KR101731428B1 - 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치 - Google Patents

가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치 Download PDF

Info

Publication number
KR101731428B1
KR101731428B1 KR1020150086611A KR20150086611A KR101731428B1 KR 101731428 B1 KR101731428 B1 KR 101731428B1 KR 1020150086611 A KR1020150086611 A KR 1020150086611A KR 20150086611 A KR20150086611 A KR 20150086611A KR 101731428 B1 KR101731428 B1 KR 101731428B1
Authority
KR
South Korea
Prior art keywords
unit
conversion
encoding
conversion unit
information
Prior art date
Application number
KR1020150086611A
Other languages
English (en)
Other versions
KR20150087826A (ko
Inventor
이태미
한우진
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20150087826A publication Critical patent/KR20150087826A/ko
Application granted granted Critical
Publication of KR101731428B1 publication Critical patent/KR101731428B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/1883Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit relating to sub-band structure, e.g. hierarchical level, directional tree, e.g. low-high [LH], high-low [HL], high-high [HH]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Abstract

비디오 중 현재 영역을 부호화하기 위하여, 현재 영역에 대한 기초 변환 단위로부터 계층적으로 분할되는 변환 단위들 중에서, 변환 단위의 최다 분할 레벨에 기초하여 생성되는 가변적 트리 구조의 변환 단위들을 기초로, 현재 영역에 대해 변환을 수행하고, 현재 영역의 부호화 데이터 및 부호화 모드에 대한 정보, 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보를 포함하는 변환 단위 계층 구조 정보를 출력하는 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법이 개시된다.

Description

가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치{Method and apparatus for video encoding using transformation unit in variable tree-structure, method and apparatus for video decoding using transformation unit in variable tree-structure}
본 발명은 공간 영역 및 변환 영역 간의 변환을 수행하는 비디오 부호화 및 복호화에 관한 것이다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 소정 크기의 매크로블록에 기반하여 제한된 부호화 방식에 따라 부호화되고 있다. 또한, 기존의 비디오 코덱은 매크로블록을 동일한 크기의 블록을 이용하여 변환 및 역변환을 수행하여 비디오 데이터를 부복호화한다.
본 발명의 일 실시예에 따라 비디오를 부호화하는 방법은, 상기 비디오 중 현재 영역을 부호화하기 위하여, 상기 현재 영역에 대한 기초 변환 단위로부터 계층적으로 분할되는 변환 단위들 중에서, 변환 단위의 최다 분할 레벨에 기초하여 생성되는 가변적 트리 구조의 변환 단위들을 기초로 상기 현재 영역에 대해 변환을 수행하고, 상기 가변적 트리 구조의 변환 단위들 중에서 상기 현재 영역에 대한 변환 단위들을 결정하는 단계; 및 상기 결정된 변환 단위에 기초한 변환을 포함한 부호화에 의해 생성된 상기 현재 영역의 부호화 데이터, 및 상기 현재 영역의 부호화에서 결정된 부호화 모드에 대한 정보, 상기 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보를 포함하는 변환 단위 계층 구조 정보를 출력하는 단계를 포함한다.
본 발명의 일 실시예에 따라 비디오를 복호화하는 방법은, 상기 비디오가 부호화된 데이터를 포함하는 비트스트림을 수신하는 단계; 상기 비트스트림을 파싱하여, 상기 비트스트림으로부터, 현재 영역의 부호화 데이터 및 상기 현재 영역의 부호화에서 결정된 부호화 모드에 대한 정보, 상기 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보를 포함하는 변환 단위 계층 구조 정보를 추출하는 단계; 및 상기 현재 영역에 대한 기초 변환 단위로부터 계층적으로 분할되는 변환 단위들 중에서, 상기 변환 단위의 최다 분할 레벨에 기초하여 생성되는 가변적 트리 구조의 변환 단위들을 기초로 상기 현재 영역에 대해 역변환을 수행하고, 상기 현재 영역의 부호화된 데이터를 복호화하고 상기 비디오를 복원하는 단계를 포함한다.
일 실시예에 따른 상기 변환 단위 계층 구조 정보는, 상기 변환 단위의 최다 분할 레벨을 나타내는 최다 분할 정보를 더 포함할 수 있다.
일 실시예에 따른 현재 영역에 대한 기초 변환 단위의 크기는, 상기 비디오에 대한 변환 단위의 최대 크기보다 작거나 같을 수 있다.
일 실시예에 따른 변환 단위가 한번 분할되어 다음 하위 레벨의 변환 단위들이 생성되고, 소정 변환 단위의 레벨은 상기 기초 변환 단위가 단계별로 분할되어 상기 소정 변환 단위가 생성될 때까지의 분할 횟수를 나타내고, 상기 기초 변환 단위는, 상기 현재 영역에 대한 이용가능한 최대 크기의 변환 단위이고, 최상위 계층의 변환 단위일 수 있다.
일 실시예에 따른 현재 영역에 대하여 상기 변환 단위의 최다 분할 레벨에 기초하여 생성되는 가변적 트리 구조의 변환 단위들은, 상기 기초 변환 단위를 포함하고, 상기 기초 변환 단위로부터 분할되기 시작하여 상기 최다 분할 레벨까지 단계적으로 분할되어 생성되는 계층별 변환 단위들을 포함할 수 있다.
일 실시예에 따른 상기 현재 영역에 대한 변환 단위들의 최소 크기는, 상기 비디오에 대한 변환 단위의 최소 크기와, 상기 기초 변환 단위가 상기 최다 분할 레벨까지 분할된 최하위 레벨의 변환 단위의 크기 중 큰 것으로 결정될 수 있다.
일 실시예에 따른 상기 변환 단위의 최다 분할 레벨은, 상기 비디오에 대한 변환 단위들의 최대 크기 및 최소 크기에 상응하는 최대 변환 단위로부터 최소 변환 단위까지의 레벨의 개수보다 작거나 같을 수 있다.
일 실시예에 따른 상기 기초 변환 단위의 크기는, 상기 현재 영역에 대한 부호화 중에 이용되는 예측 모드 및 파티션 크기 중 적어도 하나에 기초하여 결정될 수 있다.
일 실시예에 따른 상기 현재 영역에 대한 변환 단위의 최다 분할 레벨은, 상기 비디오의 픽처 시퀀스, 픽처, 슬라이스 및 부호화를 위한 데이터 단위 중 하나의 데이터 레벨의 데이터 그룹들마다 결정되고, 상기 최다 분할 레벨이 결정되는 데이터 레벨에 대한 파라미터로서, 상기 변환 단위의 최다 분할 정보가 부호화될 수 있다.
일 실시예에 따른 상기 현재 영역에 대한 변환 단위의 최다 분할 레벨은, 상기 현재 영역에 대한 부호화 수행 중에 이용되는 예측 모드마다 별개로 결정될 수 있다.
일 실시예에 따른 상기 현재 영역에 대한 변환 단위의 최다 분할 레벨을, 상기 현재 영역에 대한 부호화 수행 중에 이용되는 슬라이스 타입마다 별개로 결정될 수 있다.
일 실시예에 따른 상기 현재 영역에 대한 상기 기초 변환 단위의 크기는 일정할 수 있다.
일 실시예에 따른 상기 현재 영역에 대한 기초 변환 단위는, 상기 현재 영역의 예측 부호화를 위한 데이터 단위인 파티션들 사이의 경계에 걸치지 않도록 상기 파티션들 안에 포함되는 형태의 데이터 단위들로 결정될 수 있다.
일 실시예에 따라 상기 현재 영역에 대한 기초 변환 단위가 분할된 하위 레벨의 변환 단위들은, 상기 현재 영역의 예측 부호화를 위한 데이터 단위인 파티션들의 경계에 걸치지 않도록 상기 파티션들 안에 포함되는 형태의 데이터 단위들로 결정될 수 있다.
본 발명의 일 실시예에 따른 비디오 부호화 장치는, 상기 비디오 중 현재 영역을 부호화하기 위하여, 상기 현재 영역에 대한 기초 변환 단위로부터 계층적으로 분할되는 변환 단위들 중에서, 변환 단위의 최다 분할 레벨에 기초하여 생성되는 가변적 트리 구조의 변환 단위들을 기초로 상기 현재 영역에 대해 변환을 수행하고, 상기 가변적 트리 구조의 변환 단위들 중에서 상기 현재 영역에 대한 변환 단위들을 결정하는 변환 단위 결정부; 및 상기 결정된 변환 단위에 기초한 변환을 포함한 부호화에 의해 생성된 상기 현재 영역의 부호화 데이터, 및 상기 현재 영역의 부호화에서 결정된 부호화 모드에 대한 정보, 상기 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보를 포함하는 변환 단위 계층 구조 정보를 출력하는 출력부를 포함한다.
본 발명의 일 실시예에 따른 비디오 복호화 장치는, 상기 비디오가 부호화된 데이터를 포함하는 비트스트림을 수신하는 수신부; 상기 비트스트림을 파싱하여, 상기 비트스트림으로부터, 현재 영역의 부호화 데이터 및 상기 현재 영역의 부호화에서 결정된 부호화 모드에 대한 정보, 상기 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보를 포함하는 변환 단위 계층 구조 정보를 추출하는 추출부; 및 상기 현재 영역에 대한 기초 변환 단위로부터 계층적으로 분할되는 변환 단위들 중에서, 상기 변환 단위의 최다 분할 레벨에 기초하여 생성되는 가변적 트리 구조의 변환 단위들을 기초로 상기 현재 영역에 대해 역변환을 수행하고, 상기 현재 영역의 부호화된 데이터를 복호화하고 상기 비디오를 복원하는 복호화부를 포함한다.
본 발명은, 각각의 실시예에 따른 비디오 부호화 방법을 전산적으로 구현하기 위한 컴퓨터 프로그램이 기록된 컴퓨터로 판독가능한 기록 매체를 개시한다. 본 발명은, 각각의 실시예에 따른 비디오 복호화 방법을 전산적으로 구현하기 위한 컴퓨터 프로그램이 기록된 컴퓨터로 판독가능한 기록 매체를 개시한다.
도 1 은 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치의 블록도를 도시한다.
도 2 는 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 장치의 블록도를 도시한다.
도 3 은 일 실시예에 따른 트리 구조에 따른 변환 단위의 계층 모델을 도시한다.
도 4 는 일 실시예에 따른 가변적 트리 구조의 변환 단위의 계층 모델을 도시한다.
도 5, 6, 7 및 8 는 다양한 실시예에 따른 기초 변환 단위들을 도시한다.
도 9 및 10은 다양한 실시예에 따른 가변적 트리 구조의 변환 단위를 도시한다.
도 11 은 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법의 흐름도를 도시한다.
도 12 는 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 방법의 흐름도를 도시한다.
도 13 은 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치의 블록도를 도시한다.
도 14 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 장치의 블록도를 도시한다.
도 15 은 본 발명의 일 실시예에 따른 부호화 단위의 개념을 도시한다.
도 16 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 17 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 18 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
도 19 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
도 20 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 21 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
도 22, 23 및 24는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
도 25 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
도 26 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법의 흐름도를 도시한다.
도 27 은 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 방법의 흐름도를 도시한다.
이하 본 명세서에 기재된 본 발명의 다양한 실시예들에서, '영상'은 정지 영상 뿐만 아니라 비디오와 같은 동영상을 포함하여 포괄적으로 지칭할 수 있다.
영상과 관련된 데이터에 대해 각종 동작이 수행될 때, 영상과 관련된 데이터는 데이터 그룹들로 분할되고, 동일 데이터 그룹에 포함되는 데이터에 대해 동일한 동작이 수행될 수 있다. 이하 본 명세서에, 소정 기준에 따라 형성되는 데이터 그룹을 '데이터 단위'라 지칭한다. 이하 본 명세서에, '데이터 단위'마다 이루어지는 동작은, 데이터 단위에 포함된 데이터들을 이용하여 해당 동작이 수행됨을 의미한다.
이하 도 1 내지 도 12을 참조하여, 일 실시예에 따라 가변적 트리 구조의 변환 단위를 이용하는 비디오의 부호화 및 복호화가 개시된다. 이하 도 13 내지 도 27을 참조하여 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오의 부호화 및 복호화가 개시된다.
이하 도 1 내지 도 12을 참조하여, 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치 및 비디오 복호화 장치, 비디오 부호화 방법 및 비디오 복호화 방법이 상술된다.
도 1 은 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치의 블록도를 도시한다.
일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치(10)는, 변환 단위 결정부(11) 및 출력부(13)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치(10)를 '비디오 부호화 장치(10)'로 축약하여 지칭한다. 비디오 부호화 장치(10)의 변환 단위 결정부(11) 및 출력부(13)의 동작은, 비디오 인코딩 프로세서, 중앙 프로세서, 그래픽 프로세서 등에 의해 유기적으로 제어될 수 있다.
일 실시예에 따른 비디오 부호화 장치(10)는, 입력된 비디오 중 현재 픽처를 부호화하기 위해, 현재 픽처를 소정 크기의 데이터 단위들로 분할하여 데이터 단위별로 부호화를 수행한다.
예를 들어, 현재 픽처는 공간 영역(spatial domain)의 화소들로 구성된다. 현재 픽처 중에서 공간적으로 인접하는 화소들을 함께 부호화하기 위해 소정 범위 내의 인접 화소들이 하나의 그룹을 이루도록, 현재 픽처는 소정 크기의 화소 그룹들로 분할될 수 있다. 분할된 소정 크기의 화소 그룹의 화소들에 대한 일련의 부호화 동작들에 의해, 현재 픽처에 대한 부호화가 수행될 수 있다.
픽처의 부호화 처리 대상이 되는 초기 데이터가 공간 영역의 화소값이므로, 각각의 소정 크기의 화소 그룹이 부호화 처리 대상이 되는 데이터 단위로 이용될 수 있다. 또한 공간 영역의 화소 그룹의 화소값들에 대해 비디오 부호화를 위한 변환을 수행하여, 변환 영역(transform domain)의 변환 계수들이 생성되는데, 변환 계수들도 공간 영역의 화소 그룹과 동일한 크기의 계수 그룹을 유지한다. 따라서, 변환 영역의 변환 계수들의 계수 그룹도, 픽처의 부호화를 위한 데이터 단위로 이용될 수 있다.
따라서, 공간 영역 및 변환 영역을 통틀어서, 소정 크기의 데이터 그룹이 부호화를 위한 데이터 단위로 이용될 수 있다. 이 때, 데이터 단위의 크기는 데이터 단위에 포함되는 데이터의 개수로 정의될 수 있다. 예를 들어, 공간 영역의 화소들의 개수 또는 변환 영역의 변환 계수들의 개수가 데이터 단위의 크기를 나타낼 수 있다.
이하 '현재 영역(region)'은 비디오 중에서 현재 부호화 처리 대상인 데이터 단위, 슬라이스, 픽처, 픽처 시퀀스 중 어느 하나의 데이터 레벨의 데이터 그룹을 나타낼 수 있다.
일 실시예에 따른 비디오 부호화 장치(10)는, 영역별로 인터 예측, 인트라 예측을 포함하는 예측 부호화, 변환 및 양자화 및 엔트로피 부호화를 수행함으로써, 현재 픽처의 부호화를 수행할 수 있다.
일 실시예에 따른 변환 단위 결정부(11)는, 현재 픽처 중 현재 영역의 변환을 수행하기 위한 데이터 단위인 변환 단위를 결정한다. 일 실시예에 따른 변환 단위는 현재 영역에 포함되도록, 현재 영역보다 작거나 같은 크기의 데이터 단위로 결정될 수 있다.
예를 들어 변환 단위 결정부(11)는, 현재 영역의 높이 및 가로를 반분하여 변환 단위를 생성할 수 있다. 또한, 변환 단위 결정부(11)는, 현재 영역의 높이 및 가로 중 적어도 하나를 비대칭적으로 분할하여 변환 단위를 생성할 수 있다. 변환 단위 결정부(11)는, 현재 영역의 높이 및 가로 중 적어도 하나를 임의적인 비율로 분할하여 변환 단위를 생성할 수도 있다. 변환 단위는 현재 영역에 포함된 다각형의 데이터 단위일 수 있다.
일 실시예에 따른 변환 단위 결정부(11)는, 변환 단위의 높이 및 너비 중 적어도 하나를 다시 분할하여 하위 레벨의 변환 단위들을 생성할 수 있다.
일 실시예에 따른 변환 단위 결정부(11)는, 현재 영역의 변환을 위해 트리 구조에 따른 변환 단위들을 결정할 수 있다. 일 실시예에 따른 트리 구조의 변환 단위들은, 현재 영역 내의 변환 단위들 중, 변환 결과를 출력하도록 결정된 최종 변환 단위들을 포함한다.
일 실시예에 따른 변환 단위 결정부(11)는, 트리 구조에 따른 변환 단위들을 결정하기 위해, 현재 영역 내의 변환 단위들 중 소정 변환 단위의 높이 및 너비 중 적어도 하나를 반복적으로 분할하여 하위 레벨의 변환 단위들을 생성할 수 있다.
또한 일 실시예에 따른 변환 단위 결정부(11)는, 각각의 변환 단위를 하위 레벨의 변환 단위들로 분할할지 여부는, 상위 레벨의 변환 단위에서 분할되어 생성된 동일한 레벨의 다른 변환 단위와 독립적으로 결정할 수 있다.
또한 일 실시예에 따라 '소정 레벨의 변환 단위가 하위 레벨의 변환 단위로 분할'되는 동작은, 소정 레벨의 변환 단위들 중 적어도 하나가 분할되는 동작을 포함할 수 있다.
예를 들어, 현재 영역의 최상위 변환 단위로부터 소정 레벨까지, 분할 레벨마다 모든 변환 단위들이 분할되거나 분할이 중단될 수도 있다.
다른 예로, 소정 레벨로부터 하위 레벨로 변환 단위가 분할될 때, 소정 레벨의 변환 단위들마다 분할 될지 여부가 별개로 결정되어, 하위 레벨의 변환 단위들의 크기가 반드시 일정하지는 않을 수 있다.
일 실시예에 따른 변환 단위 결정부(11)는, 현재 영역에 대한 인터 예측 또는 인트라 예측을 거쳐 레지듀얼 데이터를 생성하고, 변환 단위 결정부(11)에 의해 결정된 변환 단위에 기초하여 레지듀얼 데이터에 대한 변환을 수행함으로써, 현재 영역을 부호화한다. 즉, 현재 영역의 예측을 위한 파티션별 레지듀얼 데이터가, 변환 단위 결정부(11)에 의해 결정된 변환 단위로 재분할되어, 변환 단위별로 레지듀얼 데이터에 대해 변환이 수행될 수 있다.
일 실시예에 따른 비디오 부호화를 위한 '변환'은 비디오의 공간 영역의 데이터를 변환 영역의 데이터로 변환하기 위한 데이터 처리 기법을 지칭한다. 일 실시예에 따른 변환 단위 결정부(11)가 비디오 부호화를 위해 수행하는 변환은 주파수 변환, 직교 변환, 정수 변환 등을 포함할 수 있다.
일 실시예에 따른 변환 단위 결정부(11)는, 현재 영역에 포함되는 계층적 구조에 따른 모든 레벨의 변환 단위들에 대해, 각각의 레벨의 변환 단위을 이용하여 변환을 반복적으로 수행하고, 레벨별 변환 단위마다 변환에 따른 오차를 비교하여, 오차가 최소화되는 레벨의 변환 단위들을 선택할 수 있다. 최소 오차가 발생하는 변환 계수를 생성하는 레벨의 변환 단위가, 변환 결과를 출력할 레벨인 변환 심도의 변환 단위로 결정될 수 있다.
이에 따라 일 실시예에 따른 변환 단위 결정부(11)는, 변환 결과를 출력하도록 결정된 변환 단위들이 포함된 트리 구조에 따른 변환 단위들을 결정할 수 있다.
일 실시예에 따라, 비디오에 대한 변환 단위의 최대 크기 및 최소 크기가 미리 설정될 수 있다. 일 실시예에 따른 변환 단위 결정부(11)는, 현재 픽처의 소정 영역 별로, 비디오에 대한 변환 단위의 최대 크기보다 작거나 같은 기초 변환 단위를 결정할 수 있다. 일 실시예에 따른 기초 변환 단위는, 현재 영역에서 이용가능한 최대 크기의 변환 단위이고, 최상위 계층의 변환 단위이다.
일 실시예에 따른 변환 단위 결정부(11)는, 현재 영역에 대해 변환 단위의 레벨의 개수를 제한할 수 있다. 변환 단위가 한번 분할되어 다음 하위 레벨의 변환 단위들이 생성되며, 소정 변환 단위의 레벨은 기초 변환 단위가 단계별로 분할되어 소정 변환 단위가 생성될 때까지의 분할 횟수를 나타낼 수 있다. 따라서, 일 실시예에 따른 현재 영역에 대한 변환 단위의 최다 분할 레벨은, 현재 영역의 기초 변환 단위로부터의 최하위 레벨의 변환 단위까지의 분할 횟수인 최다 분할 횟수와 관련될 수 있다.
현재 영역에 대하여 가변적으로 설정가능한 기초 변환 단위 및 변환 단위의 최다 분할 레벨에 기초하여, 변환 단위의 계층의 개수 및 계층 구조는 변경될 수 있다. 이에 따라 일 실시예에 따른 변환 단위 결정부(11)는, 변환 단위의 최다 분할 레벨에 기초하여 가변적 트리 구조의 변환 단위들을 이용할 수 있다. 일 실시예에 따른 가변적 트리 구조의 변환 단위들은, 기초 변환 단위를 포함하고, 기초 변환 단위로부터 분할되기 시작하여 변환 단위의 최다 분할 레벨까지 단계적으로 분할되어 생성되는 레벨별 변환 단위들을 포함할 수 있다.
일 실시예에 따른 변환 단위 결정부(11)는, 현재 영역에 대한 기초 변환 단위로부터 계층적으로 분할되는 변환 단위들 중에서, 변환 단위의 최다 분할 레벨에 기초하여 생성되는 가변적 트리 구조의 변환 단위들을 기초로 현재 영역에 대해 변환을 수행할 수 있다. 일 실시예에 따른 변환 단위 결정부(11)는, 가변적 트리 구조의 변환 단위들 중에서, 현재 영역의 변환 계수를 출력하는데 이용될 변환 단위들을 최종적으로 결정할 수 있다.
일 실시예에 따라, 현재 영역에 대한 변환 단위들의 최소 크기는, 비디오에 대한 변환 단위의 최소 크기와, 기초 변환 단위가 변환 단위의 최다 분할 레벨까지 분할된 최하위 레벨의 변환 단위의 크기 중 큰 것으로 결정될 수 있다.
일 실시예에 따라, 변환 단위의 최다 분할 횟수는, 비디오에 대한 변환 단위들의 최대 크기 및 최소 크기에 상응하는 최대 변환 단위로부터 최소 변환 단위까지의 분할 횟수보다 작거나 같을 수 있다. 따라서, 변환 단위의 최다 분할 레벨은, 비디오에 대한 변환 단위들의 최대 크기 및 최소 크기에 상응하는 최대 변환 단위로부터 최소 변환 단위까지의 레벨의 개수보다 작거나 같을 수 있다.
현재 영역에 대한 기초 변환 단위들의 크기는 일정하게 결정될 수 있다. 또한 영역별로 영역 특성에 따라 다른 크기의 기초 변환 단위가 설정될 수도 있다. 예를 들어 기초 변환 단위의 크기는, 현재 영역에 대한 부호화 중에 이용되는 예측 모드 및 파티션 크기 중 적어도 하나에 기초하여 결정될 수 있다.
일 실시예에 따른 변환 단위의 최다 분할 레벨은, 비디오의 픽처 시퀀스, 픽처, 슬라이스, 부호화를 위한 데이터 단위 등의 데이터 레벨들 중에서 소정 레벨의 데이트 그룹들마다 설정될 수도 있다. 즉, 예를 들어, 현재 픽처 시퀀스에 대한 최다 분할 레벨이 설정되어 있거나, 픽처별로, 슬라이스별로 또는 데이터 단위별로 최다 분할 레벨이 설정될 수 있다. 또 다른 예로, 변환 단위의 최다 분할 레벨은 부복호화 시스템 간에 암묵적으로 기설정되어 있을 수도 있다.
일 실시예에 따른 현재 영역에 대한 변환 단위의 최다 분할 레벨은, 현재 영역에 대한 부호화 수행 중에 이용되는 예측 모드마다 별개로 결정될 수 있다.
일 실시예에 따른 현재 영역에 대한 변환 단위의 최다 분할 레벨은, 현재 영역에 대한 부호화 수행 중에 이용되는 슬라이스 타입마다 별개로 결정될 수 있다.
일 실시예에 따른 현재 영역에 대한 기초 변환 단위는, 현재 영역의 예측 부호화를 위한 데이터 단위인 파티션들 사이의 경계에 걸치지 않도록, 파티션들 안에 포함되는 형태의 데이터 단위들로 결정될 수 있다.
또한, 일 실시예에 따른 현재 영역에 대한 기초 변환 단위가 분할된 하위 레벨의 변환 단위들은, 현재 영역의 예측 부호화를 위한 데이터 단위인 파티션들의 경계에 걸치지 않도록 파티션들 안에 포함되는 형태의 데이터 단위들로 결정될 수 있다.
기초 변환 단위 및 하위 레벨의 변환 단위들의 결정례는, 도 5 내지 10 을 참조하여 후술된다.
일 실시예에 따른 출력부(13)는, 현재 영역의 부호화된 데이터, 부호화 모드에 대한 정보 및 변환 단위에 관한 각종 정보를 포함하는 비트스트림을 출력할 수 있다.
출력부(13)는, 변환 단위 결정부(11)에 의해 결정된 변환 단위에 기초한 변환과, 양자화, 인터 예측, 인터 예측, 엔트로피 부호화 등의 각종 부호화 동작을 거쳐 생성된, 현재 영역의 부호화된 데이터를 출력할 수 있다.
출력부(13)는, 변환 단위 결정부(11)에 의해 결정된 변환 단위에 기초한 변환과, 양자화, 인터 예측, 인트라 예측, 엔트로피 부호화 등의 각종 부호화 동작에서 이용된 부호화 방식 등에 대한 정보를 포함하는 부호화 모드에 대한 정보를 출력할 수 있다.
일 실시예에 따른 출력부(13)는, 비디오에 대한 변환 단위의 계층 구조를 나타내는 변환 단위 계층 구조 정보를 출력할 수 있다. 일 실시예에 따른 변환 단위 계층 구조 정보는, 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보, 변환 인덱스 정보를 포함할 수 있다.
일 실시예에 따른 변환 인덱스 정보는, 현재 영역을 변환하는데 이용된 변환 단위의 구조에 대한 정보를 나타낼 수 있다. 예를 들어, 일 실시예에 따른 변환 인덱스 정보는, 현재 영역으로부터 최하위 레벨의 변환 단위까지 분할한 횟수, 변환 단위의 크기 및 형태에 대한 정보를 포함할 수 있다.
일 실시예에 따른 변환 인덱스 정보는, 레벨마다 상위 레벨의 변환 단위가 동일한 크기의 변환 단위들로 분할되는 경우, 현재 영역으로부터 최하위 레벨까지의 분할 횟수를 나타낼 수 있다.
일 실시예에 따른 출력부(13)는, 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보를 출력할 수 있다. 일 실시예에 따라, 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보는, 비디오스트림의 시퀀스 파라미터 세트, 픽처 파라미터 세트 등에 포함되어 출력될 수 있다.
일 실시예에 따른 변환 단위 계층 구조 정보는 변환 단위의 최다 분할 레벨을 나타내는 변환 단위 최다 분할 정보를 포함할 수 있다. 따라서 출력부(13)는 변환 단위 최다 분할 정보를 부호화하여 출력할 수 있다. 일 실시예에 따른 변환 단위 최다 분할 정보는, 시퀀스 파라미터 세트, 픽처 파라미터 세트 등에 포함되어 출력되거나, 슬라이스, 소정 크기의 영역 별로 설정될 수도 있다.
또 다른 예로, 변환 단위의 최다 분할 레벨이 부복호화 시스템 간에 암묵적으로 기 설정되어 있는 경우, 변환 단위 최다 분할 정보는 부호화되어 출력될 필요가 없다.
일 실시예에 따른 출력부(13)는, 현재 영역에 대한 가변적 트리 구조의 변환 단위들마다, 다음 하위 레벨의 변환 단위로 분할될지 여부를 나타내는 변환 단위 서브 분할 정보를 결정하여 출력할 수 있다. 일 실시예에 따른 출력부(13)는, 현재 영역에 대하여 결정된 변환 단위들 중에서 현재 영역에 대해 허용되는 최소 크기의 변환 단위에 대해서는 변환 단위 서브 분할 정보를 생략할 수 있다.
일 실시예에 따른 출력부(13)는, 현재 영역에 대하여 결정된 변환 단위들마다, 하위 레벨의 변환 단위 들 중에 0이 아닌 계수를 포함하는 변환 단위의 존재 여부를 나타내는 계층적 변환 단위 패턴 정보를 결정하여 출력할 수 있다.
도 2 는 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 장치의 블록도를 도시한다.
일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 장치(20)는 수신부(21), 추출부(23) 및 복호화부(25)를 포함한다. 이하 설명의 편의를 위해 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 장치(20)를 '비디오 복호화 장치(20)'로 축약하여 지칭한다. 비디오 복호화 장치(20)의 수신부(21), 추출부(23) 및 복호화부(25)의 동작은, 비디오 디코딩 프로세서, 그래픽 프로세서, 중앙 프로세서 등에 의해 유기적으로 제어될 수 있다.
비디오 복호화 장치(20)는, 비트스트림으로부터 영상을 복원하기 위해, 엔트로피 복호화, 역양자화, 역변환 및 인터 예측/보상, 인트라 예측/보상을 포함하는 동작들을 통해, 비트스트림의 부호화된 영상 데이터를 복호화할 수 있다.
일 실시예에 따른 수신부(21)는, 부호화된 비디오에 대한 비트스트림을 수신하고 파싱한다. 일 실시예에 따른 추출부(23)는, 수신부(21)에 의해 파싱된 비트스트림으로부터, 현재 픽처의 영역 별로 부호화된 데이터, 부호화 모드에 대한 정보 및 변환 단위에 대한 각종 정보를 추출한다.
추출부(23)는, 현재 영역의 부호화된 데이터, 부호화 모드에 대한 정보 및 변환 단위에 대한 각종 정보를 복호화부(25)로 전달할 수 있다.
복호화부(25)는, 부호화 모드에 대한 정보에 기초하여 결정된 각종 부호화 방식에 따라, 부호화된 데이터에 대해 엔트로피 복호화, 역양자화, 역변환, 인터 예측/보상, 인트라 예측/보상 등의 각종 복호화 동작을 수행함으로써, 현재 영역의 화소값을 복원하고, 현재 픽처를 복원할 수 있다.
추출부(23)는 비트스트림으로부터, 변환 단위의 최대 크기 정보 및 최소 크기 정보, 변환 인덱스 정보 등의 변환 단위의 계층 구조와 관련된 변환 단위 계층 구조 정보를 추출할 수 있다.
일 실시예에 따른 복호화부(25)는, 추출부(23)에 의해 추출된 변환 단위와 관련된 각종 정보에 기초하여, 현재 영역에 대한 역변환을 위해 필요한 변환 단위를 결정하고, 변환 단위에 기초하여 현재 영역의 역변환을 수행할 수 있다. 일 실시예에 따른 복호화부(25)가 비디오 복호화를 위해 수행하는 역변환은, 변환 영역의 데이터를 공간 영역의 데이터로 변환하는 프로세스를 지칭할 수 있다. 일 실시예에 따른 복호화부(25)의 역변환은 주파수 역변환, 직교 역변환, 정수 역변환 등을 포함할 수 있다.
변환 단위, 기초 변환 단위 및 변환 단위의 계층 구조의 개념은 도 1 및 일 실시예에 따른 비디오 부호화 장치(10)를 참조하여 전술한 바와 같다. 즉, 일 실시예에 따른 변환 단위는 현재 영역 또는 상위 레벨의 변환 단위의 높이 및 가로 중 적어도 하나가 임의의 비율로 분할된 형태이다.
특히, 일 실시예에 따른 가변적 트리 구조의 변환 단위들은, 현재 영역에 대해 결정된 변환 단위의 최다 분할 레벨 또는 최다 분할 횟수에 기초하여 결정될 수 있다. 즉 가변적 트리 구조의 변환 단위들은, 기초 변환 단위를 포함하며, 기초 변환 단위로부터 현재 비디오에서 허용되는 최다 분할 레벨까지의 분할된 하위 레벨들의 변환 단위들을 포함할 수 있다.
추출부(23)는, 변환 단위 계층 구조 정보 중에서 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보를 추출할 수 있다. 일 실시예에 따라, 비디오스트림의 시퀀스 파라미터 세트, 픽처 파라미터 세트 등으로부터, 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보가 추출될 수 있다.
추출부(23)는 변환 단위 계층 구조 정보 중에서, 변환 단위 최다 분할 정보를 추출할 수도 있다. 일 실시예에 따른 변환 단위 최다 분할 정보는, 시퀀스 파라미터 세트, 픽처 파라미터 세트 등으로부터 추출되거나, 슬라이스, 영역 별로 설정된 파라미터들로부터 추출될 수도 있다.
또 다른 예로, 변환 단위의 최다 분할 레벨이 부복호화 시스템 간에 암묵적으로 기 설정되어 있는 경우, 변환 단위 최다 분할 정보는 별도로 추출될 필요는 없다.
복호화부(25)는, 변환 단위 최다 분할 정보로부터, 현재 영역의 허용되는 기초 변환 단위로부터 최하위 레벨의 변환 단위까지의 레벨의 개수 또는 분할 횟수를 분석할 수 있다.
복호화부(25)는, 비디오의 픽처 시퀀스에 대해 설정된 변환 단위의 최다 분할 레벨을 판독할 수 있다. 또는 변환 단위의 최다 분할 레벨은, 픽처별로, 슬라이스별로 또는 데이터 단위 별로, 다양한 데이터 레벨에 따라 판독될 수도 있다.
또 다른 예로, 부복호화 시스템 간에 암묵적으로 기 설정된 변환 단위의 최다 분할 레벨에 기초하여, 가변적 트리 구조의 변환 단위들이 결정될 수도 있다.
복호화부(25)는, 부호화 모드마다 개별적으로 설정된, 현재 영역에서 허용 가능한 레벨의 개수 또는 분할 횟수를 분석할 수 있다. 예를 들어 복호화부(25)는, 현재 영역에 대한 부호화 수행 중에 이용되는 예측 모드마다 별개로 설정된 변환 단위의 최다 분할 레벨을 판독할 수도 있다. 예를 들어 복호화부(25)는, 현재 영역에 대한 부호화 수행 중에 이용되는 슬라이스 타입마다 별개로 설정된 변환 단위의 최다 분할 레벨을 판독할 수도 있다.
추출부(23)는, 변환 단위 계층 구조 정보 중에서 일 실시예에 따른 변환 인덱스 정보를 추출할 수 있다. 복호화부(25)는, 변환 인덱스 정보로부터, 현재 영역을 변환하는데 이용된 변환 단위의 구조를 분석할 수도 있다.
예를 들어, 일 실시예에 따른 변환 인덱스 정보는, 현재 영역로부터 최하위 레벨의 변환 단위까지 분할한 횟수, 변환 단위의 크기 및 형태가 분석될 수 있다. 변환 인덱스 정보에 기초하여, 레벨마다 상위 레벨의 변환 단위가 동일한 크기의 변환 단위들로 분할되는 경우, 현재 영역으로부터 최하위 레벨까지의 분할 횟수가 판독될 수도 있다.
추출부(23)는, 현재 영역에 대하여 결정된 변환 단위들마다 변환 단위 서브 분할 정보를 추출할 수 있다. 복호화부(25)는, 변환 단위 서브 분할 정보에 기초하여, 현재 계층의 변환 단위가 다음 하위 레벨의 변환 단위로 분할될지 결정할 수 있다. 소정 계층의 변환 단위에 대해 변환 단위 서브 분할 정보가 더 이상 추출되지 않는다면, 소정 계층의 변환 단위가 현재 영역에 대해 허용되는 최소 크기의 변환 단위라고 분석될 수 있다. 추출부(23)는, 현재 영역에 대하여 결정된 변환 단위들마다, 계층적 변환 단위 패턴 정보를 추출할 수 있다. 복호화부(25)는, 계층적 변환 단위 패턴 정보로부터, 현재 변환 단위의 하위 레벨의 변환 단위들 중에 0이 아닌 계수를 포함하는 변환 단위가 존재하는지 분석할 수 있다.
일 실시예에 따른 변환 단위 계층 구조 정보에 기초하여, 현재 영역의 최상위 변환 단위로부터 소정 분할 레벨까지, 레벨마다 일정 크기의 변환 단위들로 균등하게 분할된 계층 구조의 변환 단위들 중에서, 역변환에 필요한 변환 단위들이 분석될 수 있다. 다른 예로, 상위 레벨의 변환 단위로부터 분할되는 하위 레벨의 변환 단위들마다 분할 될지 여부가 별개로 결정되는 경우에는, 변환 단위 계층 구조 정보에 기초하여 역변환에 필요하다고 결정된 변환 레벨의 변환 단위들은, 일정 크기의 변환 단위들로 제한되지는 않는다.
따라서 복호화부(25)는, 추출부(23)에 의해 추출된 변환 단위 관련 정보에 기초하여 결정된 변환 단위들을 이용하여 현재 영역에 대해 역변환을 수행할 수 있다.
특히 복호화부(25)는, 변환 단위 최다 분할 정보에 기초하여 결정된 현재 영역에 대한 변환 단위의 최다 분할 레벨에 기초하여, 현재 영역에 허용되는 가변적 트리 구조의 변환 단위들을 판독하고, 가변적 트리 구조의 변환 단위들 중에서 변환 계수를 역변환하는데 이용될 변환 단위들을 검출할 수 있다. 복호화부(25)는 최다 분할 레벨에 기초하여 검출된 변환 단위들을 이용하여, 현재 영역에 대해 역변환을 수행할 수 있다.
복호화부(25)는, 비디오의 소정 영역을 구성하는 영상마다 해당 부호화 모드에 대한 정보 및 변환 단위 관련 정보에 기초하여 복호화를 수행함으로써, 비디오를 복원할 수 있다.
일 실시예에 따른 비디오 부호화 장치(10) 및 일 실시예에 따른 비디오 복호화 장치(20)는, 비디오 부호화 및 복호화 과정에서, 트리 구조에 따르는 다양한 크기 및 형태의 변환 단위들을 이용하여 변환 및 역변환을 수행할 수 있으므로, 영상 특성을 고려하여 비디오를 효율적으로 부복호화할 수 있다.
또한, 일 실시예에 따른 트리 구조의 변환 단위 중에서, 가변적 트리 구조의 변환 단위에 기초한 변환을 이용하여 부복호화를 수행하므로, 영상 특성 및 부호화 특성에 따라 필요 없는 계층의 변환 단위들을 이용한 부복호화 과정은 생략할 수 있으므로, 연산량을 절감할 수 있다.
또한, 일 실시예에 따른 최다 분할 레벨에 기초하여 현재 영역에 대해 허용되는 변환 단위의 최다 분할 횟수 또는 분할 레벨의 개수 등이 예측될 수 있으므로, 변환 단위의 서브 분할 단위 정보를 포함하여, 비디오 복호화에 이용될 변환 단위들을 결정하기 위한 필요한 정보의 전송량이 감소될 수 있다.
도 3 은 일 실시예에 따른 트리 구조에 따른 변환 단위의 계층 모델을 도시한다.
일 실시예에 따른 비디오 부호화 장치(10) 및 일 실시예에 따른 비디오 복호화 장치(20)가, 현재 비디오를 부호화하기 위해 이용할 수 있는 트리 구조에 따른 변환 단위는, 현재 비디오에서 허용되는 변환 단위의 최대 크기 및 비디오에 대한 변환 단위의 최소 크기에 기초하여 결정될 수 있다.
일 실시예에 따른 비디오 부호화 장치(10)는, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트에, 현재 비디오에서 허용되는 변환 단위의 최대 크기 정보 'MaxTransformSize' 및 최소 크기 정보 'MinTransformSize'를 포함하여 출력할 수 있다.
예를 들어, 변환 단위의 최대 크기 정보 'MaxTransformSize' 및 최소 크기 정보 'MinTransformSize'가 각각 32x32, 4x4를 나타내는 경우, 크기 64x64의 영역(Coding Unit; CU)(30)에 대한 변환 단위들은, 크기 32x32의 변환 단위들(35a, 35b, 35c, 35d)로부터, 크기 4x4의 변환 단위들(38a, 38b)을 포함할 수 있다.
설명의 편의를 위해, 현재 변환 단위의 높이 및 너비가 반분하여 한 레벨 하위 레벨의 변환 단위가 4개씩 생성되는, '변환 단위의 계층 관계'가 가정된다. 현재 비디오에 허용되는 변환 단위의 최대 크기가 32x32이므로, 최상위 레벨인 레벨 0 변환 단위의 크기는 32x32이며, 레벨 1 변환 단위의 크기는 16x16, 레벨 2 변환 단위의 크기는 8x8, 레벨 2 변환 단위의 크기는 4x4일 수 있다.
구체적으로, 레벨 0의 크기 32x32 변환 단위들(35a, 35b, 35c, 35d)이, 레벨 1의 크기 16x16 변환 단위들(36a, 36b, 36c, 36d, 36e, 36h, 36i, 36l, 36m, 36p)로 분할될 수 있다. 또, 레벨 1의 크기 16x16 변환 단위들(36a, 36b, 36c, 36d, 36e, 36h, 36i, 36l, 36m, 36p)이, 레벨 2의 크기 8x8 변환 단위들(37a, 37b, 37c, 37d, 37e, 37f)로 분할될 수 있다. 또, 레벨 2의 크기 8x8 변환 단위들(37a, 37b, 37c, 37d, 37e, 37f)가 레벨 3의 크기 4x4 변환 단위들(38a, 38b)로 분할될 수 있다.
지면의 제한 때문에, 레벨 1의 변환 단위들(36a, 36b, 36c, 36d, 36e, 36h, 36i, 36l, 36m, 36p), 레벨 2의 변환 단위들(37a, 37b, 37c, 37d, 37e, 37f) 및 레벨 3의 변환 단위들(38a, 38b)에 대해서는, 존재가능한 모든 변환 단위들이 도시되지는 않았지만, 현재 변환 단위로부터 한 레벨 하위 레벨의 변환 단위들이 4개씩 생성될 수 있다.
구체적으로, 현재 영역(30)에 대한 변환을 수행하기 위해 이용될 수 있는 레벨별 변환 단위의 개수는, 레벨 0의 변환 단위들(35a, 35b, 35c, 35d)이 4개, 레벨 1의 변환 단위들(36a, 36b, 36c, 36d, 36e, 36h, 36i, 36l, 36m, 36p)이 16개, 레벨 2의 변환 단위들(37a, 37b, 37c, 37d, 37e, 37f)이 64개, 레벨 3의 변환 단위들(38a, 38b)이 256개일 수 있다.
일 실시예에 따른 비디오 부호화 장치(10)는, 영역(30)에 대한 트리 구조에 따른 변환 단위들을 결정하기 위하여, 현재 비디오에 허용되는 크기 32x32의 변환 단위들(35a, 35b, 35c, 35d)로부터 크기 16x16의 변환 단위들(36a, 36b, 36c, 36d, 36e, 36h, 36i, 36l, 36m, 36p), 크기 8x8의 변환 단위들(37a, 37b, 37c, 37d, 37e, 37f) 및 크기 4x4의 변환 단위들(38a, 38b)을 이용하여, 반복적으로 현재 영역(30)에 대한 변환을 수행할 수 있다.
일 실시예에 따른 비디오 부호화 장치(10)는, 레벨 0, 1, 2, 3의 모든 변환 단위들에 대해 변환을 수행한 후, 현재 영역(30)의 내부 영역마다 독립적으로 최소 오차의 변환 계수를 출력하는 레벨의 변환 단위를 선택할 수 있다. 일 실시예에 따른 트리 구조에 따른 변환 단위들은, 이렇게 선택된 레벨의 변환 단위들을 포함할 수 있다.
일 실시예에 따른 비디오 부호화 장치(10)는, 현재 영역(30)의 트리 구조에 따른 변환 단위들에 대한 정보를 부호화하기 위해, 최소 오차의 변환 계수들을 생성하는 것으로 선택된 변환 단위의 레벨을 나타내는 변환 심도에 대한 정보를 부호화하여 출력할 수 있다.
일 실시예에 따른 비디오 복호화 장치(20)는, 비트스트림으로부터 추출된 변환 심도에 대한 정보를 이용하여, 현재 영역(30)의 변환 계수들을 출력하는데 이용된 변환 단위들의 레벨을 판독하고, 현재 영역(30)의 변환 계수들을 역변환하기 위한 트리 구조에 따른 변환 단위들을 결정할 수 있다.
도 4 는 일 실시예에 따른 가변적 트리 구조의 변환 단위의 계층 모델을 도시한다.
일 실시예에 따른 비디오 부호화 장치(10)는, 현재 비디오에서 허용되는 변환 단위의 최대 크기 정보 'MaxTransformSize' 및 최소 크기 정보 'MinTransformSize'과 함께, 현재 영역의 변환 단위의 최다 분할 정보 'MaxTuDepth'를 출력할 수 있다.
현재 영역의 변환 단위의 최다 분할 정보는, 현재 영역에 대한 최다 변환 레벨, 즉, 허용되는 변환 단위들의 레벨의 개수를 나타낼 수 있다. 현재 영역 중 현재 영역(40)에 대해, 최상위 레벨인 기초 변환 단위를 포함하여 최다 변환 레벨까지의 하위 레벨들의 변환 단위들이 허용될 수 있다.
예를 들어, 현재 영역에 대한 최다 변환 레벨이 2로 설정될 수 있다.
기초 변환 단위는, 레벨 0의 크기 32x32 변환 단위들(45a, 45b, 45c, 45d)일 수 있다.
이에 따라, 크기 64x64의 현재 영역(40)에 대한 변환 단위들은, 레벨 0의 크기 32x32 변환 단위들(45a, 45b, 45c, 45d)과, 레벨 1의 크기 16x16의 변환 단위들(46a, 46b, 46c, 46d, 46e, 46h, 46i, 46l, 46m, 46p)을 포함할 수 있다.
현재 비디오에서 허용되는 변환 단위의 최대 크기 정보 'MaxTransformSize' 및 최소 크기 정보 'MinTransformSize', 현재 영역의 변환 단위의 최다 분할 정보 'MaxTuDepth'에 기초하여, 현재 영역에서 이용가능한 변환 단위의 최소 크기는 아래 수학식 1에 따라 결정될 수 있다.
[수학식 1]
Minimum possible leaf TU zise
= max(MinTransformSize, RootTUSize/(2^(MaxTuDepth -1)))
즉, 현재 영역의 변환 단위의 최소 크기 'Minimum possible leaf TU zise'는, 현재 비디오에서 허용되는 변환 단위의 최소 크기 정보(MinTransformSize)와, 기초 변환 단위로부터 최다 분할 횟수만큼 분할된 최하위 레벨의 변환 단위의 크기(RootTUSize/(2^(MaxTuDepth -1))) 중 큰 것으로 결정될 수 있다.
수학식 1에서 최다 분할 횟수에 상응하는 'MaxTuDepth -1'의 범위는 아래 수학식 2에 따른다
[수학식 2]
MaxTuDepth -1 ≤ Log2(MaxTransformSize) - Log2(MinTransformSize)
즉, 최다 분할 횟수는, 현재 비디오에서 허용되는 변환 단위의 최대 크기(MaxTransformSize) 및 최소 크기 정보 'MinTransformSize'에 기초하여 결정되는 최대 변환 단위로부터 최소 변환 단위까지의 분할 횟수보다 작거나 같다.
현재 영역(40)에 대한 변환을 수행하기 위해 이용될 수 있는 레벨별 변환 단위의 개수는, 레벨 0의 변환 단위들(45a, 45b, 45c, 45d)의 4개와 레벨 1의 변환 단위들(46a, 46b, 46c, 46d, 46e, 46h, 46i, 46l, 46m, 46p)의 16개일 수 있다.
따라서, 현재 비디오에 대한 변환 단위의 최대 크기 및 최소 크기 정보에 따라, 레벨 0, 1, 2, 3의 모든 변환 단위들이 이용가능하더라도, 일 실시예에 따른 비디오 부호화 장치(10)는, 현재 영역(40)에 대해 설정된 변환 단위의 최다 분할 레벨 또는 최다 분할 횟수에 기초하여, 레벨 1 및 2의 변환 단위들만을 이용하여, 현재 영역(40)에 대해 변환을 수행할 수 있다.
즉, 도 3의 영역(30)에 대해서는, 현재 비디오에 대한 변환 단위의 최대 크기 및 최소 크기 정보에 기초하여, 레벨 0의 변환 단위 4개, 레벨 1의 변환 단위 16개, 레벨 2의 변환 단위 64개 및 레벨 3의 변환 단위 256개를 이용하여, 변환이 수행됨이 전술되었다. 이에 반해, 도 4의 영역(40)에 대해서는, 일 실시예에 따른 변환 단위의 최다 분할 횟수 또는 최다 분할 레벨에 기초하여, 레벨 0의 변환 단위 4개, 레벨 1의 변환 단위 16개만을 이용하여, 변환이 수행될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(10)는, 변환 단위마다 하위 레벨의 변환 단위로 분할되는지 여부를 나타내는 변환 단위 서브 분할 정보를 부호화하여 출력할 수 있다. 최소 크기의 변환 단위는 더 이상 하위 레벨의 변환 단위로 분할되지 않으므로, 최하위 레벨의 변환 단위에 대해서는 변환 단위 서브 분할 정보가 부호화될 필요가 없다.
따라서 도 3의 영역(30)에 대해서는, 레벨 0의 변환 단위 4개, 레벨 1의 변환 단위 16개 및 레벨 2의 변환 단위 64개에 대해 변환 단위 서브 분할 정보가 부호화될 수 있다. 이에 반해 도 3의 영역(30)에 대해서는, 일 실시예에 따른 변환 단위의 최다 분할 레벨 또는 최다 분할 횟수에 기초하여, 레벨 0의 변환 단위 4개에 대해서만 변환 단위 서브 분할 정보만 부호화하면 된다.
또한 전술한 바와 같이, 변환 단위의 최다 분할 횟수는, 비디오에 대해 허용된 최대 크기 및 최소 크기에 상응하는 최대 변환 단위로부터 최소 변환 단위까지의 분할 횟수보다 작거나 같을 수 있고, 이에 상응하여 변환 단위의 최다 분할 레벨이 예측될 수 있다. 이러한 최다 분할 레벨의 예측 가능성에 기초하여, 최다 분할 정보의 비트가 절약될 수 있다.
예를 들어, 최다 분할 정보가 트렁케이티드 유너리 맥스 코딩(Truncated Unary Max Coding) 방식에 따라 부호화되는 경우, 비디오에 대해 허용된 최대 변환 단위로부터 최소 변환 단위까지의 분할 횟수가 최대 분할 레벨의 최대값으로 설정되므로, 최대값에 상응하는 최다 분할 레벨이 부호화되는 경우에는 1비트가 감소될 수 있다.
도 3 의 트리 구조의 변환 단위들과 도 4의 가변적 트리 구조의 변환 단위들을 비교한 결과, 최다 분할 레벨 또는 최다 분할 횟수에 기초하여, 변환에 이용가능한 변환 단위 계층의 개수가 변하므로, 변환 단위의 계층 구조가 변경됨이 확인된다. 일 실시예에 따른 비디오 부호화 장치(10)는, 현재 영역(40)의 영역마다 가변적 트리 구조의 변환 단위들을 이용하여 변환을 수행한 결과, 영역별로 독립적으로 최소 오차의 변환 계수들을 출력하는 레벨의 변환 단위를 선택할 수 있고, 출력된 변환 계수들을 생성하는데 이용된 변환 심도의 변환 단위들이 결정될 수 있다.
일 실시예에 따른 비디오 부호화 장치(10)는, 현재 영역(30)의 가변적 트리 구조의 변환 단위들을 결정하는데 필요한 변환 심도에 대한 정보 및 변환 단위 최다 분할 정보를 부호화하여 출력할 수 있다.
일 실시예에 따른 비디오 복호화 장치(20)는, 비트스트림으로부터 추출된 변환 심도에 대한 정보 및 변환 단위 최다 분할 정보를 이용하여, 현재 영역(40)의 부호화에 이용된 변환 단위들의 변환 심도와, 변환 단위의 최다 분할 레벨을 판독할 수 있다. 판독된 변환 심도 또는 레벨에 기초하여, 현재 영역(40)의 변환 계수들을 역변환하기 위한 가변적 트리 구조에 따른 변환 단위들이 결정될 수 있다.
일 실시예에 따른 변환 단위의 최다 분할 횟수 또는 최다 분할 레벨은, 현재 영역의 특성에 따라 결정될 수 있다. 따라서 영상 특성 상, 다양한 종류의 변환 단위를 이용하여 변환이 수행될 필요가 없는 경우, 가변적 계층 구조에 따른 변환 단위를 이용하여 비디오 부호화 및 복호화가 수행됨으로써, 다양한 계층 및 크기의 변환 단위들을 이용하여 변환을 수행하는 연산량의 부담이 감소될 수 있다. 또한, 변환 단위의 최다 분할 레벨에 기초하여 가능한 변환 단위의 계층 구조가 예측될 수 있으므로, 변환 단위의 계층 구조와 관련된 부호화 정보가 감소되어 부호화 결과의 전송 효율이 향상될 수 있다.
이상 도 3 및 4 을 참조하여, 변환 단위의 높이 및 너비가 반분되어 하위 레벨의 변환 단위들로 분할되는 실시예가 개시되었다. 하지만 본 발명의 계층적 구조의 변환 단위들은, 도 3 및 4의 개시 형태에 국한되지 않으며, 변환 단위의 높이 및 너비 중 적어도 하나가 임의의 비율로 분할되어 하위 레벨의 변환 단위들이 생성되는 다양한 실시예들도 포괄할 수 있다.
도 5, 6, 7 및 8 는 다양한 실시예에 따른 기초 변환 단위들을 도시한다.
일 실시예에 따른 가변적 트리 구조의 변환 단위들은, 기초 변환 단위로부터 분할된 하위 레벨들의 변환 단위들을 포함하므로, 기초 변환 단위의 형태 또는 크기에 따라 가변적 트리 구조의 변환 단위들에 포함되는 변환 단위들의 형태의 크기가 결정될 수 있다.
기본적으로 기초 변환 단위의 크기는 현재 비디오에 대한 최대 변환 단위보다 작거나 같다. 영역의 부호화 모드에 기초하여, 영역의 기초 변환 단위의 형태가 결정될 수 있다.
예를 들어, 현재 영역의 기초 변환 단위의 형태는, 영역의 부호화 모드 중 예측 모드에 따라 결정될 수 있다. 예를 들어, 현재 영역의 예측 모드가 인터 모드 또는 인트라 모드인지 여부에 기초하여, 기초 변환 단위의 크기가 결정될 수 있다.
예를 들어, 현재 영역의 기초 변환 단위의 형태는, 영역의 부호화 모드 중 파티션 크기에 따라 결정될 수 있다. 파티션은, 영역의 인터 예측 또는 인트라 예측을 위해 영역이 분할된 형태의 데이터 단위이며, 파티션 크기는 파티션의 형태 또는 크기를 나타낼 수 있다.
도 5를 참조하면, 영역의 예측을 위한 데이터 단위와 동일한 형태의 기초 변환 단위가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 영역(50)에 대한 크기 2Nx2N의 파티션(51)는 인터 예측 또는 인트라 예측을 위한 데이터 단위이며, 영역(50)의 기초 변환 단위는 크기 2Nx2N의 변환 단위로 결정될 수 있다.
다른 예로 기초 변환 단위는, 영역의 파티션들보다 작거나 같은 크기의 변환 단위로 결정될 수 있다. 이 경우, 기초 변환 단위는 해당 영역에 위치한 파티션 내에 포함되므로, 현재 영역의 파티션들 간의 경계에 걸치지 않도록 결정될 수 있다.
도 6를 참조하면, 크기 2Nx2N의 영역(60)에 대해 크기 Nx2N의 파티션들(61a, 61b)이 결정된 경우, 영역(60)에 대한 크기 2Nx2N의 기초 변환 단위들(65a, 65b, 65c, 65d)이 결정될 수 있다. 기초 변환 단위들(65a, 65b, 65c, 65d)은 파티션들(61a, 61b)보다 작아 파티션들(61a, 61b)에 포함되면서 파티션들(61a, 61b)의 경계를 가로지르지 않는다.
도 7를 참조하면, 크기 4Mx4M의 영역(70)에 대해 너비가 비대칭적으로 분할된 파티션들(71a, 71b)이 결정될 수 있다. 즉, 영역(70)에 대해 크기 Mx4M 파티션(71a) 및 크기 3Mx4M 파티션(71b)이 결정될 수 있다. 이 경우 영역(70)에 대한 기초 변환 단위들은, 파티션들(71a, 71b)의 경계에 걸치지 않기 위해, 크기 MxM의 변환 단위들(75a, 75b, 75c, 75d)와 크기 2Mx2M의 변환 단위들로(75i, 75j)로 결정될 수 있다. 크기 MxM의 변환 단위들(75a, 75b, 75c, 75d)와 크기 2Mx2M의 변환 단위들로(75i, 75j)도, 각각 해당 영역의 파티션(71a 또는 71b)에 포함될 수 있다.
또한, 현재 영역에 대하여 기초 변환 단위들의 크기가 일정하도록 제한될 수도 있다. 도 8를 참조하면, 크기 4Mx4M의 영역(80)에 대해 크기 Mx4M 파티션(81a) 및 크기 3Mx4M 파티션(81b)이 결정될 수 있다. 이 경우 영역(80)에 대해, 파티션들(81a, 81b)의 경계에 걸치지 않으면서, 일정한 크기를 갖는 크기 MxM의 변환 단위들(85a, 85b, 85c, 85d, 85e, 85f, 85g, 85h, 85i, 85j, 85k, 85l, 85m, 85n, 85o, 85p)이 결정될 수 있다.
일 실시예에 따른 최다 분할 레벨도, 영역의 부호화 모드마다 별개로 결정될 수 있다.
일 실시예에 따른 최다 분할 레벨은, 영역의 예측 모드마다 별개로 결정될 수 있다. 예를 들어, 인터 모드인 영역을 위한 최다 분할 정보 'MaxTUDepthOfInter' 또는 인트라 모드인 영역을 위한 최다 분할 정보 'MaxTUDepthOfIntra' 등, 예측 모드별로 최다 분할 레벨이 별개로 결정될 수 있다.
일 실시예에 따른 최다 분할 레벨은, 슬라이스 타입마다 별개로 결정될 수 있다. 예를 들어, 인트라 타입의 슬라이스를 위한 최다 분할 레벨 값 'MaxTUDepthOfIntraSlice', 인터 P 타입의 슬라이스를 위한 최다 분할 레벨 값 'MaxTUDepthOfInterP', 인터 B 타입의 슬라이스를 위한 최다 분할 레벨 값 'MaxTUDepthOfInterB' 등, 슬라이스 타입별로 최다 분할 레벨이 별개로 결정될 수 있다. 이 경우, 슬라이스 헤더에 각각의 슬라이스 타입별 최다 분할 정보가 포함되어 부호화될 수 있다.
도 9 및 10은 다양한 실시예에 따른 가변적 트리 구조의 변환 단위를 도시한다.
일 실시예에 따른 가변적 트리 구조의 변환 단위들은, 기초 변환 단위를 포함하여, 기초 변환 단위로부터 분할된 한 레벨 이상의 하위 레벨의 변환 단위들을 포함할 수 있다. 예를 들어, 기초 변환 단위는 파티션 크기와 무관하지만, 기초 변환 단위로부터 분할된 하위 레벨의 변환 단위들은 파티션 크기에 기초하여 결정될 수도 있다.
예를 들어, 도 9를 참조하면, 크기 2Nx2N의 영역(90)의 파티션 타입이, 크기 Nx2N의 파티션들(91a, 91b)로 결정될 수 있다. 레벨 0의 기초 변환 단위(95)는, 파티션들(91a, 91b)의 크기와 상관없이, 영역(90)과 동일한 크기인 2Nx2N으로 결정될 수 있다. 기초 변환 단위로부터 한 단계 하위 레벨인 레벨 1의 변환 단위들(97a, 97b, 97c, 97d)은, 파티션들(91a, 91b)의 경계에 걸치지 않으면서, 파티션들(91a, 91b)보다 작은, 크기 NxN의 변환 단위들로 결정될 수 있다.
도 10를 참조하면, 크기 4Mx4M의 영역(92)의 파티션 타입이, 비대칭적 파티션 타입인 파티션들(93a, 93b)로 결정될 수 있다. 레벨 0의 기초 변환 단위(94)는, 파티션들(93a, 93b)의 크기와 상관없이, 영역(92)과 동일한 크기인 4Mx4M으로 결정될 수 있다.
일례로, 영역(92)의 레벨 0의 기초 변환 단위(94)로부터 한 단계 하위 레벨인 레벨 1의 변환 단위들은 파티션들(93a, 93b)의 경계를 가로지르지 않기 위해, 크기 MxM의 변환 단위들(96a, 96b, 96c, 96d, 96e, 96f, 96g, 96h)과, 크기 2Mx2M의 변환 단위들(96i, 96j)로 결정될 수 있다.
또 다른 예로, 영역(92)의 레벨 0의 기초 변환 단위(94)로부터 한 단계 하위 레벨인 레벨 1의 변환 단위들은 파티션들(93a, 93b)의 경계를 가로지르지 않으면서 모두 일정한 크기를 갖도록, 크기 MxM의 변환 단위들(98a, 98b, 98c, 98d, 98e, 98f, 98g, 98h, 98i, 98j, 98k, 98l, 98m, 98n, 98o, 98p)로 결정될 수도 있다.
이상 도 5 내지 8을 참조하여 다양한 실시예들에 따른 기초 변환 단위들이 개시되고, 도 9 및 10을 참조하여 다양한 실시예들에 따른 가변적 트리 구조의 변환 단위들이 개시되었다. 개시된 변환 구조들은, 상위 레벨의 변환 단위의 높이 및 너비가 반분된 형태의 정사각형의 데이터 단위이지만, 본 발명에 의해 개시되는 변환 단위는, 정사각형의 데이터 단위에만 한정하여 적용되는 것은 아님을 유의하여야 한다.
도 11 은 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법의 흐름도를 도시한다.
단계 111에서, 비디오를 부호화하기 위해 비디오가 다수의 영역들로 분할되어 영역별로 부호화된다. 비디오 중 소정 크기의 현재 영역을 부호화하기 위하여, 현재 영역에 대한 기초 변환 단위로부터 계층적으로 분할되는 변환 단위들 중에서, 변환 단위의 최다 분할 레벨에 기초하여 생성되는 가변적 트리 구조의 변환 단위들을 기초로, 현재 영역에 대해 변환이 수행될 수 있다. 현재 영역은, 부호화를 위한 데이터 단위, 매크로블록, 픽처, 슬라이스 등일 수 있다.
일 실시예에 따른 현재 영역에 대한 기초 변환 단위는, 현재 영역에 대한 이용가능한 최대 크기인 최상위 계층의 변환 단위이며, 비디오에 대한 변환 단위의 최대 크기보다 작거나 같을 수 있다.
일 실시예에 따른 변환 단위의 최다 분할 레벨은, 현재 영역에 대하여 허용되는 변환 단위의 레벨의 개수를 나타내며, 현재 영역에 대한 기초 변환 단위로부터 현재 영역에 대하여 허용되는 최하위 레벨의 변환 단위까지의 분할 횟수에 상응할 수 있다.
일 실시예에 따른 가변적 트리 구조의 변환 단위들은, 변환 단위의 최다 분할 레벨에 기초하여, 기초 변환 단위를 포함하고, 기초 변환 단위로부터 분할되기 시작하여 최다 분할 레벨까지 단계적으로 분할되어 생성되는 레벨별 변환 단위들을 포함할 수 있다.
일 실시예에 따른 변환 단위의 최다 분할 레벨은, 현재 영역에 대한 부호화의 수행 도중에 이용되는 예측 모드, 슬라이스 타입 등의 부호화 모드마다 별개로 결정될 수도 있다.
현재 영역에 대한 기초 변환 단위는, 영상 특성에 따라 다양한 방식으로 설정될 수 있다.
가변적으로 설정가능한 기초 변환 단위 또는 가변적으로 설정가능한 최다 분할 레벨에 기초하여, 현재 영역에 대한 변환에 가변적 트리 구조의 변환 단위들이 이용될 수 있다. 가변적 트리 구조의 변환 단위들을 이용하여, 현재 영역에 대해 변환을 수행한 결과, 최소 오차가 발생하는 변환 단위들이 현재 영역에 대한 변환 심도의 변환 단위들로 결정되어, 변환 계수가 출력될 수 있다.
단계 112에서, 단계 111에서 결정된 변환 단위에 기초한 변환을 포함한 부호화에 의해 생성된 현재 영역의 부호화 데이터, 및 현재 영역의 부호화에서 결정된 부호화 모드에 대한 정보가 비트스트림의 형태로 출력된다. 또한, 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보, 및 변환 단위의 최다 분할 레벨을 나타내는 변환 단위 최다 분할 정보가 비트스트림에 함께 포함되어 출력된다.
현재 영역에 대하여 최종 변환 단위로 결정된 변환 단위들 중에서, 현재 영역에 대한 변환 단위의 최소 크기를 갖는 변환 단위를 제외한 변환 단위들마다, 다음 하위 레벨의 변환 단위로 분할될지 여부를 나타내는 변환 단위 서브 분할 정보가 부호화되어 출력될 수 있다.
또한 변환 단위들마다, 하위 레벨의 변환 단위 들 중에 0이 아닌 계수를 포함하는 변환 단위의 존재 여부를 나타내는 계층적 변환 단위 패턴 정보가 부호화되어 출력될 수도 있다.
도 12 는 일 실시예에 따른 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 방법의 흐름도를 도시한다.
단계 121에서, 비디오가 부호화된 데이터를 포함하는 비트스트림이 수신된다.
단계 122에서, 단계 121에서 수신된 비트스트림을 파싱하여, 비트스트림으로부터, 현재 영역의 부호화 데이터 및 현재 영역의 부호화에서 결정된 부호화 모드에 대한 정보가 추출된다.
또한, 비트스트림으로부터, 비디오에 대한 변환 단위의 최대 크기에 대한 정보 및 최소 크기에 대한 정보 및 변환 단위 최다 분할 정보가 추출된다. 현재 영역에 대한 변환 단위의 최다 분할 정보는, 현재 영역에 대한 부호화 수행 중에 이용되는 예측 모드마다, 또는 슬라이스 타입마다 별개로 판독될 수도 있다.
비트스트림으로부터, 변환 단위들마다 변환 단위 서브 분할 정보 또는 계층적 변환 단위 패턴 정보가 추출될 수도 있다.
단계 123에서, 추출된 부호화 모드에 대한 정보로부터 현재 영역의 부호화 모드가 판독되고, 부호화 모드에 기초하여 현재 영역의 부호화된 데이터가 복호화될 수 있다.
특히, 변환 단위 최다 분할 정보에 기초하여, 현재 영역에 대한 변환 단위의 최다 분할 레벨이 판독될 수 있다. 최다 분할 레벨에 기초하여, 현재 영역에 대한 기초 변환 단위로부터 계층적으로 분할되는 변환 단위들 중에서, 변환 단위의 최다 분할 레벨에 기초하여 생성되는 가변적 트리 구조의 변환 단위들이 결정될 수 있다. 가변적 트리 구조의 변환 단위들 중에서, 변환 심도의 변환 단위가 결정되고, 변환 심도의 변환 단위를 이용하여 현재 영역의 변환 계수에 대해 역변환이 수행될 수 있다. 영상마다 복호화된 결과를 조합하여 비디오가 복원될 수 있다.
변환 단위의 최다 분할 횟수 또는 최다 분할 레벨은, 영상의 공간적 영역의 특성에 따라 개별적으로 결정될 수 있다. 부호화 시스템 또는 복호화 시스템의 캐퍼빌리티, 데이터 통신 환경에 기초하여, 변환 단위의 최다 분할 횟수 또는 최다 분할 레벨이 결정될 수도 있다. 기초 변환 단위로부터의 최다 분할 횟수 또는 최다 분할 레벨이 선택적으로 제한됨으로써, 부호화 연산량 및 전송 비트량이 감소될 수 있다.
이하 도 13 내지 도 27을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치 및 비디오 복호화 장치, 비디오 부호화 방법 및 비디오 복호화 방법이 상술된다.
도 13 은 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치(100)는 최대 부호화 단위 분할부(110), 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
최대 부호화 단위 분할부(110)는 영상의 현재 픽처를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처를 구획할 수 있다. 현재 픽처가 최대 부호화 단위보다 크다면, 현재 픽처의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다. 영상 데이터는 적어도 하나의 최대 부호화 단위별로 부호화 단위 결정부(120)로 출력될 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽처의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 부호화 심도로 결정한다. 결정된 부호화 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 부호화 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 부호화 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 부호화 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 부호화 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 부호화 심도로 결정된 심도의 부호화 단위들을 포함한다. 부호화 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 부호화 심도는, 다른 영역에 대한 부호화 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 부호화 심도의 부호화 단위, 즉 더 이상한 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 이하, 예측 부호화의 기반이 되는 더 이상한 분할되지 않는 부호화 단위를 '예측 단위'라고 지칭한다. 예측 단위가 분할된 파티션은, 예측 단위 및 예측 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 타입은 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다.
앞서 도 1 내지 12을 참조하여 전술한 바와 같이 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
부호화 심도별 부호화 정보는, 부호화 심도 뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 부호화 심도 뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 타입, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
또한 부호화 단위 결정부(120)는, 최대 부호화 단위 또는 현재 부호화 단위마다 미리 한정적으로 설정된 변환 단위의 최다 분할 레벨에 기초하여, 부호화 단위에 대한 부호화 과정에서 가변적 트리 구조의 변환 단위들을 이용하여 변환을 수행할 수 있다.
변환 단위의 최다 분할 레벨에 기초한 가변적 트리 구조의 변환 단위는 도 1 내지 도 12에서 전술한 바에 따른다. 즉, 일 실시에에 따른 가변적 트리 구조의 변환 단위는, 기초 변환 단위를 포함하며, 기초 변환 단위로부터 부호화 단위에 허용되는 최다 분할 레벨까지의 하위 레벨들의 변환 단위들을 포함할 수 있다.
일 실시예에 따른 기초 변환 단위 및 일 실시예에 따른 최다 분할 레벨은, 부호화 모드에 따라 가변적으로 설정될 수도 있다. 예를 들어, 현재 영상의 기초 변환 단위의 형태는, 부호화 단위의 부호화 모드 중 예측 모드 또는 파티션 크기에 따라 결정될 수도 있다.
파티션은 부호화 단위의 예측 단위가 분할된 형태의 데이터 단위이고, 예측 단위는 부호화 단위와 동일한 크기의 파티션일 수 있다. 일 실시예에 따르면, 부호화 단위의 예측 단위와 동일한 형태의 기초 변환 단위가 결정될 수 있다. 다른 예로 기초 변환 단위는, 파티션들 간의 경계를 가로지르지 않도록, 파티션들보다 작거나 같은 크기의 변환 단위로 결정될 수 있다.
또한, 기초 변환 단위는 파티션보다 크더라도, 기초 변환 단위보다 하위 레벨의 변환 단위들은 파티션들의 경계에 걸치지 않도록 파티션들보다 작은 크기로 설정될 수도 있다.
부호화 단위 결정부(120)는, 부호화 단위마다 가변적 트리 구조의 변환 단위들을 이용하여 변환을 수행함으로써, 트리 구조에 따른 변환 단위들을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 파티션, 트리 구조에 따른 변환 단위의 결정 방식에 대해서는, 도 15 내지 25을 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 부호화 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 부호화 모드에 관한 정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 레지듀얼 데이터의 부호화 결과일 수 있다.
심도별 부호화 모드에 관한 정보는, 부호화 심도 정보, 예측 단위의 파티션 타입 정보, 예측 모드 정보, 변환 단위의 크기 정보 등을 포함할 수 있다.
부호화 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 부호화 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 부호화 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 부호화 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 부호화 심도의 부호화 단위마다 적어도 하나의 부호화 모드에 관한 정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 부호화 모드에 관한 정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 부호화 심도가 다를 수 있으므로, 데이터에 대해 부호화 심도 및 부호화 모드에 관한 정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 부호화 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 일 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호하 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 도 1 내지 12을 참조하여 전술한 변환 단위와 관련된, 변환 단위 최다 분할 정보, 변환 인덱스 정보, 변환 단위 서브 분할 정보, 계층적 변환 단위 패턴 정보 등을 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 13의 비디오 부호화 장치(100)는, 도 1을 참조하여 전술한 비디오 부호화 장치(10)에 상응할 수 있다.
즉, 비디오 부호화 장치(10)에서, 현재 영역은, 비디오를 부호화하기 위해 비디오의 현재 픽처를 분할한 부호화 단위들 중 하나인 현재 부호화 단위일 수 있다.
비디오 부호화 장치(10)의 변환 단위 결정부(11)는, 현재 픽처를 최대 부호화 단위들로 분할하고, 최대 부호화 단위마다, 심도별 부호화 단위들을 기초로 부호화를 수행하여, 최소 오차를 발생하는 부호화 결과를 출력하는 부호화 심도의 부호화 단위들을 선택하고, 트리 구조에 따른 부호화 단위들을 결정할 수 있다.
또한 비디오 부호화 장치(10)의 변환 단위 결정부(11)는, 부호화 단위를 기초로 부호화를 수행할 때, 변환 단위를 기초로 변환을 수행할 수 있다. 특히, 최대 부호화 단위 또는 현재 부호화 단위마다 설정된 변환 단위의 최다 분할 레벨에 기초하여 가변적 트리 구조의 변환 단위들이 구성될 수 있다.
비디오 부호화 장치(10)의 변환 단위 결정부(11)는, 부호화 단위마다 가변적 트리 구조의 변환 단위에 기초하여 변환을 수행하여, 최적 부호화 결과를 발생하는 변환 단위의 레벨인 변환 심도와, 부호화 단위의 부호화 심도를 결정할 수 있다. 이에 따라, 변환 단위 결정부(11)는, 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 및 트리 구조에 따른 변환 단위들을 결정할 수 있다.
비디오 부호화 장치(10)의 출력부(13)는, 최대 부호화 단위마다, 트리 구조에 따른 부호화 단위들별로 부호화된 픽처의 부호화 데이터를 출력하고, 트리 구조에 따른 부호화 단위들의 부호화 심도 및 부호화 모드에 대한 정보를 부호화하고, 변환 단위 최다 분할 정보를 부호화여 출력할 수 있다.
도 14 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 장치의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
일 실시예에 따른 비디오 복호화 장치(200)의 각종 프로세싱을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 부호화 모드에 관한 정보 등 각종 용어의 정의는, 도 13 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(205)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱(parsing)한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽처에 대한 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 부호화 심도 및 부호화 모드에 관한 정보를 추출한다. 추출된 부호화 심도 및 부호화 모드에 관한 정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 하나 이상의 부호화 심도 정보에 대해 설정될 수 있으며, 부호화 심도별 부호화 모드에 관한 정보는, 해당 부호화 단위의 파티션 타입 정보, 예측 모드 정보 및 변환 단위의 크기 정보 등을 포함할 수 있다. 또한, 부호화 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 부호화 심도 및 부호화 모드에 관한 정보이다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
또한 영상 데이터 및 부호화 정보 추출부(220)는, 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보를, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 추출할 수 있다. 영상 데이터 및 부호화 정보 추출부(220)는, 도 1 내지 12을 참조하여 전술한 변환 단위와 관련된, 변환 단위 최다 분할 정보, 변환 인덱스 정보, 변환 단위 서브 분할 정보, 계층적 변환 단위 패턴 정보 등도, 부호화 정보로서 추출할 수 있다.
일 실시예에 따른 부호화 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 부호화 심도 및 부호화 모드에 관한 정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 부호화 심도 및 부호화 모드에 관한 정보가 기록되어 있다면, 동일한 부호화 심도 및 부호화 모드에 관한 정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 타입, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 부호화 심도별 부호화 단위의 예측 단위의 파티션 타입 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 심도별 부호화 단위의 변환 단위의 크기 정보를 포함하여 트리 구조에 따른 변환 단위를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다.
영상 데이터 복호화부(230)는, 부호화 단위마다 변환 단위의 최다 분할 레벨에 기초하여, 기초 변환 단위로부터 허용 가능한 하위 레벨들을 포함하는 가변적 트리 구조의 변환 단위들을 결정할 수 있다. 영상 데이터 복호화부(230)는, 가변적 트리 구조의 변환 단위들 중에서, 변환 계수를 역변환하기 위해 필요한 변환 심도의 변환 단위들을 결정하고, 변환 계수들에 대해 역변환을 수행하여 화소값을 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 부호화 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 부호화 심도이다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 타입, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화할 하나의 데이터 단위로 간주될 수 있다.
비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 부호화 모드에 관한 정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 14의 비디오 복호화 장치(200)는, 도 2을 참조하여 전술한 비디오 복호화 장치(20)에 상응할 수 있다.
즉 비디오 복호화 장치(20)에서, 현재 영역은, 비디오를 부호화하기 위해 비디오의 현재 픽처를 분할한 부호화 단위들 중 하나인 현재 부호화 단위일 수 있다.
비디오 복호화 장치(20)의 추출부(23)는, 파싱된 비트스트림으로부터, 각각의 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들에 따라 부호화된 픽처의 부호화 데이터를 추출하고, 부호화 단위마다 부호화 심도 및 부호화 모드에 대한 정보를 추출할 수 있다. 또한 비디오 복호화 장치(20)의 추출부(23)는, 픽처, 슬라이스, 최대 부호화 단위 또는 부호화 단위마다 설정된, 변환 단위 최다 분할 정보를 추출할 수 있다.
비디오 복호화 장치(20)의 복원부(25)는, 최대 부호화 단위마다 트리 구조에 따른 변환 단위들을 이용하여 역변환을 수행할 수 있다. 특히 복원부(25)는, 변환 단위 최다 분할 정보에 기초하여 구성된 가변적 트리 구조의 변환 단위들 중에서 결정된 변환 단위들을 이용하여 역변환을 수행하여, 부호화 단위마다 부호화된 데이터를 복호화하여 픽처를 복원할 수 있다.
도 15 은 본 발명의 일 실시예에 따른 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 15에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 16 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 부호화 단위 결정부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 포함한다. 즉, 인트라 예측부(410)는 현재 프레임(405) 중 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 추정부(420) 및 움직임 보상부(425)는 인터 모드의 현재 프레임(405) 및 참조 프레임(495)을 이용하여 인터 추정 및 움직임 보상을 수행한다.
인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)로부터 출력된 데이터는 주파수 변환부(430) 및 양자화부(440)를 거쳐 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(460), 주파수 역변환부(470)을 통해 공간 영역의 데이터로 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(480) 및 루프 필터링부(490)를 거쳐 후처리되어 참조 프레임(495)으로 출력된다. 양자화된 변환 계수는 엔트로피 부호화부(450)를 거쳐 비트스트림(455)으로 출력될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)에 적용되기 위해서는, 영상 부호화부(400)의 구성 요소들인 인트라 예측부(410), 움직임 추정부(420), 움직임 보상부(425), 주파수 변환부(430), 양자화부(440), 엔트로피 부호화부(450), 역양자화부(460), 주파수 역변환부(470), 디블로킹부(480) 및 루프 필터링부(490)가 모두, 최대 부호화 단위마다 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행하여야 한다.
특히, 인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 및 예측 모드를 결정하며, 주파수 변환부(430)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 변환 단위의 크기를 결정하여야 한다.
도 17 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부의 블록도를 도시한다.
비트스트림(505)이 파싱부(510)를 거쳐 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화에 관한 정보가 파싱된다. 부호화된 영상 데이터는 엔트로피 복호화부(520) 및 역양자화부(530)를 거쳐 역양자화된 데이터로 출력되고, 주파수 역변환부(540)를 거쳐 공간 영역의 영상 데이터가 복원된다.
공간 영역의 영상 데이터에 대해서, 인트라 예측부(550)는 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 보상부(560)는 참조 프레임(585)를 함께 이용하여 인터 모드의 부호화 단위에 대해 움직임 보상을 수행한다.
인트라 예측부(550) 및 움직임 보상부(560)를 거친 공간 영역의 데이터는 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 후처리되어 복원 프레임(595)으로 출력될 수 있다. 또한, 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 후처리된 데이터는 참조 프레임(585)으로서 출력될 수 있다.
비디오 복호화 장치(200)의 영상 데이터 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 파싱부(510) 이후의 단계별 작업들이 수행될 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서는, 영상 복호화부(500)의 구성 요소들인 파싱부(510), 엔트로피 복호화부(520), 역양자화부(530), 주파수 역변환부(540), 인트라 예측부(550), 움직임 보상부(560), 디블로킹부(570) 및 루프 필터링부(580)가 모두, 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들에 기반하여 작업을 수행하여야 한다.
특히, 인트라 예측부(550), 움직임 보상부(560)는 트리 구조에 따른 부호화 단위들 각각마다 파티션 및 예측 모드를 결정하며, 주파수 역변환부(540)는 부호화 단위마다 변환 단위의 크기를 결정하여야 한다.
도 18 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 4인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640), 크기 4x4인 심도 4의 부호화 단위(650)가 존재한다. 크기 4x4인 심도 4의 부호화 단위(650)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
마지막으로, 심도 4의 크기 4x4의 부호화 단위(650)는 최소 부호화 단위이며 최하위 심도의 부호화 단위이고, 해당 예측 단위도 크기 4x4의 파티션(650)으로만 설정될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 부호화 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 부호화 심도 및 파티션 타입으로 선택될 수 있다.
도 19 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 20 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 부호화 모드에 관한 정보로서, 각각의 부호화 심도의 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 타입에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 타입에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 타입에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인트라 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 21 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 타입(912), 2N_0xN_0 크기의 파티션 타입(914), N_0x2N_0 크기의 파티션 타입(916), N_0xN_0 크기의 파티션 타입(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 타입은 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 타입마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 타입(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 타입(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 타입의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 타입(942), 크기 2N_1xN_1의 파티션 타입(944), 크기 N_1x2N_1의 파티션 타입(946), 크기 N_1xN_1의 파티션 타입(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 타입(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 타입(992), 크기 2N_(d-1)xN_(d-1)의 파티션 타입(994), 크기 N_(d-1)x2N_(d-1)의 파티션 타입(996), 크기 N_(d-1)xN_(d-1)의 파티션 타입(998)을 포함할 수 있다.
파티션 타입 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 타입이 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 타입(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 부호화 심도가 심도 d-1로 결정되고, 파티션 타입은 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 부호화 심도를 결정하고, 해당 파티션 타입 및 예측 모드가 부호화 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 부호화 심도로 결정될 수 있다. 부호화 심도, 및 예측 단위의 파티션 타입 및 예측 모드는 부호화 모드에 관한 정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 부호화 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 부호화 심도의 분할 정보만이 '0'으로 설정되고, 부호화 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 부호화 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 부호화 심도로 파악하고, 해당 심도에 대한 부호화 모드에 관한 정보를 이용하여 복호화에 이용할 수 있다.
도 22, 23 및 24는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 부호화 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 부호화 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 부호화 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 타입이며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 타입, 파티션(1032)은 NxN의 파티션 타입이다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 타입 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
분할 정보 0 (현재 심도 d의 크기 2Nx2N의 부호화 단위에 대한 부호화) 분할 정보 1
예측 모드 파티션 타입 변환 단위 크기 하위 심도 d+1의 부호화 단위들마다 반복적 부호화
인트라
인터

스킵 (2Nx2N만)
대칭형 파티션 타입 비대칭형 파티션 타입 변환 단위 분할 정보 0 변환 단위
분할 정보 1
2 Nx2N
2 NxN
Nx2N
NxN
2 NxnU
2 NxnD
nLx2N
nRx2N
2 Nx2N NxN
(대칭형 파티션 타입)

N/2 xN /2
(비대칭형 파티션 타입)
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 부호화 심도이므로, 부호화 심도에 대해서 파티션 타입 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 타입에서 정의될 수 있으며, 스킵 모드는 파티션 타입 2Nx2N에서만 정의될 수 있다.
파티션 타입 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 타입 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 타입 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 타입 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 타입 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 타입이 대칭형 파티션 타입이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 타입이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 부호화 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 부호화 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 부호화 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 부호화 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 부호화 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 25 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 부호화 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 부호화 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 타입 정보는, 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 타입에 따라 변경될 수 있다.
예를 들어, 파티션 타입 정보가 대칭형 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 타입 정보가 비대칭형 파티션 타입 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 21을 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 일 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 일 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 일 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
일 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 일 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 26 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법의 흐름도를 도시한다.
단계 1210에서, 현재 픽처는 적어도 하나의 최대 부호화 단위로 분할된다. 또한, 가능한 총 분할 횟수를 나타내는 최대 심도가 미리 설정될 수도 있다.
단계 1220에서, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역시 부호화되어, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도가 결정되고 트리 구조에 따른 부호화 단위가 결정된다.
최대 부호화 단위는 심도가 깊어질 때마다 공간적으로 분할되어, 하위 심도의 부호화 단위들로 분할된다. 각각의 부호화 단위는, 인접하는 다른 부호화 단위와 독립적으로, 공간적으로 분할되면서 다시 하위 심도의 부호화 단위로 분할될 수 있다. 심도별로 부호화 단위들마다 반복적으로 부호화가 수행되어야 한다.
또한, 심도별 부호화 단위마다, 부호화 오차가 가장 작은 파티션 타입별 변환 단위가 결정되어야 한다. 부호화 단위의 최소 부호화 오차를 발생시키는 부호화 심도가 결정되기 위해서, 모든 심도별 부호화 단위마다 부호화 오차가 측정되어 비교될 수 있다.
부호화 단위의 결정 과정에 있어서, 부호화 단위의 변환을 위한 변환 단위가 결정될 수 있다. 일 실시예에 따른 변환 단위는 부호화 단위의 변환에 따른 오차를 최소화하는 데이터 단위로 결정될 수 있다. 현재 부호화 단위 내에서 변환 심도에 따른 레벨별로 변환을 수행한 결과 주변 영역의 변환 단위와는 독립적이고 동일 영역의 변환 심도별 변환 단위들 간에는 계층적인 구조를 형성하는 트리 구조에 따른 변환 단위가 결정될 수도 있다.
또한, 최대 부호화 단위 또는 부호화 단위별로 변환 단위의 최다 분할 레벨이 미리 설정될 수 있다. 현재 부호화 단위에 대한 최다 분할 레벨에 따라, 현재 부호화 단위에 대해 허용되는 기초 변환 단위로부터 최소 변환 단위까지의 가변적 트리 구조의 변환 단위들을 이용하여 변환이 수행될 수 있다. 현재 부호화 단위에 대한 가변적 트리 구조의 변환 단위들 중에서, 최소 오차의 부호화 결과가 출력되는 변환 심도의 변환 단위들이 결정되어 트리 구조에 따른 변환 단위들이 결정될 수 있다.
단계 1230에서, 최대 부호화 단위마다 적어도 하나의 분할 영역 별 최종 부호화 결과인 영상 데이터와, 부호화 심도 및 부호화 모드에 관한 정보가 출력된다. 부호화 모드에 관한 정보는 부호화 심도에 관한 정보 또는 분할 정보, 예측 단위의 파티션 타입 정보, 예측 모드 정보, 변환 단위 계층 구조 정보 등을 포함할 수 있다. 부호화된 부호화 모드에 관한 정보는, 부호화된 영상 데이터와 함께 복호화단으로 전송될 수 있다.
도 27 은 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위 및 가변적 트리 구조의 변환 단위를 이용하는 비디오 복호화 방법의 흐름도를 도시한다.
단계 1310에서, 부호화된 비디오에 대한 비트스트림이 수신되어 파싱된다.
단계 1320에서, 파싱된 비트스트림으로부터 최대 크기의 최대 부호화 단위에 할당되는 현재 픽처의 영상 데이터 및 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보가 추출된다. 최대 부호화 단위별 부호화 심도는, 현재 픽처의 부호화 과정에서 최대 부호화 단위별로 부호화 오차가 가장 적은 심도로 선택된 심도이다. 최대 부호화 단위별 부호화는, 최대 부호화 단위를 심도별로 계층적으로 분할한 적어도 하나의 데이터 단위에 기반하여 영상 데이터가 부호화된 것이다.
일 실시예에 따른 부호화 심도 및 부호화 모드에 관한 정보에 따르면, 최대 부호화 단위가 트리 구조에 따른 부호화 단위들로 분할될 수 있다. 트리 구조에 따른 부호화 단위들에 따른 부호화 단위는, 각각 부호화 심도의 부호화 단위이다. 따라서, 부호화 단위별 부호화 심도를 파악한 후 각각의 영상 데이터를 복호화함으로써 영상의 부복호화의 효율성이 향상될 수 있다.
또한 추출된 정보 중 변환 단위 계층 구조 정보에 따르면, 부호화 단위 내의 트리 구조에 따른 변환 단위가 결정될 수 있다. 예를 들어 변환 단위 최다 분할 정보에 기초하여, 현재 부호화 단위에 허용되는 기초 변환 단위로부터 최하위 레벨의 변환 단위까지의 레벨 개수가 판독될 수 있다. 또는, 부복호화 시스템 간에 기설정된 최대 분할 레벨에 기초하여, 기초 변환 단위로부터 최하위 레벨의 변환 단위까지의 레벨 개수가 결정될 수 있다.
기초 변환 단위는, 기설정된 방식에 따라 부호화 모드에 따라 가변적으로 결정될 수 있다. 따라서, 변환 단위 최다 분할 정보에 기초하여, 현재 부호화 단위에 대한 가변적 트리 구조의 변환 단위들이 결정되고, 이 중에서 현재 부호화 단위의 역변환에 이용될 변환 심도의 변환 단위가 결정될 수 있다.
단계 1330에서, 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터가 복호화된다. 부호화 심도 및 부호화 모드에 관한 정보에 기초하여 현재 부호화 단위에 대해 복호화가 수행되면서, 가변적 트리 구조의 변환 단위들 중에서 결정된 변환 단위를 이용하여, 현재 부호화 단위에 대해 역변환이 수행될 수 있다. 부호화 단위마다, 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되고, 픽처 및 픽처 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (5)

  1. 인트라 모드를 위한 최다 분할 정보 및 부호화 단위의 예측 모드에 대한 정보를 비트스트림으로부터 획득하는 단계;
    상기 예측 모드에 대한 정보가 인트라 모드를 나타내면 상기 인트라 모드를 위한 최다 분할 정보를 이용하여 상기 부호화 단위로부터 결정되는 변환 단위의 최다 분할 레벨을 결정하는 단계;
    현재 변환 단위의 현재 분할 레벨이 상기 변환 단위의 최다 분할 레벨보다 작으면 상기 비트스트림으로부터 상기 현재 변환 단위에 대한 서브 분할 정보를 획득하는 단계;
    상기 서브 분할 정보가 상기 현재 변환 단위의 분할을 나타내면 상기 현재 변환 단위를 다음 분할 레벨의 변환 단위들로 분할하는 단계; 및
    상기 현재 변환 단위에 대해 역변환을 수행하는 단계를 포함하고,
    상기 다음 분할 레벨은 상기 현재 분할 레벨보다 크고,
    상기 인트라 모드를 위한 최다 분할 정보를 이용하여 결정된 상기 변환 단위의 최다 분할 레벨은 인터 모드를 위한 최다 분할 정보와 별개로 결정되는 것을 특징으로 하는 비디오 복호화 방법.
  2. 제 1 항에 있어서,
    상기 최다 분할 정보는 변환단위를 결정하기 위해 상기 부호화 단위가 분할될 수 있는 최대 횟수를 나타내는 것을 특징으로 하는 비디오 복호화 방법.
  3. 제 1 항에 있어서,
    상기 인트라 모드를 위한 최다 분할 정보는 상기 비디오의 픽처 시퀀스, 픽처, 슬라이스 및 부호화를 위한 데이터 단위 중 하나의 데이터 레벨에 대한 파라미터로서 추출되는 것을 특징으로 하는 비디오 복호화 방법.
  4. 제 1 항에 있어서,
    상기 변환 단위의 최다 분할 레벨에 기초하여 상기 부호화 단위로부터 결정되는 변환 단위의 최소 크기는 비트스트림으로부터 획득되는 변환 단위의 최소 크기에 대한 정보에 따른 변환 단위의 최소 크기 및 상기 부호화 단위가 상기 최다 분할 레벨까지 분할되어 결정된 최다 분할 레벨의 변환 단위의 크기 보다 작지 않은 것을 특징으로 하는 비디오 복호화 방법.
  5. 인트라 모드를 위한 최다 분할 정보, 부호화 단위의 예측 모드에 대한 정보 및 변환 단위의 서브 분할 정보를 비트스트림으로부터 획득하는 추출부; 및
    상기 예측 모드에 대한 정보가 인트라 모드를 나타내면 상기 인트라 모드를 위한 최다 분할 정보를 이용하여 상기 부호화 단위로부터 결정되는 변환 단위의 최다 분할 레벨을 결정하는 복호화부를 포함하고,
    상기 추출부는 현재 변환 단위의 현재 분할 레벨이 상기 변환 단위의 최다 분할 레벨보다 작으면 상기 비트스트림으로부터 상기 현재 변환 단위에 대한 서브 분할 정보를 획득하며,
    상기 복호화부는 상기 서브 분할 정보가 상기 현재 변환 단위의 분할을 나타내면 상기 현재 변환 단위를 다음 분할 레벨의 변환 단위들로 분할하고,
    상기 복호화부는 상기 현재 변환 단위에 대해 역변환을 수행하고,
    상기 다음 분할 레벨은 상기 현재 분할 레벨보다 크고,
    상기 인트라 모드를 위한 최다 분할 정보를 이용하여 결정된 상기 변환 단위의 최다 분할 레벨은 인터 모드를 위한 최다 분할 정보와 별개로 결정되는 것을 특징으로 하는 비디오 복호화 장치.
KR1020150086611A 2010-08-17 2015-06-18 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치 KR101731428B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37434810P 2010-08-17 2010-08-17
US61/374,348 2010-08-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140148761A Division KR101733797B1 (ko) 2010-08-17 2014-10-29 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치

Publications (2)

Publication Number Publication Date
KR20150087826A KR20150087826A (ko) 2015-07-30
KR101731428B1 true KR101731428B1 (ko) 2017-04-28

Family

ID=45605555

Family Applications (8)

Application Number Title Priority Date Filing Date
KR1020110081817A KR101530285B1 (ko) 2010-08-17 2011-08-17 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020140148761A KR101733797B1 (ko) 2010-08-17 2014-10-29 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020150086612A KR101731429B1 (ko) 2010-08-17 2015-06-18 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020150086610A KR101731427B1 (ko) 2010-08-17 2015-06-18 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020150086613A KR101788741B1 (ko) 2010-08-17 2015-06-18 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020150086611A KR101731428B1 (ko) 2010-08-17 2015-06-18 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020170134254A KR20170118673A (ko) 2010-08-17 2017-10-16 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020180015805A KR101989159B1 (ko) 2010-08-17 2018-02-08 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치

Family Applications Before (5)

Application Number Title Priority Date Filing Date
KR1020110081817A KR101530285B1 (ko) 2010-08-17 2011-08-17 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020140148761A KR101733797B1 (ko) 2010-08-17 2014-10-29 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020150086612A KR101731429B1 (ko) 2010-08-17 2015-06-18 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020150086610A KR101731427B1 (ko) 2010-08-17 2015-06-18 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020150086613A KR101788741B1 (ko) 2010-08-17 2015-06-18 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020170134254A KR20170118673A (ko) 2010-08-17 2017-10-16 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR1020180015805A KR101989159B1 (ko) 2010-08-17 2018-02-08 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치

Country Status (27)

Country Link
US (6) US9674553B2 (ko)
EP (6) EP3448027B1 (ko)
JP (5) JP5735646B2 (ko)
KR (8) KR101530285B1 (ko)
CN (6) CN104980743B (ko)
AU (1) AU2011292589B2 (ko)
CA (2) CA2808587C (ko)
CY (5) CY1119671T1 (ko)
DK (5) DK2953356T3 (ko)
ES (5) ES2699073T3 (ko)
HR (5) HRP20171770T1 (ko)
HU (4) HUE037422T2 (ko)
IL (5) IL224737A (ko)
LT (5) LT2608539T (ko)
MX (2) MX349418B (ko)
MY (5) MY179767A (ko)
NO (1) NO2608539T3 (ko)
PH (4) PH12015500997B1 (ko)
PL (5) PL2955917T3 (ko)
PT (5) PT2955918T (ko)
RS (5) RS58137B1 (ko)
RU (5) RU2607254C2 (ko)
SG (5) SG10201800565PA (ko)
SI (5) SI2955918T1 (ko)
TR (2) TR201810684T4 (ko)
WO (1) WO2012023796A2 (ko)
ZA (5) ZA201301460B (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110112168A (ko) * 2010-04-05 2011-10-12 삼성전자주식회사 내부 비트뎁스 확장에 기반한 비디오 부호화 방법 및 그 장치, 내부 비트뎁스 확장에 기반한 비디오 복호화 방법 및 그 장치
WO2011126277A2 (en) 2010-04-05 2011-10-13 Samsung Electronics Co., Ltd. Low complexity entropy-encoding/decoding method and apparatus
WO2011126282A2 (en) 2010-04-05 2011-10-13 Samsung Electronics Co., Ltd. Method and apparatus for encoding video by using transformation index, and method and apparatus for decoding video by using transformation index
MX349418B (es) * 2010-08-17 2017-07-28 Samsung Electronics Co Ltd Metodo y aparato de codificacion de video que utiliza unidad de transformacion de estructura arborescente variable y metodo y aparato de decodificacion de video.
ES2691743T3 (es) * 2010-12-06 2018-11-28 Sun Patent Trust Método de codificación de imágenes, método de decodificación de imágenes, dispositivo de codificación de imágenes y dispositivo de decodificación de imágenes
WO2013023005A1 (en) * 2011-08-08 2013-02-14 General Instrument Corporation Residual tree structure of transform unit partitioning
SG10201505817YA (en) 2012-01-30 2015-09-29 Samsung Electronics Co Ltd Method and apparatus for video encoding for each spatial sub-area, and method and apparatus for video decoding for each spatial sub-area
TWI617180B (zh) * 2012-03-20 2018-03-01 三星電子股份有限公司 基於樹狀結構之編碼單元的可調式視訊編碼的方法與裝置以及基於樹狀結構之編碼單元的可調式視訊解碼的方法與裝置
US8942473B2 (en) * 2012-07-25 2015-01-27 Ko Hung Lin Image processing method and display apparatus
JP6341426B2 (ja) * 2012-09-10 2018-06-13 サン パテント トラスト 画像復号化方法および画像復号化装置
KR101462637B1 (ko) * 2013-02-28 2014-11-21 성균관대학교산학협력단 영상 부호화/복호화 방법 및 장치
WO2015015681A1 (ja) * 2013-07-31 2015-02-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 画像符号化方法および画像符号化装置
US20150055697A1 (en) * 2013-08-20 2015-02-26 Media Tek Inc. Method and Apparatus of Transform Process for Video Coding
JP6731574B2 (ja) * 2014-03-06 2020-07-29 パナソニックIpマネジメント株式会社 動画像符号化装置および動画像符号化方法
WO2015163167A1 (ja) * 2014-04-23 2015-10-29 ソニー株式会社 画像処理装置及び画像処理方法
CN105893358A (zh) * 2014-09-12 2016-08-24 江苏国贸酝领智能科技股份有限公司 一种文件的实时压缩方法
CN113810688B (zh) 2015-05-12 2023-07-18 三星电子株式会社 视频编码方法、视频解码方法以及计算机可读介质
WO2017065490A1 (ko) * 2015-10-13 2017-04-20 엘지전자(주) 영상의 부호화/복호화 방법 및 이를 위한 장치
JP2018535607A (ja) * 2015-11-24 2018-11-29 サムスン エレクトロニクス カンパニー リミテッド 映像を符号化/復号する方法、及びその装置
US11223852B2 (en) 2016-03-21 2022-01-11 Qualcomm Incorporated Coding video data using a two-level multi-type-tree framework
US10291923B2 (en) * 2016-05-24 2019-05-14 Qualcomm Incorporated Mapping of tile grouping and samples in HEVC and L-HEVC file formats
CN116939202A (zh) * 2016-10-14 2023-10-24 世宗大学校产学协力团 影像编码方法、影像解码方法以及传送比特流的方法
KR102416804B1 (ko) * 2016-10-14 2022-07-05 세종대학교산학협력단 영상 부호화 방법/장치, 영상 복호화 방법/장치 및 비트스트림을 저장한 기록 매체
CN111837387A (zh) * 2018-03-12 2020-10-27 三星电子株式会社 编码方法及其装置以及解码方法及其装置
WO2019204212A1 (en) * 2018-04-18 2019-10-24 Futurewei Technologies, Inc. Block partitioning in video coding
CN111316641B (zh) * 2018-05-03 2022-08-09 Lg电子株式会社 根据块尺寸使用变换来解码图像的方法和设备
US10701376B2 (en) * 2018-07-05 2020-06-30 Awecom, Inc. Resilient image compression and decompression
CN117857806A (zh) 2018-12-07 2024-04-09 华为技术有限公司 一种编码器、解码器及去块滤波器的边界强度的对应推导方法
US11206417B2 (en) * 2019-05-30 2021-12-21 Tencent America LLC Method and apparatus for video coding

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748786A (en) 1994-09-21 1998-05-05 Ricoh Company, Ltd. Apparatus for compression using reversible embedded wavelets
US5881176A (en) 1994-09-21 1999-03-09 Ricoh Corporation Compression and decompression with wavelet style and binary style including quantization by device-dependent parser
KR960013055A (ko) 1994-09-27 1996-04-20 김광호 조건부 퀴드트리 분할방식의 화상압축방법 및 장치
US6084908A (en) * 1995-10-25 2000-07-04 Sarnoff Corporation Apparatus and method for quadtree based variable block size motion estimation
WO1998037701A1 (en) 1997-02-12 1998-08-27 Sarnoff Corporation Apparatus and method for optimizing the rate control in a coding system
JP3570863B2 (ja) * 1997-08-05 2004-09-29 三菱電機株式会社 動画像復号化装置および動画像復号化方法
KR20000059799A (ko) * 1999-03-09 2000-10-05 구자홍 웨이브릿 부호화를 이용한 움직임 보상 부호화 장치 및 방법
JP2000341689A (ja) * 1999-05-27 2000-12-08 Sony Corp ウェーブレット逆変換装置及び方法、並びにウェーブレット復号装置及び方法
US7295609B2 (en) * 2001-11-30 2007-11-13 Sony Corporation Method and apparatus for coding image information, method and apparatus for decoding image information, method and apparatus for coding and decoding image information, and system of coding and transmitting image information
AU2003284958A1 (en) 2003-01-10 2004-08-10 Thomson Licensing S.A. Fast mode decision making for interframe encoding
HUP0301368A3 (en) * 2003-05-20 2005-09-28 Amt Advanced Multimedia Techno Method and equipment for compressing motion picture data
KR20050045746A (ko) * 2003-11-12 2005-05-17 삼성전자주식회사 계층 구조의 가변 블록 크기를 이용한 움직임 추정 방법및 장치
KR101233854B1 (ko) 2005-02-18 2013-02-15 톰슨 라이센싱 저해상도 픽처로부터 고해상도 픽처에 대한 코딩 정보를도출하기 위한 방법 및 이 방법을 구현하는 코딩 및 디코딩장치
JP4666255B2 (ja) 2005-12-27 2011-04-06 日本電気株式会社 符号化データ選定、符号化データ設定、再符号化データ生成及び再符号化の方法及び装置
JP4660408B2 (ja) 2006-03-27 2011-03-30 三洋電機株式会社 符号化方法
KR101382101B1 (ko) * 2006-08-25 2014-04-07 톰슨 라이센싱 감소된 해상도의 파티셔닝을 위한 방법 및 장치
CN100571390C (zh) * 2006-12-21 2009-12-16 联想(北京)有限公司 一种h264视频编码快速模式选择方法和装置
US7777654B2 (en) * 2007-10-16 2010-08-17 Industrial Technology Research Institute System and method for context-based adaptive binary arithematic encoding and decoding
EP2213098A2 (en) 2007-10-16 2010-08-04 Thomson Licensing Methods and apparatus for video encoding and decoding geometrically partitioned super blocks
EP2081386A1 (en) 2008-01-18 2009-07-22 Panasonic Corporation High precision edge prediction for intracoding
KR101517768B1 (ko) 2008-07-02 2015-05-06 삼성전자주식회사 영상의 부호화 방법 및 장치, 그 복호화 방법 및 장치
RU2008136913A (ru) * 2008-09-16 2010-03-27 Алексей Константинович Флиппов (RU) Способ сжатия и восстановления оцифрованных изображений, устраняющий внутри- и межполосную избыточность при субполосном кодировании
US8634456B2 (en) 2008-10-03 2014-01-21 Qualcomm Incorporated Video coding with large macroblocks
CN101771868B (zh) 2008-12-31 2016-03-02 华为技术有限公司 对图像的量化处理方法及装置
WO2010087157A1 (ja) 2009-01-29 2010-08-05 パナソニック株式会社 画像符号化方法及び画像復号方法
KR101527085B1 (ko) * 2009-06-30 2015-06-10 한국전자통신연구원 인트라 부호화/복호화 방법 및 장치
KR101474756B1 (ko) * 2009-08-13 2014-12-19 삼성전자주식회사 큰 크기의 변환 단위를 이용한 영상 부호화, 복호화 방법 및 장치
KR20110017719A (ko) * 2009-08-14 2011-02-22 삼성전자주식회사 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
KR101484280B1 (ko) * 2009-12-08 2015-01-20 삼성전자주식회사 임의적인 파티션을 이용한 움직임 예측에 따른 비디오 부호화 방법 및 장치, 임의적인 파티션을 이용한 움직임 보상에 따른 비디오 복호화 방법 및 장치
CN106412600B (zh) 2010-01-12 2019-07-16 Lg电子株式会社 视频信号的处理方法和设备
KR101457396B1 (ko) * 2010-01-14 2014-11-03 삼성전자주식회사 디블로킹 필터링을 이용한 비디오 부호화 방법과 그 장치, 및 디블로킹 필터링을 이용한 비디오 복호화 방법 및 그 장치
KR101487687B1 (ko) * 2010-01-14 2015-01-29 삼성전자주식회사 큰 크기의 변환 단위를 이용한 영상 부호화, 복호화 방법 및 장치
KR101675118B1 (ko) * 2010-01-14 2016-11-10 삼성전자 주식회사 스킵 및 분할 순서를 고려한 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법과 그 장치
KR101853811B1 (ko) 2010-01-15 2018-05-03 삼성전자주식회사 예측 부호화를 위해 가변적인 파티션을 이용하는 비디오 부호화 방법 및 장치, 예측 부호화를 위해 가변적인 파티션을 이용하는 비디오 복호화 방법 및 장치
US9247247B2 (en) 2010-04-13 2016-01-26 Samsung Electronics Co., Ltd. Video-encoding method and video-encoding apparatus using prediction units based on encoding units determined in accordance with a tree structure, and video-decoding method and video-decoding apparatus using prediction units based on encoding units determined in accordance with a tree structure
MX349418B (es) 2010-08-17 2017-07-28 Samsung Electronics Co Ltd Metodo y aparato de codificacion de video que utiliza unidad de transformacion de estructura arborescente variable y metodo y aparato de decodificacion de video.
KR20120016980A (ko) * 2010-08-17 2012-02-27 한국전자통신연구원 영상 부호화 방법 및 장치, 그리고 복호화 방법 및 장치
US9172963B2 (en) * 2010-11-01 2015-10-27 Qualcomm Incorporated Joint coding of syntax elements for video coding
US9167252B2 (en) * 2010-12-01 2015-10-20 Texas Instruments Incorporated Quantization matrix compression in video coding
KR101566487B1 (ko) 2014-01-13 2015-11-05 주식회사 이에프텍 비휘발성 메모리 장치의 파워 로스 테스트 기기 및 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Test Model under Consideration", JCT-VC 2nd Meeting: Geneva, CH, 21-28 July, 2010. JCTVC-B205.
"WD4:Working Draft4 of High-Efficiency Video Coding", JCT-VC of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 14-22 July,2011, JCTVC-F803.
Ken McCann, "Samsung's Response to the Call for Proposals on Video Compression Technology", JCT-VC 1st Meeting: Dresden, DE, 15-23 April, 2010, JCTVC-A124.

Also Published As

Publication number Publication date
IL248556A (en) 2017-07-31
ES2647866T3 (es) 2017-12-27
SG10201806824WA (en) 2018-09-27
PH12015500996A1 (en) 2015-08-17
PH12015500995B1 (en) 2015-08-17
DK2955918T3 (en) 2018-08-06
CA2952521A1 (en) 2012-02-23
PT2950532T (pt) 2018-12-17
SI2950532T1 (sl) 2019-04-30
RU2015108071A (ru) 2015-06-27
US20150172721A1 (en) 2015-06-18
JP2013534391A (ja) 2013-09-02
SG187860A1 (en) 2013-03-28
US20150163514A1 (en) 2015-06-11
CA2808587A1 (en) 2012-02-23
EP2955917A1 (en) 2015-12-16
SI2955917T1 (sl) 2018-09-28
CY1120719T1 (el) 2019-12-11
LT2950532T (lt) 2018-12-10
JP5953398B2 (ja) 2016-07-20
PT2955918T (pt) 2018-08-02
KR101530285B1 (ko) 2015-06-19
ZA201503679B (en) 2017-01-25
ES2699073T3 (es) 2019-02-07
KR101989159B1 (ko) 2019-06-13
WO2012023796A3 (ko) 2012-05-10
HUE040406T2 (hu) 2019-03-28
CN104811712B (zh) 2016-12-14
US9654799B2 (en) 2017-05-16
DK2950532T3 (en) 2018-12-10
JP5735646B2 (ja) 2015-06-17
LT2955917T (lt) 2018-08-10
CY1120722T1 (el) 2019-12-11
PH12015500994A1 (en) 2015-08-17
LT2955918T (lt) 2018-08-10
HRP20181901T1 (hr) 2019-01-11
IL248559A (en) 2017-07-31
KR20150087827A (ko) 2015-07-30
RU2015108065A (ru) 2015-06-20
TR201810692T4 (tr) 2018-08-27
MY179767A (en) 2020-11-13
CN104967849B (zh) 2018-07-10
CN104869411A (zh) 2015-08-26
CY1120898T1 (el) 2019-12-11
EP2608539A4 (en) 2015-09-23
WO2012023796A2 (ko) 2012-02-23
CY1120900T1 (el) 2019-12-11
JP2015149777A (ja) 2015-08-20
KR101731429B1 (ko) 2017-04-28
DK2608539T3 (da) 2017-11-27
HRP20181208T1 (hr) 2018-10-05
AU2011292589A1 (en) 2013-03-21
SG2014014831A (en) 2014-06-27
US9648349B2 (en) 2017-05-09
RU2015108082A (ru) 2015-06-27
KR20150087828A (ko) 2015-07-30
EP2955917B1 (en) 2018-07-25
PT2955917T (pt) 2018-08-02
SI2955918T1 (sl) 2018-09-28
JP2015164338A (ja) 2015-09-10
EP2950532B1 (en) 2018-11-14
RS57973B1 (sr) 2019-01-31
KR101733797B1 (ko) 2017-05-10
ES2699098T3 (es) 2019-02-07
LT2608539T (lt) 2017-12-11
MX2013001889A (es) 2013-05-06
CA2808587C (en) 2017-02-14
RU2607256C2 (ru) 2017-01-10
KR20170118673A (ko) 2017-10-25
KR20120017010A (ko) 2012-02-27
LT2953356T (lt) 2018-12-10
US9661347B2 (en) 2017-05-23
US9674553B2 (en) 2017-06-06
KR20180018639A (ko) 2018-02-21
RU2015108062A (ru) 2015-06-20
CA2952521C (en) 2020-06-16
JP2015149778A (ja) 2015-08-20
RS56552B1 (sr) 2018-02-28
KR20150087826A (ko) 2015-07-30
PH12015500995A1 (en) 2015-08-17
HUE042742T2 (hu) 2019-07-29
PT2953356T (pt) 2018-12-17
SG10201706599XA (en) 2017-09-28
JP5956013B2 (ja) 2016-07-20
HRP20171770T1 (hr) 2017-12-29
IL248557A0 (en) 2016-12-29
EP3448027B1 (en) 2020-11-04
RS58137B1 (sr) 2019-02-28
CN104967849A (zh) 2015-10-07
US20150163515A1 (en) 2015-06-11
PL2608539T3 (pl) 2018-01-31
ES2681835T3 (es) 2018-09-17
RU2607257C2 (ru) 2017-01-10
CN104796713A (zh) 2015-07-22
ZA201301460B (en) 2015-10-28
RU2013111832A (ru) 2014-09-27
PH12015500994B1 (en) 2015-08-17
RU2607255C2 (ru) 2017-01-10
CN103181168A (zh) 2013-06-26
PL2950532T3 (pl) 2019-03-29
HUE042415T2 (hu) 2019-07-29
NO2608539T3 (ko) 2018-04-14
EP2955918A1 (en) 2015-12-16
CN104811712A (zh) 2015-07-29
TR201810684T4 (tr) 2018-08-27
JP5953397B2 (ja) 2016-07-20
ZA201503678B (en) 2017-01-25
CN103181168B (zh) 2017-02-15
KR101731427B1 (ko) 2017-04-28
SI2608539T1 (en) 2018-03-30
JP2015164337A (ja) 2015-09-10
KR20150092037A (ko) 2015-08-12
MY174068A (en) 2020-03-06
CY1119671T1 (el) 2018-04-04
RU2547707C2 (ru) 2015-04-10
PT2608539T (pt) 2017-11-24
PH12015500997A1 (en) 2015-08-17
IL248559A0 (en) 2016-12-29
MX349418B (es) 2017-07-28
JP5953396B2 (ja) 2016-07-20
EP2608539A2 (en) 2013-06-26
EP2950532A1 (en) 2015-12-02
EP2955918B1 (en) 2018-07-25
ZA201503681B (en) 2017-01-25
EP2953356A1 (en) 2015-12-09
US20130148739A1 (en) 2013-06-13
SI2953356T1 (sl) 2018-12-31
HRP20181903T1 (hr) 2019-01-11
CN104869411B (zh) 2018-07-31
EP2953356B1 (en) 2018-11-14
HRP20181209T1 (hr) 2018-10-05
KR20150009503A (ko) 2015-01-26
ZA201503680B (en) 2017-01-25
SG10201800565PA (en) 2018-02-27
EP2608539B1 (en) 2017-11-15
KR101788741B1 (ko) 2017-10-20
RS57475B1 (sr) 2018-09-28
ES2681833T3 (es) 2018-09-17
US10154287B2 (en) 2018-12-11
AU2011292589B2 (en) 2015-03-19
PH12015500997B1 (en) 2015-08-17
CN104980743A (zh) 2015-10-14
CN104980743B (zh) 2018-07-13
IL224737A (en) 2016-11-30
MY163989A (en) 2017-11-15
PL2953356T3 (pl) 2019-02-28
MY174079A (en) 2020-03-09
DK2953356T3 (en) 2018-12-10
IL248558A0 (en) 2016-12-29
US9654800B2 (en) 2017-05-16
IL248556A0 (en) 2016-12-29
IL248558A (en) 2017-07-31
MY179749A (en) 2020-11-12
US20170230689A1 (en) 2017-08-10
US20150172720A1 (en) 2015-06-18
PL2955918T3 (pl) 2018-12-31
PH12015500996B1 (en) 2015-08-17
CN104796713B (zh) 2019-06-11
EP3448027A1 (en) 2019-02-27
HUE037422T2 (hu) 2018-09-28
PL2955917T3 (pl) 2018-12-31
RU2607254C2 (ru) 2017-01-10
DK2955917T3 (en) 2018-08-06
RS57527B1 (sr) 2018-10-31

Similar Documents

Publication Publication Date Title
KR101989159B1 (ko) 가변적 트리 구조의 변환 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR101906507B1 (ko) 트리 구조의 부호화 단위에 기초한 예측 단위를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR101605775B1 (ko) 변환 인덱스를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
G15R Request for early publication
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant