KR101726271B1 - 후향 호흡 게이팅을 이용한 자기공명영상 처리방법 및 처리장치 - Google Patents
후향 호흡 게이팅을 이용한 자기공명영상 처리방법 및 처리장치 Download PDFInfo
- Publication number
- KR101726271B1 KR101726271B1 KR1020150113324A KR20150113324A KR101726271B1 KR 101726271 B1 KR101726271 B1 KR 101726271B1 KR 1020150113324 A KR1020150113324 A KR 1020150113324A KR 20150113324 A KR20150113324 A KR 20150113324A KR 101726271 B1 KR101726271 B1 KR 101726271B1
- Authority
- KR
- South Korea
- Prior art keywords
- magnetic resonance
- time
- trajectories
- data
- gating
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
- G01R33/4824—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory
- G01R33/4826—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory in three dimensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/567—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
- G01R33/5673—Gating or triggering based on a physiological signal other than an MR signal, e.g. ECG gating or motion monitoring using optical systems for monitoring the motion of a fiducial marker
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/567—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
- G01R33/5676—Gating or triggering based on an MR signal, e.g. involving one or more navigator echoes for motion monitoring and correction
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- General Health & Medical Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Signal Processing (AREA)
- Pulmonology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Radiology & Medical Imaging (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Cardiology (AREA)
- Power Engineering (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
본 발명의 일 실시예에 따르는, 자기공명영상 처리장치에 의해 수행되는 후향 호흡 게이팅을 이용한 자기공명영상 처리방법은 (a) 자기공명영상 처리장치의 코일로부터 피검체의 전체 호흡 시간 동안 생성된 자기공명영상 신호를 수신하는 단계; (b) 상기 자기공명영상 신호를 기초로 데이터 획득을 위한 3차원 가상공간 상에 3차원 입체도형이 형상화되는 경우, 상기 입체도형의 표면 상에 형성되는 다수의 궤적을 따라 상기 각 궤적에 대응하는 데이터에 대한 샘플링을 수행하여 상기 피검체의 들숨 및 날숨 중 어느 하나의 호흡에 대한 데이터를 획득하는 단계; 및 (c) 상기 획득된 데이터들을 기초로 영상을 생성하는 단계;를 포함하며, 상기 각 궤적은 불연속적으로 구성되며, 상기 각 궤적마다 서로 다른 형상으로 형성된다.
Description
본 발명은 후향 호흡 게이팅을 이용한 자기공명영상 처리방법 및 처리장치에 관한 것으로서, 보다 상세하게는, k-공간 상을 통해 표현되는 샘플 균일도를 향상시킴으로써 영상의 블러링과 인공물을 제거할 수 있는 후향 호흡 게이팅을 이용한 자기공명영상 처리방법 및 처리장치에 관한 것이다.
일반적으로, 자기 공명 영상(MRI)을 처리하는 기기는 전자파 에너지의 공급에 따른 공명현상을 이용하여 환자의 특정부위에 대한 단층 영상을 획득하는 장치로서, X선이나 CT와 같은 촬영 기기에 비해 방사선 피폭이 없고 단층 영상을 비교적 용이하게 얻을 수 있어 널리 사용되고 있다. 자기 공명 영상을 생성하는 방법을 간략히 살펴보면, 자기 공명 영상을 촬영하는 피검체에 대해 고주파의 RF 신호를 복수 회 인가하여 피검체 내의 원자핵의 스핀을 여기 시킨다. 이와 같은 자기 공명 기기로의 펄스열 인가를 통해 자기 공명 영상 처리 기기에서는 자유 유도 감쇄 신호(FID)와 스핀 에코 등 다양한 신호가 발생되며, 이러한 신호들을 선택적으로 획득하여 자기 공명 영상을 생성한다.
그리고, 자기공명영상 생성을 위해 획득되는 신호들이 저장되는 가상의 공간을 k-공간이라고 부르며, k-공간에 데이터가 저장되는 방식에 따라 데이터 획득 방식이 나누어진다. 데이터 획득 방식의 유형으로는 직교형(Cartesian), 방사형(radial), 나선형(spiral) 방식 등이 있다.
한편, 호흡 운동에 의해 영향을 받는 기관들에 대한 자기공명영상 검사에 있어서, 피검체의 호흡 운동은 생성된 이미지들 간의 등록 에러뿐만 아니라, 생성된 이미지들 내의 소위 고스팅(ghosting), 블러링(blurring) 및/또는 강도 손실을 야기한다. 이러한 인공물들(artifacts)은 의사의 이미지 분석을 어렵게 만들 수 있다. 호흡 운동으로부터 초래되는 인공물들을 줄이기 위한 종래의 여러 기술들이 존재하는데, 이러한 기술들 중 하나로 호흡 게이팅(respiratory gating) 기술을 들 수 있으며, 호흡 게이팅은 전향 호흡 게이팅(prospective respiratory gating)과 후향 호흡 게이팅(retrospective respiratory gating)으로 나뉘어질 수 있다.
전향 호흡 게이팅은 피검체의 호흡 운동 중 특정 순간마다(예를 들어, 들숨(inspiration) 또는 날숨(expiration)시)의 데이터를 수집하여 영상을 재구성하는 기술이며, 후향 호흡 게이팅은 피검체의 전체 호흡 운동에 대한 데이터를 수집한 뒤 영상 재구성을 위해 일부 데이터만을 참조하는 기술이다.
그러나, 종래기술에 따르는 후향 호흡 게이팅에 있어서, 전체 호흡 운동에 대한 데이터를 수집한 후, k-공간 상에서 필요한 데이터를 샘플링할 때, k-공간을 통해 나타나는 샘플들의 균일도가 좋지 않아, 결과적으로 재구성된 영상에 인공물이 나타나는 문제점이 발생되고 있다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 후향 호흡 게이팅을 통한 폐 영상 생성시, 방사형 데이터 획득 방식 하에, k-공간 상의 다수의 궤적을 따라 샘플링을 수행함으로써, k-공간 상에 배열되는 샘플들에 대한 균일도(uniformity)를 향상시켜, 영상에서의 인공물을 제거하는 것을 목적으로 한다.
본 발명의 일 실시 예에 따르는, 자기공명영상 처리장치에 의해 수행되는 후향 호흡 게이팅을 이용한 자기공명영상 처리방법은 (a) 자기공명영상 처리장치의 코일로부터 피검체의 전체 호흡 시간 동안 생성된 자기공명영상 신호를 수신하는 단계; (b) 상기 자기공명영상 신호를 기초로 데이터 획득을 위한 3차원 가상공간 상에 3차원 입체도형이 형상화되는 경우, 상기 입체도형의 표면 상에 형성되는 다수의 궤적을 따라 상기 각 궤적에 대응하는 데이터에 대한 샘플링을 수행하여 상기 피검체의 들숨 및 날숨 중 어느 하나의 호흡에 대한 데이터를 획득하는 단계; 및 (c) 상기 획득된 데이터들을 기초로 영상을 생성하는 단계;를 포함하며, 상기 각 궤적은 불연속적으로 구성되며, 상기 각 궤적마다 서로 다른 형상으로 형성된다.
본 발명의 다른 실시예에 따르는, 후향 호흡 게이팅을 이용한 자기공명영상 처리장치는 상기 후향 호흡 게이팅을 이용한 자기공명영상 처리방법을 수행하기 위한 프로그램이 저장된 메모리; 및 상기 프로그램을 실행하는 프로세서;를 포함하며, 상기 프로세서는, 상기 프로그램의 실행시, 자기공명영상 처리장치의 코일로부터 피검체의 전체 호흡 시간 동안 생성된 자기공명영상 신호를 수신하고, 상기 자기공명영상 신호를 기초로 데이터 획득을 위한 3차원 가상공간 상에 3차원 입체도형이 형상화되는 경우, 상기 입체도형의 표면 상에 형성되는 다수의 궤적을 따라 상기 각 궤적에 대응하는 데이터에 대한 샘플링을 수행하여 상기 피검체의 들숨 및 날숨 중 어느 하나의 호흡에 대한 데이터를 획득하며, 상기 획득된 데이터들을 기초로 영상을 생성하고, 상기 각 궤적은 불연속적으로 구성되며, 상기 각 궤적마다 서로 다른 형상으로 형성된다.
본 발명의 일 실시예는 방사형 데이타 획득방식을 이용한 후향 호흡 게이팅을 통한 폐 영상 생성시, 3차원 k-공간 상의 샘플링시, 서로 상이하며 연관성이 없는 다수의 궤도(interleaf)를 설정하고, 각 궤도를 기반으로 샘플링을 수행함으로써, k-공간 상에 배열되는 샘플들의 균일도를 향상시킬 수 있으며, 이로 인하여 재구성된 영상에 발현되는 블러링이나 각종 인공물(artifacts)들을 제거할 수 있다. 나아가, 한 주기의 호흡 시간 중 임계값 이하의 호흡에 대응하는 게이팅 시간과 각 궤적마다 샘플링이 수행되는 시간에 대한 인터리프 시간을 동일하게 설정함으로써, 최적의 샘플 균일도를 달성하여, 정확하고 해상도 높은 영상을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따르는 자기공명영상 처리장치의 구조도이다.
도 2는 본 발명의 일 실시예에 따르는 신호 처리부의 구조도이다.
도 3a 및 도 3b는 종래기술에 따라 샘플링이 수행된 k-공간 상의 샘플링 궤적을 나타내며, 도 3c 및 도 3d는 본 발명의 일 실시예에 따라 샘플링이 수행된 k-공간 상의 샘플링 궤적을 나타낸다.
도 4a 내지 도 4f는 본 발명의 일 실시예에 따라 샘플링을 수행할 시, Tgating (한 주기의 호흡시간 중 임계값 이상 혹은 이하의 값을 갖는 호흡에 대응하는 시간)와 Tinterleaf (하나의 궤적에 대한 샘플링이 수행되는 시간)의 관계에 따르는 호흡 파형과 샘플링 파형을 나타내는 그래프이다.
도 5a 내지 도 5c는 종래기술과 본 발명의 일 실시예에 따르는 k-공간의 샘플 균일도를 나타내는 시뮬레이션 그림이다.
도 6은 본 발명의 일 실시예에 따라 샘플링을 수행할 시, pmax (하나의 궤적 당 이루어지는 샘플링 횟수)에 따르는 k-공간의 균일도를 나타내는 그래프이다.
도 7은 종래기술과 본 발명의 일 실시예에 따라 샘플링을 수행하여 획득한 팬텀 영상에 관한 사진이다.
도 8은 종래기술과 본 발명의 일 실시예에 따라 피검체의 폐에 관하여 촬영한 자기공명영상을 나타낸다.
도 9는 본 발명의 일 실시예에 따르는 자기공명영상 처리방법을 설명하기 위한 순서도이다.
도 2는 본 발명의 일 실시예에 따르는 신호 처리부의 구조도이다.
도 3a 및 도 3b는 종래기술에 따라 샘플링이 수행된 k-공간 상의 샘플링 궤적을 나타내며, 도 3c 및 도 3d는 본 발명의 일 실시예에 따라 샘플링이 수행된 k-공간 상의 샘플링 궤적을 나타낸다.
도 4a 내지 도 4f는 본 발명의 일 실시예에 따라 샘플링을 수행할 시, Tgating (한 주기의 호흡시간 중 임계값 이상 혹은 이하의 값을 갖는 호흡에 대응하는 시간)와 Tinterleaf (하나의 궤적에 대한 샘플링이 수행되는 시간)의 관계에 따르는 호흡 파형과 샘플링 파형을 나타내는 그래프이다.
도 5a 내지 도 5c는 종래기술과 본 발명의 일 실시예에 따르는 k-공간의 샘플 균일도를 나타내는 시뮬레이션 그림이다.
도 6은 본 발명의 일 실시예에 따라 샘플링을 수행할 시, pmax (하나의 궤적 당 이루어지는 샘플링 횟수)에 따르는 k-공간의 균일도를 나타내는 그래프이다.
도 7은 종래기술과 본 발명의 일 실시예에 따라 샘플링을 수행하여 획득한 팬텀 영상에 관한 사진이다.
도 8은 종래기술과 본 발명의 일 실시예에 따라 피검체의 폐에 관하여 촬영한 자기공명영상을 나타낸다.
도 9는 본 발명의 일 실시예에 따르는 자기공명영상 처리방법을 설명하기 위한 순서도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서 '부(部)'란, 하드웨어에 의해 실현되는 유닛(unit), 소프트웨어에 의해 실현되는 유닛, 양방을 이용하여 실현되는 유닛을 포함한다. 또한, 1 개의 유닛이 2 개 이상의 하드웨어를 이용하여 실현되어도 되고, 2 개 이상의 유닛이 1 개의 하드웨어에 의해 실현되어도 된다. 한편, '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니며, '~부'는 어드레싱 할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
도 1은 본원 발명의 일 실시예에 따른 자기공명영상 처리장치(10)의 구조를 도시한 도면이다.
자기공명영상 처리장치(10)는 자기 공명 기기(100), 신호 송수신부(200), 신호 처리부(300), 영상 출력부(400), 제어부(500) 및 사용자 인터페이스(600)를 포함한다.
자기 공명 기기(100)는 촬영 대상자를 에워싸는 원통형 구조의 실드, 실드 내부에 구비된 메인 자석, 그라디언트 코일, RF 코일 등을 포함한다. 메인 자석, 그라디언트 코일, RF 코일 등은 인체 내의 원자핵들로부터 자기 공명 신호를 유도하기 위한 자기장을 생성한다. 그라디언트 코일은 메인 자석에 의해 생성된 정자장 내의 기준 위치로부터 떨어진 거리에 비례하여 복수 개의 방향들, 예를 들어 x 방향, y 방향 및 z 방향 각각에 대하여 일정한 기울기(gradient)로 변하는 경사 자계를 생성한다. 여기에서, 기준 위치는 메인 자석에 의해 생성된 정자장이 존재하는 공간을 3차원 좌표계로 표현할 때에 이 3차원 좌표계의 원점이 될 수 있다. 그라디언트 코일에 의해 생성된 경사 자계에 의해, RF 코일을 통해 수신된 자기 공명 신호들 각각은 3차원 공간에서의 위치 정보를 갖게 된다. 한편, 그라디언트 코일은 x 방향으로 변하는 경사 자계를 생성하는 X 그라디언트 코일, y 방향으로 변하는 경사 자계를 생성하는 Y 그라디언트 코일 및 z 방향으로 변하는 경사 자계를 생성하는 Z 그라디언트 코일로 구성될 수 있다.
RF 코일은 원자핵을 낮은 에너지 상태로부터 높은 에너지 상태로 천이시키기 위하여 메인 자석의 정자장 하에서 원자핵의 종류에 대응하는 라디오 주파수를 갖는 전자파 신호를 출력한다. 또한, RF 코일은 피검체 내부의 원자핵들로부터 방사된 전자파 신호를 수신하는데, 이와 같이 수신된 전자파 신호를 자유 유도 감쇠(FID, Free Induction Decay) 신호 또는 에코 신호(echo signal)라고 한다. 또한, 피검체로의 전자파 신호의 인가 시점, 즉 전자파 신호의 생성 시점부터 피검체로부터의 전자파 신호의 수신 시점까지의 구간의 길이를 에코 시간(echo time, TE)이라고 하며, 인체로의 전자파 신호의 인가가 반복되는 구간의 길이를 반복 시간(repetition time, TR)이라고 한다.
신호 송수신부(200)는 제어부(500)로부터 입력된 제어 신호에 따라 x 방향, y 방향 및 z 방향 각각에 대하여 일정한 기울기로 주파수가 변하는 교류 신호를 생성하여 그라디언트 코일로 출력한다. 또한, 제어부(500)로부터 입력된 제어 신호에 따라 펄스 열을 갖는 교류 신호를 생성하여 RF 코일로 출력한다. 또한, 신호 송수신부(200)는 RF 코일을 통해 수신된 자기 공명 신호를 수신한다.
이와 같이 수신된 자기 공명 신호는 신호 처리부(300)로 전송되며, 신호 처리부(300)는 이를 이용하여 자기 공명 영상을 생성한다.
영상 출력부(400)는 신호 처리부(300)를 통해 획득한 자기공명영상을 디스플레이 등을 통해 출력한다.
제어부(500)는 사용자 인터페이스(600)를 통해 사용자로부터 입력된 명령에 따라, 자기 공명 기기(100), 신호 송수신부(200), 신호 처리부(300), 영상 출력부(400)의 동작을 제어한다. 예를 들어, 신호 송수신부(200)가 그라디언트 코일과 RF 코일에 대하여 교류 신호를 출력하도록 제어하거나, RF 코일을 통해 수신된 자기 공명 신호가 신호 송수신부(200)를 거쳐 신호 처리부(300)로 전달되도록 제어한다.
사용자 인터페이스(600)는 사용자로부터 명령을 입력받아 제어부(500)로 전송한다. 사용자 인터페이스(600)는 그래픽 유저 인터페이스 프로그램 및 입력 장치인 키보드, 마우스 등으로 구현될 수 있으나, 이에 제한되지 않는다.
이하, 본 발명의 일 실시예에 따르는 신호 처리부(300)의 동작에 대하여 도 2를 참조하여, 구체적으로 설명하도록 한다.
신호 처리부(300)는 후향 호흡 게이팅을 이용한 자기공명영상 처리방법을 수행하기 위한 프로그램이 저장된 메모리와 이러한 프로그램을 실행하는 프로세서를 포함하여 구성될 수 있다. 여기서 프로세서는 메모리에 저장된 프로그램의 실행에 따라 하위 모듈들을 통해 다양한 기능을 수행할 수 있는데, 하위 모듈들을 데이터 획득부(310) 및 영상 생성부(320)로 나타낼 수 있다.
데이터 획득부(310)는 먼저, RF 코일로부터 피검체의 전체 호흡 시간 동안 피검체의 자유 호흡(Free breathing)에 관한 신호가 포함된 자기공명영상 신호를 수신한다.
구체적으로, 데이터 획득부(310)는 직교형(Cartesian), 방사형(radial), 나선형(spiral) 방식과 같은 여러 가지의 데이터 획득 방식 중 방사형 데이터 획득 방식으로 수신된 자기공명영상 신호를 기초로 샘플들을 임의의 3차원 가상공간인 k-공간 상에 3차원 입체도형 형상으로 구축한다. 이때, 3차원 입체도형은, 바람직하게, 구(sphere)일 수 있다. 이때, 각 샘플은 도 3a 및 도 3b와 같이 구의 표면을 이루는 점(dot)으로 표현될 수 있으며, 각 샘플은 자신의 위치에서 구의 중심을 향하는 직선 방향으로 데이터를 획득함을 나타낸다. 이때, k-공간 상에서 샘플들의 배치를 균일하게 하는 종래기술이 이미 공개되어 있으며, 이러한 종래기술 중 하나로서, Wong et al.의 방식을 들 수 있다 (Wong ST, Roos MS. A strategy for sampling on a sphere applied to 3D selective RF pulse design Magn Reson Med 1994;32(6):778-784).
이어서, 데이터 획득부(310)는 구의 표면 상에 배치된 샘플들을 샘플링하기 위한 다수의 궤적을 정의하고, 각 궤적에 대응하는 데이터들에 대한 샘플링을 수행하여 피검체의 들숨 및 날숨 중 어느 하나의 호흡에 대한 데이터를 획득한다. 여기서 샘플링을 위한 각 궤적은 구의 상단 극점에서 하단 극점까지 향하는 경로를 가지며, 이를 인터리프(interleaf)라고 지칭할 수 있다. 본 발명의 일 실시예의 경우, 이러한 궤적을 불연속적으로 구성하고, 각 궤적마다 연관성을 가지지 않도록 서로 다른 형상으로 다수의 궤적을 형성하는 것을 특징으로 한다. 이와 같은 궤적을 형성하기 위해, 데이터 획득부(310)는 각 궤적을 다수의 궤적의 총 개수로 분할한 후, 각 궤적 내에 존재하는 인접한 샘플들 간의 간격이 최대화되도록 궤적을 설정한다. 더 구체적으로, 분할된 궤적의 성분(샘플) 간의 간격이 미리 설정된 기준보다 크도록 궤적을 설정한다.
이하에서는, 언급한 Wong et al. 의 수식을 바탕으로 본 발명의 일 실시예에 따르는 샘플링을 수행할 수 있는지 여부를 검토해보도록 한다. 다만 본 발명은 k-공간 상에서 샘플들의 배치를 균일하게 하는 Wong et al. 의 수식을 바탕으로 하지 않은 다른 종래기술들 예를 들어, Golden angle을 이용한 수식을 바탕으로 한 기술(Winkelman S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden Ration for time-resolved MRI. IEEE Trans Med Imaging 2007;26:68-76)을 비롯한 다른 다양한 종래기술에도 적용될 수 있다. Wong et al.의 수식은 수학식 1과 같이 정의될 수 있다.
수학식 1에서 imax는 k-공간 상의 구 표면을 따라 정의되는 궤적의 총 개수를 의미하며, pmax는 각 궤적마다 배치되는 샘플들의 개수를 의미하고, i는 1, 2,..., imax 이며, p는 1, 2,..., pmax이다.
수학식 1을 살펴보면 z 방향의 성분(Gz(p))에는 imax에 관한 변수가 포함되어 있지 않음을 확인할 수 있다. 이로 인하여, 본 발명의 일 실시예와 같은, 여러 개의 궤적을 나눈 후 각 궤적에 대하여 샘플링을 수행하는 방식에 수학식 1을 적용할 경우, 궤적의 개수가 많아질수록(즉, imax 가 커질수록) z 방향으로 점점 언더 샘플링되는 효과가 발생되기 때문에, 수학식 1을 곧바로 본 발명의 일 실시예에 적용할 경우 최선의 결과를 얻기 어렵다.
그러므로, 수학식 1을 수정하여 본 발명의 일 실시예에 활용하도록 한다. 수학식 1을 수정하기 위하여, 수학식 1에서 언급된 imax 를 1로 설정하고, p를 (p-1)·imax + i로 대체함으로써 아래의 수학식 2를 완성할 수 있다.
위의 식에서 Nviews는 pmax × imax를 의미하는 것으로서, k-공간 상에 배열된 샘플들의 총 개수를 의미한다.
도 3a 내지 도 3d를 참조하면, 수학식 1을 기반으로 샘플링을 수행할 경우, 도 3a및 도 3b와 같이, k-공간 상에서 첫 번째 궤적과 두 번째 궤적이 서로 유사한 형태로 연관성을 갖도록 형성된다. 그러나, 수학식 2를 기반으로 샘플링을 수행할 경우, 도 3c 및 도 3d와 같이 첫 번째 궤적과 두 번째 궤적이 각각 k-공간의 구 표면 상에서 산발적으로 형성됨에 따라 서로 연관성을 가지지 않는 불연속적인 형태로 형성될 수 있다. 즉, 수학식 2를 통하여 본 발명의 일 실시예를 구현할 수 있다.
한편, 각 궤적에 포함되는 샘플들의 개수에 따라 k-공간의 샘플들의 균일도가 달라질 수 있다. 따라서, 본 발명의 일 실시예에 따르는 데이터 획득부(310)는 최적의 샘플 균일도를 나타낼 수 있도록 각 궤적에 적정량의 샘플들의 개수를 설정하며, 이를 위해 피검체의 호흡 시간에 관한 정보를 고려하여 각 궤적에 대한 샘플링 시간을 설정한다. 구체적으로, 데이터 획득부(310)는 한 주기의 호흡시간 중 임계값 이상 또는 이하의 값을 갖는 호흡에 대응하는 시간인 게이팅 시간(Tgating)과 각 궤적마다 샘플링이 수행되는 시간인 인터리프 시간(Tinterleaf)을 동일하게 설정하며, 이 경우, 최적의 샘플 균일도를 나타낼 수 있다.
Tgating 와 Tinterleaf 간의 관계를 4a 내지 도 4f를 참조하여 구체적으로 설명한다. 여기서 피검체의 호흡신호는 1에서 -1 사이의 값을 갖는 사인 곡선 파형으로 도시되며, 각 궤적에 대한 샘플링 신호는 탄젠트 곡선 파형으로 도시된다. 또한, 도 4a, 도 4c 및 도 4e의 Tgating 은 임계값이 0인 경우를 기준으로 설정되며, 도 4b, 도 4d 및 도 4f의 Tgating 은 임계값이 -0.5인 경우를 기준으로 설정된다.
구체적으로, 도 4a및 도 4b는 Tgating > Tinterleaf 인 경우를 나타내는 그래프로서, 하나의 Tgating 와 두 개의 Tinterleaf 가 대응하는 것을 확인할 수 있다. 도 4c 및 도 4d는 Tgating = Tinterleaf인 경우를 나타내는 그래프로서, 하나의 Tgating 와 하나의 Tinterleaf가 일대일 대응하는 것을 확인할 수 있다. 도 4e 및 도 4f는 Tgating < Tinterleaf 인 경우를 나타내는 그래프로서, 하나의 Tgating 는 한 개 미만의 Tinterleaf 와 대응하는 것을 확인할 수 있다. 따라서, 가장 적합한 샘플 균일도를 나타내기 위해서는 Tgating = Tinterleaf로 설정되는 것이 가장 바람직하다.
이어서, 도 5a 내지 도 5c를 통하여 pmax의 개수에 따른 k-공간 상의 샘플 균일도를 구체적으로 살펴보도록 한다. 여기서 Tgating = Tinterleaf를 만족시키는 최적의 pmax를 pmax .opt라고 호칭하며, pmax .opt = 640인 것으로 가정한다. 도 5a는 한번의 궤적으로 전체 샘플들을 샘플링하는 경우(pmax = Nview (즉, imax =1))의 k-공간을 나타내는 것으로서, 상술한 종래기술에 따르는 수학식 1을 통하여 샘플링을 수행한 경우를 나타내는 시뮬레이션 그림이다. 한 눈으로 보아도 도 5a의 샘플들은 균일하지 못하게 배열된 것을 확인할 수 있다. 도 5b는 pmax = pmax .opt = 640인 경우를 나타내는 시뮬레이션 그림이며, 도 5b는 pmax < pmax . opt인 경우를 나타내는 시뮬레이션 그림이다. 도 5b는 샘플들이 구의 표면상에 균일하게 배치된 것을 확인할 수 있으나, 도 5c의 경우 균일하지 못한 밀도로 구의 표면을 이루도록 배치된 것을 확인할 수 있다.
도 5a 내지 도 5c를 통해 설명한 내용을 통계적으로 정리하면, 도 6과 같이, 각 궤적 당 포함되는 샘플들의 개수는 너무 적거나 너무 많을 경우 오히려 k-공간의 샘플 균일도를 떨어뜨릴 수 있다. 따라서, 각 궤적 당 적절한 개수의 샘플들이 포함되어 샘플링이 수행되도록, Tgating = Tinterleaf 로 설정하여 샘플링을 수행하는 것이 바람직하다.
이어서, 영상 생성부(320)는 데이터 획득부(310)의 샘플링을 통해 획득된 데이터들을 기초로 영상을 생성한다. 영상 생성부(320)는 생성된 영상을 영상 출력부(400)로 전달하여 사용자 인터페이스를 통해 사용자에게 영상을 제공할 수 있다.
도 7은 팬텀 영상에 관한 사진으로서, 상단의 세 개의 팬텀 영상(A, B, C)은 종래기술에 따라 생성된 영상(즉, pmax = Nview 을 조건으로 생성된 영상)을 나타내며, 하단의 세 개의 팬텀 영상(D, E, F)은 본 발명의 일 실시예에 따라, pmax = pmax.opt 을 조건으로 생성된 영상을 나타낸다. 도 7의 상단과 하단의 영상들을 비교해보면, 상단의 세 개 영상 내에 흰색 화살표로 표시된 링 형태의 인공물들(artifacts)은 하단의 세 개의 영상 내에서는 없어진 것을 확인할 수 있다.
또한, 도 8은 피검체의 폐 영상에 관한 사진으로서, 좌측으로부터 첫 번째 열에 배열된 사진들(A, D, G)는 호흡 게이팅에 의하지 않고 자기공명영상신호로부터 획득한 전체 데이터를 기초로 재구성한 영상을 나타내며, 두 번째 열에 배열된 사진들(B, E, H)은 종래기술에 따르는 후향 호흡 게이팅 방식에 따라 재구성된 영상(즉, pmax = Nview 을 조건으로 생성된 영상)을 나타내며, 세 번째 열에 배열된 사진들(C, F, I)은 본 발명의 일 실시예에 따라 pmax = pmax . opt 을 조건으로 생성된 영상을 나타낸다. 위 세 가지 종류의 영상을 비교해 보면, 첫 번째 행과 두 번째 행에 배열된 사진들에서 흰색 화살표로 지칭된 링이나 선 형태의 인공물들이 세 번째 행에 배열된 사진들에서는 나타나지 않음을 확인할 수 있다. 대표적으로, E 사진의 5번 화살표를 통해 지칭되는 링 형태의 인공물은 F 사진에서 나타나지 않는 것을 확인할 수 있다.
한편, 추가 실시예로서, 본 발명의 일 실시예를 동적 영상(Dynamic image)에 적용하여 동적 영상의 해상도와 인공물 발현 현상을 개선할 수 있다. 구체적으로, 피검체의 전체 호흡 시간 중 각 호흡 주기마다 측정된 게이팅 시간(Tgating)들은 서로 다른 값으로 구성될 수 있으므로, 게이팅 시간들의 평균값을 산출한다. 이어서, 게이팅 시간의 평균값과 인터리프 시간(Tinterleaf)을 동일하게 설정하고, 샘플링을 수행할 경우, 인공물이 제거된 동적 영상을 획득할 수 있다.
이하, 도 9를 참조하여, 본 발명의 일 실시예에 따르는 후향 호흡 게이팅을 이용한 자기공명영상 처리방법에 대하여 구체적으로 설명한다. 이하에서 설명하는 방법은 상술한 자기공명영상 처리장치에 의해 수행되는 것이므로, 이하에서 생략된 내용은 상술한 내용으로 갈음하도록 한다.
먼저, 자기공명영상 처리장치(10)의 신호 처리부(300)는 코일로부터 피검체의 전체 호흡 시간에 대한 자기공명영상 신호를 신호 송수신부(200)로부터 전달받는다(S910).
이어서, 신호 처리부(300)는 자기공명영상 신호를 기초로 k-공간 상에 구의 표면을 이루는 샘플들을 구축하고, 구 위에 형성되는 다수의 궤적을 따라 각 궤적에 대응하는 데이터에 대한 샘플링을 수행한다(S920). 이때, 각 궤적은 구의 상단 극점에서 하단 극점을 향하는 경로로 형성된다. 특히, 각 궤적은 궤적을 이루는 샘플들 간의 인접 거리가 최대로 멀어지도록, 불연속적인 성분의 집합으로 구성되어, 각 성분들이 산발적으로 배치되는 것과 같은 형상을 가질 수 있다. 또한, 각 궤적 간의 형상은 서로 연관성이 없도록 서로 다른 모양으로 형성될 수 있다. 한편, k-공간 상의 샘플 균일도를 최적화하기 위하여 한 주기의 호흡 시간 중 임계값 이하의 값을 갖는 호흡에 대응하는 게이팅 시간과 각 궤적마다 샘플링이 수행되는 시간에 대한 인터리프 시간을 동일하게 설정할 수 있다.
이어서, 신호 처리부(300)는 샘플링을 통해 획득된 데이터들을 기초로 영상을 생성하여, 영상 출력부(400)를 통해 사용자에게 영상을 제공할 수 있다(S930).
이상으로 설명한 본 발명의 일 실시예는 후향 호흡 게이팅 방식에 있어서 3차원 k-공간 상의 샘플링시, 서로 상이하며 연관성이 없는 여러 개의 궤도(interleaf)를 설정하고, 각 궤도를 바탕으로 샘플링을 수행함으로써, k-공간 상에 배열되는 샘플들의 균일도를 향상시킬 수 있으며, 이로 인하여 재구성된 영상에 발현되는 블러링이나 각종 인공물(artifacts)들을 제거할 수 있다. 나아가, 한 주기의 호흡 시간 중 임계값 이하의 호흡에 대응하는 게이팅 시간과 각 궤적마다 샘플링이 수행되는 시간에 대한 인터리프 시간을 동일하게 설정함으로써, 최적의 샘플 균일도를 달성하여, 정확하고 해상도 높은 영상을 제공할 수 있다.
본 발명의 일 실시예는 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.
본 발명의 방법 및 시스템은 특정 실시예와 관련하여 설명되었지만, 그것들의 구성 요소 또는 동작의 일부 또는 전부는 범용 하드웨어 아키텍쳐를 갖는 컴퓨터 시스템을 사용하여 구현될 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
100: 자기 공명 기기 200: 신호 송수신부
300: 신호 처리부 310 : 데이터 획득부
320 : 영상 생성부 400 : 영상 출력부
500 : 제어부 600 : 사용자 인터페이스
300: 신호 처리부 310 : 데이터 획득부
320 : 영상 생성부 400 : 영상 출력부
500 : 제어부 600 : 사용자 인터페이스
Claims (12)
- 자기공명영상 처리장치에 의해 수행되는 후향 호흡 게이팅을 이용한 자기공명영상 처리방법에 있어서,
방사형 데이터 획득 기법에 따라, 피검체의 전체 호흡 시간 동안 생성된 자기공명영상 신호를 수신하는 단계;
3차원 k-공간 상의 중점에서 일 점(dot)을 향하도록 상기 자기공명영상 신호를 샘플링하여, 일 점들에 의해 표면을 구성하는 상기 3차원 k-공간 상의 구(sphere)를 형성하는 단계;
상기 구의 표면을 구성하는 상기 일 점들에 의해 상기 구의 표면 상에서 형성되는 다수의 궤적 각각이 불연속적이며, 서로 다른 형상을 형성하도록, 각 궤적을 조정하는 단계;
상기 각 궤적에 대응하는 데이터에 대한 샘플링을 수행한 후, 상기 피검체의 호흡운동에 대한 데이터 중에서 들숨 및 날숨 중 어느 하나의 호흡 상태에 대한 데이터를 수집하는 단계; 및
상기 수집된 데이터들을 기초로 상기 호흡 상태에 대한 영상을 생성하는 단계;를 포함하는, 후향 호흡 게이팅을 이용한 자기공명영상 처리방법. - 삭제
- 제 1 항에 있어서,
상기 각 궤적을 조정하는 단계는,
상기 각 궤적을 상기 다수의 궤적의 총 개수로 분할한 후, 상기 분할된 궤적의 성분 간의 간격이 미리 설정된 기준보다 크도록 상기 각 궤적을 조정하는 단계를 포함하는, 후향 호흡 게이팅을 이용한 자기공명영상 처리방법. - 제 1 항에 있어서,
상기 호흡 상태에 대한 데이터를 수집하는 단계는,
상기 피검체의 호흡 시간에 관한 정보를 고려하여, 상기 각 궤적에 대한 샘플링 시간을 설정하는 단계를 포함하는, 후향 호흡 게이팅을 이용한 자기공명영상 처리방법. - 제 4 항에 있어서,
상기 호흡 상태에 대한 데이터를 수집하는 단계는,
상기 피검체의 한 주기의 호흡시간 중 임계값 이상 또는 이하의 값을 갖는 호흡에 대응하는 시간에 대한 게이팅 시간과 상기 각 궤적마다 샘플링이 수행되는 시간에 대한 인터리프 시간을 동일하게 설정하는 단계를 포함하는, 후향 호흡 게이팅을 이용한 자기공명영상 처리방법. - 제 4 항에 있어서,
상기 호흡 상태에 대한 데이터를 수집하는 단계는,
상기 전체 호흡 시간 중 각 호흡 주기마다 측정된 게이팅 시간들의 평균과 상기 인터리프 시간을 동일하게 설정하는 단계를 포함하며,
상기 호흡 상태에 대한 영상을 생성하는 단계는,
상기 수집된 데이터를 바탕으로 동적 영상을 생성하는 단계를 포함하는, 후향 호흡 게이팅을 이용한 자기공명영상 처리방법. - 후향 호흡 게이팅을 이용한 자기공명영상 처리장치에 있어서,
상기 후향 호흡 게이팅을 이용한 자기공명영상 처리방법을 수행하기 위한 프로그램이 저장된 메모리; 및
상기 프로그램을 실행하는 프로세서;를 포함하며,
상기 프로세서는, 상기 프로그램의 실행시,
방사형 데이터 획득 기법에 따라, 피검체의 전체 호흡 시간 동안 생성된 자기공명영상 신호를 수신하고,
3차원 k-공간 상의 중점에서 일 점(dot)을 향하도록 상기 자기공명영상 신호를 샘플링하여, 일 점들에 의해 표면을 구성하는 상기 3차원 k-공간 상의 구(sphere)를 형성하며,
상기 구의 표면을 구성하는 상기 일 점들에 의해 상기 구의 표면 상에서 형성되는 다수의 궤적 각각이 불연속적이며, 서로 다른 형상을 형성하도록, 각 궤적을 조정하고,
상기 각 궤적에 대응하는 데이터에 대한 샘플링을 수행한 후, 상기 피검체의 호흡운동에 대한 데이터 중에서 들숨 및 날숨 중 어느 하나의 호흡 상태에 대한 데이터를 수집하며,
상기 수집된 데이터들을 기초로 상기 호흡 상태에 대한 영상을 생성하는 것인, 후향 호흡 게이팅을 이용한 자기공명영상 처리장치. - 삭제
- 제 7 항에 있어서,
상기 프로세서는,
상기 각 궤적을 상기 다수의 궤적의 총 개수로 분할한 후, 상기 분할된 궤적의 성분 간의 간격이 미리 설정된 기준보다 크도록 상기 각 궤적을 설정하는, 후향 호흡 게이팅을 이용한 자기공명영상 처리장치. - 제 7 항에 있어서,
상기 프로세서는,
상기 피검체의 호흡 시간에 관한 정보를 고려하여, 상기 각 궤적에 대한 샘플링 시간을 설정하는, 후향 호흡 게이팅을 이용한 자기공명영상 처리장치. - 제 10 항에 있어서,
상기 프로세서는,
상기 피검체의 한 주기의 호흡시간 중 임계값 이상 또는 이하의 값을 갖는 호흡에 대응하는 시간에 대한 게이팅 시간과 상기 각 궤적마다 샘플링이 수행되는 시간에 대한 인터리프 시간을 동일하게 설정하는, 후향 호흡 게이팅을 이용한 자기공명영상 처리장치. - 제 10 항에 있어서,
상기 프로세서는,
상기 전체 호흡 시간 중 각 호흡 주기마다 측정된 게이팅 시간들의 평균과 인터리프 시간을 동일하게 설정하고,
상기 획득된 데이터를 바탕으로 동적 영상을 생성하는, 후향 호흡 게이팅을 이용한 자기공명영상 처리장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150113324A KR101726271B1 (ko) | 2015-08-11 | 2015-08-11 | 후향 호흡 게이팅을 이용한 자기공명영상 처리방법 및 처리장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150113324A KR101726271B1 (ko) | 2015-08-11 | 2015-08-11 | 후향 호흡 게이팅을 이용한 자기공명영상 처리방법 및 처리장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170019210A KR20170019210A (ko) | 2017-02-21 |
KR101726271B1 true KR101726271B1 (ko) | 2017-04-26 |
Family
ID=58313806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150113324A KR101726271B1 (ko) | 2015-08-11 | 2015-08-11 | 후향 호흡 게이팅을 이용한 자기공명영상 처리방법 및 처리장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101726271B1 (ko) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040116804A1 (en) | 1998-10-23 | 2004-06-17 | Hassan Mostafavi | Method and system for radiation application |
US20130197347A1 (en) | 2012-01-30 | 2013-08-01 | Mehdi Hedjazi Moghari | Method for Free-Breathing Magnetic Resonance Imaging Using Iterative Image-Based Respiratory Motion Correction |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012206555B4 (de) | 2012-04-20 | 2023-08-03 | Siemens Healthcare Gmbh | Verfahren zur Akquisition eines Messdatensatzes eines atmenden Untersuchungsobjekts mittels Magnetresonanztechnik, Magnetresonanzanlage, Computerprogramm sowie elektronisch lesbarer Datenträger |
-
2015
- 2015-08-11 KR KR1020150113324A patent/KR101726271B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040116804A1 (en) | 1998-10-23 | 2004-06-17 | Hassan Mostafavi | Method and system for radiation application |
US20130197347A1 (en) | 2012-01-30 | 2013-08-01 | Mehdi Hedjazi Moghari | Method for Free-Breathing Magnetic Resonance Imaging Using Iterative Image-Based Respiratory Motion Correction |
Also Published As
Publication number | Publication date |
---|---|
KR20170019210A (ko) | 2017-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109477877B (zh) | 磁共振成像系统和方法 | |
US10185013B2 (en) | Magnetic resonance imaging (MRI) apparatus and method of generating MR image | |
CN110031786B (zh) | 磁共振图像重建方法、磁共振成像方法、设备及介质 | |
US8861819B2 (en) | Apparatus and method for correcting artifacts of functional image acquired by magnetic resonance imaging | |
US10451696B2 (en) | Magnetic resonance imaging apparatus and method of obtaining magnetic resonance image | |
US10203391B2 (en) | Magnetic resonance imaging apparatus and method of operating the same | |
CN103829948A (zh) | 用于捕获磁共振图像的方法和设备 | |
CN109917315A (zh) | 磁共振成像扫描方法、装置、计算机设备和存储介质 | |
KR101967245B1 (ko) | 자기 공명 이미징 시스템 및 자기 공명 이미징 방법 | |
CN106456046A (zh) | 经改进的多时相动态对比增强磁共振成像的方法 | |
US20170234955A1 (en) | Method and apparatus for reconstructing magnetic resonance image | |
US20170131374A1 (en) | Magnetic resonance imaging apparatus and image processing method thereof | |
US20180217216A1 (en) | Method and apparatus for acquiring magnetic resonance signal | |
JP2001309903A (ja) | Mr投影画像の自動修正 | |
US8143891B2 (en) | System for image acquisition with fast magnetic resonance gradient echo sequences | |
US20170131377A1 (en) | Magnetic resonance imaging apparatus and method | |
US10295643B2 (en) | Magnetic resonance imaging apparatus and control method | |
JP6433425B2 (ja) | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 | |
CN109069059B (zh) | 用于对移动的主体成像的系统和方法 | |
KR101486777B1 (ko) | B1정보 획득 방법 및 장치 | |
US20230165480A1 (en) | Apparatus and method for generating volume selective three-dimensional magnetic resonance image | |
KR101844514B1 (ko) | 자기 공명 영상 장치 및 자기 공명 영상 획득 방법 | |
KR101726271B1 (ko) | 후향 호흡 게이팅을 이용한 자기공명영상 처리방법 및 처리장치 | |
JP5421600B2 (ja) | 核磁気共鳴イメージング装置および核磁気共鳴イメージング装置の作動方法 | |
KR102257963B1 (ko) | 호흡 연동 신호의 히스토그램 누적 분포를 이용한 호흡 구간 검출 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20200217 Year of fee payment: 4 |