. 제1항에 있어서,
    가중 순환 회선 필터링 변조를 수행하는 단계는:
    상기 데이터 버스트의 복수의 컴포넌트에 복수의 증배 인자를 곱하여 복수의 곱해진 인자를 생성하는 단계;
    상기 복수의 곱해진 인자에 대해 크기 2M의 역 고속 푸리에 변환(IFFT)를 수행하여 복수의 변환된 컴포넌트를 생성하는 단계;
    상기 복수의 변환된 컴포넌트에 대해 모듈로(modulo)-N 가중 순환 회선을 수행하여 복수의 필터링된 컴포넌트를 생성하는 단계;
    상기 복수의 필터링된 컴포넌트를 확장하여 복수의 확장된 컴포넌트를 생성하는 단계;
    상기 필터링된 컴포넌트를 상기 복수의 모듈로-N M 가중 순환 지연으로 시간 지연하여 복수의 시간 시프트된 컴포넌트를 생성하는 단계; 및
    상기 출력 신호를 생성하기 위해 상기 복수의 시간 시프트된 컴포넌트를 합산하는 단계
    를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  4. 제1항에 있어서,
    가중 순환 회선 필터링 변조를 수행하는 단계는:
    상기 데이터 버스트의 제1 파형에 2개 이상의 계수를 곱하여 복수의 곱해진 파형을 생성하는 단계;
    복수의 타임 시프트된 파형을 생성하기 위해 상기 복수의 곱해진 파형 각각을 개개의 시간 오프셋에 의해 시간 시프트하는 단계; 및
    상기 복수의 시간 시프트된 파형을 합산하여 가산된 파형을 생성하는 단계
    를 포함하고,
    상기 개개의 시간 오프셋은 복수의 시간 오프셋 중 하나인,
    OFDM-OQAM를 수행하는 방법.
  5. 제4항에 있어서,
    상기 출력 신호를 생성하기 위해 상기 가산된 파형을 크롭핑하는 단계를 추가로 포함하고,
    상기 데이터 버스트는 N개의 OFDM-OQAM 심볼을 포함하고, 상기 N은 정수이며, OFDM-OQAM 심볼 사이의 시간 간격은 T/2인,
    OFDM-OQAM를 수행하는 방법.
  6. 제5항에 있어서,
    상기 가산된 파형을 크롭핑하는 단계는, N번의 시간 인터벌 T/2로 상기 가산된 파형을 크롭핑하는 단계를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  7. 제5항에 있어서,
    상기 복수의 곱해진 파형 각각을 개개의 시간 오프셋에 의해 시간 시프트하는 단계는, 상기 복수의 곱해진 파형 중 제1 파형을 NT/2 만큼 시프트하고, 상기 복수의 곱해진 파형 중 제2 파형을 NT만큼 시프트하며, 상기 복수의 곱해진 파형 중 임의의 추가 곱해진 파형을 이전의 시간 오프셋에 NT/2를 플러스한 만큼 시프트하는 단계를 포함하고,
    상기 이전의 시간 오프셋은, 각각의 추가 곱해진 파형 직전의 곱해진 파형에 적용된 시간 오프셋인,
    OFDM-OQAM를 수행하는 방법.
  8. 제5항에 있어서,
    상기 데이터 버스트는 N개의 OFDM-OQAM 심볼을 가지며, N은 정수이고,
    상기 2개 이상의 계수가 1이고 N이 짝수이거나, 또는
    상기 2개 이상의 계수가 1, -j, -1, 및 j 사이에서 번갈아 가며 바뀌고(alternate) N이 홀수인,
    OFDM-OQAM를 수행하는 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    가중 순환 회선 필터링 변조를 수행하는 단계는, 가중 시간 도메인 윈도잉을 수행하는 단계를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  10. 제9항에 있어서,
    가중 시간 도메인 윈도잉을 수행하는 단계는:
    파형의 종단부 뒤에 상기 데이터 버스트의 파형의 시작부를 부가하여 제1 부가 부분을 생성하고, 상기 파형의 시작부 앞에 상기 파형의 종단부를 부가하여 제2 부가 부분을 생성함으로써, 제1 부가 부분 및 제2 부가 부분을 가지는 부가된 파형을 생성하는 단계; 및
    상기 제1 부가 부분에 롤링 오프 윈도우(rolling-off window)를 곱하고, 상기 제2 부가 부분에 상기 롤링 오프 윈도우를 곱하여, 상기 출력 신호를 생성하는 단계
    를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  11. 제1항에 있어서,
    상기 제1 무선 장치는 통신 제어기 및 사용자 장치 중 하나이고, 상기 제2 무선 장치는 통신 제어기 및 사용자 장치 중 다른 하나인,
    OFDM-OQAM를 수행하는 방법.
  12. 제1항에 있어서,
    상기 제1 무선 장치 또는 상기 제2 무선 장치가 고 이동성(high mobility) 사용자 장치이면, 전송 블록의 양 단에서의 OQAM 심볼을 가드 심볼(guard symbol)로 보유하는 단계를 추가로 포함하고,
    상기 출력 신호를 전송하는 단계는 상기 전송 블록 상에서 상기 출력된 신호를 전송하는 단계를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  13. OFDM-OQAM를 수행하는 방법으로서,
    제1 무선 장치가, 제2 무선 장치로부터 입력 신호를 수신하는 단계; 및
    데이터 버스트를 생성하기 위해, 상기 입력 신호에 가중 순환 회선 복조 필터링을 수행하는 단계
    를 포함하고,
    상기 입력 신호에 가중 순환 회선 복조 필터링를 수행하는 단계는,
    상기 입력 신호에 가중된 부가를 수행하여 부가 신호를 생성하는 단계 - 상기 부가 신호는 주기적임 - ; 및
    상기 부가 신호에 선형 회선 복조를 수행하여 상기 데이터 버스트를 생성하는 단계
    를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  14. 제13항에 있어서,
    상기 선형 회선 복조를 수행하는 단계는;
    상기 부가 신호를 시간 시프트하여 복수의 시간 시프트된 신호를 생성하는 단계;
    상기 복수의 시간 시프트된 신호를 다운시프트하여 복수의 다운시프트된 신호를 생성하는 단계;
    상기 복수의 다운시프트된 신호를 필터링하여 복수의 필터링된 신호를 생성하는 단계;
    상기 복수의 필터링된 신호에 크기 2M의 역 고속 푸리에 변환(IFFT)를 수행하여 복수의 변환된 신호를 생성하는 단계;
    상기 복수의 변환된 신호에 복수의 증배 인자를 곱하여 복수의 곱해진 신호를 생성하는 단계; 및
    상기 복수의 곱해진 신호 중 실수부를 추출하는 단계
    를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  15. 제13항에 있어서,
    상기 데이터 버스트를 생성하기 위해, 가중 순환 회선 복조 필터링을 수행하는 단계는:
    상기 입력 신호를 모듈로-N M 가중 순환 지연으로 지연시켜 복수의 시간 시프트된 신호를 생성하는 단계;
    복수의 시간 시프트된 신호를 다운시프트하여 복수의 다운시프트된 신호를 생성하는 단계;
    상기 복수의 다운시프트된 신호에 모듈로-N 가중 순환 회선을 수행하여 복수의 필터링된 신호를 생성하는 단계;
    상기 복수의 필터링된 신호에 역 고속 푸리에 변환(IFFT)를 수행하여 복수의 변환된 신호를 생성하는 단계;
    상기 복수의 변환된 신호에 복수의 증배 인자를 곱하여 복수의 곱해진 신호를 생성하는 단계; 및
    상기 복수의 곱해진 신호 중 실수부를 추출하는 단계
    를 포함하는,
    OFDM-OQAM를 수행하는 방법.
  16. 제1 무선 장치로서,
    프로세서; 및
    상기 프로세서에 의해 실행되는 프로그래밍을 저장하는 컴퓨터 판독 가능 저장 매체
    를 포함하고,
    상기 프로그래밍은,
    데이터 버스트를 획득하는 명령;
    상기 데이터 버스트에 가중 순환 회선 필터링 변조를 수행하여 출력 신호를 생성하는 명령 - 변조기의 출력이 주기적이 되도록 가중된 데이터 블록들의 시퀀스가 OFDM-OQAM 변조에 대한 입력으로 사용됨 - ;
    크롭핑(cropping)된 파형을 생성하기 위해 상기 출력 신호를 크롭핑하는 명령; 및
    제2 무선 장치에 상기 크롭핑된 파형을 전송하는 명령
    을 포함하는,
    제1 무선 장치.
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
KR1020157025667A 2013-02-19 2014-02-19 직교 주파수 분할 다중-오프셋 직교 진폭 변조를 위한 시스템 및 방법 KR101765736B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361766426P 2013-02-19 2013-02-19
US61/766,426 2013-02-19
US14/035,161 2013-09-24
US14/035,161 US9172577B2 (en) 2013-02-19 2013-09-24 System and method for orthogonal frequency division multiplexing-offset quadrature amplitude modulation
PCT/CN2014/072255 WO2014127715A1 (en) 2013-02-19 2014-02-19 System and method for orthogonal frequency division multiplexing-offset quadrature amplitude modulation

Publications (2)

Publication Number Publication Date
KR20160002722A KR20160002722A (ko) 2016-01-08
KR101765736B1 true KR101765736B1 (ko) 2017-08-07

Family

ID=51351146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157025667A KR101765736B1 (ko) 2013-02-19 2014-02-19 직교 주파수 분할 다중-오프셋 직교 진폭 변조를 위한 시스템 및 방법

Country Status (9)

Country Link
US (2) US9172577B2 (ko)
EP (1) EP2959652B1 (ko)
JP (1) JP6090615B2 (ko)
KR (1) KR101765736B1 (ko)
CN (2) CN109756434B (ko)
BR (1) BR112015019869B1 (ko)
RU (1) RU2617446C2 (ko)
SG (1) SG11201506502VA (ko)
WO (1) WO2014127715A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172577B2 (en) 2013-02-19 2015-10-27 Futurewei Technologies, Inc. System and method for orthogonal frequency division multiplexing-offset quadrature amplitude modulation
US10862634B2 (en) 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
US9209936B1 (en) * 2014-10-10 2015-12-08 Huawei Technologies Co., Ltd. Systems and methods for circular convolution
CN105847209B (zh) * 2015-01-16 2020-09-29 北京三星通信技术研究有限公司 基于滤波器组多载波调制的通信方法和装置
US10063401B2 (en) * 2015-01-16 2018-08-28 Samsung Electronics Co., Ltd. Communication method and apparatus based on a filter bank multi-carrier modulation
CN106878206B (zh) * 2015-12-11 2020-07-28 富士通株式会社 测量滤波特性的方法及其装置、预均衡器、通信设备
CN106936754B (zh) * 2015-12-31 2020-05-08 华为技术有限公司 一种通信处理方法、处理器和通信设备
US10382233B2 (en) * 2016-05-12 2019-08-13 Qualcomm Incorporated Heterogeneous weighted overlap-add windowing and filtering for orthogonal frequency division multiplexing waveforms
US10735279B2 (en) 2017-04-14 2020-08-04 Futurewei Technologies, Inc. Networking service level agreements for computer datacenters
US10341158B2 (en) 2017-05-17 2019-07-02 Futurewei Technologies, Inc. Segment-based transforms in digital signal processing
EP3471360B1 (en) * 2017-10-13 2020-03-04 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Overlap-save fbmc receiver
JP7167392B2 (ja) * 2018-11-22 2022-11-09 国立大学法人京都大学 送信装置および送信方法
US11177995B2 (en) * 2020-02-05 2021-11-16 Huawei Technologies Co., Ltd. Methods and apparatus for communicating a single carrier waveform
CN111294308B (zh) * 2020-05-12 2020-08-11 翱捷科技(上海)有限公司 Ofdm系统滤波边界效应的处理方法及装置
RU2749670C1 (ru) * 2020-06-19 2021-06-16 Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Устройство оптического восстановления телекоммуникационного сигнала с амплитудной модуляцией и способ создания этого устройства
CN111711593B (zh) * 2020-06-22 2021-06-01 西安电子科技大学 一种基于ofdm/oqam的可见光通信系统的调制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014127715A1 (en) 2013-02-19 2014-08-28 Huawei Technologies Co., Ltd. System and method for orthogonal frequency division multiplexing-offset quadrature amplitude modulation

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0168797B1 (ko) 1996-04-02 1999-02-01 김광호 기지국 송신기의 동시 송출 제어장치
US6853637B1 (en) * 1999-05-29 2005-02-08 3Com Corporation Converged home gateway
US6320901B1 (en) 1999-06-15 2001-11-20 National Semiconductor Corporation Method for fast off-line training for discrete multitone transmissions
FR2799073B1 (fr) * 1999-09-29 2002-01-18 France Telecom Procede de transmission d'un signal bfdm/oqam, procedes de modulation et de demodulation et dispositif correspondants
WO2002017488A1 (en) * 2000-08-21 2002-02-28 Koninklijke Philips Electronics N.V. Partitioned block frequency domain adaptive filter
US7145972B2 (en) * 2001-10-18 2006-12-05 The Aerospace Corporation Polyphase channelization system
US20040047284A1 (en) * 2002-03-13 2004-03-11 Eidson Donald Brian Transmit diversity framing structure for multipath channels
US7633994B2 (en) 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US8285226B2 (en) 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
JP2006186800A (ja) * 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd マルチキャリア伝送方法、送信方法及び受信方法と、その送信装置及び受信装置
US20070206686A1 (en) 2006-01-05 2007-09-06 Vook Frederick W Method and apparatus for performing cyclic-shift diversity with beamforming
BRPI0808541A2 (pt) * 2007-03-02 2014-08-26 Qualcomm Inc Repetidora de camada física utilizando métricas de medição em tempo real e arranjo adaptativo de antenas para promover integridade e amplificação de sinal
CN101068232B (zh) 2007-06-12 2012-01-04 华为技术有限公司 得到信道时域响应方法及装置、ofdm符号精同步方法及装置
KR101499250B1 (ko) 2007-06-21 2015-03-05 삼성전자주식회사 직교 주파수 분할 다중 전송 방식의 주파수 효율 증가 장치및 방법
JP4465374B2 (ja) 2007-08-14 2010-05-19 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、基地局装置及び送信方法
WO2009043200A1 (en) 2007-09-30 2009-04-09 Thomson Licensing Interpolation method and apparatus using tracking filter in multi-carrier receiver
US8130847B2 (en) 2007-11-09 2012-03-06 Motorola Mobility, Inc. Closed-loop transmission feedback in wireless communication systems
EP2141878A1 (en) 2008-07-05 2010-01-06 ST Wireless SA Method and apparatus for OFDM spectral diversity using guard bands
US8494066B2 (en) 2009-07-28 2013-07-23 Broadcom Corporation Method and system for low complexity channel estimation in OFDM communication networks using circular convolution
CN101795257B (zh) * 2010-01-22 2014-03-05 东南大学 带循环前缀的偏移调制正交频分复用传输方法
US8499021B2 (en) 2010-08-25 2013-07-30 Qualcomm Incorporated Circuit and method for computing circular convolution in streaming mode
CN101945066B (zh) * 2010-09-16 2013-01-09 电子科技大学 一种ofdm/oqam系统的信道估计方法
US8897351B2 (en) * 2010-09-23 2014-11-25 Intel Corporation Method for peak to average power ratio reduction
FR2972091A1 (fr) 2011-02-28 2012-08-31 France Telecom Procede de modulation d'un signal multiporteuse de type oqam, programme d'ordinateur et modulateur correspondants
US9705726B2 (en) 2011-06-30 2017-07-11 Orange Estimation of a time, phase and frequency shift of an OQAM multicarrier signal
US9054838B1 (en) * 2012-05-02 2015-06-09 Fredric J. Harris Synchronization recovery system
US8947993B2 (en) * 2012-07-24 2015-02-03 Telefonaktiebolaget L M Ericsson (Publ) Methods of transmitting using filtering in the time domain and related devices
US9100255B2 (en) * 2013-02-19 2015-08-04 Futurewei Technologies, Inc. Frame structure for filter bank multi-carrier (FBMC) waveforms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014127715A1 (en) 2013-02-19 2014-08-28 Huawei Technologies Co., Ltd. System and method for orthogonal frequency division multiplexing-offset quadrature amplitude modulation

Also Published As

Publication number Publication date
WO2014127715A1 (en) 2014-08-28
US9172577B2 (en) 2015-10-27
RU2617446C2 (ru) 2017-04-25
CN109756434A (zh) 2019-05-14
CN104982017A (zh) 2015-10-14
US20140233664A1 (en) 2014-08-21
US10454746B2 (en) 2019-10-22
SG11201506502VA (en) 2015-09-29
BR112015019869A2 (pt) 2017-07-18
CN109756434B (zh) 2021-08-13
JP6090615B2 (ja) 2017-03-08
BR112015019869B1 (pt) 2023-04-11
EP2959652A1 (en) 2015-12-30
KR20160002722A (ko) 2016-01-08
EP2959652B1 (en) 2021-08-11
CN104982017B (zh) 2019-01-08
EP2959652A4 (en) 2016-06-01
JP2016513402A (ja) 2016-05-12
US20150312080A1 (en) 2015-10-29
RU2015139593A (ru) 2017-03-27

Similar Documents

Publication Publication Date Title
KR101765736B1 (ko) 직교 주파수 분할 다중-오프셋 직교 진폭 변조를 위한 시스템 및 방법
US7948868B2 (en) Method and arrangement relating to the insertion of pilot tones in the frequency domain in SC-FDMA
US20210288857A1 (en) Method and System for Designing a Waveform for Data Communication
JP5892073B2 (ja) 通信機および通信方法
EP3139557A1 (en) Method and apparatus for reducing interference between ofdm and universal filtered multi-carrier (ufmc) signals
JP4615404B2 (ja) マルチキャリア無線通信システム、送信機及び受信機並びにマルチキャリア無線通信方法
KR101903534B1 (ko) 비동기 ofdma/sc-fdma 방법 및 장치
US10523486B2 (en) Data modulation and demodulation method and data transmission method and node for multi-carrier system
WO2017121412A1 (zh) 多载波系统的数据调制、解调方法、帧生成方法及节点
CN106797361B (zh) 循环卷积的系统和方法
CN107438041B (zh) 一种发送信号和接收信号的方法及装置
CN108234374B (zh) 上行多载波发射装置、系统及方法
JP2004173153A (ja) 送信装置およびトランスバーサルフィルタ
KR20210054401A (ko) 참조 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant