KR101704055B1 - Manufacturing Method for Highly Heat-Resistance Metal Catalyst - Google Patents

Manufacturing Method for Highly Heat-Resistance Metal Catalyst Download PDF

Info

Publication number
KR101704055B1
KR101704055B1 KR1020110109514A KR20110109514A KR101704055B1 KR 101704055 B1 KR101704055 B1 KR 101704055B1 KR 1020110109514 A KR1020110109514 A KR 1020110109514A KR 20110109514 A KR20110109514 A KR 20110109514A KR 101704055 B1 KR101704055 B1 KR 101704055B1
Authority
KR
South Korea
Prior art keywords
catalyst
alcohol
metal salt
present
metal
Prior art date
Application number
KR1020110109514A
Other languages
Korean (ko)
Other versions
KR20130045064A (en
Inventor
이효경
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020110109514A priority Critical patent/KR101704055B1/en
Publication of KR20130045064A publication Critical patent/KR20130045064A/en
Application granted granted Critical
Publication of KR101704055B1 publication Critical patent/KR101704055B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

본 발명은 질산 테트라아민 백금 수용액((NH3)4Pt(NO3)2)에 알루미나 분말을 섞어 백금/알루미나 금속염 집합체를 형성시키고, 상기 금속염 집합체 용액에 알코올을 첨가시켜 알코올/금속염 집합체를 형성시키는 단계를 포함하는 고 내열성 금속 촉매 제조 방법에 관한 것이다.
상기 방법을 이용하는 제조 방법은 소결 현상을 방지하여 일정한 크기 이상의 균일한 촉매를 제조할 수 있다. 이에 균일한 촉매를 이용하는 경우 공해 물질을 방지하는 효과가 종래의 촉매를 이용하는 경우보다 뛰어나며, 본 발명의 고 내열 촉매 제조 방법을 이용하는 경우 귀금속을 절감할 수 있는 효과가 있다.
The present invention relates to a method of forming a platinum / alumina metal salt aggregate by mixing an alumina powder with a tetraammineplatinum nitrate aqueous solution ((NH 3 ) 4 Pt (NO 3 ) 2 ), and adding an alcohol to the metal salt aggregate solution to form an alcohol / metal salt aggregate To a process for producing a high-heat-resistant metal catalyst.
The production method using the above method can prevent a sintering phenomenon and produce a uniform catalyst having a predetermined size or more. Accordingly, when a uniform catalyst is used, the effect of preventing pollutants is superior to that of the conventional catalyst, and the use of the method of producing a highly heat-resistant catalyst of the present invention has the effect of reducing precious metals.

Description

고 내열성 촉매 제조 방법{Manufacturing Method for Highly Heat-Resistance Metal Catalyst} BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a high-

본 발명은 디젤엔진에서 배출되는 공해물질을 저감하는 고온에서도 소결 현상이 일어나지 않는 촉매를 제조하는 방법에 관한 것이다.
The present invention relates to a method for producing a catalyst which does not cause sintering even at a high temperature to reduce pollutants discharged from a diesel engine.

일반적으로 차량의 배기가스는 엔진으로부터 연소된 혼합기가 배기관을 통하여 대기중으로 방출되는 가스를 말하며, 이러한 배기가스에는 주로 일산화탄소(CO), 질소산화물(NOx), 미연소탄화수소(HC) 등의 유해물질이 포함되어 있다.Generally, the exhaust gas of a vehicle refers to a gas discharged from an engine through an exhaust pipe to the atmosphere. The exhaust gas mainly contains harmful substances such as carbon monoxide (CO), nitrogen oxides (NOx) and unburned hydrocarbons .

한편, 디젤엔진 차량은 연비, 출력면에서 우수함에도 불구하고 가솔린 엔진과는 달리 배기가스 내에 질소산화물과 입자상 물질(PM:Particulate Matter)이 상당히 많이 함유되어 있다.On the other hand, although the diesel engine vehicle is excellent in fuel consumption and output, unlike the gasoline engine, the exhaust gas contains a considerable amount of nitrogen oxides and particulate matter (PM).

디젤차량에 있어서는 공기가 대부분의 운전조건에서 충분한 상태로 연소되기 때문에 일산화탄소와 탄화수소는 가솔린 차량에 비하여 아주 적게 배출되나, 질소산화물과 입자상물질(매연)이 많이 배출된다.In diesel vehicles, since air is burned to a sufficient degree under most operating conditions, carbon monoxide and hydrocarbons are emitted in a much smaller amount than gasoline vehicles, but nitrogen oxides and particulate matter (soot) are emitted in a large amount.

강화되는 배기 규제에 대응하여 기존 촉매보다 높은 정화 성능 및 내구성을 가지는 촉매가 요구되고 있는바, 기존 촉매의 경우에는 높은 정화성능을 보여주는 반면에 마일리지 증가에 따른 활성 저하가 현저하게 나타나는 문제가 있었다. A catalyst having higher purification performance and durability than the existing catalyst is required in response to the exhaust emission regulation which is strengthened. In the case of the existing catalyst, the purification performance is high, but the activity decrease due to the increase in mileage is remarkable.

이러한 촉매 활성 저하의 주요 원인은 고온 환경에서 담체상의 귀금속 입자가 표면에서 서로 이동하고 뭉쳐 입자가 성장(소결, Sintering)하는 결과, CO/HC를 정화할 수 있는 유효반응 표면적이 감소하여 활성이 저하되는 데에 있었다.The main cause of the decrease in catalytic activity is that the noble metal particles on the carrier migrate to each other on the surface in a high temperature environment and grow (sinter) the particles as a result of the aggregation. As a result, the effective reaction surface area capable of purifying CO / I was in.

상기 촉매 뭉침 현상은 표면에서의 귀금속 이동 용이성에 좌우되며, 이 이동 용이성은 그 물질의 융점에 좌우된다. 기존 촉매의 경우에는 유효 반응 표면적을 증가시키기 위하여 귀금속을 고분산시켜 3 nm 수준의 귀금속 입자로 촉매를 제작한다. 금속 입자가 나노 수준으로 작아지면 그 원소의 고유한 화학적/물리적 성질이 변화하여, 융점도 함께 낮아지는 문제가 발생하며, 낮아진 융점에 의해서 고온 환경하에서 소결 현상이 심해진다는 문제를 가지고 있었다.
The catalyst aggregation phenomenon depends on the ease of noble metal migration at the surface, and the ease of movement depends on the melting point of the material. In the case of conventional catalysts, catalysts are prepared with noble metal particles at a level of 3 nm by highly dispersing the noble metal in order to increase the effective reaction surface area. When the metal particles are reduced to the nano-level, the inherent chemical / physical properties of the element are changed, and the melting point is also lowered, and the sintering phenomenon becomes severe under a high temperature environment due to the lowered melting point.

이에 본 발명자들은 고온에서도 금속 촉매의 소결 현상을 방지하기 위해 고온 조건 이상의 온도에서 그 원소가 융점을 가지도록 촉매 입자의 입경이 일정한 크기 이상으로 균일한 촉매를 제안하여 내구 성능을 높이기 위한 촉매 제조 방법을 발견하였다.Therefore, the present inventors have proposed a catalyst which has a uniform particle size of the catalyst particles at a temperature equal to or higher than a predetermined temperature so that the element has a melting point in order to prevent the sintering of the metal catalyst even at a high temperature, .

따라서 본 발명의 목적은 촉매 물질인 귀금속의 금속염이 녹아 있는 수용액에 알코올을 첨가하여 금속염 이온이 일정 수량으로 집합된 형태로 수용상에서 분산되고 집합체 주변을 알코올이 둘러싸도록 하며, 다공성 지지체를 첨가하면서 소성 처리하여 원하는 크기의 균일한 촉매를 제조하는 방법에 관한 것이다.Therefore, an object of the present invention is to provide a method for preparing a porous support in which alcohol is added to an aqueous solution in which a metal salt of a noble metal, which is a catalytic material, is dissolved, To a process for producing a homogeneous catalyst of a desired size.

본 발명의 다른 목적은 상기 방법을 이용하여 제조한 크기가 균일한 금속 촉매를 제공하는데 있다.
Another object of the present invention is to provide a metal catalyst of uniform size prepared using the above method.

본 발명의 일 양태에 따르면, 본 발명은According to one aspect of the present invention,

i) 아민 백금 질산 수용액에 귀금속/알루미나 분말을 섞어 금속염 집합체를 형성시키는 단계; i) mixing an aqueous solution of an amine platinum nitric acid with a noble metal / alumina powder to form a metal salt aggregate;

ii) 상기 금속염 집합체 용액에 알코올을 첨가시키는 단계; ii) adding an alcohol to the metal salt aggregate solution;

를 포함하는 고 내열성 금속 촉매 제조 방법을 제공한다.
The present invention also provides a method for producing a high heat resistant metal catalyst.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.Through the above-mentioned means for solving the problems, the present invention provides the following effects.

i) 본 발명의 고 내열 촉매 제조 방법에 의하는 경우 귀금속을 절감할 수 있다.i) According to the method for producing a highly heat resistant catalyst of the present invention, precious metals can be saved.

ii) 본 발명의 촉매 제조 방법에 의해 소결 현상을 방지하여 일정한 크기 이상의 균일한 촉매를 제조할 수 있다.ii) By the catalyst production method of the present invention, a sintering phenomenon can be prevented, and a uniform catalyst having a predetermined size or more can be produced.

iii) 본 발명의 균일한 촉매를 이용하는 경우 공해 물질을 방지하는 효과가 종래의 촉매를 이용하는 경우보다 뛰어나다.
iii) When the homogeneous catalyst of the present invention is used, the effect of preventing pollutants is superior to that of the conventional catalyst.

도 1은 본 발명의 고 내구 촉매를 제조하는 방법의 전체 단계를 보여주는 것이다.
도 2는 본 발명의 내열성 금속 촉매 촉매를 이용하여 일산화탄소 정화 성능을 종래 기술의 촉매를 이용하였을 때와 비교한 그래프이다.
도 3은 본 발명의 내열성 금속 촉매를 이용하여 HC 정화 성능을 종래 기술의 촉매를 이용하였을 때와 비교한 그래프이다.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows the overall steps of a method for producing the high endurance catalyst of the present invention.
FIG. 2 is a graph comparing carbon monoxide purifying performance using the heat resistant metal catalyst catalyst of the present invention with that of the prior art catalyst.
FIG. 3 is a graph comparing the HC purification performance of the heat resistant metal catalyst of the present invention with that of the prior art catalyst.

이하 본 발명을 더욱 자세하게 설명하겠다.Hereinafter, the present invention will be described in detail.

본 발명의 일 양태에 따르면, 본 발명은 i) 질산 테트라아민 백금 수용액((NH3)4Pt(NO3)2)에 알코올을 첨가시켜 알코올/금속염 집합체를 형성시키는 단계; According to one aspect of the invention there is provided i) the step of nitric acid tetraamine platinum solution ((NH 3) was added to the alcohol 4 Pt (NO 3) 2) to form an alcohol / metal assembly;

ii) 상기 금속염 집합체 용액에 알루미나 분말을 섞어 백금/알루미나 금속염 집합체를 형성시키는 단계; ii) mixing the metal salt aggregate solution with alumina powder to form a platinum / alumina metal salt aggregate;

를 포함하는 고 내열성 금속 촉매 제조 방법을 제공한다.The present invention also provides a method for producing a high heat resistant metal catalyst.

상기 백금과 같은 귀금속의 분산도가 높아져 융점이 낮아지고 표면 이동도가 증가하여 고온 환경하에서 소결 현상이 심화되는 것을 극복하기 위해, 촉매가 견딜 수 있는 고온 조건 이상의 온도에서 그 원소가 융점을 가질 수 있도록 촉매 입자의 입경이 일정한 크기 이상이며 내구 성능을 높일 수 있도록 제조 가능하다.In order to overcome the problem that the degree of dispersion of the noble metal such as platinum increases, the melting point is lowered, the surface mobility is increased, and the sintering phenomenon is intensified under a high temperature environment, the element may have a melting point at a temperature higher than the high- So that the particle size of the catalyst particles is larger than a predetermined size and the durability performance can be improved.

본 발명의 바람직한 구현예에 따르면, 상기 (NH3)4Pt(NO3)2의 농도는 소성 후 촉매 내 Pt의 담지량이 0.5-5 중량%가 되도록 조절한다.According to a preferred embodiment of the present invention, the concentration of (NH 3 ) 4 Pt (NO 3 ) 2 is adjusted so that the loading amount of Pt in the catalyst after calcination is 0.5-5 wt%.

본 발명의 바람직한 구현예에 따르면, 상기 알코올은, n-헥산올, n-헵탄올, n-옥탄올, n-노난올 및 n-데칸올로 이루어진 군에서 선택된 어느 하나의 알코올이며, 가장 바람직하게는 n-옥탄올을 첨가하여 알코올/금속염 집합체를 형성시키는 것이다. 이 때 금속염 집합체 주위를 알코올이 둘러싸 특정 개수의 금속염의 집합체가 분산 유지될 수 있다.According to a preferred embodiment of the present invention, the alcohol is any alcohol selected from the group consisting of n-hexanol, n-heptanol, n-octanol, n-nonanol and n- Is to add n-octanol to form an alcohol / metal salt aggregate. At this time, the alcohol surrounds the metal salt aggregate and a specific number of the metal salt aggregates can be dispersed and maintained.

본 발명의 바람직한 구현예에 따르면, 상기 첨가되는 알코올의 양은 귀금속 용액과 알코올의 부피비가 1:1 ~ 9:1이다.According to a preferred embodiment of the present invention, the amount of the added alcohol is 1: 1 to 9: 1 by volume ratio of the noble metal solution and the alcohol.

본 발명의 바람직한 구현예에 따르면, 상기 내열성 금속 촉매 제조 방법은 상기 단계 (ii)의 알코올/금속염 집합체를 형성시키는 단계 후 다공성 지지체를 첨가하는 단계를 추가적으로 포함한다. 본 발명에서 상기 다공성 지지체로 사용하는 재료는 알루미나, 세리아 또는 실리카를 첨가한다.According to a preferred embodiment of the present invention, the method for preparing a refractory metal catalyst further comprises adding a porous support after forming the alcohol / metal salt aggregate of step (ii). In the present invention, alumina, ceria or silica is added to the material used as the porous support.

이에 분산된 상기 집합체가 다공성 지지체 표면에 흡착하고 고온처리를 하게 되면, 금속원소만 표면에 남게 되어 원하는 크기의 균일한 촉매가 제작된다.
When the aggregated body is adsorbed on the surface of the porous support and subjected to a high temperature treatment, only the metal element remains on the surface, and a uniform catalyst of a desired size is produced.

이하, 실시 예에 의거하여 본 발명을 더욱 상세하게 설명하나, 하기 실시 예는 본 발명을 예시하기 위한 것이며, 본 발명을 한정하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following Examples.

실시예Example 1: 금속 촉매 제조 단계 1: Metal catalyst preparation step

단계 1: 귀금속 용액 준비 단계Step 1: Preparation of precious metal solution

본 발명에서 촉매의 재료로 이용될 알루미나(Salsol 10% Si doped alumina)의 기공 부피를 BET로 측정하였다. 귀금속 담지에 필요한 용액의 부피를 하기 화학식 1로 표시하였다.The pore volume of alumina (Salsol 10% Si doped alumina) to be used as a catalyst material in the present invention was measured by BET. The volume of the solution required to support the noble metal was represented by the following formula (1).

[화학식 1] [Chemical Formula 1]

V = 기공부피(cc/g) × 알루미나 질량(g)V = pore volume (cc / g) x alumina mass (g)

소성 후에 1 중량%의 백금/알루미나가 되도록 0.9 V의 증슈에 질산 테트라아민 백금 ((NH3)4Pt(NO3)2) (Aldrich)을 녹인 후 5 시간 동안 교반하였다.After the jeungsyu of 0.9 V so that the platinum / alumina of 1% by weight after firing melted tetraamine platinum nitrate ((NH 3) 4 Pt ( NO 3) 2) (Aldrich) and stirred for 5 hours.

단계 2: Step 2: 옥탄올Octanol + 금속염 집합체 형성 단계 + Metal salt aggregate formation step

부피비로 백금 귀금속 용액의 0.1 cc의 옥탄올을 용액에 첨가하였고, 10 시간 동안 교반하였다.0.1 cc of octanol in the volume of the platinum noble metal solution was added to the solution and stirred for 10 hours.

단계 3: 귀금속 Step 3: Precious metal 함침Impregnation 단계 step

초기 습식 함침법(incipient wetness method)을 이용하여 귀금속 촉매를 제조하였다.A noble metal catalyst was prepared using an incipient wetness method.

단계 4: 건조 및 소성 단계Step 4: Drying and firing step

함침된 금속 촉매를 80℃ 2 시간 건조 시키고, 이 후에 150℃에서 4 시간 동안 다시 건조시켰다.The impregnated metal catalyst was dried at 80 DEG C for 2 hours, and then dried again at 150 DEG C for 4 hours.

이 후 500℃에서 4 시간 동안 소성 시켜 분말 촉매를 얻었다.Thereafter, the mixture was calcined at 500 DEG C for 4 hours to obtain a powder catalyst.

단계 5: Step 5: 밀링milling 단계 step

상기 건조 및 소성 단계를 거쳐 수득한 상기 분말 촉매에 고형분 36 중량%가 되도록 증류수를 투입하여 슬러리를 제조하였다. 볼밀을 이용하여 특정 입자의 크기가 될 때까지 밀링시켰다. 아세트산을 이용하여 pH를 조절하여 이미 설정된 점도를 가지도록 만들었다.The slurry was prepared by adding distilled water to the powder catalyst obtained through the above drying and calcination steps so as to have a solid content of 36% by weight. And then milled using a ball mill until the particle size was reached. The pH was adjusted with acetic acid to have a pre-set viscosity.

단계 6: 코팅 단계Step 6: Coating step

상기 슬러리를 하니콤 코디어리이트 담체(400CPSI, 4밀리인치)에 디핑(dipping)하여 코팅하였다. 이 후 80℃ 2 시간 동안 건조시켰고, 다시 150℃에서 4 시간 동안 건조시켰다.The slurry was coated by dipping on a honeycomb coordinated carrier (400 CPSI, 4 millimeters). Thereafter, it was dried at 80 DEG C for 2 hours, and further dried at 150 DEG C for 4 hours.

이 후 500℃에서 4 시간 동안 소성 시켜 금속 촉매를 수득하였다.
Thereafter, calcination was carried out at 500 DEG C for 4 hours to obtain a metal catalyst.

비교예Comparative Example

단계 1: 귀금속 용액 준비 단계Step 1: Preparation of precious metal solution

본 발명에서 촉매의 재료로 이용될 알루미나의 기공 부피를 BET로 측정하였다. 귀금속 담지에 필요한 용액의 부피를 하기 화학식 1로 표시하였다.In the present invention, the pore volume of alumina to be used as the material of the catalyst was measured by BET. The volume of the solution required to support the noble metal was represented by the following formula (1).

[화학식 1] [Chemical Formula 1]

V = 기공부피(cc/g) × 알루미나 질량(g)V = pore volume (cc / g) x alumina mass (g)

소성 후에 1 중량%의 백금/알루미나가 되도록 V의 증슈에 질산 테트라아민 백금 ((NH3)4Pt(NO3)2) (Aldrich)을 녹인 후 5 시간 동안 교반하였다.(NH 3 ) 4 Pt (NO 3 ) 2 ) (Aldrich) was dissolved in the V-shaped beads so that the amount of platinum / alumina became 1 wt% after firing, and the mixture was stirred for 5 hours.

단계2Step 2 : 귀금속 : Precious metals 함침Impregnation 단계 step

초기 습식 함침법(incipient wetness method)을 이용하여 귀금속 촉매를 제조하였다.A noble metal catalyst was prepared using an incipient wetness method.

단계 3: 건조 및 소성 단계Step 3: Drying and firing step

함침된 금속 촉매를 80℃ 2 시간 건조 시키고, 이 후에 150℃에서 4 시간 동안 다시 건조시켰다.The impregnated metal catalyst was dried at 80 DEG C for 2 hours, and then dried again at 150 DEG C for 4 hours.

이 후 500℃에서 4 시간 동안 소성 시켜 분말 촉매를 얻었다.Thereafter, the mixture was calcined at 500 DEG C for 4 hours to obtain a powder catalyst.

단계 4: Step 4: 밀링milling 단계 step

상기 건조 및 소성 단계를 거쳐 수득한 상기 분말 촉매에 고형분 36 중량%가 되도록 증류수를 투입하여 슬러리를 제조하였다. 볼밀을 이용하여 특정 입자의 크기가 될 때까지 밀링시켰다. 아세트산을 이용하여 pH를 조절하여 이미 설정된 점도를 가지도록 만들었다.The slurry was prepared by adding distilled water to the powder catalyst obtained through the above drying and calcination steps so as to have a solid content of 36% by weight. And then milled using a ball mill until the particle size was reached. The pH was adjusted with acetic acid to have a pre-set viscosity.

단계 5: 코팅 단계Step 5: Coating step

상기 슬러리를 하니콤 코디어리이트 담체(400CPSI, 4밀리인치)에 디핑(dipping)하여 코팅하였다. 이 후 80℃ 2 시간 동안 건조시켰고, 다시 150℃에서 4 시간 동안 건조시켰다.The slurry was coated by dipping on a honeycomb coordinated carrier (400 CPSI, 4 millimeters). Thereafter, it was dried at 80 DEG C for 2 hours, and further dried at 150 DEG C for 4 hours.

이 후 500℃에서 4 시간 동안 소성 시켜 금속 촉매를 수득하였다.
Thereafter, calcination was carried out at 500 DEG C for 4 hours to obtain a metal catalyst.

시험 결과Test result

상기 실시예의 방법으로 제조한 금속 촉매를 이용하여 일산화탄소 정화 성능 및 HC 정화 성능을 종래 기술인 비교예와 비교하였다.The carbon monoxide purifying performance and the HC purifying performance were compared with the comparative example of the prior art using the metal catalyst prepared by the method of the above example.

이에 도 1에서 나타난 바와 같이 120 ~ 160℃에서는 종래 기술의 금속 촉매와 비교하여 높은 정화율을 보여주고 있으며, 160℃에서 100%에 가까운 정화율에 도달하였다. 도 2에서의 HC 정화성능도 종래 기술과 비교하여 상대적으로 높은 정화율을 보여주었다. 기존 기술 대비 CO light off 온도 12.5℃, HC light off 온도 16℃ 향상되었다.As shown in FIG. 1, at a temperature of 120 to 160 ° C., the purification rate was higher than that of the conventional metal catalyst, and a purification rate close to 100% at 160 ° C. was reached. The HC purification performance in FIG. 2 also showed a relatively high purification rate as compared with the prior art. CO light off temperature 12.5 ℃ and HC light off temperature 16 ℃ compared to existing technology.

하기 표 1에서는 본 발명의 제조한 금속 촉매를 이용하였을 때 배출되는 배출 가스의 성분 및 농도를 기재하였다.Table 1 below shows the composition and concentration of the exhaust gas discharged when the metal catalyst prepared according to the present invention is used.

배출 가스의 성분 및 농도The composition and concentration of the exhaust gas COCO 200 200 ppmppm SOSO 22 50 50 ppmppm CC 33 HH 66 160 160 ppmppm NONO 500 500 ppmppm CC 33 HH 88 40 40 ppmppm HH 22 OO 5%5% COCO 22 5%5% NN 22 나머지Remainder OO 22 9.5%9.5%

Claims (6)

i) 질산 테트라아민 백금 수용액((NH3)4Pt(NO3)2)에 알루미나 분말을 섞고 교반하여 백금/알루미나 금속염 집합체를 형성시키는 단계;
ii) 상기 금속염 집합체 용액에 알코올을 첨가시켜 알코올/금속염 집합체를 형성시키는 단계;
를 포함하는 고 내열성 금속 촉매 제조 방법.
i) mixing alumina powder with a tetraammine nitrate platinum aqueous solution ((NH 3 ) 4 Pt (NO 3 ) 2 ) and stirring to form a platinum / alumina metal salt aggregate;
ii) adding an alcohol to the metal salt aggregate solution to form an alcohol / metal salt aggregate;
Gt; wherein < / RTI >
청구항 1에 있어서, 상기 (NH3)4Pt(NO3)2의 농도는 소성 후 촉매 내 Pt의 담지량이 0.5-5 중량% 인 것을 특징으로 하는 방법.
The method according to claim 1, wherein the concentration of (NH 3 ) 4 Pt (NO 3 ) 2 is 0.5-5% by weight of Pt in the catalyst after firing.
청구항 1에 있어서, 상기 알코올은, n-헥산올, n-헵탄올, n-옥탄올, n-노난올 및 n-데칸올로 이루어진 군에서 선택된 어느 하나의 알코올인 것을 특징으로 하는 방법.
The method according to claim 1, wherein the alcohol is any alcohol selected from the group consisting of n-hexanol, n-heptanol, n-octanol, n-nonanol and n-decanol.
청구항 1에 있어서, 상기 알코올은 상기 금속염 집합체 용액과 상기 알코올의 부피비가 1:1~9:1로 첨가되는 것을 특징으로 하는 방법.
The method according to claim 1, wherein the alcohol is added in a volume ratio of the metal salt aggregate solution to the alcohol in a ratio of 1: 1 to 9: 1.
청구항 1에 있어서, 상기 내열성 금속 촉매 제조 방법은 상기 단계 (ii)의 알코올/금속염 집합체를 형성시키는 단계 후 다공성 지지체를 첨가하는 단계를 추가적으로 포함하는 단계를 특징으로 하는 방법.
The method of claim 1, wherein the method further comprises the step of adding a porous support after the step of forming the alcohol / metal salt aggregate of step (ii).
삭제delete
KR1020110109514A 2011-10-25 2011-10-25 Manufacturing Method for Highly Heat-Resistance Metal Catalyst KR101704055B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110109514A KR101704055B1 (en) 2011-10-25 2011-10-25 Manufacturing Method for Highly Heat-Resistance Metal Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110109514A KR101704055B1 (en) 2011-10-25 2011-10-25 Manufacturing Method for Highly Heat-Resistance Metal Catalyst

Publications (2)

Publication Number Publication Date
KR20130045064A KR20130045064A (en) 2013-05-03
KR101704055B1 true KR101704055B1 (en) 2017-02-08

Family

ID=48657338

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110109514A KR101704055B1 (en) 2011-10-25 2011-10-25 Manufacturing Method for Highly Heat-Resistance Metal Catalyst

Country Status (1)

Country Link
KR (1) KR101704055B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200150138Y1 (en) 1994-02-23 1999-07-01 Cataler Ind Co Catalyst for purifying exhaust gases
KR100723394B1 (en) 2006-02-07 2007-05-30 삼성에스디아이 주식회사 Non-pyrophoric catalyst for water-gas shift reaction and method of producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200150138Y1 (en) 1994-02-23 1999-07-01 Cataler Ind Co Catalyst for purifying exhaust gases
KR100723394B1 (en) 2006-02-07 2007-05-30 삼성에스디아이 주식회사 Non-pyrophoric catalyst for water-gas shift reaction and method of producing the same

Also Published As

Publication number Publication date
KR20130045064A (en) 2013-05-03

Similar Documents

Publication Publication Date Title
JP5361855B2 (en) Palladium-rhodium single layer catalyst
KR920009112B1 (en) Three-way catalysts for lean exhaust system
US20150018205A1 (en) Optimum Loading of Copper-Manganese Spinel on TWC Performance and Stability of ZPGM Catalyst Systems
US20110209466A1 (en) Catalyst composition and catalytic reduction system comprising yttrium
CN109590014B (en) Integral diesel vehicle tail gas oxidation catalyst and preparation method thereof
CN103752338A (en) Preparation method for oxidation catalyst used for purifying diesel exhaust
JP6087362B2 (en) Platinum-based oxidation catalyst and exhaust gas purification method using the same
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
KR20170018914A (en) Exhaust gas treatment system
CN112058261A (en) Integral diesel exhaust oxidation catalyst, preparation method and application
KR102193496B1 (en) Diesel oxidation catalyst with excellent heat durability and Method thereof
KR101704055B1 (en) Manufacturing Method for Highly Heat-Resistance Metal Catalyst
US10434499B2 (en) Catalyst composition for inhibiting diesel engine white smoke emission
JP2012245452A (en) Exhaust gas purification catalyst and production method thereof
JP2016500331A (en) Zoned diesel oxidation catalyst
US9393522B2 (en) Method for combusting diesel exhaust gas
JPH0592125A (en) Waste gas purification
KR102218996B1 (en) Oxidative catalytic composition with Mn dopped-support
CN113731450B (en) Doped cesium-vanadium alkali metal catalyst
CN104941677A (en) High-stability coating material and preparation method of catalyst for purification of motor vehicle tail gas
KR102569570B1 (en) Oxidation catalyst including oxygen storage composition and manufacturing method thereof
CN115805069B (en) Catalyst for diesel engine based on high-dispersion perovskite catalytic component and preparation method thereof
KR100680324B1 (en) Catalytic composition for NOx reduction in automobile exhaust gas
KR100588858B1 (en) Method for manufacturing catalyzed diesel particulate filter system
JP6549858B2 (en) Exhaust gas purification three-way catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant