KR101747285B1 - Recombinant Microorganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol - Google Patents

Recombinant Microorganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol Download PDF

Info

Publication number
KR101747285B1
KR101747285B1 KR1020150157398A KR20150157398A KR101747285B1 KR 101747285 B1 KR101747285 B1 KR 101747285B1 KR 1020150157398 A KR1020150157398 A KR 1020150157398A KR 20150157398 A KR20150157398 A KR 20150157398A KR 101747285 B1 KR101747285 B1 KR 101747285B1
Authority
KR
South Korea
Prior art keywords
propanediol
gene
fermentation
production
operon
Prior art date
Application number
KR1020150157398A
Other languages
Korean (ko)
Other versions
KR20170058471A (en
Inventor
오민규
정무영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020150157398A priority Critical patent/KR101747285B1/en
Publication of KR20170058471A publication Critical patent/KR20170058471A/en
Application granted granted Critical
Publication of KR101747285B1 publication Critical patent/KR101747285B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01027L-Lactate dehydrogenase (1.1.1.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/02Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a cytochrome as acceptor (1.2.2)
    • C12Y102/02001Formate dehydrogenase (cytochrome) (1.2.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01013Sucrose synthase (2.4.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01005Acetolactate decarboxylase (4.1.1.5)

Abstract

본 발명은 1,3-프로판디올 생성능을 가지는 미생물에서, 리포폴리사카라이드 생합성에 관여하는 글루코실트랜스퍼라아제를 코딩하는 유전자, 락테이트 디하이드로게나아제를 코딩하는 유전자 및 α-아세토락테이트 디카르복실라아제를 코딩하는 유전자가 결실되어 있고, dhaT 오페론 및 폴메이트디하이드로케네이즈가 과발현되어 있는 1,3-프로판디올 생성능을 가지는 재조합 미생물에 관한 것이다.
본 발명에 따르면, 고분자 단량체, 의료산업, 산업수지 등 산업적으로 다양하게 활용가능한 1,3-프로판디올을, 부산물인 2,3-부탄디올의 생성없이 글리세롤로부터 고효율로 생산할 수 있다.
The present invention relates to a gene encoding glucosyltransferase involved in lipopolysaccharide biosynthesis in a microorganism having 1,3-propanediol-producing ability, a gene encoding lactate dehydrogenase, and a gene encoding α- And a recombinant microorganism having the ability to produce 1,3-propanediol in which a gene encoding Lefoxylase is deleted and dhaT operon and folate dihydroketone are over-expressed.
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to produce 1,3-propanediol which can be used in various industrial fields such as polymer monomers, medical industry, industrial resin, etc. from glycerol with high efficiency without producing 2,3-butanediol as a by-product.

Description

2,3-부탄디올 생산능이 제거된 1,3-프로판디올 생산용 재조합 미생물{Recombinant Microorganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol}{Recombinant Microorganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol} <br> <br> <br> Patents - stay tuned to the technology Recombinant Microorganism for Producing 1,3-Propanediol 2,3-

본 발명은 1,3-프로판디올 생성능을 가지는 미생물에서, 리포폴리사카라이드 생합성에 관여하는 글루코실트랜스퍼라아제를 코딩하는 유전자, 락테이트 디하이드로게나아제를 코딩하는 유전자 및 α-아세토락테이트 디카르복실라아제를 코딩하는 유전자가 결실되어 있고, dhaT 오페론 및 폴메이트디하이드로케네이즈가 과발현되어 있는 1,3-프로판디올 생성능을 가지는 재조합 미생물에 관한 것이다.The present invention relates to a gene encoding glucosyltransferase involved in lipopolysaccharide biosynthesis in a microorganism having 1,3-propanediol-producing ability, a gene encoding lactate dehydrogenase, and a gene encoding? -Acetolactate dicarboxylic acid And a recombinant microorganism having the ability to produce 1,3-propanediol in which a gene encoding Lefoxylase is deleted and dhaT operon and folate dihydroketone are over-expressed.

1,3-프로판디올은 고분자 합성을 위한 단량체, 의료 약품, 산업 수지 등 산업적으로 다양한 활용적 가치가 있는 화학물이다. 이에 따라 매년 1,3-프로판디올 시장의 규모가 급속히 확장되고 있으며, 여러 산업체에서 관심을 기울이고 있다. 1,3-프로판디올은 석유화학 공정을 통한 생산방법과 미생물 발효를 통한 생산방법이 알려져 있으며, 석유화학공정을 이용한 생산이 주류를 이루어 왔다. 그러나 화석 연료 사용으로 인한 환경오염과 매장 한계에 따른 경제적 문제, 매장의 편향성으로 인해 발생되는 국제적 문제들로 인해, 미생물 발효를 통한 1,3-프로판디올 생산에 대한 관심이 대두되고 있다.  1,3-Propanediol is an industrially versatile chemical having properties such as monomers for synthesis of polymers, medical drugs, and industrial resins. As a result, the market for 1,3-propanediol is rapidly expanding every year and attention is paid to various industries. Production of 1,3-propanediol through petrochemical processes and microbial fermentation is known, and production using petrochemical processes has been the mainstream. However, interest in the production of 1,3-propanediol through microbial fermentation is growing due to environmental problems caused by the use of fossil fuels, economic problems due to burden limits, and international problems arising from the bias of stores.

아울러, 바이오디젤 산업 발전으로 인해, 바이오디젤 생산 부산물로 글리세롤이 대량 생산되면서 글리세롤 가격은 급격히 하락하였다. 글리세롤은 미생물 발효에 의한 1,3-프로판디올 생산시 필요한 대표적인 탄소원으로 사용되기 때문에, 경제적인 원료인 글리세롤을 이용한 미생물 발효를 통한 1,3-프로판디올 생산의 경제성이 높아지고 있다. In addition, due to the development of the biodiesel industry, the production of glycerol as a by-product of biodiesel production has led to a massive decline in glycerol prices. Since glycerol is used as a representative carbon source necessary for 1,3-propanediol production by microbial fermentation, economical efficiency of 1,3-propanediol production through microbial fermentation using glycerol as an economical raw material is increasing.

한편, 발효 조건 최적화와 미생물 대사회로 조작은 미생물 발효를 통한 특정 대사산물 생산성 향상을 위해 주로 수행되며, 그 중에서도 대사공학적인 관점에서 미생물의 대사 경로와 역할을 이해하고 목표하는 대사산물의 향상을 위하여 유전자를 과발현시키고, 미생물 게놈 상의 특정 유전자를 제거하는 방법은 대사공학 분야에서 가장 근본적인 접근이라 할 수 있다. On the other hand, optimization of fermentation conditions and manipulation of microbial metabolic circuits are mainly carried out to improve the productivity of certain metabolites through microbial fermentation. Among them, in order to understand metabolic pathways and roles of microorganisms from the viewpoint of metabolic engineering, Overexpressing genes and removing specific genes on the microbial genome is the most fundamental approach in the field of metabolic engineering.

미생물은 발효 과정에서 목적하는 대사산물을 포함하여 여러 부산물을 동시에 생산한다. 이러한 부산물의 생산은 목적산물의 수율과 생산성을 감소시키고, 생산에 필요한 조요소의 접근을 제한하며, 과량 생산시 세포의 성장을 저해한다. 따라서 미생물 발효를 통한 목적산물 생산시에는 부산물을 제거하기 위한 노력이 수반되며, 이러한 노력 중 하나로, 게노믹스를 기반으로 특정 부산물 생산에 관여한 유전자를 찾고, 이를 유전자 제거기술을 통해 게놈 상에서 제거하는 방법이 사용된다. 목적산물의 생산능을 향상시키기 위해 생산에 직접적 또는 간접적으로 관련된 유전자를 플라스미드를 기반으로 클로닝하여 과발현시켜 목적산물로의 대사회로를 활성화시키는 연구가 진행되어 왔다.Microorganisms produce several byproducts simultaneously, including the desired metabolites in the fermentation process. The production of these by-products reduces the yield and productivity of the desired product, restricts access to the necessary elements for production, and inhibits cell growth during overproduction. Therefore, efforts to remove byproducts in microbial fermentation are accompanied by efforts to find genes involved in the production of certain byproducts based on genomics and to remove them from the genome through gene removal techniques Is used. Studies have been conducted to clone and overexpress genes related to production directly or indirectly based on a plasmid in order to enhance the productivity of the desired product, thereby activating the metabolic pathway as a target product.

1,3-프로판디올 생산균주는 발효 과정에서 2,3-부탄디올, 아세트산, 숙신산, 에탄올, 락틱산, 3-하이드록시프로피온산 등의 부산물을 동시에 생산한다. 이러한, 부산물은 1,3-프로판디올을 분류 정제하는데 있어서 역시 많은 어려움을 야기한다. 특히, 2,3-부탄디올은 1,3-프로판디올과 끓는점이 비슷하고, 물리적 특성이 비슷해 1,3-프로판디올 분류 정제 작업에 많은 경제적 비용을 요구하며, 이는 전체 발효공정 비용의 50% 이상을 차지한다 (Z.L Xiu and A.P Zeng, Appl Microbiol Biotechnol,78. 917. 2008). 이러한 부산물의 생산은 1,3-프로판디올 생산의 수율을 감소시킬 뿐만 아니라, 1,3-프로판디올 생산에 사용될 조요소를 감소시키고, 배지의 산성화를 진행하는 등의 부작용을 야기한다. 이에 따라 1,3-프로판디올 생산 균주의 부산물 생산을 제거하기 위한 여러 노력이 진행되었다.The 1,3-propanediol producing strain simultaneously produces by-products such as 2,3-butanediol, acetic acid, succinic acid, ethanol, lactic acid and 3-hydroxypropionic acid in the fermentation process. These by-products also cause a great deal of difficulty in classifying and refining 1,3-propanediol. Particularly, 2,3-butanediol has a boiling point similar to that of 1,3-propanediol and has similar physical properties, requiring a large economic cost for the classification and refining of 1,3-propanediol, which accounts for more than 50% (ZL Xiu and AP Zeng, Appl Microbiol Biotechnol, 78, 917. 2008). Production of such by-products not only reduces the yield of 1,3-propanediol production but also causes side effects such as reducing the amount of the ingredients to be used for production of 1,3-propanediol and progressing the acidification of the medium. Accordingly, various efforts have been made to eliminate the by-product production of the 1,3-propanediol producing strain.

그 중, 1,3-프로판디올 생성균주에서 락틱산이나 에탄올 생산경로를 제거하여 1,3-프로판디올의 생산성을 향상시킨 연구(G Yang et al., Appl Microbiol Biotechnol 73:1017, 2007; YZ Xu et al., Biotechnology and Bioenginee ring, 104(5):1,2009 ; Y Zhang et al., Metabolic Engineering 8:578, 2006), dhaT 오페론을 과발현시켜 1,3-프로판디올의 생산성을 향상시킨 연구(J Hao et al., J Ind Microbiol Biotechnol 35:735, 2008; MY Seo et al., Appl Microbiol Biotechnol, 84:527, 2009), 부산물인 2,3-부탄디올 생산만을 제거하여 1,3-프로판디올의 생산성을 향상시킨 연구(G Zhang et al., Appl Biochem Biotechnol, 168:116, 2012) 등이 있다. Among them, studies have been conducted in which the production route of 1,3-propanediol is improved by removing the production route of lactic acid or ethanol in the strain producing 1,3-propanediol (G Yang et al ., Appl Microbiol Biotechnol 73: 1017, 2007; YZ Y Zhang et al., Metabolic Engineering 8: 578, 2006), overexpression of the dhaT operon enhances the productivity of 1,3-propanediol (see, for example, Jang et al., Biotechnology and Bioenginee ring, 104 R (J Hao et al, J Ind Microbiol Biotechnol 35: 735, 2008; MY Seo et al, Appl Microbiol Biotechnol, 84:.. 527, 2009), to remove only the by-product 2,3-butanediol production 1,3 (Zhang et al., Appl Biochem Biotechnol, 168: 116, 2012), which improves the productivity of propanediol.

하지만 이러한 노력들은 목표 대사산물인 1,3-프로판디올의 생산성 뿐만아니라 다양한 부산물의 생산성 역시 향상시킴으로써 그 목적을 달성하지 못했다. 아울러, 2,3-부탄디올 생산 관련 유전자의 제거는 세포의 성장을 크게 저해했으며 이에 따라 목표 대사산물인 1,3-프로판디올의 생산성 역시 감소되었고, 2,3-부탄디올을 제외한 다양한 부산물의 생산성을 역시 향상시켰다. 또한, 목적산물인 1,3-프로판디올은 글리세롤 환원대사회로를 통해 생산되며 조요소로써 NADH 를 소모한다. 하지만 현재까지 유전적 방법으로 NADH를 공급하려는 노력이 없었다.However, these efforts failed to achieve the goal by improving the productivity of 1,3-propanediol, the target metabolite, as well as the productivity of various by-products. In addition, the removal of the 2,3-butanediol production-related gene greatly inhibited the growth of the cells. Thus, the productivity of the target metabolite, 1,3-propanediol, was also decreased and the productivity of various by- Also improved. In addition, the desired product, 1,3-propanediol, is produced through a glycerol reduction metabolic pathway and consumes NADH as a constituent. However, until now there has been no attempt to supply NADH by genetic means.

아울러, 기존에 사용되는 1,3-프로판디올 생산균주인 클렙시엘라 뉴모니에는 병원성을 지니는 균주로서 산업적으로 사용되는데는 그 한계가 있다. 병원균을 이용한 화학물 생성은 그 생산물 사용에도 제한이 있지만, 발효 후 균주의 완벽한 살균을 요구하기 때문에 많은 경제적 비용이 필요하다.In addition, the existing 1,3-propanediol producing strain, Klebsiella pneumoniae, has a limitation in that it is industrially used as a pathogenic strain. The production of chemicals using pathogens is limited in their use, but requires a great deal of economic cost since complete sterilization of the strain is required after fermentation.

이에, 본 발명자들은 보다 경제적으로 1,3-프로판디올을 생산하는 방법을 개발하고자 예의 노력한 결과, 1,3-프로판디올 생산 균주인 클렙시엘라 뉴모니에 균주의 병원성을 제거하고, 부산물인 락틱산과 2,3-부탄디올 생산을 제거하고, 1,3-프로판디올 생산에 필요한 조요소를 공급하는 유전자와 1,3-프로판디올 생산에 관련된 유전자를 과발현시키는 경우, 클렙시엘라 뉴모니아의 1,2-프로판디올의 수율이 현저하게 향상되는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made extensive efforts to develop a method for producing 1,3-propanediol more economically. As a result, it has been found that the pathogenic property of the strain is eliminated in Klebsiella pneumoniae, a 1,3-propanediol producing strain, When the production of 2,3-butanediol is removed and the genes involved in 1,3-propanediol production and the genes involved in production of 1,3-propanediol are over-expressed, , The yield of 2-propanediol was remarkably improved, and the present invention was completed.

본 발명의 목적은 1,3-프로판디올의 수율이 향상되도록 대사공학적으로 설계된 1,3-프로판디올을 생산용 재조합 미생물을 제공하는데 있다.It is an object of the present invention to provide a recombinant microorganism for the production of 1,3-propanediol which is metabolically engineered to improve the yield of 1,3-propanediol.

본 발명의 다른 목적은 상기 용하여, 1,3-프로판디올을 생산용 재조합 미생물을 이용한 경제적인 1,3-프로판디올 제조방법을 제공하는데 있다.Another object of the present invention is to provide an economical method for producing 1,3-propanediol using the recombinant microorganism for producing 1,3-propanediol.

상기 목적을 달성하기 위하여 본 발명은 1,3-프로판디올 생성능을 가지는 미생물에서, 리포폴리사카라이드 생합성에 관여하는 글루코실트랜스퍼라아제를 코딩하는 유전자, 락테이트 디하이드로게나아제를 코딩하는 유전자 및 α-아세토락테이트 디카르복실라아제를 코딩하는 유전자가 결실되어 있고, dhaT 오페론 및 폴메이트디하이드로케네이즈가 과발현되어 있는 1,3-프로판디올 생성능을 가지는 재조합 미생물을 제공한다.In order to accomplish the above object, the present invention provides a microorganism having 1,3-propanediol-producing ability, a gene encoding glucosyltransferase involved in lipopolysaccharide biosynthesis, a gene encoding lactate dehydrogenase, A recombinant microorganism having the ability to produce 1,3-propanediol in which a gene coding for? -acetolactate decarboxylase is deleted, and in which dhaT operon and folate dihydrogenase are overexpressed is provided.

본 발명은 (a) 상기 1,3-프로판디올 생성능을 가지는 재조합 미생물을 배양하여 1,3-프로판디올을 생성시키는 단계; 및 (b) 상기 생성된 1,3-프로판디올을 수득하는 단계를 포함하는 1,3-프로판디올의 제조방법을 제공한다.(A) culturing the recombinant microorganism having the ability to produce 1,3-propanediol to produce 1,3-propanediol; And (b) obtaining the 1,3-propanediol thus produced.

본 발명에 따르면, 고분자 단량체, 의료산업, 산업수지 등 산업적으로 다양하게 활용가능한 1,3-프로판디올을, 부산물인 2,3-부탄디올의 생성없이 글리세롤로부터 고효율로 생산할 수 있다. INDUSTRIAL APPLICABILITY According to the present invention, it is possible to produce 1,3-propanediol which can be used in various industrial fields such as polymer monomers, medical industry, industrial resin, etc. from glycerol with high efficiency without producing 2,3-butanediol as a by-product.

도 1은 클렙시엘라 뉴모니에 균주의 2,3-부탄디올 생산 대사회로와 관련된 유전자를 도식화한 것이다.
도 2는 본 발명의 KMK-11 균주의 미량호기성 조건에서 유가배양발효 결과를 나타낸 것으로, X 축은 시간 (h), Y 축은 농도 (g/L) 를 의미한다.
도 3은 본 발명의 KMK-11 균주의 미량호기성 조건에서 유가배양발효 시 생산된 부산물을 나타낸 것으로, X 축은 시간(h), Y 축은 농도(g/L)를 의미한다.
도 4는 본 발명의 KMK-11BT 균주의 혐기성 조건에서 유가배양발효 결과를 나타낸 것으로, X 축은 시간 (h), Y 축은 농도 (g/L) 를 의미한다.
도 5는 본 발명의 KMK-11BT 균주의 혐기성 조건에서 유가배양발효 시 생산된 부산물을 나타낸 것으로, X 축은 시간(시), Y 축은 농도(g/L)를 의미한다.
도 6은 본 발명에서 개발된 대사회로가 공정된 1,3-프로판디올 생산 균주의 대사회로를 나타낸 것으로, 엑스표시는 제거된 유전자를 의미하고, 붉은색 화살표는 과발현된 동종 유전자를 의미하며, 보라색 박스는 발현된 외래 유전자를 의미한다.
1 is a schematic representation of a gene involved in the 2,3-butanediol production metabolic pathway of a strain of Klebsiella nymonis.
FIG. 2 shows the fermentation results of oil-field culture under microaerophilic conditions of the KMK-11 strain of the present invention, wherein the X-axis represents time (h) and the Y-axis represents concentration (g / L).
FIG. 3 shows by-products produced during the fermentation of oil in the microbial fermentation condition of the KMK-11 strain of the present invention, wherein the X axis represents time (h) and the Y axis represents concentration (g / L).
FIG. 4 shows the fermentation results of the oil fermentation under anaerobic conditions of the KMK-11BT strain of the present invention, wherein the X axis represents time (h) and the Y axis represents concentration (g / L).
FIG. 5 shows the by-products produced during the fermentation of the oil fermentation under the anaerobic conditions of the KMK-11BT strain of the present invention, wherein the X axis represents time (hour) and the Y axis represents concentration (g / L).
FIG. 6 shows a metabolic circuit of the 1,3-propanediol producing strain in which the metabolic circuit developed in the present invention is processed. In FIG. 6, the X mark denotes the deleted gene, the red arrow denotes the overexpressed homologous gene, A purple box means an expressed foreign gene.

본 발명에서는 종래 개발된 1,3-프로판디올 생산균주와 비교하여, 병원성이 제거되고, 1,3-프로판디올 분류/정제 과정에 많은 비용을 요구하는 2,3-부탄디올의 생산이 완벽하게 제거되고, 혐기발효를 통해 락틱산, 에탄올, 아세트산, 숙신산 등의 당양한 부산물 생성을 동시에 감소시킨 재조합 크립시엘라 뉴모니에 균주를 제조하였으며, 상기 제조된 재조합 균주는 야생종 및 종래 개발된 균주에 비해 우수한 1,3-프로판디올 수율 및 생산성을 나타낸다(도 6).In the present invention, the production of 2,3-butanediol, which requires much cost in the process of classification and purification of 1,3-propanediol, is completely eliminated The recombinant Klebsiella pneumoniae strains produced simultaneously with lactic acid, ethanol, acetic acid, succinic acid and the like were reduced by anaerobic fermentation, and the recombinant strains were compared with the wild type and the conventionally developed strains And excellent 1,3-propanediol yield and productivity (Fig. 6).

따라서, 본 발명은 일 관점에서, 1,3-프로판디올 생성능을 가지는 미생물에서, 리포폴리사카라이드 생합성에 관여하는 글루코실트랜스퍼라아제를 코딩하는 유전자, 락테이트 디하이드로게나아제를 코딩하는 유전자 및 α-아세토락테이트 디카르복실라아제를 코딩하는 유전자가 결실되어 있고, dhaT 오페론 및 폴메이트디하이드로케네이즈가 과발현되어 있는 1,3-프로판디올 생성능을 가지는 재조합 미생물에 관한 것이다.Therefore, in one aspect, the present invention relates to a gene encoding glucosyltransferase involved in lipopolysaccharide biosynthesis, a gene encoding lactate dehydrogenase, and a gene encoding glucosyltransferase in a microorganism having 1,3- The present invention relates to a recombinant microorganism having the ability to produce 1,3-propanediol in which a gene coding for? -acetolactate decarboxylase has been deleted and dhaT operon and folate dehydrogenase have been overexpressed.

본 발명의 일 양태에서는 상기 1,3-프로판디올 생산용 군주로는 크립시엘라 뉴모니에를 사용하였으며, 크립시엘라 뉴모니에 균주가 병원성을 야기하는 요인인 리포폴리사카라이드의 생서을 억제하기 위하여, wab 오페론 내의 wabG 유전자를 결실시켰다. In one embodiment of the present invention, as the monocycle for producing 1,3-propanediol, creepsiella annum monocytogenes was used, and the inhibitory effect of lipopolysaccharide , To delete the wabG gene in the wab operon.

또한, 1,3-프로판디올의 부산물인 락테이트의 생성을 억제하기 위하여, 락테이트 디하이드로게나아제를 코딩하는 유전자(ldhA)를 결실시켰다.Further, in order to inhibit the production of lactate which is a by-product of 1,3-propanediol, a gene (ldhA) encoding lactate dehydrogenase was deleted.

아울러, 1,3-프로판디올과 물리적으로 물성이 유사하여, 정제시에 어려움을 초래하는 부산물인 2,3-부탄디올의 생성을 억제하기 위하여, α-아세토락테이트 디카르복실라아제를 코딩하는 유전자(budA)를 결실시켰다.In addition, in order to suppress the production of 2,3-butanediol, which is a by-product, which is physically similar in physical property to 1,3-propanediol and causes difficulties in purification, The gene (budA) was deleted.

또한, 글리세롤 환원대사회로의 흐름을 향상시키고, 1,3-프로판디올 생산성을 향상시키기 위해 폴메이트 디하이드로게나아제 유전자(fdh)와 dhaB 오페론 및 dhaT 오페론을 플라스미드에 각각 클로닝하여 과발현 시켰다.Further, in order to improve the flow of the glycerol reduction metabolic pathway and improve the productivity of 1,3-propanediol, the folate mde dehydrogenase gene (fdh), dhaB operon and dhaT operon were cloned into plasmids and overexpressed, respectively.

다른 관점에서, 본 발명은 (a) 상기 1,3-프로판디올 생성능을 가지는 재조합 미생물을 배양하여 1,3-프로판디올을 생성시키는 단계; 및 (b) 상기 생성된 1,3-프로판디올을 수득하는 단계를 포함하는 1,3-프로판디올의 제조방법에 관한 것이다.In another aspect, the present invention provides a method for producing 1,3-propanediol, comprising: (a) culturing a recombinant microorganism having the ability to produce 1,3-propanediol to produce 1,3-propanediol; And (b) obtaining the 1,3-propanediol obtained above.

본 발명의 일양태에서는 재조합 균주인 KMK-11TF 균주를 사용하여, 26시간 발효에서 26시간 발효에서 67 g/L 의 1,3-프로판디올이 생성되었으며, 이 수치는 현재까지 2,3-부탄디올이 제거된 균주에서 생산된 최고 수준의 1,3-프로판디올 생산성과 생산속도이다. 또한, 유가배양발효에서 생산된 부산물은 미량호기성 조건에서와 비교해 크게 감소되었다. 미량호기성 조건에서 주요 부산물이었던 숙신산은 4 g/L 정도가 생산되었고 이는 75% 감소된 수치이다. 또한 피루브산은 완전히 생산되지 않았다. 미량호기성 조건에서 13g/L가 생산된 에탄올은 16 g/L로 다소 증가하였고, 아세트산의 생산은 6 g/L 로 다소 크게 증가되었다.In one embodiment of the present invention, the recombinant strain KMK-11TF was used to produce 67 g / L of 1,3-propanediol at 26 hours of fermentation for 26 hours of fermentation, Is the highest level of 1,3-propanediol productivity and production rate produced by this strain. In addition, the byproducts produced in the fermentation of the oil - added fermentation were greatly reduced compared to those in the microaerophilic condition. Succinic acid, a major by-product in micro-aerobic conditions, was produced at 4 g / L, a 75% decrease. Also, pyruvic acid was not completely produced. In micro aerobic condition, ethanol of 13 g / L was slightly increased to 16 g / L and production of acetic acid was slightly increased to 6 g / L.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these embodiments.

실시예 1: wabG 유전자, ldhA 유전자 및 budA 유전자가 제거된 돌연변이 균주 개발Example 1: Development of a mutant strain in which wabG gene, ldhA gene and budA gene were removed

클렙시엘라 뉴모니에 균주가 병원성을 야기하는 요인들 중에 세포막에 형성되어 있는 리포폴리사카라이드는 병원성 전달에 큰 기여를 한다 (SG Jung et al., Appl Microbiol Biotechnol, 97:1997, 2013). 이 리포폴리사카라이드는 wab 오페론 내의 유전자 발현으로 구성되며, 그 중 wabG 유전자는 중심적인 역할을 한다. 따라서 생산균주의 병원을 제거하기 위해 클렙시엘라 뉴모니에 균주 게놈 상에 wabG 유전자(Genbank : AEK00461.1)는 제거되었으며, 크렙시엘라 뉴모니에 KMK-01로 명명하였다.Lipopolysaccharide, which is formed on the cell membrane among factors causing pathogenicity of Klebsiella nymonii, contributes greatly to pathogenic transmission (SG Jung et al., Appl Microbiol Biotechnol, 97: 1997, 2013). This lipopolysaccharide consists of gene expression in the wab operon, of which the wabG gene plays a central role. Therefore, the wabG gene (Genbank: AEK00461.1) was removed from the strain genome on Klebsiella pneumoniae to eliminate the host of the production strain, and Klebsiella pneumoniae was named KMK-01.

wabG 유전자 및 이후의 다른 유전자의 제거는 람다 레드 리콤비네이션 방법을 이용하였으며(Jung et al. Applied and environmental microbiology 80 (19), 6195-6203, 2014), 1,3-프로판디올 생산 균주로는 크렙시엘라 뉴모이에 균주(Klebsiella pneumoniae KCTC 2242)를 사용하였다. For the removal of the wabG gene and other subsequent genes, the lambda red recombination method was used (Jung et al. Applied and environmental microbiology 80 (19), 6195-6203, 2014) A strain of Klebsiella pneumoniae KCTC 2242 was used.

클랩시엘라 뉴모니에의 wabG 유전자를 제거하기 위해 람다 레드(Lambda red) 재조합 방법을 사용하였다. 우선 세포 내부로 유입된 선형 유전자의 분해를 방지하고 상동재조합(homologous recombination)의 효율을 높이기 위한 효소 엑소, 감마, 베타의 발현 벡터를 컴피턴트 세포로 준비된 클렙시엘라 뉴모니에 균주에 형질전환 시켰다. BAD 프로모터를 가지고 테트라사이클린 저항성이 있는 pRedET 벡터를 본 발명에 사용하였고, 형질전환을 확인하였다. 다음으로 상동재조합을 위한 선형 유전자를 제작하였다. FRT-카나마이신-FRT 카세트를 가진 pKD4 벡터를 주형으로 사용하였다. 상동재조합이 발생하는 위치인 클렙시엘라 뉴모니에의 wabG 유전자 양 옆의 상동한 50개의 염기쌍과 주형으로 쓰는 pKD4의 FRT-카나마이신-FRT 카세트를 중합하기 위한 20개의 염기쌍, 총 70개의 염기쌍을 프라이머로 제작하였고 중합효소 연쇄 반응(Polymerase Chain Reaction)을 이용하여 wabG 유전자를 제거하기 위한 선형 유전자를 제작하였다. 카나마이신은 상동재조합이 성공적으로 이루어졌는지 확인하기 위한 항 의약(anti drug)이고, FRT 부위는 목표 유전자가 제거 된 후 다른 유전자의 제거를 위해 항 의약을 제거해 주는 역할을 한다.A recombinant Lambda red method was used to remove the wabG gene in E. coli. First, the expression vector of the enzyme exo, gamma, and beta to prevent the degradation of the linear gene introduced into the cell and to increase the efficiency of homologous recombination was transformed into a strain of Klebsiella pneumoniae prepared as competent cells . A tetracycline resistant pRedET vector with the BAD promoter was used in the present invention and the transformation was confirmed. Next, a linear gene for homologous recombination was prepared. A pKD4 vector with FRT-kanamycin-FRT cassette was used as the template. A total of 70 base pairs for polymerizing the homologous 50 base pairs on both sides of the homologous recombination site, wbG gene, and the FRT-kanamycin-FRT cassette of pKD4 used as a template, a total of 70 base pairs, And Polymerase Chain Reaction (PCR) to generate a linear gene to remove the wabG gene. Kanamycin is an anti-drug for confirming successful homologous recombination, and the FRT site removes the anti-drug to remove other genes after the target gene is removed.

다음 단계로 pRedET 벡터가 형질전환 된 것이 확인된 클렙시엘라 뉴모니에를 30℃에서 배양하였다. pRedET 벡터는 온도에 민감한 벡터로써 37℃이상이 되면 그 활성을 잃기 때문에 30℃에서 배양하였다. 또한 배양 1시간 후 OD600이 0.1 정도 되었을 때 10%의 아라비노즈 (L-arabinose)로 pRedET의 레드 람다 재조합 효소 발현 유도를 시켜주었다. 1시간 더 배양시켜 OD600이 0.6정도가 되었을 때 전기천공법을 위한 컴피턴트 세포로 만든 후 제작한 선형유전자를 형질전환 하였다. LB 배지에 37℃에서 1시간 배양 후 카나마이신이 12.5 ㎎/㎖ 첨가된 LB 고체배지에 스프레딩하고 12시간 배양시켰다. 상동재조합의 성공 여부를 확인하기 위해 2가지의 프라이머가 제작되었다. wabG 유전자 양옆의 상동한 20-24개의 염기쌍을 wabG_con_A 와 _B로 명칭하였다. 이 2가지 프라이머를 사용하여 콜로니 PCR 을 수행하였을 때 PCR 생산물의 길이를 통해 상동재조합의 여부를 확인하였다. The next step was to cultivate Klebsiella pneumoniae at 30 캜 in which pRedET vector was transformed. The pRedET vector is a temperature-sensitive vector. When the temperature exceeds 37 ° C, the pRedET vector loses its activity and is cultured at 30 ° C. After 1 hour of incubation, when the OD600 was about 0.1, the red lambda recombinase expression of pRedET was induced with 10% of arabinose (L-arabinose). When the OD600 reached about 0.6, the cells were transformed into competent cells for electroporation and transformed into a linear gene. The cells were cultured in LB medium at 37 占 폚 for 1 hour, spread on LB solid medium supplemented with 12.5 mg / ml of kanamycin, and cultured for 12 hours. Two primers were made to confirm the success of homologous recombination. The homologous 20-24 base pairs on both sides of the wabG gene were named wabG_con_A and _B. When these two primers were used for colony PCR, homologous recombination was confirmed through the length of the PCR product.

야생종의 클렙시엘라 뉴모니에 균주 발효시 주요 부산물로써 락틱산이 생산된다. 락틱산은 1,3-프로판디올과 생산에 필요한 NADH 사용에 있어 경쟁 관계에 있을 뿐만 아니라, 과도한 락틱산의 생산은 발효 배지의 산성화를 유도해 세포 성장 저해를 야기함으로 락틱산을 생산하는데 관련된 유전자인 ldhA 유전자(GenBank: AEJ97914.1)는 상기 제조된 크렙시엘라 뉴모니에 KMK-01 균주에서 제거되었고, 크렙시엘라 뉴모니에 KMK-02 라 명명하였다.Lactic acid is produced as a major by-product in the fermentation of the wild-type Klebsiella pneumoniae. In addition to being competitive with 1,3-propanediol in the use of NADH required for production, excessive production of lactic acid leads to inhibition of cell growth by inducing acidification of the fermentation medium, The ldhA gene (GenBank: AEJ97914.1) was removed from KMK-01 strain in the prepared Krebshiella pneumoniae and named KMK-02 in Krebsiella pneumoniae.

KMK-01의 ldhA 유전자를 제거하기 위해 역시 람다 레드(Lambda red) 재조합 방법을 사용했다. 우선 세포 내부로 유입된 선형 유전자의 분해를 방지하고 상동재조합(homologous recombination)의 효율을 높이기 위한 효소 엑소, 감마, 베타의 발현 벡터를 컴피턴트 세포로 준비된 클렙시엘라 뉴모니에 균주에 형질전환 시켰다. BAD 프로모터를 가지고 테트라사이클린 저항성이 있는 pRedET 벡터를 본 발명에 사용하였고, 형질전환을 확인하였다. 다음으로 상동재조합을 위한 선형 유전자를 제작하였다. FRT-카나마이신-FRT 카세트를 가진 pKD4 벡터를 주형으로 사용하였다. 상동재조합이 발생하는 위치인 클렙시엘라 뉴모니에의 ldhA 유전자 양 옆의 상동한 50개의 염기쌍과 주형으로 쓰는 pKD4의 FRT-카나마이신-FRT 카세트를 중합하기 위한 20개의 염기쌍, 총 70개의 염기쌍을 프라이머로 제작하였고 중합효소 연쇄 반응(Polymerase Chain Reaction)을 이용하여 ldhA 유전자를 제거하기 위한 선형 유전자를 제작하였다. 카나마이신은 상동재조합이 성공적으로 이루어졌는지 확인하기 위한 항 의약(anti drug)이고, FRT 부위는 목표 유전자가 제거 된 후 다른 유전자의 제거를 위해 항 의약을 제거해 주는 역할을 한다.A recombinant Lambda red was also used to remove the ldhA gene of KMK-01. First, the expression vector of the enzyme exo, gamma, and beta to prevent the degradation of the linear gene introduced into the cell and to increase the efficiency of homologous recombination was transformed into a strain of Klebsiella pneumoniae prepared as competent cells . A tetracycline resistant pRedET vector with the BAD promoter was used in the present invention and the transformation was confirmed. Next, a linear gene for homologous recombination was prepared. A pKD4 vector with FRT-kanamycin-FRT cassette was used as the template. A total of 70 base pairs for polymerizing 50 homologous base pairs of ldhA gene to Klebsiella pneumoniae, homologous recombination site, and the FRT-kanamycin-FRT cassette of pKD4 used as a template, a total of 70 base pairs, And Polymerase Chain Reaction (PCR) to generate a linear gene to remove the ldhA gene. Kanamycin is an anti-drug for confirming successful homologous recombination, and the FRT site removes the anti-drug to remove other genes after the target gene is removed.

다음 단계로 pRedET 벡터가 형질전환 된 것이 확인된 KMK-01 균주를 30℃에서 배양하였다. pRedET 벡터는 온도에 민감한 벡터로써 37℃이상이 되면 그 활성을 잃기 때문에 30℃에서 배양하였다. 또한 배양 1시간 후 OD600이 0.1 정도 되었을 때 10%의 아라비노즈 (L-arabinose)로 pRedET의 레드 람다 재조합 효소 발현 유도를 시켜주었다. 1시간 더 배양시켜 OD600이 0.6정도가 되었을 때 전기천공법을 위한 컴피턴트 세포로 만든 후 제작한 선형유전자를 형질전환 하였다. LB 배지에 37℃에서 1시간 배양 후 카나마이신이 12.5 ㎎/㎖ 첨가된 LB 고체배지에 스프레딩하고 12시간 배양시켰다. 상동재조합의 성공 여부를 확인하기 위해 2가지의 프라이머가 제작되었다. ldhA 유전자 양옆의 상동한 20-24개의 염기쌍을 ldhA con_A 와 _B로 명칭하였다. 이 2가지 프라이머를 사용하여 콜로니 PCR 을 수행하였을 때 PCR 생산물의 길이를 통해 상동재조합의 여부를 확인하였다. In the next step, KMK-01 strain, in which pRedET vector was transformed, was cultured at 30 ° C. The pRedET vector is a temperature-sensitive vector. When the temperature exceeds 37 ° C, the pRedET vector loses its activity and is cultured at 30 ° C. After 1 hour of incubation, when the OD600 was about 0.1, the red lambda recombinase expression of pRedET was induced with 10% of arabinose (L-arabinose). When the OD600 reached about 0.6, the cells were transformed into competent cells for electroporation and transformed into a linear gene. The cells were cultured in LB medium at 37 占 폚 for 1 hour, spread on LB solid medium supplemented with 12.5 mg / ml of kanamycin, and cultured for 12 hours. Two primers were made to confirm the success of homologous recombination. The homologous 20-24 base pairs on both sides of the ldhA gene were named ldhA con_A and _B. When these two primers were used for colony PCR, homologous recombination was confirmed through the length of the PCR product.

부산물로써 생산되는 2,3-부탄디올은 섭취되는 글리세롤의 18%의 탄소흐름을 소비할 뿐만아니라, 발효 후 1,3-프로판디올 분리 정제 과정시 많은 비용을 소요하므로 2,3-부탄디올 생산을 제거하기 위하여, budA 유전자는 제거하였다.Since 2,3-butanediol produced as a by-product consumes 18% of the carbon flow of the glycerol ingested and also requires a large amount of cost for the separation and purification of 1,3-propanediol after fermentation, 2,3-butanediol production is eliminated , The budA gene was removed.

KMK-02의 budA 유전자를 제거하기 위해 역시 람다 레드(Lambda red) 재조합 방법을 사용했다. 우선 세포 내부로 유입된 선형 유전자의 분해를 방지하고 상동재조합(homologous recombination)의 효율을 높이기 위한 효소 엑소, 감마, 베타의 발현 벡터를 컴피턴트 세포로 준비된 클렙시엘라 뉴모니에 균주에 형질전환 시켰다. BAD 프로모터를 가지고 테트라사이클린 저항성이 있는 pRedET 벡터를 본 발명에 사용하였고, 형질전환을 확인하였다. 다음으로 상동재조합을 위한 선형 유전자를 제작하였다. FRT-카나마이신-FRT 카세트를 가진 pKD4 벡터를 주형으로 사용하였다. 상동재조합이 발생하는 위치인 클렙시엘라 뉴모니에의 budA 유전자 양 옆의 상동한 50개의 염기쌍과 주형으로 쓰는 pKD4의 FRT-카나마이신-FRT 카세트를 중합하기 위한 20개의 염기쌍, 총 70개의 염기쌍을 프라이머로 제작하였고 중합효소 연쇄 반응(Polymerase Chain Reaction)을 이용하여 budA 유전자를 제거하기 위한 선형 유전자를 제작하였다. 카나마이신은 상동재조합이 성공적으로 이루어졌는지 확인하기 위한 항 의약(anti drug)이고, FRT 부위는 목표 유전자가 제거 된 후 다른 유전자의 제거를 위해 항 의약을 제거해 주는 역할을 한다.A recombinant Lambda red was also used to remove the budA gene of KMK-02. First, the expression vector of the enzyme exo, gamma, and beta to prevent the degradation of the linear gene introduced into the cell and to increase the efficiency of homologous recombination was transformed into a strain of Klebsiella pneumoniae prepared as competent cells . A tetracycline resistant pRedET vector with the BAD promoter was used in the present invention and the transformation was confirmed. Next, a linear gene for homologous recombination was prepared. A pKD4 vector with FRT-kanamycin-FRT cassette was used as the template. A total of 70 base pairs for polymerizing 50 homologous base pairs on both sides of the budA gene to Klebsiella pneumonia, which is a homologous recombination site, and the FRT-kanamycin-FRT cassette of pKD4 used as a template, And a linear gene for the removal of the budA gene was constructed using Polymerase Chain Reaction (PCR). Kanamycin is an anti-drug for confirming successful homologous recombination, and the FRT site removes the anti-drug to remove other genes after the target gene is removed.

다음 단계로 pRedET 벡터가 형질전환 된 것이 확인된 KMK-02 균주를 30℃에서 배양하였다. pRedET 벡터는 온도에 민감한 벡터로써 37℃이상이 되면 그 활성을 잃기 때문에 30℃에서 배양하였다. 또한 배양 1시간 후 OD600이 0.1 정도 되었을 때 10%의 아라비노즈 (L-arabinose)로 pRedET의 레드 람다 재조합 효소 발현 유도를 시켜주었다. 1시간 더 배양시켜 OD600이 0.6정도가 되었을 때 전기천공법을 위한 컴피턴트 세포로 만든 후 제작한 선형유전자를 형질전환 하였다. LB 배지에 37℃에서 1시간 배양 후 카나마이신이 12.5 ㎎/㎖ 첨가된 LB 고체배지에 스프레딩하고 12시간 배양시켰다. 상동재조합의 성공 여부를 확인하기 위해 2가지의 프라이머가 제작되었다. budA 유전자 양옆의 상동한 20-24개의 염기쌍을 budA con_A 와 _B로 명칭하였다. 이 2가지 프라이머를 사용하여 콜로니 PCR 을 수행하였을 때 PCR 생산물의 길이를 통해 상동재조합의 여부를 확인하였다. The KMK-02 strain, which was confirmed to have a pRedET vector transformed into the next step, was cultured at 30 ° C. The pRedET vector is a temperature-sensitive vector. When the temperature exceeds 37 ° C, the pRedET vector loses its activity and is cultured at 30 ° C. After 1 hour of incubation, when the OD600 was about 0.1, the red lambda recombinase expression of pRedET was induced with 10% of arabinose (L-arabinose). When the OD600 reached about 0.6, the cells were transformed into competent cells for electroporation and transformed into a linear gene. The cells were cultured in LB medium at 37 占 폚 for 1 hour, spread on LB solid medium supplemented with 12.5 mg / ml of kanamycin, and cultured for 12 hours. Two primers were made to confirm the success of homologous recombination. The homologous 20-24 base pairs on both sides of the budA gene were named budA con_A and _B. When these two primers were used for colony PCR, homologous recombination was confirmed through the length of the PCR product.

2,3-부탄디올을 생산하는 유전자는 bud 오페론으로 도 1에 나타낸 바와 같이 구성되어 있다. 아세토락테이트는 아미노산인 아이소류신과 발린 생산에 필요한 전구체이므로 budB 유전자는 제거하지 않았고, budC 유전자를 제거할 시 2,3-부탄디올 대신 아세토인이 과량 생산되므로 budB 유전자가 2,3-부탄디올 생산 제거를 위해 선택되었다. budA 유전자(AEJ98545.1)는 KMK-02 균주에서 제거되었으며, KMK-11 로 명명하였다.The gene that produces 2,3-butanediol is a bud operon as shown in Fig. Since acetolactate is an amino acid, isoleucine and a precursor necessary for the production of valine, the budB gene is not removed. When the budC gene is removed, acetoin is produced in excess of 2,3-butanediol, . The budA gene (AEJ98545.1) was removed from KMK-02 strain and designated KMK-11.

Figure 112015109376501-pat00001
Figure 112015109376501-pat00001

본 발명에서 사용된 프라이머를 표 2에 나타내었고, 본 발명에서 개발된 돌연변이 재조합 균주와 유전적 특징을 표 3에 나타내었다. The primers used in the present invention are shown in Table 2, and the mutant recombinant strains and genetic characteristics developed in the present invention are shown in Table 3.

본 발명에서 유전자 제거와 클로닝에 사용된 프라이머 서열 In the present invention, the primer sequence used for gene removal and cloning Primer namePrimer name Primer sequencePrimer sequence ( ( 5' → 35 '- &gt; 3 ')') wabG_FKF_fw
(서열번호 4)
wabG _FKF_fw
(SEQ ID NO: 4)
GATTTAATCCCTACCGACGCGGTCATCGCGGCGGCGAAAAAGGTACTGGCGTGTAGGCTGGAGCTGCTTC Gt ;
wabG _FKF_rv
(서열번호 5)
wabG _FKF_rv
(SEQ ID NO: 5)
TTCCGCGCCGCCGCCCGGCAGGCCATCGATAACAAACAATATGCGCATCGGTCCATATGAATATCCTCCT TTCCGCGCCGCCGCCCGGCAGGCCATCGATAACAAACAATATGCGCATCG GTCCATATGAATATCCTCCT
wabG _con_A
(서열번호 6)
wabG _con_A
(SEQ ID NO: 6)
TTCCGGGAACACTACATCGTTTCCGGGAACACTACATCGT
wabG _con_B
(서열번호 7)
wabG _con_B
(SEQ ID NO: 7)
CCGAGATAGGAGGCAGAGAACCGAGATAGGAGGCAGAGAA
ldhA_FKF_fw
(서열번호 8)
ldhA _FKF_fw
(SEQ ID NO: 8)
ATTATTTTAAATATGCTACCGTGACGGTATAATCACTGGAGAAAAGTCTTGTGTAGGCTGGAGCTGCTTC ATTATTTTAAATATGCTACCGTGACGGTATAATCACTGGAGAAAAGTCTT GTGTAGGCTGGAGCTGCTTC
ldhA _FKF_rv
(서열번호 9)
ldhA _FKF_rv
(SEQ ID NO: 9)
GATTATCTGAATGTGCTCCCCCCGGGAGAGGAGCACAAAAGGGAAAGGCAGTCCATATGAATATCCTCCT GATTATCTGAATGTGCTCCCCCCGGGAGAGGAGCACAAAAGGGAAAGGCA GTCCATATGAATATCCTCCT
ldhA _con_A
(서열번호 10)
ldhA _con_A
(SEQ ID NO: 10)
GAATTAGGATTAGCACCCTCTCAGAATTAGGATTAGCACCCTCTCA
ldhA _con_B
(서열번호 11)
ldhA _con_B
(SEQ ID NO: 11)
CCAAGCCAGTGTAACGGTATCCCAAGCCAGTGTAACGGTATC
budA_FKF_fw
(서열번호 12)
budA _FKF_fw
(SEQ ID NO: 12)
GTCAACATTTATTTAACCTTTCTTATATTTGTTGAACGAGGAAGTGGTATGTGTAGGCTGGAGCTGCTTC Gt ;
budA _FKF_rv
(서열번호 13)
budA _FKF_rv
(SEQ ID NO: 13)
GCGCCGTGCGCCCACTGGCGTACCGGATACTGTTTGTCCATGTGACCCCCCCTCCTTAGTTCCTATTCC GCGCCGTGCGCCCACTGGCGTACCGGATACTGTTTGTCCATGTGACCCCC CCTCCTTAGTTCCTATTCC
budA _con_A
(서열번호 14)
buda _con_A
(SEQ ID NO: 14)
ACGGAGGCTGTGAAATACCCACGGAGGCTGTGAAATACCC
budA _con_B
(서열번호 15)
buda _con_B
(SEQ ID NO: 15)
TTCGTGGCGTACCGGAATATTCGTGGCGTACCGGAATA
pZS21_dhaB_fw
(서열번호 16)
pZS21_ dhaB _fw
(SEQ ID NO: 16)
TTTAAGCTTATGAAAAGATCAAAACGATTTGCTTT AAGCTT ATGAAAAGATCAAAACGATTTGC
pZS21_dhaB_rv
(서열번호 17)
pZS21_ dhaB _rv
(SEQ ID NO: 17)
TTTACGCGTCCGTTTAATTCGCCTGACCTTT ACGCGT CCGTTTAATTCGCCTGACC
pZS21_fdh_fw
(서열번호 18)
pZS21_ fdh _fw
(SEQ ID NO: 18)
TATAAGCTTATGAAAATTGTTCTGGTGCTGTAT AAGCTT ATGAAAATTGTTCTGGTGCTG
pZS21_fdh_rv
(서열번호 19)
pZS21_ fdh _rv
(SEQ ID NO: 19)
ATACCCGGGTTATTTTTTATCGTGTTTACCGTACGATA CCCGGG TTATTTTTTATCGTGTTTACCGTACG
pZA31_dhaT_fw
(서열번호 20)
pZA31_ dhaT _fw
(SEQ ID NO: 20)
TTTAAGCTTATGGCGGGCGACAAAATATTT AAGCTT ATGGCGGGCGACAAAATA
pZA31_dhaT_rv
(서열번호 21)
pZA31_ dhaT _rv
(SEQ ID NO: 21)
AAAGGATCCTCAAGCGCAAGCATCAGGAAA GGATCC TCAAGCGCAAGCATCAGG

a Underlined sequences are the homologous sequence with the target genes of K. pneumoniae. b Restriction sites highlighted in bold a Underlined sequences are the homologous sequence with the target genes of K. pneumoniae. b Restriction sites highlighted in bold

Figure 112015109376501-pat00002
Figure 112015109376501-pat00002

상기 제조된 재조합 균주 KMK-01, KMK-02, KMK-11과 야생종 크립시엘라 뉴모니에를 배양하여, 1,3-프로판디올 생성과 부산물 생성을 확인하였다.The recombinant strains KMK-01, KMK-02, KMK-11 and wild-type crepicillinum mononuclear cells were cultured to confirm production of 1,3-propanediol and production of by-products.

플라스크 배양은 50ml의 발효액이 포함된 250ml 삼각플라스크에서 수행하였고, 37℃, 250rpm에서 수행하였다. 또한 발효기를 이용한 발효에서는 1L 발효액이 포함된 3L 발효기에서 수행하였고, 5M NaOH 를 이용하여 pH7을 유지하고, 300rpm에서 수행하였다. 미량호기성 발효에서는 공기를 0.2 vvm 주입하였고, 혐기 발효시에는 질소 가스를 0.2 vvm 주입하였다.The flask culture was carried out in a 250 ml Erlenmeyer flask containing 50 ml fermentation broth and performed at 37 ° C and 250 rpm. In addition, fermentation using a fermenter was carried out in a 3 L fermenter containing 1 L of fermentation broth and maintained at pH 7 using 5 M NaOH and performed at 300 rpm. For micro aerobic fermentation, 0.2 vvm of air was injected and 0.2 vvm of nitrogen gas was injected during anaerobic fermentation.

본 실시예 및 이후 실시예에서 사용한 발효배지의 조성은 1L 당 3 g KH2PO4, 6.8 g Na2HPO4, 0.75 g KCl, 5.35 g (NH4)2SO4, 0.28 g Na2SO4, 0.26 g MgSO4ㅇ7H2O, 0.42 g citric acid, 5 g yeast extract, 10 g Casamino Acids 가 포함되었고, 1ml 씩의 Fe 솔루션과 Trace element 솔루션 이 포함되고, 각 솔루션의 구성 성분은 표 4에 나타내었다. 탄소원으로 사용된 글리세롤과 메니톨은 필요에 따라 농도를 조절하여 발효 배지에 포함되었다. 배지 조성에 사용된 모든 시약들은 시그마 알드리치에서 구입되었다. The composition of the fermentation medium used in this Example and the following Examples was 3 g KH2PO4, 6.8 g Na2HPO4, 0.75 g KCl, 5.35 g (NH4) 2SO4, 0.28 g Na2SO4, 0.26 g MgSO4 .7H2O, 0.42 g citric acid, 5 g yeast extract, 10 g Casamino Acids, 1 ml each of Fe and Trace element solutions, and the ingredients of each solution are shown in Table 4. Glycerol and mannitol, which were used as carbon sources, were included in the fermentation medium with controlled concentrations as needed. All reagents used in the medium composition were purchased from Sigma-Aldrich.

Figure 112015109376501-pat00003
Figure 112015109376501-pat00003

대사과정을 통하여 생산된 1,3-프로판디올을 비롯한 글리세롤, 솔비톨, 글루코네이트, 글루코즈 등의 탄소원과 락틱산, 숙신산, 피루브산, 아세트산, 에탄올, 3-하이드록시프로피오닉산 등의 부산물을 모두 HPLC를 통해 분석하였으며 운행조건 및 이동상은 표 5에 나타내었다.Byproducts such as glycerol, sorbitol, gluconate and glucose, including lactic acid, succinic acid, pyruvic acid, acetic acid, ethanol, and 3-hydroxypropionic acid, produced by the metabolic process, including 1,3-propanediol, The operating conditions and the mobile phase are shown in Table 5.

대사산물 분석을 위한 HPLC 운행 조건 및 이동상HPLC operating conditions and mobile phase for metabolite analysis 품 목subject 조 건Condition HPLC 모델HPLC model Waters HPLC1500 series Waters HPLC1500 series 컬럼column Sugar SH1011 column (Shodex, Japan)Sugar SH1011 column (Shodex, Japan) 유속Flow rate 0.6 ml/min0.6 ml / min 주입부피Injection volume 10ul10ul 이동상Mobile phase 5mM 황산5 mM sulfuric acid 오븐 온도Oven temperature 60℃60 ° C 작동 시간Operating time 25분25 minutes

그 결과, 표 6에 나타낸 바와 같이 wabG 유전자가 제거된 KMK-01 균주는 야생형 균주에 비하여, 글리세롤 섭취와 1,3-프로판디올 생산성을 약 50% 향상되었다. 대부분의 부산물 생산량은 크게 차이가 없었으나 락틱산의 생산력은 약 50% 감소하였다. 추가적으로 ldhA 균주가 제거된 KMK-02 균주는 락틱산을 거의 생성하지 않았으며, 1,3-프로판디올 생산량은 약 40% 향상되었으나, 수율은 크게 증가하지 않았다. 이러한 결과의 원인은 락틱산 생산의 중단으로 발효 배지의 산성화가 그 부모종에 비해 감소되었고, 이는 세포성장 향상과 대사회로 활성활를 야기한 결과로 보인다. As a result, as shown in Table 6, the KMK-01 strain in which the wabG gene was removed improved glycerol intake and 1,3-propanediol productivity by about 50% as compared with the wild type strain. Most of the byproducts were not significantly different, but lactic acid productivity decreased by about 50%. In addition, the KMK-02 strain in which the ldhA strain was removed produced almost no lactic acid, and the yield of 1,3-propanediol was improved by about 40%, but the yield did not significantly increase. These results were attributed to the discontinuation of lactic acid production and the acidification of the fermentation medium was reduced as compared with the parent species, which resulted in cell growth and metabolic activation.

budA 유전자가 추가적으로 제거된 KMK-11 균주의 경우, 야생형에 비하여 1,3-프로판디올 생산량을 약 50% 감소시킨 결과를 초래했으나, 2,3-부탄디올의 생산은 완벽히 제거되었다.In the case of the KMK-11 strain in which the budA gene was additionally removed, the production of 1,3-propanediol was reduced by about 50% as compared with the wild type, but the production of 2,3-butanediol was completely eliminated.

본 발명에서 개발된 돌연변이 균주의 플라스크 배양 결과를 표 6에 나타내었다.The results of the flask culture of the mutant strains developed in the present invention are shown in Table 6.

Figure 112015109376501-pat00004
Figure 112015109376501-pat00004

실시예 2: KMK-11 균주의 미량호기성 조건에서 유가배양발효Example 2: Fermentation of oil in a micro aerobic condition of strain KMK-11

플라스크 발효에서 KMK-11 균주의 2,3-부탄디올 생산은 완벽히 제거되었으므로 미량호기성 조건에서 유가배양발효를 통해 1,3-프로판디올 생산성을 향상시키고자 하였다. 도 2에 나타난 바와 같이, 42시간 배양에서 47.26g/L 의 1,3-프로판디올이 생산되었고, 2,3-부탄디올의 생산은 여전히 중단되었다.Since 2,3-butanediol production of KMK-11 strain was completely eliminated in the flask fermentation, the productivity of 1,3-propanediol was improved through fermentation under oil aerobic conditions. As shown in Fig. 2, 47.26 g / L of 1,3-propanediol was produced in the culture for 42 hours, and production of 2,3-butanediol was still stopped.

본 발효에서 부산물의 생산 경향을 확인해본 결과를 도 3에 나타내었으며, 발효 초기에 아세트산이 급속히 생산되기 시작하며 약 6g/L 생산 후 점차 감소되었다. 숙신산은 약 20g/L 가 생산되어 주요 부산물로써 생산되었으며, 피루브산과 에탄올은 각각 13g/L 씩 생산되었다.The results of the production of by-products in this fermentation are shown in FIG. 3. The acetic acid starts to be rapidly produced at the early stage of fermentation and gradually decreased after the production of about 6 g / L. Succinic acid was produced as a major byproduct of about 20 g / L, and pyruvic acid and ethanol were produced at 13 g / L, respectively.

실시예 3: 폴메이트 디하이드로게나아제, dhaB 오페론 및 dhaT 오페론이 과발현된 재조합 미생물의 제작Example 3: Production of recombinant microorganisms overexpressing polmate dehydrogenase, dhaB operon and dhaT operon

1,3-프로판디올 생산시 사용되는 NADH 는 글리세롤 산화대사회로에서 생산되므로 글리세롤 산화대사회로 흐름 감소시 1,3-프로판디올 생산 역시 감소되는 문제점을 야기한다. 따라서 캔디다 보이디니 (Candida boidinii) 균주의 폴메이트 디하이드로겐에이즈를 발현시켜 이 문제점을 극복하고자 하였다. 폴메이트 디하이드로겐에이즈는 폴메이트를 기질로 사용해서 이산화탄소로 전환하는 과정에서 NAD+ 를 NADH 로 전환시키므로 생산된 NADH 는 1,3-프로판디올 생산에 이용될수 있다.Since NADH used in the production of 1,3-propanediol is produced in the glycerol oxidizing zone society, 1,3-propanediol production is also reduced when the flow is reduced to the glycerol oxidizing zone society. Therefore, the present inventors tried to overcome this problem by expressing the folate dihydrogenase of Candida boidinii strain. Polmate dihydrogen AIDS converts NAD + to NADH in the process of converting folate to carbon dioxide using folate as a substrate, so NADH produced can be used to produce 1,3-propanediol.

아울러, 글리세롤 환원대사회로의 흐름을 향상시키고 1,3-프로판디올 생산성을 향상시키기 위해 1,3-프로판디올 생산에 관련된 dhaB 오페론과 dhaT 오페론은 pZS31MCS 와 pZA31MCS 플라스미드에 각각 클로닝하였다. In addition, dhaB operon and dhaT operon related to 1,3-propanediol production were cloned into pZS31MCS and pZA31MCS plasmids, respectively, in order to improve the flow of the glycerol reduction metabolic pathway and improve 1,3-propanediol productivity.

크렙시엘라 뉴모니에 균주에서 발현 가능한 플라스미드를 선정하기 위해 대장균에서 사용되는 다양한 플라스미드에 녹색형광단백질을 클로닝하여 렙시엘라 뉴모니에 균주 내에서의 발현을 시도했으며, 그 결과 tetO-1 프로모터를 가지는 pZA31MCS(EXPRESSYS, 독일)와 pZS21MCS(EXPRESSYS, 독일) 플라스미드가 원활히 발현됨을 확인하고, 크렙시엘라 뉴모니에 내에 특정 유전자를 과발현하기 위해 사용되었다.In order to select a plasmid capable of expressing the strain in Klebsiella pneumoniae, a green fluorescent protein was cloned into various plasmids used in Escherichia coli to try to express the gene in a strain of Rbcyella nemony. As a result, It was confirmed that pZA31MCS (EXPRESSYS, Germany) and pZS21MCS (EXPRESSYS, Germany) plasmids were expressed smoothly, and was used to overexpress a specific gene in Klebsiella pneumoniae.

클로닝을 위한 dhaB 오페론과 dhaT 오페론 유전자의 template 는 클렙시엘라 뉴모니에 KCTC2242 균주의 크로모좀이 사용되었다. 클렙시엘라 뉴모니에 KCTC2242 균주의 크로모좀을 추출하기 위해 Wizard Genomic DNA Purification Kit (Promega, WI, USA)를 이용하였다. 폴메이트 디하이드로게나아제의 template는 candida boidinii 균주의 크로모좀이 이용되었으며, 역시 Wizard Genomic DNA Purification Kit (Promega, WI, USA)를 이용하였다. The template for the dhaB operon and dhaT operon gene for cloning was a chromosome of KCTC2242 in Klebsiella pneumoniae. A Wizard Genomic DNA Purification Kit (Promega, Wis., USA) was used to extract chromosomes of KCTC2242 strain in Klebsiella pneumoniae. Chromosomes of Candida boidinii strains were used for the template of Polmate dihydrogenase, and also Wizard Genomic DNA Purification Kit (Promega, WI, USA) was used.

우선 dhaB 오페론(서열번호 1)은 pZS21_dhaB_fw와 pZS21_dhaB_rv 프라이머를 이용하여 어닐링 온도 63도에서 PCR 을 통해 증폭되었다. PCR 은 Phusion DNA polymerase (NEB, MA, USA)를 이용하였고, 조합은 제품의 설명서를 따랐다. 증폭된 dhaB 오페론 유전자와 pZS21MCS 벡터는 HindIII 와 MluI 제한효소를 이용하여 유전자를 절단한 후 DNA Ligation Kit Mighty Mix (TaKaRa Bio Inc., Shiga, Japan) 를 이용하여 접합되었다. DH5a 대장균은 재조합된 유전자의 증폭과 클로닝 확인을 위해 이용되었고, DNA sequencing 을 통해 클로닝을 확인하였다. First, dhaB operon (SEQ ID NO: 1) was amplified by PCR at an annealing temperature of 63 degrees using pZS21_dhaB_fw and pZS21_dhaB_rv primers. PCR was performed using Phusion DNA polymerase (NEB, MA, USA), and the combination followed the product instructions. The amplified dhaB operon gene and pZS21MCS vector were digested with HindIII and MluI restriction enzymes and ligated using DNA Ligation Kit Mighty Mix (TaKaRa Bio Inc., Shiga, Japan). DH5a E. coli was used for amplification and cloning confirmation of the recombinant gene, and cloning was confirmed by DNA sequencing.

dhaT 오페론(서열번호 2)은 pZA31_dhaT_fw와 pZA31_dhaT_rv 프라이머를 이용하여 어닐링 온도 66도에서 PCR 을 통해 증폭되었다. PCR 은 Phusion DNA polymerase (NEB, MA, USA)를 이용하였고, 조합은 제품의 설명서를 따랐다. 증폭된 dhaT 오페론 유전자와 pZA31MCS 벡터는 HindIII 와 BamHI 제한효소를 이용하여 유전자를 절단한 후 DNA Ligation Kit Mighty Mix (TaKaRa Bio Inc., Shiga, Japan) 를 이용하여 접합되었다. DH5a 대장균은 재조합된 유전자의 증폭과 클로닝 확인을 위해 이용되었고, DNA sequencing 을 통해 클로닝을 확인하였다. The dhaT operon (SEQ ID NO: 2) was amplified by PCR using the pZA31_dhaT_fw and pZA31_dhaT_rv primers at an annealing temperature of 66 ° C. PCR was performed using Phusion DNA polymerase (NEB, MA, USA), and the combination followed the product instructions. The amplified dhaT operon gene and pZA31MCS vector were digested with HindIII and BamHI restriction enzymes and ligated using DNA Ligation Kit Mighty Mix (TaKaRa Bio Inc., Shiga, Japan). DH5a E. coli was used for amplification and cloning confirmation of the recombinant gene, and cloning was confirmed by DNA sequencing.

폴메니트 디하이드로겐에이즈 유전자(서열번호 3)는 pZS21_fdh_fw와 pZS21_fdh_rv 프라이머를 이용하여 어닐링 온도 65도에서 PCR 을 통해 증폭되었다. PCR 은 Phusion DNA polymerase (NEB, MA, USA)를 이용하였고, 조합은 제품의 설명서를 따랐다. 증폭된 폴메이트 디하이드로겐에이즈 유전자와 pZS21MCS 벡터는 HindIII 와 BamHI 제한효소를 이용하여 유전자를 절단한 후 DNA Ligation Kit Mighty Mix (TaKaRa Bio Inc., Shiga, Japan) 를 이용하여 접합되었다. DH5a 대장균은 재조합된 유전자의 증폭과 클로닝 확인을 위해 이용되었고, DNA sequencing 을 통해 클로닝을 확인하였다. The polmenitic dehydrogenase gene (SEQ ID NO: 3) was amplified by PCR at an annealing temperature of 65 degrees using pZS21_fdh_fw and pZS21_fdh_rv primers. PCR was performed using Phusion DNA polymerase (NEB, MA, USA), and the combination followed the product instructions. The amplified polmate dihydrogenase gene and the pZS21MCS vector were ligated using DNA Ligation Kit Mighty Mix (TaKaRa Bio Inc., Shiga, Japan) after digesting the gene using HindIII and BamHI restriction enzymes. DH5a E. coli was used for amplification and cloning confirmation of the recombinant gene, and cloning was confirmed by DNA sequencing.

상기 제조된 플라스미드를 KMK-11 균주에 클로닝하여, KNK-11F, KNK-11TF 및 KNK-11BT를 제조하였다.KNK-11F, KNK-11TF, and KNK-11BT were prepared by cloning the prepared plasmid into KMK-11 strain.

실시예 4: 1,3-프로판디올 생산에 관련된 유전자 발현과 혐기성 조건에서 유가배양발효Example 4: Expression of genes involved in the production of 1,3-propanediol and fermentation of oil-feed cultures under anaerobic conditions

글리세롤은 세포내에서 산화대사회로와 환원대사회로를 통해 이용된다. 실시예 2에서 생산된 숙신산, 피루브산, 에탄올, 아세트산은 모두 산화대사회로를 통해 생산되므로 글리세롤 산화대사회로의 흐름을 감소시킬 필요가 있다. 글리세롤 산화대사회로는 산소가 존재할시 활성화대고 혐기발효시 글리세롤 산화대사회로는 억제되고, 환원대사회로는 활성화되므로 혐기 조건에서의 발효를 진행하였다.Glycerol is used in the cell through the oxidation-oxidation pathway and through the reduction metabolic pathway. Since succinic acid, pyruvic acid, ethanol, and acetic acid produced in Example 2 are all produced through the oxidation pathway, it is necessary to reduce the flow to the glycerol oxidation pathway society. In the glycerol oxidizing zone society, fermentation under anaerobic condition was proceeded because oxygen was present in the presence of oxygen, anaerobic fermentation was inhibited in glycerol oxidizing society, and the reductive metabolism circuit was activated.

KMK-11 균주에 fdh, dhaB 오페론, dhaT 오페론이 발현된 균주의 플라스크 배양 결과를 표 7에 나타내었다. Table 7 shows the flask culture results of strains expressing fdh, dhaB operon, and dhaT operon in KMK-11 strain.

폴메이트 디하이드로겐에이즈의 단독 발효는 대조군에 비하여, 1,3-프로판디올 생산에 큰 영향을 주지 못했다. 하지만 dhaT 오페론과 함께 발현되었을 때 1,3-프로판디올의 생산성은 약 22% 증가하였다. 반면 dhaB 오페론과 dhaT 오페론이 함께 발현되었을 때는 1,3-프로판디올 생산성이 약 58% 감소하였다. 1,3-프로판디올은 dhaB 오페론에 의해 3-하이드록시프로피온알데하이드로 전환되고, 이는 다시 dhaT 오페론에 의해 1,3-프로판디올로 전환된다. 1,3-프로판디올의 전구체인 3-하이드록시프로피온알데하이드는 항미생물제로 사용될만큼 세포에 큰 독성을 지닌다. dhaB 오페론을 발현시켰을시에 3-하이드록시프로피온알데하이드의 축적으로 인해 세포의 성장 저해가 예상되며, 반면 dhaT 오페론의 발현은 3-하이드록시프로피온알데하이드가 축적되기 전에 빠른 전환으로 세포의 성장 저해를 완화한 것으로 보인다.The sole fermentation of Polmate dihydrogen AIDS did not significantly affect the production of 1,3-propanediol compared to the control. However, when expressed with the dhaT operon, the productivity of 1,3-propanediol increased by about 22%. On the other hand, when the dhaB operon and the dhaT operon were co-expressed, the productivity of 1,3-propanediol was reduced by about 58%. The 1,3-propanediol is converted to 3-hydroxypropionaldehyde by the dhaB operon, which is again converted to 1,3-propanediol by the dhaT operon. 3-Hydroxypropionaldehyde, a precursor of 1,3-propanediol, is highly toxic to cells as an antimicrobial agent. When dhaB operon is expressed, the inhibition of cell growth is expected due to the accumulation of 3-hydroxypropionaldehyde, whereas the expression of dhaT operon relaxes the inhibition of cell growth by rapid conversion before accumulation of 3-hydroxypropionaldehyde Seems to have done.

Figure 112015109376501-pat00005
Figure 112015109376501-pat00005

고농도의 1,3-프로판디올 생산을 위해 혐기조건에서 유가배양발효가 진행되었다. 균주는 플라스크 배양에서 좋은 표현형을 보였던 KMK-11BT 균주를 사용하였다. 도 4와 같이 26 시간 발효에서 67 g/L 의 1,3-프로판디올은 생산되었다. 이 수치는 현재까지 2,3-부탄디올이 제거된 균주에서 생산된 최고 수준의 1,3-프로판디올 생산성과 생산속도이다.In order to produce 1,3-propanediol at high concentration, the fermentation of oil-field culture was carried out under anaerobic condition. The strains were KMK-11BT strain, which showed a good phenotype in the flask culture. As shown in Fig. 4, 67 g / L of 1,3-propanediol was produced in the fermentation for 26 hours. This is the highest level of 1,3-propanediol productivity and production rate produced in 2,3-butanediol-depleted strains to date.

도 5에 나타난 바와 같이, 본 유가배양발효에서 생산된 부산물은 아래 그래프에서와 같이 미량호기성 조건에서와 비교해 크게 감소되었다. 미량호기성 조건에서 주요 부산물이었던 숙신산은 4 g/L 정도가 생산되었고 이는 75% 감소된 수치이다. 또한 피루브산은 완전히 생산되지 않았다. 미량호기성 조건에서 13g/L 가 생산된 에탄올은 16 g/L 로 다소 증가하였고, 아세트산의 생산은 6 g/L 로 다소 크게 증가되었다.As shown in FIG. 5, the byproducts produced in the fermentation of this oil price fermentation were greatly reduced as compared with that in the micro aerobic condition as shown in the graph below. Succinic acid, a major by-product in micro-aerobic conditions, was produced at 4 g / L, a 75% decrease. Also, pyruvic acid was not completely produced. In micro aerobic condition, ethanol of 13 g / L was slightly increased to 16 g / L and production of acetic acid was slightly increased to 6 g / L.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Korea University Research & Business Foundation <120> Recombinant Micororganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol <130> P15-B295 <160> 21 <170> KopatentIn 2.0 <210> 1 <211> 4529 <212> DNA <213> Artificial Sequence <220> <223> dhaB operon <400> 1 atgaaaagat caaaacgatt tgcagtactg gcccagcgcc ccgtcaatca ggacgggctg 60 attggcgagt ggcctgaaga ggggctgatc gccatggaca gcccctttga cccggtctct 120 tcagtaaaag tggacaacgg tctgatcgtc gagctggacg gcaaacgccg ggaccagttt 180 gacatgatcg accgatttat cgccgattac gcgatcaacg ttgagcgcac agagcaggca 240 atgcgcctgg aggcggtgga aatagcccgc atgctggtgg atattcacgt cagtcgggag 300 gagatcattg ccatcactac cgccatcacg ccggccaaag cggtcgaggt gatggcgcag 360 atgaacgtgg tggagatgat gatggcgctg cagaagatgc gtgcccgccg gaccccctcc 420 aaccagtgcc acgtcaccaa tctcaaagat aatccggtgc agattgctgc tgacgccgcc 480 gaggccggga tccgcggctt ctcagaacag gagaccacgg tcggtatcgc gcgctatgcg 540 ccgtttaacg ccctggcgct gttggtcggt tcgcagtgcg gccgccccgg cgttttgacg 600 cagtgctcgg tggaagaggc caccgagctg gagctgggca tgcgtggctt aaccagctac 660 gccgagacgg tgtcggtcta cggcaccgaa gcggtattta ccgacggcga tgatactccg 720 tggtcaaagg cgttcctcgc ctcggcctac gcctcccgcg ggttgaaaat gcgctacacc 780 tccggcaccg gatccgaagc gctgatgggc tattcggaga gcaagtcgat gctctacctc 840 gaatcgcgct gcatcttcat taccaaaggc gccggggttc aggggctgca aaacggcgcg 900 gtgagctgta tcggcatgac cggcgctgtg ccgtcgggca ttcgggcggt gctggcggaa 960 aacctgatcg cctctatgct cgacctcgaa gtggcgtccg ccaacgacca gactttctcc 1020 cactcggata ttcgccgcac cgcgcgcacc ctgatgcaga tgctgccggg caccgacttt 1080 attttctccg gctacagcgc ggtgccgaac tacgacaaca tgttcgccgg ctcgaacttc 1140 gatgcggaag attttgatga ttacaacatc ctgcagcgtg acctgatggt tgacggcggc 1200 ctgcgtccgg tgaccgaggc ggaaaccatt gccattcgcc agaaagcggc gcgggcgatc 1260 caggcggttt tccgcgagct ggggctgccg ccaatcgccg acgaggaggt ggaggccgcc 1320 acctacgcgc acggtagcaa cgagatgccg ccgcgtaacg tggtggagga tctgagtgcg 1380 gtggaagaga tgatgaagcg caacatcacc ggcctcgata ttgtcggcgc gctgagccgc 1440 agcggctttg aggatatcgc cagcaatatt ctcaatatgc tgcgccagcg ggtcaccggc 1500 gattacctgc agacctcggc cattctcgat cggcagttcg aggtggtgag tgcggtcaac 1560 gacatcaatg actatcaggg gccgggcacc ggctatcgca tctctgccga acgctgggcg 1620 gagatcaaaa atattccggg cgtggttcag cccgacacca ttgaataagg cggtattcct 1680 gtgcaacaga caacccaaat tcagccctct tttaccctga aaacccgcga gggcggggta 1740 gcttctgccg atgaacgcgc cgatgaagtg gtgatcggcg tcggccctgc cttcgataaa 1800 caccagcatc acactctgat cgatatgccc catggcgcga tcctcaaaga gctgattgcc 1860 ggggtggaag aagaggggct tcacgcccgg gtggtgcgca ttctgcgcac gtccgacgtc 1920 tcctttatgg cctgggatgc ggccaacctg agcggctcgg ggatcggcat cggtatccag 1980 tcgaagggga ccacggtcat ccatcagcgc gatctgctgc cgctcagcaa cctggagctg 2040 ttctcccagg cgccgctgct gacgctggaa acctaccggc agattggcaa aaacgccgcg 2100 cgctatgcgc gcaaagagtc accttcgccg gtgccggtgg tgaacgatca gatggtgcgg 2160 ccgaaattta tggccaaagc cgcgctattt catatcaaag agaccaaaca tgtggtgcag 2220 gacgccgagc ccgtcaccct gcacgtcgac ttagtaaggg agtgaccatg agcgagaaaa 2280 ccatgcgcgt gcaggattat ccgttagcca cccgctgccc ggagcatatc ctgacgccta 2340 ccggcaaacc attgaccgat attaccctcg agaaggtgct ctctggcgag gtgggcccgc 2400 aggatgtgcg gatctcctgc cagacccttg agtaccaggc gcagattgcc gagcagatgc 2460 agcgccatgc ggtggcgcgc aatttccgcc gcgcggcgga gcttatcgcc attcctgacg 2520 agcgcattct ggctatctat aacgcgctgc gcccgttccg ctcctcgcag gcggagctgc 2580 tggcgatcgc cgacgagctg gagcacacct ggcatgcgac agtgaatgcc gcctttgtcc 2640 gggagtcggc ggaagtgtat cagcagcggc ataagctgcg taaaggaagc taagcggagg 2700 tcagcatgcc gttaatagcc gggattgata tcggcaacgc caccaccgag gtggcgctgg 2760 cgtccgacga cccgcaggcg agggcgtttg ttgccagcgg gatcgtcgcg acgacgggca 2820 tgaaagggac gcgggacaat atcgccggga ccctcgccgc gctggagcag gccctggcga 2880 aaacaccgtg gtcgatgagc gatgtctctc gcatctatct taacgaagcc gcgccggtga 2940 ttggcgatgt ggcgatggag accatcaccg agaccattat caccgaatcg accatgatcg 3000 gtcataaccc gcagacgccg ggcggggtgg gcgttggcgt ggggacgact atcgccctcg 3060 ggcggctggc gacgctgccg gcggcgcagt atgccgaggg gtggatcgta ctgattgacg 3120 acgccgtcga tttccttgac gccgtgtggt ggctcaatga ggcgctcgac cgggggatca 3180 acgtggtggc ggcgatcctc aaaaaggacg acggcgtgct ggtgaacaac cgcctgcgta 3240 aaaccctgcc ggtggtagat gaagtgacgc tgctggagca ggtccccgag ggggtaatgg 3300 cggcggtgga agtggccgcg ccgggccagg tggtgcggat cctgtcgaat ccctacggga 3360 tcgccacctt cttcgggcta agcccggaag agacccaggc catcgtcccc atcgcccgcg 3420 ccctgattgg caaccgttca gcggtggtgc tcaagacccc gcagggggat gtgcagtcgc 3480 gggtgatccc ggcgggcaac ctctacatta gcggcgaaaa gcgccgcgga gaggccgatg 3540 tcgccgaggg cgcggaagcc atcatgcagg cgatgagcgc ctgcgctccg gtacgcgaca 3600 tccgcggcga accgggcact cacgccggcg gcatgcttga gcgggtgcgc aaggtaatgg 3660 cgtccctgac cgaccatgag atgagcgcga tatacatcca ggatctgctg gcggtggata 3720 cgtttattcc gcgcaaggtg cagggcggga tggccggcga gtgcgccatg gaaaatgccg 3780 tcgggatggc ggcgatggtg aaagcggatc gtctgcaaat gcaggttatc gcccgcgaac 3840 tgagcgcccg actgcagacc gaggtggtgg tgggcggcgt ggaggccaac atggccatcg 3900 ccggggcgtt aaccactccc ggctgtgcgg cgccgctggc gatcctcgac ctcggcgccg 3960 gctcgacgga tgcggcgatc gtcaacgcgg aggggcagat aacggcggtc catctcgccg 4020 gggcggggaa tatggtcagc ctgttgatta aaaccgagct gggcctcgag gatctttcgc 4080 tggcggaagc gataaaaaaa tacccgctgg ccaaagtgga aagcctgttc agtattcgtc 4140 acgagaatgg cgcggtggag ttctttcggg aagccctcag cccggcggtg ttcgccaaag 4200 tggtgtacat caaggagggc gaactggtgc cgatcgataa cgccagcccg ctggaaaaaa 4260 ttcgtctcgt gcgccggcag gcgaaagaga aagtgtttgt caccaactgc ctgcgcgcgc 4320 tgcgccaggt ctcacccggc ggttccattc gcgatatcgc ctttgtggtg ctggtgggcg 4380 gctcatcgct ggactttgag atcccgcagc ttatcacgga agccttgtcg cactatggcg 4440 tggtcgccgg gcagggcaat attcggggaa cagaagggcc gcgcaatgcg gtcgccaccg 4500 ggctgctact ggccggtcag gcgaattaa 4529 <210> 2 <211> 2639 <212> DNA <213> Artificial Sequence <220> <223> dhaT operon <400> 2 atggcgggcg acaaaataac gctgacaaaa ataaagcaag ccaaccgaat ggtaatagtt 60 ttttactatc gccccctact gactattcgc gccagcgtta tcctggtgcg ggagagaatg 120 atgaacaaga gccaacaagt tcagacaatc accctggccg ccgcccagca aatggcggcg 180 gcggtggaaa aaaaagccac tgagatcaac gtggcggtgg tgttttccgt ggttgaccgc 240 ggaggcaaca cgctgcttat ccagcggatg gacgaggcct tcgtctccag ctgcgatatt 300 tccctgaata aagcctggag cgcctgcagc ctgaagcaag gtacccatga aattacgcca 360 gcggtccagc caggacaatc tctgtacggt ctgcagctta ccaaccaaca gcgaattatt 420 atttttggcg gcggcctgcc agttattttt aatgagcagg taattggcgc cgtcggcgtt 480 agcggcggta cggtcgagca ggatcaatta ttagcccagt gcgccctgga ttgtttttcc 540 gcattataac ctgaagcgag aaggtatatt atgagctatc gtatgtttga ttatctggtg 600 ccaaacgtta acttttttgg ccccaacgcc atttccgtag tcggcgaacg ctgccagctg 660 ctggggggga aaaaagccct gctggtcacc gacaaaggcc tgcgggcaat taaagatggc 720 gcggtggaca aaaccctgca ttatctgcgg gaggccggga tcgaggtggc gatctttgac 780 ggcgtcgagc cgaacccgaa agacaccaac gtgcgcgacg gcctcgccgt gtttcgccgc 840 gaacagtgcg acatcatcgt caccgtgggc ggcggcagcc cgcacgattg cggcaaaggc 900 atcggcatcg ccgccaccca tgagggcgat ctgtaccagt atgccggaat cgagaccctg 960 accaacccgc tgccgcctat cgtcgcggtc aataccaccg ccggcaccgc cagcgaggtc 1020 acccgccact gcgtcctgac caacaccgaa accaaagtga agtttgtgat cgtcagctgg 1080 cgcaacctgc cgtcggtctc tatcaacgat ccgctgctga tgatcggtaa accggccgcc 1140 ctgaccgcgg cgaccgggat ggatgccctg acccacgccg tagaggccta tatctccaaa 1200 gacgctaacc cggtgacgga cgccgccgcc atgcaggcga tccgcctcat cgcccgcaac 1260 ctgcgccagg ccgtggccct cggcagcaat ctgcaggcgc gggaatacat ggcctatgcc 1320 tctctgctgg ccgggatggc tttcaataac gccaacctcg gctacgtgca cgccatggcg 1380 caccagctgg gcggcctgta cgacatgccg cacggcgtgg ccaacgctgt cctgctgccg 1440 catgtggcgc gctacaacct gatcgccaac ccggagaaat tcgccgatat cgctgaactg 1500 atgggcgaaa atatcaccgg actgtccact ctcgacgcgg cggaaaaagc catcgccgct 1560 atcacgcgtc tgtcgatgga tatcggtatt ccgcagcatc tgcgcgatct gggggtaaaa 1620 gagaccgact tcccctacat ggcggagatg gctctgaaag acggcaatgc gttctcgaac 1680 ccgcgtaaag gcaacgagca ggagattgcc gcgattttcc gccaggcatt ctgagtgtta 1740 acgaggggac cgtcatgtcg ctttcaccgc caggcgtacg cctgttttac gatccgcgcg 1800 ggcaccatgc cggcgccatc aatgagctgt gctgggggct ggaggagcag ggggtcccct 1860 gccagaccat aacctatgac ggaggcggtg acgccgctgc gctgggcgcc ctggcggcca 1920 gaagctcgcc cctgcgggtg ggtattgggc tcagcgcgtc cggcgagata gccctcactc 1980 atgcccagct gccggcggac gcgccgctgg ctaccggaca cgtcaccgat agcgacgatc 2040 atctgcgtac gctcggcgcc aacgccgggc agctggttaa agtcctgccg ttaagtgaga 2100 gaaactgaat gtatcgtatc tatacccgca ccggggataa aggcaccacc gccctgtacg 2160 gcggcagccg catcgagaaa gaccatattc gcgtcgaggc ctacggtacc gtcgatgaac 2220 tgatatccca gctgggcgtc tgctacgcca cgacccgcga cgccgggctg cgggaaagcc 2280 tgcaccatat tcagcagacg ctgttcgtgc tgggggctga actggccagc gatgcgcggg 2340 gcctgacccg cctgagccag acgatcggcg aagaggagat caccgccctg gagcggctta 2400 tcgaccgcaa tatggccgag agcggcccgt taaaacagtt cgtgatcccg gggaggaatc 2460 tcgcctctgc ccagctgcac gtggcgcgca cccagtcccg tcggctcgaa cgcctgctga 2520 cggccatgga ccgcgcgcat ccgctgcgcg acgcgctcaa acgctacagc aatcgcctgt 2580 cggatgccct gttctccatg gcgcgaatcg aagagactag gcctgatgct tgcgcttga 2639 <210> 3 <211> 1095 <212> DNA <213> Artificial Sequence <220> <223> fdh1 <400> 3 atgaagatcg ttttagtctt atatgatgct ggtaagcacg ctgctgatga agaaaaatta 60 tatggttgta ctgaaaataa attaggtatt gctaattggt taaaagatca aggtcatgaa 120 ctaattacta cttctgataa agaaggtgaa acaagtgaat tggataaaca tatcccagat 180 gctgatatta tcatcaccac tcctttccat cctgcttata tcactaagga aagacttgac 240 aaggctaaga acttaaaatc agtcgttgtc gctggtgttg gttctgatca cattgattta 300 gattatatta atcaaacagg taagaaaatc tcagtcctgg aagttacagg ttctaatgtt 360 gtctctgttg ctgaacacgt tgtcatgacc atgcttgtct tggttagaaa tttcgttcca 420 gcacatgaac aaattattaa ccacgattgg gaggttgctg ctatcgctaa ggatgcttac 480 gatatcgaag gtaaaactat cgctaccatt ggtgctggta gaattggtta cagagtcttg 540 gaaagattac tcccatttaa tccaaaagaa ttattatact acgattatca agctttacca 600 aaagaagctg aagaaaaagt tggtgctaga agagttgaaa atattgaaga attagttgct 660 caagctgata tcgttacagt taatgctcca ttacacgcag gtacaaaagg tttaattaat 720 aaggaattat tatctaaatt taaaaaaggt gcttggttag tcaataccgc aagaggtgct 780 atttgtgttg ctgaagatgt tgcagcagct ttagaatctg gtcaattaag aggttacggt 840 ggtgatgttt ggttcccaca accagctcca aaggatcacc catggagaga tatgagaaat 900 aaatatggtg ctggtaatgc catgactcct cactactctg gtactacttt agacgctcaa 960 acaagatacg ctgaaggtac taaaaatatt ttggaatcat tctttaccgg taaatttgat 1020 tacagaccac aagatattat cttattaaat ggtgaatacg ttactaaagc ttacggtaaa 1080 cacgataaga aataa 1095 <210> 4 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gatttaatcc ctaccgacgc ggtcatcgcg gcggcgaaaa aggtactggc gtgtaggctg 60 gagctgcttc 70 <210> 5 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ttccgcgccg ccgcccggca ggccatcgat aacaaacaat atgcgcatcg gtccatatga 60 atatcctcct 70 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ttccgggaac actacatcgt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ccgagatagg aggcagagaa 20 <210> 8 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 attattttaa atatgctacc gtgacggtat aatcactgga gaaaagtctt gtgtaggctg 60 gagctgcttc 70 <210> 9 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gattatctga atgtgctccc cccgggagag gagcacaaaa gggaaaggca gtccatatga 60 atatcctcct 70 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gaattaggat tagcaccctc tca 23 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ccaagccagt gtaacggtat c 21 <210> 12 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gtcaacattt atttaacctt tcttatattt gttgaacgag gaagtggtat gtgtaggctg 60 gagctgcttc 70 <210> 13 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gcgccgtgcg cccactggcg taccggatac tgtttgtcca tgtgaccccc cctccttagt 60 tcctattcc 69 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 acggaggctg tgaaataccc 20 <210> 15 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ttcgtggcgt accggaata 19 <210> 16 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tttaagctta tgaaaagatc aaaacgattt gc 32 <210> 17 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 tttacgcgtc cgtttaattc gcctgacc 28 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tataagctta tgaaaattgt tctggtgctg 30 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 atacccgggt tattttttat cgtgtttacc gtacg 35 <210> 20 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 tttaagctta tggcgggcga caaaata 27 <210> 21 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 aaaggatcct caagcgcaag catcagg 27 <110> Korea University Research & Business Foundation <120> Recombinant Micororganism for Producing 1,3-Propanediol Without          Ability of Producing 2,3-Butanediol <130> P15-B295 <160> 21 <170> Kopatentin 2.0 <210> 1 <211> 4529 <212> DNA <213> Artificial Sequence <220> <223> dhaB operon <400> 1 atgaaaagat caaaacgatt tgcagtactg gcccagcgcc ccgtcaatca ggacgggctg 60 gcccggtg tcagtaaaag tggacaacgg tctgatcgtc gagctggacg gcaaacgccg ggaccagttt 180 gacatgatcg accgatttat cgccgattac gcgatcaacg ttgagcgcac agagcaggca 240 atgcgcctgg aggcggtgga aatagcccgc atgctggtgg atattcacgt cagtcgggag 300 gagatcattg ccatcactac cgccatcacg ccggccaaag cggtcgaggt gatggcgcag 360 atgaacgtgg tggagatgat gatggcgctg cagaagatgc gtgcccgccg gaccccctcc 420 aaccagtgcc acgtcaccaa tctcaaagat aatccggtgc agattgctgc tgacgccgcc 480 gaggccggga tccgcggctt ctcagaacag gagaccacgg tcggtatcgc gcgctatgcg 540 ccgtttaacg ccctggcgct gttggtcggt tcgcagtgcg gccgccccgg cgttttgacg 600 cagtgctcgg tggaagaggc caccgagctg gagctgggca tgcgtggctt aaccagctac 660 gccgagacgg tgtcggtcta cggcaccgaa gcggtattta ccgacggcga tgatactccg 720 tggtcaaagg cgttcctcgc ctcggcctac gcctcccgcg ggttgaaaat gcgctacacc 780 tccggcaccg gatccgaagc gctgatgggc tattcggaga gcaagtcgat gctctacctc 840 gaatcgcgct gcatcttcat taccaaaggc gccggggttc aggggctgca aaacggcgcg 900 gtgagctgta tcggcatgac cggcgctgtg ccgtcgggca ttcgggcggt gctggcggaa 960 aacctgatcg cctctatgct cgacctcgaa gtggcgtccg ccaacgacca gactttctcc 1020 cactcggata ttcgccgcac cgcgcgcacc ctgatgcaga tgctgccggg caccgacttt 1080 attttctccg gctacagcgc ggtgccgaac tacgacaaca tgttcgccgg ctcgaacttc 1140 gatgcggaag attttgatga ttacaacatc ctgcagcgtg acctgatggt tgacggcggc 1200 ctgcgtccgg tgaccgaggc ggaaaccatt gccattcgcc agaaagcggc gcgggcgatc 1260 caggcggttt tccgcgagct ggggctgccg ccaatcgccg acgaggaggt ggaggccgcc 1320 acctacgcgc acggtagcaa cgagatgccg ccgcgtaacg tggtggagga tctgagtgcg 1380 gtggaagaga tgatgaagcg caacatcacc ggcctcgata ttgtcggcgc gctgagccgc 1440 agcggctttg aggatatcgc cagcaatatt ctcaatatgc tgcgccagcg ggtcaccggc 1500 gattacctgc agacctcggc cattctcgat cggcagttcg aggtggtgag tgcggtcaac 1560 gacatcaatg actatcaggg gccgggcacc ggctatcgca tctctgccga acgctgggcg 1620 cggtattcct 1680 gtgcaacaga caacccaaat tcagccctct tttaccctga aaacccgcga gggcggggta 1740 gcttctgccg atgaacgcgc cgatgaagtg gtgatcggcg tcggccctgc cttcgataaa 1800 caccagcatc acctctgat cgatatgccc catggcgcga tcctcaaaga gctgattgcc 1860 ggggtggaag aagaggggct tcacgcccgg gtggtgcgca ttctgcgcac gtccgacgtc 1920 tcctttatgg cctgggatgc ggccaacctg agcggctcgg ggatcggcat cggtatccag 1980 tcgaagggga ccacggtcat ccatcagcgc gatctgctgc cgctcagcaa cctggagctg 2040 ttctcccagg cgccgctgct gacgctggaa acctaccggc agattggcaa aaacgccgcg 2100 cgctatgcgc gcaaagagtc accttcgccg gtgccggtgg tgaacgatca gatggtgcgg 2160 ccgaaattta tggccaaagc cgcgctattt catatcaaag agaccaaaca tgtggtgcag 2220 gacgccgagc ccgtcaccct gcacgtcgac ttagtaaggg agtgaccatg agcgagaaaa 2280 ccatgcgcgt gcaggattat ccgttagcca cccgctgccc ggagcatatc ctgacgccta 2340 ccggcaaacc attgaccgat attaccctcg agaaggtgct ctctggcgag gtgggcccgc 2400 aggatgtgcg gatctcctgc cagacccttg agtaccaggc gcagattgcc gagcagatgc 2460 agcgccatgc ggtggcgcgc aatttccgcc gcgcggcgga gcttatcgcc attcctgacg 2520 agcgcattct ggctatctat aacgcgctgc gcccgttccg ctcctcgcag gcggagctgc 2580 tggcgatcgc cgacgagctg gagcacacct ggcatgcgac agtgaatgcc gcctttgtcc 2640 gggagtcggc ggaagtgtat cagcagcggc ataagctgcg taaaggaagc taagcggagg 2700 tcagcatgcc gttaatagcc gggattgata tcggcaacgc caccaccgag gtggcgctgg 2760 cgtccgacga cccgcaggcg agggcgtttg ttgccagcgg gatcgtcgcg acgacgggca 2820 tgaaagggac gcgggacaat atcgccggga ccctcgccgc gctggagcag gccctggcga 2880 aaacaccgtg gtcgatgagc gatgtctctc gcatctatct taacgaagcc gcgccggtga 2940 ttggcgatgt ggcgatggag accatcaccg agaccattat caccgaatcg accatgatcg 3000 gtcataaccc gcagacgccg ggcggggtgg gcgttggcgt ggggacgact atcgccctcg 3060 ggcggctggc gacgctgccg gcggcgcagt atgccgaggg gtggatcgta ctgattgacg 3120 acgccgtcga tttccttgac gccgtgtggt ggctcaatga ggcgctcgac cgggggatca 3180 acgtggtggc ggcgatcctc aaaaaggacg acggcgtgct ggtgaacaac cgcctgcgta 3240 aaaccctgcc ggtggtagat gaagtgacgc tgctggagca ggtccccgag ggggtaatgg 3300 cggcggtgga agtggccgcg ccgggccagg tggtgcggat cctgtcgaat ccctacggga 3360 tcgccacctt cttcgggcta agcccggaag agacccaggc catcgtcccc atcgcccgcg 3420 ccctgattgg caaccgttca gcggtggtgc tcaagacccc gcagggggat gtgcagtcgc 3480 gggtgatccc ggcgggcaac ctctacatta gcggcgaaaa gcgccgcgga gaggccgatg 3540 tcgccgaggg cgcggaagcc atcatgcagg cgatgagcgc ctgcgctccg gtacgcgaca 3600 tccgcggcga accgggcact cacgccggcg gcatgcttga gcgggtgcgc aaggtaatgg 3660 cgtccctgac cgaccatgag atgagcgcga tatacatcca ggatctgctg gcggtggata 3720 cgtttattcc gcgcaaggtg cagggcggga tggccggcga gtgcgccatg gaaaatgccg 3780 tcgggatggc ggcgatggtg aaagcggatc gtctgcaaat gcaggttatc gcccgcgaac 3840 tgagcgcccg actgcagacc gaggtggtgg tgggcggcgt ggaggccaac atggccatcg 3900 ccggggcgtt aaccactccc ggctgtgcgg cgccgctggc gatcctcgac ctcggcgccg 3960 gctcgacgga tgcggcgatc gtcaacgcgg aggggcagat aacggcggtc catctcgccg 4020 gggcggggaa tatggtcagc ctgttgatta aaaccgagct gggcctcgag gatctttcgc 4080 tggcggaagc gataaaaaaa tacccgctgg ccaaagtgga aagcctgttc agtattcgtc 4140 acgagaatgg cgcggtggag ttctttcggg aagccctcag cccggcggtg ttcgccaaag 4200 tggtgtacat caaggagggc gaactggtgc cgatcgataa cgccagcccg ctggaaaaaa 4260 ttcgtctcgt gcgccggcag gcgaaagaga aagtgtttgt caccaactgc ctgcgcgcgc 4320 tgcgccaggt ctcacccggc ggttccattc gcgatatcgc ctttgtggtg ctggtgggcg 4380 gctcatcgct ggactttgag atcccgcagc ttatcacgga agccttgtcg cactatggcg 4440 tggtcgccgg gcagggcaat attcggggaa cagaagggcc gcgcaatgcg gtcgccaccg 4500 ggctgctact ggccggtcag gcgaattaa 4529 <210> 2 <211> 2639 <212> DNA <213> Artificial Sequence <220> <223> dhaT operon <400> 2 atggcgggcg acaaaataac gctgacaaaa ataaagcaag ccaaccgaat ggtaatagtt 60 ttttactatc gccccctact gactattcgc gccagcgtta tcctggtgcg ggagagaatg 120 atgaacaaga gccaacaagt tcagacaatc accctggccg ccgcccagca aatggcggcg 180 gcggtggaaa aaaaagccac tgagatcaac gtggcggtgg tgttttccgt ggttgaccgc 240 ggaggcaaca cgctgcttat ccagcggatg gacgaggcct tcgtctccag ctgcgatatt 300 tccctgaata aagcctggag cgcctgcagc ctgaagcaag gtacccatga aattacgcca 360 gcggtccagc caggacaatc tctgtacggt ctgcagctta ccaaccaaca gcgaattatt 420 atttttggcg gcggcctgcc agttattttt aatgagcagg taattggcgc cgtcggcgtt 480 agcggcggta cggtcgagca ggatcaatta ttagcccagt gcgccctgga ttgtttttcc 540 gcattataac ctgaagcgag aaggtatatt atgagctatc gtatgtttga ttatctggtg 600 ccaaacgtta acttttttgg ccccaacgcc atttccgtag tcggcgaacg ctgccagctg 660 ctggggggga aaaaagccct gctggtcacc gacaaaggcc tgcgggcaat taaagatggc 720 gcggtggaca aaaccctgca ttatctgcgg gaggccggga tcgaggtggc gatctttgac 780 ggcgtcgagc cgaacccgaa agacaccaac gtgcgcgacg gcctcgccgt gtttcgccgc 840 gaacagtgcg acatcatcgt caccgtgggc ggcggcagcc cgcacgattg cggcaaaggc 900 atcggcatcg ccgccaccca tgagggcgat ctgtaccagt atgccggaat cgagaccctg 960 accaacccgc tgccgcctat cgtcgcggtc aataccaccg ccggcaccgc cagcgaggtc 1020 acccgccact gcgtcctgac caacaccgaa accaaagtga agtttgtgat cgtcagctgg 1080 cgcaacctgc cgtcggtctc tatcaacgat ccgctgctga tgatcggtaa accggccgcc 1140 ctgaccgcgg cgaccgggat ggatgccctg acccacgccg tagaggccta tatctccaaa 1200 gcgctaacc cggtgacgga cgccgccgcc atgcaggcga tccgcctcat cgcccgcaac 1260 ctgcgccagg ccgtggccct cggcagcaat ctgcaggcgc gggaatacat ggcctatgcc 1320 tctctgctgg ccgggatggc tttcaataac gccaacctcg gctacgtgca cgccatggcg 1380 caccagctgg gcggcctgta cgacatgccg cacggcgtgg ccaacgctgt cctgctgccg 1440 catgtggcgc gctacaacct gatcgccaac ccggagaaat tcgccgatat cgctgaactg 1500 atggggaaa atatcaccgg actgtccact ctcgacgcgg cggaaaaagc catcgccgct 1560 atcacgcgtc tgtcgatgga tatcggtatt ccgcagcatc tgcgcgatct gggggtaaaa 1620 gagaccgact tcccctacat ggcggagatg gctctgaaag acggcaatgc gttctcgaac 1680 ccgcgtaaag gcaacgagca ggagattgcc gcgattttcc gccaggcatt ctgagtgtta 1740 acgaggggac cgtcatgtcg ctttcaccgc caggcgtacg cctgttttac gatccgcgcg 1800 ggcaccatgc cggcgccatc aatgagctgt gctgggggct ggaggagcag ggggtcccct 1860 gccagaccat aacctatgac ggaggcggtg acgccgctgc gctgggcgcc ctggcggcca 1920 gaagctcgcc cctgcgggtg ggtattgggc tcagcgcgtc cggcgagata gccctcactc 1980 atgcccagct gccggcggac gcgccgctgg ctaccggaca cgtcaccgat agcgacgatc 2040 atctgcgtac gctcggcgcc aacgccgggc agctggttaa agtcctgccg ttaagtgaga 2100 gaaactgaat gtatcgtatc tatacccgca ccggggataa aggcaccacc gccctgtacg 2160 gcggcagccg catcgagaaa gaccatattc gcgtcgaggc ctacggtacc gtcgatgaac 2220 tgatatccca gctgggcgtc tgctacgcca cgacccgcga cgccgggctg cgggaaagcc 2280 tgcaccatat tcagcagacg ctgttcgtgc tgggggctga actggccagc gatgcgcggg 2340 gcctgacccg cctgagccag acgatcggcg aagaggagat caccgccctg gagcggctta 2400 tcgaccgcaa tatggccgag agcggcccgt taaaacagtt cgtgatcccg gggaggaatc 2460 tcgcctctgc ccagctgcac gtggcgcgca cccagtcccg tcggctcgaa cgcctgctga 2520 cggccatgga ccgcgcgcat ccgctgcgcg acgcgctcaa acgctacagc aatcgcctgt 2580 cggatgccct gttctccatg gcgcgaatcg aagagactag gcctgatgct tgcgcttga 2639 <210> 3 <211> 1095 <212> DNA <213> Artificial Sequence <220> <223> fdh1 <400> 3 atgaagatcg ttttagtctt atatgatgct ggtaagcacg ctgctgatga agaaaaatta 60 tatggttgta ctgaaaataa attaggtatt gctaattggt taaaagatca aggtcatgaa 120 ctaattacta cttctgataa agaaggtgaa acaagtgaat tggataaaca tatcccagat 180 gctgatatta tcatcaccac tcctttccat cctgcttata tcactaagga aagacttgac 240 aaggctaaga acttaaaatc agtcgttgtc gctggtgttg gttctgatca cattgattta 300 gattatatta atcaaacagg taagaaaatc tcagtcctgg aagttacagg ttctaatgtt 360 gtctctgttg ctgaacacgt tgtcatgacc atgcttgtct tggttagaaa tttcgttcca 420 gcacatgaac aaattattaa ccacgattgg gaggttgctg ctatcgctaa ggatgcttac 480 gatatcgaag gtaaaactat cgctaccatt ggtgctggta gaattggtta cagagtcttg 540 gaaagattac tcccatttaa tccaaaagaa ttattatact acgattatca agctttacca 600 aaagaagctg aagaaaaagt tggtgctaga agagttgaaa atattgaaga attagttgct 660 caagctgata tcgttacagt taatgctcca ttacacgcag gtacaaaagg tttaattaat 720 aaggaattat tatctaaatt taaaaaaggt gcttggttag tcaataccgc aagaggtgct 780 atttgtgttg ctgaagatgt tgcagcagct ttagaatctg gtcaattaag aggttacggt 840 ggtgatgttt ggttcccaca accagctcca aaggatcacc catggagaga tatgagaaat 900 aaatatggtg ctggtaatgc catgactcct cactactctg gtactacttt agacgctcaa 960 acaagatacg ctgaaggtac taaaaatatt ttggaatcat tctttaccgg taaatttgat 1020 tacagaccac aagatattat cttattaaat ggtgaatacg ttactaaagc ttacggtaaa 1080 cacgataaga aataa 1095 <210> 4 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gatttaatcc ctaccgacgc ggtcatcgcg gcggcgaaaa aggtactggc gtgtaggctg 60 gagctgcttc 70 <210> 5 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ttccgcgccg ccgcccggca ggccatcgat aacaaacaat atgcgcatcg gtccatatga 60 atatcctcct 70 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ttccgggaac actacatcgt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ccgagatagg aggcagagaa 20 <210> 8 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 attattttaa atatgctacc gtgacggtat aatcactgga gaaaagtctt gtgtaggctg 60 gagctgcttc 70 <210> 9 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gattatctga atgtgctccc cccgggagag gagcacaaaa gggaaaggca gtccatatga 60 atatcctcct 70 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gaattaggat tagcaccctc tca 23 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ccaagccagt gtaacggtat c 21 <210> 12 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gtcaacattt atttaacctt tcttatattt gttgaacgag gaagtggtat gtgtaggctg 60 gagctgcttc 70 <210> 13 <211> 69 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 gcgccgtgcg cccactggcg taccggatac tgtttgtcca tgtgaccccc cctccttagt 60 tcctattcc 69 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 acggaggctg tgaaataccc 20 <210> 15 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 ttcgtggcgt accggaata 19 <210> 16 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 tttaagctta tgaaaagatc aaaacgattt gc 32 <210> 17 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 tttacgcgtc cgtttaattc gcctgacc 28 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 tataagctta tgaaaattgt tctggtgctg 30 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 atacccgggt tattttttat cgtgtttacc gtacg 35 <210> 20 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 tttaagctta tggcgggcga caaaata 27 <210> 21 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 aaaggatcct caagcgcaag catcagg 27

Claims (7)

1,3-프로판디올 생성능을 가지는 미생물에서, 리포폴리사카라이드 생합성에 관여하는 글루코실트랜스퍼라아제를 코딩하는 유전자, 락테이트 디하이드로게나아제를 코딩하는 유전자 및 α-아세토락테이트 디카르복실라아제를 코딩하는 유전자가 결실되어 있고, dhaT 오페론 및 캔디다 보이디니 (candida boidinii), 안실로박터 아쿠아티구스 (ancylobacter aquaticus), 세리포리옵시스 서브베르미스포라 (Ceriporiopsis subvermispora), 모라셀라 종 (Moraxella sp.), 파라코쿠스 종 (Paracoccus sp.) 및 씨오바실러스 종 (Thiobacillus sp.)로 구성된 군에서 선택되는 균주 유래의 폴메이트디하이드로케네이즈가 과발현되어 있고, dhaB오페론이 과발현되어 있지 않은 1,3-프로판디올 생성능을 가지는 재조합 미생물.
In a microorganism having 1,3-propanediol-producing ability, a gene encoding glucosyltransferase involved in lipopolysaccharide biosynthesis, a gene encoding lactate dehydrogenase, and a gene encoding? -Acetolactate decarboxylase The genes coding for the azo have been deleted, and the dhaT operon and Candida boidinii, ancylobacter aquaticus, Ceriporiopsis subvermispora, Moraxella (Moraxella spp.), wherein the polymethicone dehydrogenase derived from a strain selected from the group consisting of Paracoccus sp. and Thiobacillus sp. is overexpressed and the dhaB operon is not overexpressed , 3-propanediol.
제 1 항에 있어서, 상기 미생물은 크립시엘라 뉴모니에인 것을 특징으로 하는 재조합 미생물.
2. The recombinant microorganism according to claim 1, wherein the microorganism is clopsiella annum.
제1항에 있어서, 상기 dhaT 오페론은 클렙시엘라 뉴모니에, 클렙시엘라 옥시토카 (klebsiella oxytoca) 및 클로스트리디움 부틸리쿰 (clostridium butyrricum)로 구성된 군에서 선택되는 균주 유래인 것을 특징으로 하는 재조합 미생물.
The dhaT operon according to claim 1, wherein the dhaT operon is derived from a strain selected from the group consisting of Klebsiella pneumoniae, klebsiella oxytoca, and clostridium butyrricum Recombinant microorganism.
삭제delete 다음 단계를 포함하는 1,3-프로판디올의 제조방법:
(a) 제1항 내지 제3항 중 어느 한 항의 재조합 미생물을 배양하여 1,3-프로판디올을 생성시키는 단계; 및
(b) 상기 생성된 1,3-프로판디올을 수득하는 단계.
A process for preparing 1,3-propanediol comprising the steps of:
(a) culturing the recombinant microorganism of any one of claims 1 to 3 to produce 1,3-propanediol; And
(b) obtaining the resulting 1,3-propanediol.
제5항에 있어서, 상기 (a) 단계의 배양은 글리세롤을 탄소원으로 사용하는 것을 특징으로 하는 방법.
6. The method according to claim 5, wherein the culture of step (a) uses glycerol as a carbon source.
제5항에 있어서, 상기 (a) 단계의 배양은 회분발효 또는 유가발효인 것을 특징으로 하는 방법.6. The method according to claim 5, wherein the culture in step (a) is ash fermentation or oil fermentation.
KR1020150157398A 2015-11-10 2015-11-10 Recombinant Microorganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol KR101747285B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150157398A KR101747285B1 (en) 2015-11-10 2015-11-10 Recombinant Microorganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150157398A KR101747285B1 (en) 2015-11-10 2015-11-10 Recombinant Microorganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol

Publications (2)

Publication Number Publication Date
KR20170058471A KR20170058471A (en) 2017-05-29
KR101747285B1 true KR101747285B1 (en) 2017-06-14

Family

ID=59053733

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150157398A KR101747285B1 (en) 2015-11-10 2015-11-10 Recombinant Microorganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol

Country Status (1)

Country Link
KR (1) KR101747285B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990104B1 (en) * 2017-11-30 2019-06-18 고려대학교 산학협력단 Recombinant Microorganism for Increased 1,3-Propanediol Producing Ability and Method for Preparing 1,3-Propanediol Using the Same
CN111996157B (en) * 2020-09-08 2022-07-08 齐鲁工业大学 Gene engineering bacterium for efficiently producing 1, 3-propylene glycol and construction method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408304B1 (en) * 2012-05-29 2014-06-20 서강대학교산학협력단 Method for Preparing 2,3-butanediol from Commercial carbon source by Transformed Klebsiella pneumoniae

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408304B1 (en) * 2012-05-29 2014-06-20 서강대학교산학협력단 Method for Preparing 2,3-butanediol from Commercial carbon source by Transformed Klebsiella pneumoniae

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Basic Microbiology. Vol. 53, No. 4 페이지 348-354 (2012.06.26.)

Also Published As

Publication number Publication date
KR20170058471A (en) 2017-05-29

Similar Documents

Publication Publication Date Title
KR101519670B1 (en) Glycolic acid production by fermentation from renewable resources
JP5922657B2 (en) Novel bacteria and method for using the same
EP2201115B1 (en) Mutants having capability to produce 1,4-butanediol and method for preparing 1,4-butanediol using the same
CN104395455B (en) Recombinant microorganisms and methods of use thereof
KR102116643B1 (en) Continuous culture for 1,3-propanediol production using high glycerine concentration
CN114908093A (en) CRISPR/CAS system for C1 immobilized bacteria
WO2005093060A1 (en) Process for producing 1,3-propanediol and/or 3-hydroxypropionic acid
CN101535489B (en) Method for production of hydroxycarboxylic acid by enhancing the synthesis of coenzyme
CN1351660A (en) directed evolution of microorganisms
KR102109763B1 (en) Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same
KR101483012B1 (en) Method for production of 3-hydroxypropionic acid using recombinant E. coli with high yield
RU2648167C2 (en) L-asparatate oxidase variant and method for producing quinolinate or nicotinic acid using same
KR101747285B1 (en) Recombinant Microorganism for Producing 1,3-Propanediol Without Ability of Producing 2,3-Butanediol
JP2005304362A (en) Method for producing 1,3-propanediol and/or 3-hydroxypropionic acid
JPWO2010032698A6 (en) Method for producing lactic acid from plant-derived materials and lactic acid-producing bacteria
JPWO2010032698A1 (en) Method for producing lactic acid from plant-derived materials and lactic acid-producing bacteria
JP5142268B2 (en) Improved gallic acid synthase and method for producing gallic acid
US8962287B2 (en) Scyllo-inositol-producing cell and scyllo-inositol production method using said cells
KR101781294B1 (en) High growth Escherichia coli using glycerol as carbon source
CN105593368B (en) Recombinant microorganism having increased ability to produce 2,3-butanediol and method for producing 2,3-butanediol using same
RU2375451C1 (en) RECOMBINANT PLASMID DNA, CONTAINING GENES OF BUTANOL SYNTHESIS FROM Clostridium acetobutylicum (VERSIONS), RECOMBINANT STRAIN Lactobacillus brevis - PRODUCER OF N-BUTANOL (VERSIONS) AND METHOD FOR MICROBIOLOGICAL SYNTHESIS OF N-BUTANOL
Hosseini et al. Biotransformation of isobutyraldehyde to isobutanol by an engineered Escherichia coli strain
KR102173101B1 (en) Microorganism for production of dicarboxylic acid and method of producing decarboxylic acid using the Same
KR20140032057A (en) Recombinant microorganism having improved productivity of glycerol dehydration product and use thereof
CN114276970B (en) Genetically engineered bacterium for producing 1, 3-propylene glycol

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant