KR101705927B1 - Process for production of positive electrode material for secondary batteries - Google Patents

Process for production of positive electrode material for secondary batteries Download PDF

Info

Publication number
KR101705927B1
KR101705927B1 KR1020127002844A KR20127002844A KR101705927B1 KR 101705927 B1 KR101705927 B1 KR 101705927B1 KR 1020127002844 A KR1020127002844 A KR 1020127002844A KR 20127002844 A KR20127002844 A KR 20127002844A KR 101705927 B1 KR101705927 B1 KR 101705927B1
Authority
KR
South Korea
Prior art keywords
powder
secondary battery
cathode material
lithium
rotary kiln
Prior art date
Application number
KR1020127002844A
Other languages
Korean (ko)
Other versions
KR20120051665A (en
Inventor
아키히로 기노시타
마사유키 가타쿠라
Original Assignee
닛신 엔지니어링 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛신 엔지니어링 가부시키가이샤 filed Critical 닛신 엔지니어링 가부시키가이샤
Publication of KR20120051665A publication Critical patent/KR20120051665A/en
Application granted granted Critical
Publication of KR101705927B1 publication Critical patent/KR101705927B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

이차전지용 양극 재료의 제조방법은, 원료로 되는 리튬 화합물의 분체와, 금속 화합물의 분체를 혼합하여 혼합가루를 얻고, 이 혼합가루를 조립하여 조립 분체를 얻는 공정과, 이 조립 분체를 소정의 온도 및 시간으로 연속적으로 소성해서 반응시켜, 리튬과 금속의 복합 산화물을 이차전지용 양극 재료로서 얻는 공정을 갖는다.A method for producing a cathode material for a secondary battery includes the steps of mixing a powder of a lithium compound as a raw material with a powder of a metal compound to obtain a mixed powder and assembling the mixed powder to obtain a granulated powder, And a time to obtain a composite oxide of lithium and metal as a cathode material for a secondary battery.

Description

이차전지용 양극 재료의 제조방법{PROCESS FOR PRODUCTION OF POSITIVE ELECTRODE MATERIAL FOR SECONDARY BATTERIES}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a positive electrode material for a secondary battery,

본 발명은, 노트형 PC, 휴대 전화, 비디오 카메라 등의 휴대 기기, 전기 자동차, 하이브리드 전기 자동차 등의 전원에 사용되는 이차전지의 양극 재료의 제조방법에 관한 것이며, 특히, 생산 효율이 우수한 이차전지용 양극 재료의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a cathode material for a secondary battery used for a power source for a portable device such as a notebook PC, a mobile phone, a video camera, an electric vehicle, a hybrid electric vehicle, And a method for producing the cathode material.

현재, 이차전지 중, 리튬 이온 이차전지는, 에너지 밀도 및 출력 밀도 등이 우수하며, 소형, 경량화에 유효하기 때문에, 노트형 PC, 휴대 전화, 비디오 카메라 등의 휴대 기기의 전원으로서 이용되고 있다. 또한, 리튬 이온 이차전지는, 전기 자동차, 전력의 로드 레벨링 등의 전원으로서도 주목받고 있으며, 하이브리드 전기 자동차의 전원으로서도 이용되고 있다.At present, among lithium ion secondary batteries, lithium ion secondary batteries are excellent in energy density and output density, and are effective for miniaturization and weight reduction. Therefore, lithium ion secondary batteries are used as power sources for portable devices such as notebook PCs, mobile phones, and video cameras. In addition, the lithium ion secondary battery is attracting attention as a power source for load leveling of electric vehicles and electric power, and is also used as a power source for a hybrid electric vehicle.

리튬 이온 이차전지의 양극 재료로서는 코발트산리튬(LiCoO2), 니켈산리튬(LiNiO2), 망간산리튬(LiMn2O4) 등이 있다.Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), and the like are available as the cathode material of the lithium ion secondary battery.

리튬 이온 이차전지의 양극 재료는, 일반적으로, 원재료인 리튬 화합물과 니켈, 망간, 코발트 등의 산화물이나 수산화물 등의 화합물을 분체(粉體)로 혼합하고, 그 혼합가루를 용기에 넣어, 700∼1100℃에서 소성한 후, 이것을 분쇄하여, 분체로 함으로써 제조되고 있다. 상기 이외에도, 리튬 이온 이차전지의 양극 재료의 제조방법이 여러 가지 제안되어 있다(특허문헌 1 참조).The positive electrode material of a lithium ion secondary battery is generally prepared by mixing a lithium compound as a raw material and a compound such as oxide or hydroxide such as nickel, manganese or cobalt into powder and putting the mixed powder into a container, Followed by firing at 1100 占 폚, followed by pulverization to obtain a powder. In addition to the above, various methods for producing a cathode material of a lithium ion secondary battery have been proposed (see Patent Document 1).

특허문헌 1에는, 리튬 망간 산화물의 화학식에 기초하여, 리튬 수산화물 또는 분해성 리튬염과 망간 산화물 또는 분해성 망간염을 이론량에 의해 균질하게 혼합하고, 이 균질하게 혼합된 화합물을 반응 장치에 공급하여, 혼합된 화합물을 반응 장치내에서 연속적으로 교반하며, 공기 또는 산소가 풍부한 가스체를 반응 장치내에 흘려 넣고, 약 650℃에서 약 800℃까지의 범위에 있는 온도에서 약 4시간을 넘지 않는 시간으로만 가열하며, 그리고, 바람직하게는 2시간을 넘지 않는 시간으로만 약 100℃ 이하의 조건하에서, 반응한 생성물을 냉각함으로써, 0≤X≤0.125인 화학식 Li1+xMn2-xO4의 단일상의 리튬치환된 망간 산화물의 층간 화합물을 연속적으로 제조하는 방법이 기재되어 있다.Patent Document 1 discloses a method of preparing a lithium manganese oxide by uniformly mixing a lithium hydroxide or a decomposable lithium salt and a manganese oxide or a decomposing manganese salt by a theoretical amount based on the formula of lithium manganese oxide, The mixed compound is continuously stirred in the reactor and the air or oxygen-rich gaseous body is poured into the reactor and heated at a temperature ranging from about 650 ° C to about 800 ° C for not more than about 4 hours By heating and cooling the reacted product under conditions of not more than about 100 ° C for preferably not more than 2 hours to produce a single phase lithium of the formula Li 1 + x Mn 2-x O 4 with 0 ? X? A process for the continuous preparation of interlayer compounds of substituted manganese oxides is described.

또한, 특허문헌 1에는, 화학식이 Li1 xMn2 xO4로서, 0≤X≤0.125인, 입방 스피넬형 결정 구조를 갖는 거의 단일상의 리튬 망간 산화물을 합성하는 방법에 대해서도 기재되어 있다.Also, Patent Document 1 describes a method of synthesizing a substantially single-phase lithium manganese oxide having a cubic spinel type crystal structure in which the formula is Li 1 + x Mn 2 - x O 4 and 0 ? X? 0.125 .

일본 특허 제4074662호 공보Japanese Patent No. 4074662

그런데, 이차전지용 양극 재료를 소성(燒成)하기에는, 현재 사용되고 있는 롤러허스킬른(roller hearth kiln)이나 푸셔로(pusher furnace) 등 배치(batch)식의 가열로보다도, 로터리 킬른 등의 연속식 가열로를 사용한 편이 열효율은 향상하고, 소성 시간을 단축할 수 있다고 생각된다. 그렇지만, 연속식 가열로를 사용한 경우, 가열로내에 원료의 부착·성장이 발생하여, 공업적으로 연속 소성하는 것은 곤란하였다.However, in order to burn the cathode material for a secondary battery, the continuous heating such as a rotary kiln is more preferable than the batch hearth furnace, such as a roller hearth kiln or a pusher furnace, It is considered that the thermal efficiency is improved and the firing time can be shortened. However, when the continuous furnace is used, the adherence and growth of the raw materials are generated in the furnace, and it is difficult to industrially perform continuous calcination.

본 발명의 목적은, 상기 종래 기술에 기초하는 문제점을 해소하고, 생산 효율이 우수한 이차전지용 양극 재료의 제조방법을 제공함에 있다.It is an object of the present invention to provide a method for manufacturing a cathode material for a secondary battery which solves the problems based on the above-described conventional techniques and has an excellent production efficiency.

상기 목적을 달성하기 위해서, 본 발명은, 이차전지용 양극 재료의 제조방법으로서, 원료로 되는 리튬 화합물의 분체와, 금속 화합물의 분체를 혼합하여 혼합가루를 얻고, 이 혼합가루를 조립(造粒)해서 조립 분체를 얻는 조립 공정과, 상기 조립 분체를 소정의 온도 및 시간으로 연속적으로 소성하여 반응시켜, 리튬과 금속의 복합 산화물을 이차전지용 양극 재료로서 얻는 소성 공정을 갖는 것을 특징으로 하는 이차전지용 양극 재료의 제조방법을 제공하는 것이다.In order to achieve the above object, the present invention provides a method for producing a cathode material for a secondary battery, which comprises mixing powder of a lithium compound as a raw material and powder of a metal compound to obtain a mixed powder, And a firing step of firing the granulated powder continuously at a predetermined temperature and for a predetermined time to obtain a composite oxide of lithium and metal as a cathode material for a secondary battery, And to provide a method for producing a material.

본 발명에서의 상기 조립 분체의 입도(粒度) 구성은, 입자지름 250㎛ 미만의 것이 40질량%이하, 바람직하게는 25질량%이하, 더 바람직하게는 20질량%이하인 것이 바람직하다.The particle size of the granulated powder in the present invention is preferably 40 mass% or less, preferably 25 mass% or less, more preferably 20 mass% or less, of particles having a particle diameter of less than 250 占 퐉.

본 발명에 있어서, 상기 소성 공정에는, 로터리 킬른이 사용되는 것이 바람직하다.In the present invention, a rotary kiln is preferably used for the firing step.

또한, 본 발명에 있어서는, 상기 리튬 화합물은, 예를 들면, LiOH, Li2O, 또는 Li2CO3이며, 상기 금속 화합물은, 예를 들면, MnO, MnO2, Mn2O3, Mn3O4, MnCO3, CoO, CoCO3, Co3CO4, NiO, 또는 Ni(OH)3이며, 상기 복합 산화물은, 예를 들면, LiMn2O4, LiCoO2, LiNiO2 인 것이 바람직하다.In the present invention, the lithium compound is, for example, LiOH, Li 2 O, or Li 2 CO 3 , and the metal compound is, for example, MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4, MnCO 3, CoO, CoCO 3, Co 3 CO 4, NiO, or Ni (OH) 3, and the composite oxide is, for example, LiMn 2 O 4, LiCoO 2, it is preferable that LiNiO 2.

본 발명에 의하면, 리튬 화합물과 금속 화합물의 조립 분체를 사용함으로써, 소성중에 조립 분체가 로터리 킬른내에 부착하여 폐색(閉塞) 등을 일으키지 않고, 연속적으로 높은 생산 효율로 이차전지용 양극 재료를 제조할 수 있다.According to the present invention, by using the granulated powder of the lithium compound and the metal compound, the granulated powder is adhered to the rotary kiln during sintering to prevent the clogging, etc., and the cathode material for the secondary battery can be continuously produced with high production efficiency have.

또한, 본 발명에 의하면, 로터리 킬른을 사용하여 제조함으로써, 연속적으로 더 효율적으로 이차전지용 양극 재료를 제조할 수 있다.Further, according to the present invention, by using a rotary kiln, it is possible to continuously and more efficiently manufacture the cathode material for a secondary battery.

도 1은 본 발명의 이차전지용 양극 재료의 제조방법에 사용되는 로터리 킬른을 나타내는 모식도이다.
도 2(A)는 본 발명의 이차전지용 양극 재료의 제조방법에 사용되는 조립기(造粒機)를 나타내는 모식도이며, 도 2(B)는 본 발명의 이차전지용 양극 재료의 제조방법에 사용되는 조립기를 나타내는 평면도이다.
1 is a schematic diagram showing a rotary kiln used in a method for producing a cathode material for a secondary battery of the present invention.
FIG. 2 (A) is a schematic view showing a granulator used in a method of manufacturing a cathode material for a secondary battery according to the present invention, and FIG. 2 (B) Fig.

이하에, 첨부의 도면에 나타내는 실시 형태에 기초하여, 본 발명의 이차전지용 양극 재료의 제조방법을 상세하게 설명한다.Hereinafter, a method for producing a cathode material for a secondary battery of the present invention will be described in detail based on the embodiments shown in the accompanying drawings.

종래의 리튬 이온 이차전지용 양극 재료의 제조방법에서는, 리튬 화합물과 니켈, 망간, 코발트 등의 산화물이나 수산화물 등의 화합물과의 혼합 원료에서의 고상(固相) 반응을 이용하기 때문에, 미반응물이 남아, 높은 효율로 제조할 수 없었다.In the conventional method for producing a cathode material for a lithium ion secondary battery, since a solid phase reaction is used in a mixed material of a lithium compound and a compound such as an oxide or hydroxide such as nickel, manganese or cobalt, , And could not be produced with high efficiency.

또한, 이차전지용 양극 재료의 원료인 Li2CO3의 분말과 MnO2의 분말을 혼합한 혼합가루를 로터리 킬른을 사용하여 연속적으로 소성·반응시킨 경우, 혼합가루를 6kg/시(時)로 공급하면, 소성하여 얻어지는 LiMn2O4의 이론 회수량은 5.25kg/시이지만, 이 혼합가루를 실제로 소성해 보면, 소성 시작 20분후에는, 수율이 17%로 되고, 소성 시작 40분후에는, 수율이 11%로 저하하며, 소성 시작 60분후에서는, 수율이 0%, 즉, 로터리 킬른내에 소성체가 부착하고, 이것이 성장하여 로터리 킬른이 폐색되어 버려, 소성체를 회수할 수 없게 됨을 알았다.Further, when the mixed powder obtained by mixing the powder of Li 2 CO 3 and the powder of MnO 2, which are the raw materials of the cathode material for the secondary battery, was continuously fired and reacted using a rotary kiln, the mixed powder was supplied at 6 kg / Theoretical recovery of LiMn 2 O 4 obtained by firing is 5.25 kg / hr. When this mixed powder is actually fired, the yield is 17% after 20 minutes from the start of firing, and after 40 minutes from the start of firing, The yield was reduced to 11%, and after 60 minutes from the start of firing, the yield was 0%, that is, the sintered body was adhered to the rotary kiln, and the sintered body was clogged due to the growth, and the sintered body could not be recovered.

이와 같이, Li2CO3(리튬 화합물)의 분말과 MnO2(금속 화합물)의 분말을 혼합한 혼합가루를 사용하고, 로터리 킬른을 사용하여 연속적으로 소성하여 반응시켜, 이차전지용 양극 재료로서 LiMn2O4(복합 산화물)를 얻는 경우, 로터리 킬른이 폐색되어 버려 연속적으로 소성할 수 없다고 하는 지견을 얻었다.Thus, a mixed powder obtained by mixing a powder of Li 2 CO 3 (lithium compound) and a powder of MnO 2 (metal compound) was used and continuously fired by using a rotary kiln to perform a reaction. As a cathode material for a secondary battery, LiMn 2 O 4 (composite oxide) is obtained, the rotary kiln is clogged, and thus it is impossible to continuously fuse it.

본 발명은, 상술한 지견에 의거하여 안출된 것이며, 구체적으로는, 원료로 되는 리튬 화합물의 분체와 금속 화합물의 분체를 혼합하여 혼합가루를 얻고, 이 혼합가루를 조립한 조립분체(造粒粉體)를 사용함으로써, 로터리 킬른이 폐색되지 않아, 연속적으로 높은 생산 효율로 소성을 행할 수 있다고 하는 것이다. 이에 의해, 이차전지용 양극 재료를 얻을 수 있다.The present invention has been made based on the above-described findings. Specifically, the present invention is based on the finding that a powder of a lithium compound as a raw material is mixed with a powder of a metal compound to obtain a mixed powder, The rotary kiln is not obstructed and firing can be continuously performed with high production efficiency. Thereby, a cathode material for a secondary battery can be obtained.

특히, 본 발명에서의 조립 분체의 입도 구성은, 입자지름 250㎛ 미만의 것이 40질량%이하, 바람직하게는 25질량%이하, 더 바람직하게는 20질량%이하인 것이 바람직하다.Particularly, the particle size of the granulated powder in the present invention is preferably 40% by mass or less, preferably 25% by mass or less, more preferably 20% by mass or less, of particles having a particle diameter of less than 250 占 퐉.

한편, 조립 분체의 입도 구성이, 입자지름 250㎛ 미만의 것이 40질량%를 넘으면 미분(微粉)이 많아지므로, 예를 들면, 로터리 킬른을 사용하여, 리튬 화합물의 분체와 금속 화합물의 분체를 소성해서 반응시켜, 이차전지용 양극 재료로서 복합 산화물을 얻는 경우, 로터리 킬른이 폐색되어 버려 연속적으로 소성할 수 없다.On the other hand, when the particle size of the granulated powder is less than 250 mu m and more than 40% by mass, fine powders are increased. For example, a powder of a lithium compound and a powder of a metal compound are sintered And the reaction is carried out to obtain a composite oxide as a cathode material for a secondary battery, the rotary kiln is blocked and can not be continuously fired.

여기서, 로터리 킬른중에서 조립 분체의 소성·반응이 적절히 이루어지는지의 여부에서, 조립분체의 최대 입자지름은 결정되지만, 소성·반응의 정도는, 혼합전의 원료 입도나 소성 온도 등으로도 좌우되기 때문에, 일률적으로 조립 분체의 최대 입도를 규정할 수 없다. 따라서, 로터리 킬른의 단면적의 약 5%가, 피처리물의 층 두께의 상한으로 되어 있는 것을 원용하여, 공업적으로 사용되는 로터리 킬른의 단면적으로부터 환산해서, 30mm를 조립 분체의 최대 입자지름으로 함이 적절하다. 조립 분체의 최대 입자지름이 30mm를 넘으면, 소성·반응이 적절히 진행되지 않아, 소망하는 소성체를 얻을 수 없다.Here, the maximum particle diameter of the granulated powder is determined in accordance with whether or not the granulated powder is appropriately sintered and reacted in the rotary kiln. However, the degree of sintering and the reaction depends on the raw material particle before mixing and the sintering temperature. The maximum particle size of the granulated powder can not be defined. Therefore, it is preferable that the maximum particle diameter of the granulated powder is 30 mm in terms of the cross-sectional area of the rotary kiln used industrially, with about 5% of the cross-sectional area of the rotary kiln being the upper limit of the layer thickness of the article to be treated proper. If the maximum particle size of the granulated powder exceeds 30 mm, the firing and the reaction do not proceed properly and a desired fired body can not be obtained.

또한, 본 발명에서는, 리튬 화합물은, 예를 들면, LiOH, Li2O, 또는 Li2CO3이며, 금속 화합물은, 예를 들면, MnO, MnO2, Mn2O3, Mn3O4, MnCO3, CoO, CoCO3, Co3CO4, NiO, 또는 Ni(OH)3이다. 이차전지용 양극 재료로서 얻어지는 복합 산화물로서는, 예를 들면, LiMn2O4, LiCoO2, LiNiO2이다.In the present invention, the lithium compound is, for example, LiOH, Li 2 O, or Li 2 CO 3 , and the metal compound is, for example, MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , MnCO 3, a CoO, CoCO 3, Co 3 CO 4, NiO, or Ni (OH) 3. Examples of the composite oxide obtained as the cathode material for the secondary battery include LiMn 2 O 4 , LiCoO 2 and LiNiO 2 .

본 실시 형태의 리튬을 포함하는 이차전지용 양극 재료의 제조방법에 있어서는, 도 1에 나타내는 로터리 킬른(10)을 사용하여, 예를 들면, 소성 온도 800℃, 소성 시간 60분의 조건에서 소성할 수 있다. 아울러, 800℃까지의 승온 시간을 40분으로 하고, 800℃의 유지 시간을 20분으로 함이 바람직하다.In the method for producing a cathode material for a lithium secondary battery according to the present embodiment, the rotary kiln 10 shown in Fig. 1 can be used to carry out firing under the conditions of, for example, a firing temperature of 800 deg. C and a firing time of 60 minutes have. It is also preferable that the temperature rise time to 800 ° C is 40 minutes and the holding time at 800 ° C is 20 minutes.

도 1에 도시하는 로터리 킬른(10)은, 그 내부(12a)에서 소성이 이루어지는 세라믹스제의 통부(12)와, 이 통부(12)의 외면(12b)으로부터 소정의 거리를 두고 덮도록 설치된 발열체(14)와, 통부(12)를 그 축선을 회전축으로 해서 회전시키는 구동부(도시 안함)와, 발열체(14)에 의한 통부(12)의 가열 및 통부(12)의 구동부에 의한 회전을 제어하는 제어부를 갖는다.The rotary kiln 10 shown in Fig. 1 is provided with a cylindrical portion 12 made of ceramics to be fired in its inner portion 12a and a heat generating portion 12b provided so as to cover the outer surface 12b of the cylindrical portion 12, (Not shown) that rotates the tubular portion 12 with its axis as a rotation axis and a heating portion 14 that controls the heating of the tubular portion 12 and the rotation by the driving portion of the tubular portion 12 And a control unit.

통부(12)를 발열체(14)로 가열하여, 소정의 온도, 예를 들면, 800℃까지 가열하고, 통부(12)의 내부(12a)에 소성되는 조립 분체(16)가 공급된다. 그리고, 구동부에 의해, 통부(12)를 회전시켜, 조립 분체(16)를 통부(12)의 공급구(13a)로부터 배출구(13b)를 향해 소정 시간을 들여 이동시키면서, MnO2의 분말과 Li2CO3의 분말을 소성·반응시킨다. 이에 의해, 이차전지용 양극 재료로서 LiMn2O4의 소성체가 얻어진다. 얻어진 LiMn2O4의 소성체는, 배출구(13b)로부터 배출된다.The cylindrical portion 12 is heated by the heating body 14 to be heated to a predetermined temperature such as 800 DEG C and the granulated powder 16 to be fired in the inner portion 12a of the cylindrical portion 12 is supplied. Then, the driver, by rotating the cylindrical portion 12, while the assembled powder (16) towards the outlet (13b) from the inlet (13a) of the cylindrical portion 12 moving take the predetermined time, the MnO 2 powder and Li 2 CO 3 powder is baked and reacted. As a result, a sintered body of LiMn 2 O 4 is obtained as the cathode material for the secondary battery. The resultant sintered body of LiMn 2 O 4 is discharged from the discharge port 13b.

아울러, 조립 분체(16)의 통부(12)의 공급구(13a)로부터 배출구(13b)까지의 이동 시간이, 소성 시간이다.The movement time from the supply port 13a to the discharge port 13b of the cylindrical portion 12 of the granulated powder 16 is the firing time.

다음으로, 이 LiMn2O4의 소성체를, 분쇄기, 예를 들면, 수퍼 제트 밀(닛신 엔지니어링사 제품)을 사용하여 분쇄하고, 또한, 분급기(分級機), 예를 들면, 터보 클래시파이어(닛신 엔지니어링사 제품) 또는 에어로파인 클래시파이어(닛신 엔지니어링사 제품)를 사용하여 분급한다. 이에 의해, 소정의 입자지름을 갖춘 이차전지용 양극 재료를 얻을 수 있다.Next, this sintered body of LiMn 2 O 4 is pulverized by using a pulverizer such as Super Jet Mill (manufactured by Nisshin Engineering Co., Ltd.), and further pulverized by a classifier, for example, (Manufactured by Nisshin Engineering Co., Ltd.) or Aerofine Classifier (manufactured by Nisshin Engineering Co., Ltd.). Thereby, a cathode material for a secondary battery having a predetermined particle diameter can be obtained.

아울러, 본 실시 형태에서 조립 분체(16)는, 이하와 같이 하여 얻어진다. 우선, 예를 들면, 도 2(A), 도 2(B)에 나타내는 조립기(20)를 사용하여, MnO2의 분말과 Li2CO3의 분말을 혼합하여 얻어지는 혼합가루(26)를 조립하여 조립품(造粒品,28)으로 가공한다. 여기서, 조립품(28)의 입도 구성이, 입자지름 250㎛ 미만의 것이 40질량%이하, 바람직하게는 25질량%이하, 더 바람직하게는 20질량%이하인 경우, 조립품(28)이 그대로 조립 분체(16)로 되어, 로터리 킬른(10)의 통부(12)의 내부(12a)에 공급된다. 또한, 조립 조작만으로는 소정 입도의 조립품이 얻어지지 않는 경우는, 필요에 따라, 분쇄기(도시 안함)를 사용하여 조립품(28)을 분쇄하거나, 정립기(整粒機, 도시 안함)에 의해 정립하거나 하여, 원하는 입도 구성으로 조정된 조립 분체(16)를 얻을 수 있다. 이 조립 분체(16)가, 로터리 킬른(10)의 통부(12)의 내부(12a)에 공급된다.In addition, the granulated powder 16 in the present embodiment is obtained as follows. First, for example, a mixed powder 26 obtained by mixing MnO 2 powder and Li 2 CO 3 powder is assembled by using the granulator 20 shown in Figs. 2A and 2B Process it as an assembly (granule, 28). When the particle size of the assembly 28 is 40 mass% or less, preferably 25 mass% or less, and more preferably 20 mass% or less, those having a particle diameter of less than 250 占 퐉, 16) and is supplied to the inside 12a of the tubular portion 12 of the rotary kiln 10. [ If an assembly of a predetermined size can not be obtained only by the assembling operation, the assembly 28 may be pulverized using a pulverizer (not shown) or may be pulverized by a sizer (not shown) , Thereby obtaining the granulated powder (16) adjusted to a desired particle size constitution. The granulated powder 16 is supplied to the inside 12a of the cylindrical portion 12 of the rotary kiln 10. [

도 2(A), 도 2(B)에 나타내는 조립기(20)는, 롤쌍(22)과, 이 롤쌍(22)의 각 롤(22a, 22b)을 회전시키는 회전 구동부(도시 안함)를 갖는다. 롤쌍(22)에서는, 롤(22a, 22b) 사이에 간극(24)을 형성해서 배치되어 있으며, 롤(22a)은 롤(22b)의 방향으로 압압되는 구조로 되어 있다. 각 롤(22a, 22b)의 표면에는, 축방향으로 뻗는 홈(가로홈)이 평행으로 복수 형성되어 있다. 또한, 각 롤(22a, 22b)은, 혼합가루(26)를 간극(24)의 위에서 아래로 이동시키도록 회전된다. 이에 의해, MnO2의 분말과 Li2CO3의 분말의 혼합가루(26)를 롤쌍(22)의 상방으로부터 공급하면, 간극(24)을 지나, 조립(造粒)되어서 조립품(28)이 형성된다.The assembling machine 20 shown in Figs. 2A and 2B has a roll pair 22 and a rotation driving portion (not shown) for rotating the rolls 22a and 22b of the roll pair 22. In the roll pair 22, a gap 24 is formed between the rolls 22a and 22b, and the roll 22a is pressed in the direction of the roll 22b. On the surface of each of the rolls 22a and 22b, a plurality of grooves (transverse grooves) extending in the axial direction are formed in parallel. Further, each of the rolls 22a, 22b is rotated so as to move the mixed powder 26 from top to bottom of the gap 24. As a result, when the mixed powder 26 of the powder of MnO 2 and the powder of Li 2 CO 3 is supplied from above the pair of rolls 22, it passes through the gap 24 and is granulated to form the assembly 28 do.

이와 같이, 본 실시 형태에 있어서는, 조립 분체(16)를 사용함으로써, 예를 들면, 로터리 킬른을 사용하여도, 이것이 폐색되지 않고 연속적으로 높은 생산 효율로, 이차전지용 양극 재료를 얻을 수 있다.As described above, in the present embodiment, by using the granulated powder 16, even if a rotary kiln is used, the cathode material for a secondary battery can be obtained continuously with high productivity without being blocked.

아울러, 도 2(A), 도 2(B)에 나타내는 조립기(20)를 대신해서, 분쇄기나 정립기 혹은 건식 압축 조립기(도시 안함)를 사용하여도 좋다.A pulverizer, a sizing machine, or a dry compacting granulator (not shown) may be used in place of the granulator 20 shown in Figs. 2A and 2B.

아울러, 본 실시 형태에 있어서는, 조립 분체(16)를 얻을 수 있으면, 도 2(A), 도 2(B)에 나타내는 조립기(20)를 사용하는 것으로 한정되지 않는다. 예를 들면, 전동(轉動) 조립 장치, 스프레이 드라이 장치를 사용하여, 조립 분체(16)를 얻어도 좋다.Further, in the present embodiment, it is not limited to the use of the granulator 20 shown in Figs. 2A and 2B as long as the granulated powder 16 can be obtained. For example, the granulated powder 16 may be obtained by using a rolling assembly device or a spray dryer.

또한, MnO2의 분말과 Li2CO3의 분말에, 바인더를 첨가하여, 조립을 하기 쉽게 해도 좋다.In addition, a binder may be added to the powder of MnO 2 and the powder of Li 2 CO 3 to facilitate assembly.

이상, 본 발명의 이차전지용 양극 재료의 제조방법에 대해 상세하게 설명하였으나, 본 발명은 상기 실시 형태에 한정되지 않고, 본 발명의 취지를 일탈하지 않는 범위에서, 다양한 개량 또는 변경을 해도 됨은 물론이다.While the present invention has been particularly shown and described with respect to a preferred embodiment thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, .

실시예Example

이하, 본 발명의 이차전지용 양극 재료의 제조방법의 실시예에 대해서, 구체적으로 설명한다.Hereinafter, embodiments of the method for producing a cathode material for a secondary battery of the present invention will be described in detail.

본 실시예에서는, 평균 입자지름(D50)이 4㎛인 Li2CO3의 분말과, 평균 입자지름(D50)이 27㎛인 MnO2의 분말을 사용하여, 조립기에 의해 조립하고, 하기 표 1에 나타내는 실험예 2의 조립 분체 및 실험예 3의 조립 분체를 작성하며, 마찬가지로, 평균 입자지름(D50)이 4㎛인 Li2CO3의 분말과 평균 입자지름(D50)이 4㎛인 MnO2의 혼합 분체를 사용하여, 하기 표 1에 나타내는 실험예 1의 조립 분체를 제작하였다. 아울러, 조립 조건은 이하와 같다.In this embodiment, powders of Li 2 CO 3 having an average particle diameter (D 50 ) of 4 μm and powders of MnO 2 having an average particle diameter (D 50 ) of 27 μm are assembled by a granulator, right experimental example 2 powder assembly and assembly of the powder of example 3 shown in Table 1 and, likewise, a mean particle size (D 50) of this powder with a mean particle size of 4㎛ of Li 2 CO 3 (D 50) 4 M < 2 > were used to prepare the granulated powder of Experimental Example 1 shown in Table 1 below. The assembling conditions are as follows.

조립 조건Assembly Conditions

조립기:롤러컴팩터 WP타입(터보공업사 제품)Assembly machine: Roller Compactor WP type (Turbo)

롤 간극:0.5mm(초기 공운전시)Roll clearance: 0.5mm (during initial ball operation)

롤 직경:160mm×2개Roll diameter: 160mm × 2 pieces

롤 표면 상태:가로홈+능선 홈Roll Surface Condition: Horizontal Groove + Ridge Groove

롤 선압:0.4∼2.0톤/cmRoll Linear Pressure: 0.4 to 2.0 tons / cm

롤 회전수:12rpmRoll speed: 12 rpm

분말 공급량:60∼90kg/시Powder feed rate: 60 to 90 kg / hr

각 조립 분체를 원료로서, 도 1에 나타내는 로터리 킬른을 사용하여, 이차전지용 양극 재료로서 LiMn2O4의 소성체를 제조하였다.Using each of the granulated powders as a raw material, a rotary kiln shown in Fig. 1 was used to produce a sintered body of LiMn 2 O 4 as a cathode material for a secondary battery.

아울러, 하기 표 1에 나타내는 입도 분포는, 망목 크기(sieve mesh size) 2mm, 1mm, 0.5mm, 0.25mm인 4종류의 채가, 망목 크기 2mm, 1mm, 0.5mm, 0.25mm의 순서로 적층된 것을 사용하여, 조립품을 위에서 차례로 채로 거른 경우의 각 채 위의 분체의 질량을 계측함으로써 얻어진 것이다.In addition, the particle size distribution shown in the following Table 1 was obtained when four types of sieve mesh sizes 2 mm, 1 mm, 0.5 mm, and 0.25 mm were stacked in the order of mesh sizes 2 mm, 1 mm, 0.5 mm, and 0.25 mm And measuring the mass of each powder in the case where the assembly is sieved in order from above.

소성중에, 로터리 킬른이 폐색되지 않은 경우를 「○」로 평가하고, 로터리 킬른이 폐색된 경우를 「×」로 평가하였다. 이 결과를 하기 표 1의 「연속성」란에 표시한다.When the rotary kiln was not closed, it was evaluated as "? &Quot;, and when the rotary kiln was closed, it was evaluated as " x ". The results are shown in the column of " continuity " in Table 1 below.

아울러, 소성 조건은, 소성 온도 800℃, 로터리 킬른내의 체류 시간을 20분으로 하였다.The firing conditions were a firing temperature of 800 DEG C and a residence time in a rotary kiln of 20 minutes.

입자지름Particle diameter 실험예1(질량%)Experimental Example 1 (% by mass) 실험예2(질량%)Experimental Example 2 (% by mass) 실험예3(질량%)Experimental Example 3 (% by mass) 2.0mm 초과Greater than 2.0 mm 0.00.0 74.674.6 9.29.2 1.0mm 초과∼2.0mmAbove 1.0mm ~ 2.0mm 9.79.7 3.63.6 34.834.8 0.5mm 초과∼1.0mmMore than 0.5mm to 1.0mm 52.652.6 0.90.9 9.39.3 0.25mm 초과∼0.5mm0.25mm to 0.5mm 20.120.1 0.30.3 4.24.2 0.25mm 미만Less than 0.25mm 17.617.6 20.620.6 42.542.5 연속성continuity ××

상기 표 1에 나타내는 바와 같이, 0.25mm(250㎛) 미만인 것의 함유량이, 21질량%미만인 실험예 1 및 실험예 2는, 로터리 킬른이 폐색되지 않고, 연속적으로 이차전지용 양극 재료를 얻을 수 있었다.As shown in Table 1, in Experimental Example 1 and Experimental Example 2 in which the content of less than 0.25 mm (250 탆) was less than 21 mass%, the rotary kiln was not blocked, and the cathode material for the secondary battery could be obtained continuously.

한편, 0.25mm(250㎛) 미만인 것의 함유량이, 40질량%를 넘는 실험예 3은, 소성중에 로터리 킬른이 폐색되어 버려, 연속적으로 이차전지용 양극 재료를 얻을 수 없었다.On the other hand, in Experimental Example 3 in which the content of less than 0.25 mm (250 m) was more than 40 mass%, the rotary kiln was clogged during firing, and the cathode material for a secondary battery could not be continuously obtained.

10 : 로터리 킬른
12 : 원통
14 : 발열체
16 : 조립 분체
20 : 조립기
22 : 롤쌍
22a, 22b : 롤
24 : 간극
26 : 혼합가루
28 : 조립품
10: Rotary kiln
12: cylinder
14: Heating element
16: Assembly powder
20: Assembly machine
22: Roll pair
22a, 22b: Roll
24: Clearance
26: Mixed powder
28: Assembly

Claims (5)

이차전지용 양극 재료의 제조방법으로서,
원료로 되는 리튬 화합물의 분체(粉體)와, 금속 화합물의 분체를 혼합하여 혼합가루를 얻고, 이 혼합가루를 조립(造粒)하여 조립 분체를 얻는 조립 공정과,
상기 조립 분체를 소정의 온도 및 시간으로 연속적으로 소성(燒成)해서 반응시켜, 리튬과 금속의 복합 산화물을 이차전지용 양극 재료로서 얻는 소성 공정을 포함하며,
상기 조립 분체의 입도(粒度) 구성이, 입자지름 250㎛ 미만의 것이 20질량% 이하이며,
상기 소성 공정에는, 로터리 킬른이 사용되는 것을 특징으로 하는 이차전지용 양극 재료의 제조방법.
A method for producing a cathode material for a secondary battery,
An assembly step of mixing a powder of a lithium compound as a raw material with a powder of a metal compound to obtain a mixed powder and granulating the mixed powder to obtain a granulated powder;
And a firing step of continuously firing the granulated powder at a predetermined temperature and time for reaction to obtain a composite oxide of lithium and metal as a cathode material for a secondary battery,
(Granularity) constitution of the granulated powder is 20 mass% or less with a particle diameter of less than 250 탆,
Wherein a rotary kiln is used for the firing step.
삭제delete 삭제delete 삭제delete 제 1 항에 있어서, 상기 리튬 화합물은, LiOH, Li2O, 또는 Li2CO3이며, 상기 금속 화합물은, MnO, MnO2, Mn2O3, Mn3O4, MnCO3, CoO, CoCO3, Co3CO4, NiO, 또는 Ni(OH)3이며, 상기 복합 산화물은, LiMn2O4, LiCoO2, LiNiO2인 이차전지용 양극 재료의 제조방법.The lithium secondary battery according to claim 1, wherein the lithium compound is LiOH, Li 2 O, or Li 2 CO 3 , and the metal compound is at least one selected from the group consisting of MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , MnCO 3 , 3 , Co 3 CO 4 , NiO, or Ni (OH) 3 , and the composite oxide is LiMn 2 O 4 , LiCoO 2 , or LiNiO 2 .
KR1020127002844A 2009-08-21 2010-07-27 Process for production of positive electrode material for secondary batteries KR101705927B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2009-192452 2009-08-21
JP2009192452A JP5401211B2 (en) 2009-08-21 2009-08-21 Method for producing positive electrode material for secondary battery
PCT/JP2010/062620 WO2011021480A1 (en) 2009-08-21 2010-07-27 Process for production of positive electrode material for secondary batteries

Publications (2)

Publication Number Publication Date
KR20120051665A KR20120051665A (en) 2012-05-22
KR101705927B1 true KR101705927B1 (en) 2017-02-10

Family

ID=43606935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127002844A KR101705927B1 (en) 2009-08-21 2010-07-27 Process for production of positive electrode material for secondary batteries

Country Status (4)

Country Link
JP (1) JP5401211B2 (en)
KR (1) KR101705927B1 (en)
CN (1) CN102473909A (en)
WO (1) WO2011021480A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515364A1 (en) 2009-12-18 2012-10-24 JX Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
CN102668185B (en) 2009-12-22 2015-07-08 Jx日矿日石金属株式会社 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011096522A1 (en) 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
WO2011108596A1 (en) 2010-03-04 2011-09-09 Jx日鉱日石金属株式会社 Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JPWO2011108595A1 (en) 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5313392B2 (en) 2010-03-04 2013-10-09 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN102714312A (en) 2010-12-03 2012-10-03 Jx日矿日石金属株式会社 Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
CN102754252B (en) * 2011-01-21 2014-12-17 Jx日矿日石金属株式会社 Method for producing positive-electrode active material for lithium-ion battery and positive-electrode active material for lithium-ion battery
JP5711569B2 (en) 2011-03-01 2015-05-07 矢崎総業株式会社 Connector fitting jig and low insertion force connector
KR101373963B1 (en) 2011-03-29 2014-03-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for production of positive electrode active material for a lithium-ion battery and positive electrode active material for a lithium-ion battery
EP2693536B1 (en) 2011-03-31 2017-05-03 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery
JP6292738B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6292739B2 (en) 2012-01-26 2018-03-14 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
KR101523080B1 (en) * 2012-12-21 2015-05-27 주식회사 포스코 Method for producing anode active material for lithium battery
WO2018158078A1 (en) * 2017-03-03 2018-09-07 Umicore PRECURSOR AND METHOD FOR PREPARING Ni BASED CATHODE MATERIAL FOR RECHARGEABLE LITHIUM ION BATTERIES
KR102026527B1 (en) * 2017-08-08 2019-09-27 주식회사 엘지화학 Method for evaluating blockage of filter by slurrys for manufacturing electrodes
JP6828665B2 (en) * 2017-11-24 2021-02-10 トヨタ自動車株式会社 Electrode manufacturing method
JP7064717B2 (en) * 2018-05-15 2022-05-11 住友金属鉱山株式会社 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
KR102406391B1 (en) * 2019-12-20 2022-06-07 주식회사 포스코 Method for manufacturing cathode material of secondary battery
JP7146140B1 (en) 2020-11-17 2022-10-03 住友化学株式会社 Method for producing lithium metal composite oxide
CN113120966A (en) * 2021-03-24 2021-07-16 安徽博石高科新材料股份有限公司 Automatic production method of lithium manganate material
GB202116895D0 (en) * 2021-11-24 2022-01-05 Johnson Matthey Plc Process
CN114933332A (en) * 2022-06-06 2022-08-23 安徽博石高科新材料股份有限公司 Method for producing lithium manganate by composite raw materials
CN115064683B (en) * 2022-07-12 2024-04-26 中国人民解放军空军工程大学 Manganese oxide composite electrode material, preparation method thereof and application thereof in preparation of lithium ion battery cathode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267729A (en) 2002-03-18 2003-09-25 Tosoh Corp Method for producing compound oxide containing lithium and use of it
JP2006269961A (en) * 2005-03-25 2006-10-05 Japan Energy Corp Carbonaceous substance for electrode material
JP2006278031A (en) * 2005-03-28 2006-10-12 Mitsubishi Chemicals Corp Manufacturing method of cathode material for lithium secondary battery and cathode material for lithium secondary battery as well as cathode for lithium secondary battery and lithium secondary battery using the same
JP2009064585A (en) 2007-09-04 2009-03-26 Mitsubishi Chemicals Corp Manufacturing method of transition metal based compound for lithium secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4074662B2 (en) 1996-11-01 2008-04-09 カー−マックギー ケミカル エル.エル.スィー. Manufacturing method of Li (lower 1 + x) Mn (lower 2-x) O (lower 4) for use as an electrode of a secondary battery
CN1179437C (en) * 1999-07-07 2004-12-08 昭和电工株式会社 Positive plate active material, method for producing same, and secondary cell
JP2005123180A (en) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267729A (en) 2002-03-18 2003-09-25 Tosoh Corp Method for producing compound oxide containing lithium and use of it
JP2006269961A (en) * 2005-03-25 2006-10-05 Japan Energy Corp Carbonaceous substance for electrode material
JP2006278031A (en) * 2005-03-28 2006-10-12 Mitsubishi Chemicals Corp Manufacturing method of cathode material for lithium secondary battery and cathode material for lithium secondary battery as well as cathode for lithium secondary battery and lithium secondary battery using the same
JP2009064585A (en) 2007-09-04 2009-03-26 Mitsubishi Chemicals Corp Manufacturing method of transition metal based compound for lithium secondary battery

Also Published As

Publication number Publication date
JP5401211B2 (en) 2014-01-29
CN102473909A (en) 2012-05-23
JP2011044364A (en) 2011-03-03
KR20120051665A (en) 2012-05-22
WO2011021480A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
KR101705927B1 (en) Process for production of positive electrode material for secondary batteries
KR100653170B1 (en) Positive plate active material, method for producing the same, and secondary cell
KR101272042B1 (en) Lithuium manganese complex oxide and the manufacturing method thereof
JP3036694B2 (en) Method for producing Li composite oxide for Li-ion battery electrode material
KR20140011414A (en) Lithium metal compound oxide having layered structure
CN102275887A (en) Preparation method of high capacity high compacted density lithium iron phosphate material and product thereof
CN113272252B (en) Method for producing positive electrode active material for lithium ion secondary battery, and molded body
JP2012216476A (en) Method for producing lithium transition metal compound
JP7069666B2 (en) Method for manufacturing lithium nickel composite oxide and method for manufacturing non-aqueous electrolyte secondary battery
JP2022174094A (en) Method for manufacturing cathode active material for nonaqueous electrolyte secondary battery, and mold
CN107792891B (en) Preparation method of nickel cobalt lithium manganate powder
KR20190081798A (en) Manufacturing method of positive active material for lithium secondary battery and positive active material for lithium secondary battery
US6409985B1 (en) Method for producing lithium manganate
JP2003306330A (en) Lithium-containing double oxide and method for manufacturing it
CN113564708A (en) Method for preparing single crystal lithium nickel cobalt aluminum oxide
JPH11111290A (en) Positive electrode material for lithium secondary battery and manufacture therefor
JPH09129229A (en) Manufacture of positive electrode material for lithium secondary battery
CN113526481A (en) Method for preparing lithium ion battery anode material by fluidized sintering
CN113113595A (en) Method for producing lithium manganate by composite raw materials
JP2000072446A (en) PRODUCTION OF LiNiO2-BASED LAMINAR MULTIPLE OXIDE
KR20100079535A (en) Cathode active material for lithium secondary batteries
WO2022202066A1 (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
KR101388919B1 (en) Lithium manganese oxide for lithium secondary battery and preparation method thereof
CN118084051A (en) Method for preparing lithium lanthanum zirconium oxygen solid electrolyte at low cost
KR20200063523A (en) Manufacturing method of lithium ion secondary battery cathode active material from waste battery material, and lithium ion secondary battery cathode active material made by the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200115

Year of fee payment: 4