CN115805069B - Catalyst for diesel engine based on high-dispersion perovskite catalytic component and preparation method thereof - Google Patents
Catalyst for diesel engine based on high-dispersion perovskite catalytic component and preparation method thereof Download PDFInfo
- Publication number
- CN115805069B CN115805069B CN202211417963.2A CN202211417963A CN115805069B CN 115805069 B CN115805069 B CN 115805069B CN 202211417963 A CN202211417963 A CN 202211417963A CN 115805069 B CN115805069 B CN 115805069B
- Authority
- CN
- China
- Prior art keywords
- perovskite
- catalytic
- coating
- catalyst
- slurry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 160
- 239000003054 catalyst Substances 0.000 title claims abstract description 70
- 238000002360 preparation method Methods 0.000 title claims abstract description 42
- 239000006185 dispersion Substances 0.000 title claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 67
- 239000002105 nanoparticle Substances 0.000 claims abstract description 67
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 48
- 239000002131 composite material Substances 0.000 claims abstract description 31
- 239000002245 particle Substances 0.000 claims abstract description 25
- 239000006229 carbon black Substances 0.000 claims abstract description 11
- 239000000919 ceramic Substances 0.000 claims abstract description 9
- 229910052878 cordierite Inorganic materials 0.000 claims abstract description 9
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims description 77
- 239000011248 coating agent Substances 0.000 claims description 76
- 239000002002 slurry Substances 0.000 claims description 64
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 30
- 239000006255 coating slurry Substances 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 229910052782 aluminium Inorganic materials 0.000 claims description 22
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 22
- 238000000746 purification Methods 0.000 claims description 22
- 239000008367 deionised water Substances 0.000 claims description 21
- 229910021641 deionized water Inorganic materials 0.000 claims description 21
- 239000002994 raw material Substances 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 229910002492 Ce(NO3)3·6H2O Inorganic materials 0.000 claims description 16
- 230000010355 oscillation Effects 0.000 claims description 14
- 229910052748 manganese Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 239000004480 active ingredient Substances 0.000 claims description 11
- 229910052746 lanthanum Inorganic materials 0.000 claims description 11
- 150000002500 ions Chemical class 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 10
- 239000011240 wet gel Substances 0.000 claims description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 9
- 239000002202 Polyethylene glycol Substances 0.000 claims description 9
- 229910052797 bismuth Inorganic materials 0.000 claims description 9
- 239000008103 glucose Substances 0.000 claims description 9
- 229920001223 polyethylene glycol Polymers 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 229910052684 Cerium Inorganic materials 0.000 claims description 7
- 238000001354 calcination Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000005303 weighing Methods 0.000 claims 4
- 239000004411 aluminium Substances 0.000 claims 3
- 238000010438 heat treatment Methods 0.000 claims 3
- 238000000227 grinding Methods 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 239000005022 packaging material Substances 0.000 claims 1
- 239000003344 environmental pollutant Substances 0.000 abstract description 13
- 231100000719 pollutant Toxicity 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 9
- 238000001179 sorption measurement Methods 0.000 abstract description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 abstract description 5
- 239000011593 sulfur Substances 0.000 abstract description 5
- 239000002243 precursor Substances 0.000 abstract description 4
- 230000002195 synergetic effect Effects 0.000 abstract description 3
- 229910000510 noble metal Inorganic materials 0.000 abstract 1
- 239000004215 Carbon black (E152) Substances 0.000 description 21
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 21
- 229910002091 carbon monoxide Inorganic materials 0.000 description 21
- 229930195733 hydrocarbon Natural products 0.000 description 21
- 150000002430 hydrocarbons Chemical class 0.000 description 21
- 239000013618 particulate matter Substances 0.000 description 21
- 239000003426 co-catalyst Substances 0.000 description 10
- 239000000306 component Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000010970 precious metal Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910002422 La(NO3)3·6H2O Inorganic materials 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 4
- 241000872198 Serjania polyphylla Species 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004939 coking Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域Technical field
本发明属于车用内燃机尾气污染物净化技术,具体涉及一种柴油机排气中颗粒物(PM)、碳氢(HC)及一氧化碳(CO)等污染物净化用的氧化催化剂及其制备方法。The invention belongs to a vehicle internal combustion engine exhaust pollutant purification technology, and specifically relates to an oxidation catalyst for purifying pollutants such as particulate matter (PM), hydrocarbon (HC) and carbon monoxide (CO) in diesel engine exhaust and its preparation method.
背景技术Background technique
柴油车是当前国内外重载、远程公路客、货运输的主力,为国民经济的发展和社会生活的便利做出了卓越的贡献。但同时,由于燃烧方式的限制,柴油车的污染物排放也比较严重,促使世界上多数国家都制定了日益严苛的排放法规限制柴油车的污染物排放,这也推动了车用柴油机排气污染物控制技术的发展和推广应用。在众多柴油机排气污染物控制技术中,柴油机氧化催化器(DOC)是降低HC和CO排放的有效技术,目前,DOC几乎成为车用柴油机必备的排气污染物净化设备。但传统DOC中需要涂敷以贵金属为主催化活性成分的催化涂层,而贵金属材料在PM净化性能、抗硫中毒、抗热老化、抗结焦等方面的性能较差,且原料价格高昂,导致现代先进柴油机的运行条件苛刻,对燃油和润滑性组成成分的要求极其严苛,因此,DOC中贵金属催化材料的减量/替代技术已成为国内外的研究热点。Diesel vehicles are currently the main force in heavy-duty, long-distance highway passenger and freight transportation at home and abroad, and have made outstanding contributions to the development of the national economy and the convenience of social life. But at the same time, due to the limitations of combustion methods, the pollutant emissions of diesel vehicles are also relatively serious, prompting most countries in the world to formulate increasingly stringent emission regulations to limit the pollutant emissions of diesel vehicles, which also promotes the use of vehicle diesel engine exhaust. Development, promotion and application of pollutant control technologies. Among the many diesel engine exhaust pollutant control technologies, the diesel oxidation catalyst (DOC) is an effective technology for reducing HC and CO emissions. At present, DOC has almost become a necessary exhaust pollutant purification equipment for vehicle diesel engines. However, traditional DOC requires the coating of catalytic coatings with precious metals as the main catalytically active components. However, precious metal materials have poor performance in PM purification performance, resistance to sulfur poisoning, resistance to thermal aging, and resistance to coking, and the raw materials are expensive, resulting in The operating conditions of modern advanced diesel engines are harsh and the requirements for fuel and lubricity components are extremely stringent. Therefore, the reduction/replacement technology of precious metal catalytic materials in DOC has become a research hotspot at home and abroad.
取代型钙钛矿和过渡金属氧化物一直以来都是DOC中贵金属催化材料最具潜力的替代材料,其抗硫、抗结焦、耐烧结性能非常优异,原料成本极其低廉,对HC和CO的净化特性与贵金属催化材料相近,但它们对PM的净化效能低于贵金属催化材料。另一方面,增强催化材料的整体催化活性,除了提高催化活性点位自身的反应能力以外,增加催化活性点位的数量也能取得明显的效果,而缩小催化剂中催化活性成分颗粒的粒径,增加活性成分颗粒比表面积,就可以提高活性成分的暴露概率,从而有可能提升催化活性点位的数量。因此,高分散度、超细催化活性成分颗粒制备方法也成为取代型钙钛矿和过渡金属氧化物在DOC上推广、应用的核心基础技术,目前,国内外对该技术的研究极其热烈。Substituted perovskites and transition metal oxides have always been the most potential substitute materials for precious metal catalytic materials in DOC. They have excellent sulfur resistance, coking resistance, and sintering resistance, extremely low raw material costs, and can purify HC and CO. The properties are similar to those of precious metal catalytic materials, but their purification efficiency for PM is lower than that of precious metal catalytic materials. On the other hand, to enhance the overall catalytic activity of catalytic materials, in addition to improving the reactivity of the catalytic active sites themselves, increasing the number of catalytic active sites can also achieve obvious effects, while reducing the particle size of the catalytically active component particles in the catalyst, Increasing the specific surface area of active ingredient particles can increase the exposure probability of active ingredients, thereby potentially increasing the number of catalytic active sites. Therefore, the preparation method of high-dispersion, ultra-fine catalytically active ingredient particles has also become the core basic technology for the promotion and application of substituted perovskites and transition metal oxides on DOC. Currently, research on this technology at home and abroad is extremely intense.
发明内容Contents of the invention
针对上述现有技术,本发明提出了一种制备操作简便、节省制备时间和成本,而且能够显著提高钙钛矿前驱体的分散效果的基于高分散钙钛矿催化成分的柴油机用催化剂,在制备过程中以炭黑为吸附基质、采取先吸附再凝胶步骤制备的LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板、以所述LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板制备LaxCe1-xMnyBi1-yO3型钙钛矿-氧化钼(MoO3)复合催化材料纳米颗粒、以及以所述LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒为主催化活性成分、以CeO2和ZrO2为助催化剂、以γ-Al2O3为涂层辅料。In view of the above existing technology, the present invention proposes a diesel engine catalyst based on highly dispersed perovskite catalytic components that is easy to operate, saves preparation time and cost, and can significantly improve the dispersion effect of the perovskite precursor. In the process, carbon black is used as the adsorption matrix, and the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template prepared by first adsorbing and then gelling steps is used as the La x Ce 1-x Mn Preparation of La x Ce 1 -x Mn y Bi 1-y O 3 type perovskite-molybdenum oxide (MoO 3 ) composite catalytic material nanoparticles using y Bi 1-y O 3 type perovskite nanoparticle templates, and as described La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles are the main catalytic active component, CeO 2 and ZrO 2 as cocatalysts, and γ-Al 2 O 3 as Coating accessories.
为了解决上述技术问题,本发明提出的一种基于高分散钙钛矿催化成分的柴油机用催化剂,包括涂敷于载体上的催化涂层,所述载体为400目堇青石蜂窝陶瓷,所述催化涂层由主催化活性成分、助催化剂和涂层辅料组成;所述助催化剂由CeO2和ZrO2组成,所述涂层辅料由γ-Al2O3组成;所述的主催化活性成分由ABO3型钙钛矿-MoO3复合催化材料纳米颗粒组成,其中,ABO3型钙钛矿和MoO3的质量百分比为60~90%/40~10%,ABO3型钙钛矿和MoO3的质量百分比之和为100%;所述ABO3型钙钛矿的A位由La和Ce组成、B位由Mn和Bi组成,形成LaxCe1-xMnyBi1-yO3型钙钛矿,其中,x表示A位La在A位Ce、La两种离子摩尔数之和中的摩尔百分比例,x=60~90%;y表示B位Mn在B位Mn、Bi两种离子摩尔数之和中的摩尔百分比例,y=50~80%;同时,所述LaxCe1-xMnyBi1-yO3型钙钛矿中La离子和Ce离子的摩尔数之和与Mn离子和Bi离子的摩尔数之和的比例为1:1;所述LaxCe1-xMnyBi1-yO3型钙钛矿在催化剂中的作用不仅是主催化活性成分中的一种组分,同时还是制备LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒的纳米颗粒模板。In order to solve the above technical problems, the present invention proposes a diesel engine catalyst based on highly dispersed perovskite catalytic components, including a catalytic coating coated on a carrier. The carrier is a 400 mesh cordierite honeycomb ceramic. The catalytic The coating is composed of a main catalytically active component, a co-catalyst and coating auxiliary materials; the co-catalyst is composed of CeO 2 and ZrO 2 , and the coating auxiliary material is composed of γ-Al 2 O 3 ; the main catalytic active component is composed of ABO 3 type perovskite-MoO 3 composite catalytic material nanoparticle composition, in which the mass percentage of ABO 3 type perovskite and MoO 3 is 60~90%/40~10%, ABO 3 type perovskite and MoO 3 The sum of the mass percentages is 100%; the A-site of the ABO 3- type perovskite is composed of La and Ce, and the B-site is composed of Mn and Bi, forming La x Ce 1-x Mn y Bi 1-y O 3 type Perovskite, where x represents the mole percentage of La at A site in the sum of the moles of Ce and La ions at A site, x=60~90%; y represents Mn at B site in two kinds of Mn and Bi at B site The mole percentage in the sum of ion moles is y=50~80%; at the same time, the mole number of La ions and Ce ions in the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite is The ratio to the sum of the moles of Mn ions and Bi ions is 1:1; the role of the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite in the catalyst is not only the main catalytic active component It is a component and also a nanoparticle template for preparing La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles.
进一步讲,本发明所述的基于高分散钙钛矿催化成分的柴油机用催化剂,其中:Furthermore, the diesel engine catalyst based on highly dispersed perovskite catalytic components of the present invention, wherein:
所述助催化剂中,所述CeO2和ZrO2的质量百分比为70~90%/10~30%,两者的质量百分比之和为100%。In the cocatalyst, the mass percentage of CeO 2 and ZrO 2 is 70-90%/10-30%, and the sum of the mass percentages of the two is 100%.
所述的γ-Al2O3包括来自纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3,所述纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3的质量百分比为:80~90%/10~20%,两者的质量百分比之和为100%。The γ-Al 2 O 3 includes pure γ-Al 2 O 3 powder and γ-Al 2 O 3 converted from aluminum sol. The pure γ-Al 2 O 3 powder and aluminum sol are converted into γ-Al 2 O 3 . The mass percentage of γ-Al 2 O 3 converted from the sol is: 80~90%/10~20%, and the sum of the mass percentages of the two is 100%.
所述主催化活性成分、助催化剂及涂层辅料的质量百分比为1~5%/4~10%/85~95%,三者的质量百分比之和为100%。The mass percentages of the main catalytic active component, cocatalyst and coating auxiliary materials are 1-5%/4-10%/85-95%, and the sum of the mass percentages of the three is 100%.
所述催化涂层与所述载体的质量百分比为15~30%/85~70%,两者的质量百分比之和为100%。The mass percentage of the catalytic coating and the carrier is 15-30%/85-70%, and the sum of the mass percentages of the two is 100%.
本发明中提出了上述基于高分散钙钛矿催化成分的柴油机用催化剂的制备方法,包括以下步骤:The present invention proposes a method for preparing the above-mentioned diesel engine catalyst based on highly dispersed perovskite catalytic components, which includes the following steps:
步骤1、催化剂组成设计:依据所述各组元配比,分别设计出以下比例:主催化活性成分中LaxCe1-xMnyBi1-yO3型钙钛矿和MoO3的质量百分比,LaxCe1-xMnyBi1-yO3型钙钛矿中La元素和Ce元素的摩尔百分比、Mn元素和Bi元素的摩尔百分比,助催化剂中CeO2和ZrO2的质量百分比,γ-Al2O3涂层辅料中纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3的质量百分比,所述主催化活性成分、助催化剂以及涂层辅料的质量百分比,以及计划配置涂层浆液可生成催化涂层的质量;Step 1. Catalyst composition design: Based on the above-mentioned component ratios, design the following proportions: the mass of La x Ce 1-x Mn y Bi 1-y O 3 type perovskite and MoO 3 in the main catalytic active ingredients Percent, La x Ce 1-x Mn y Bi 1-y O 3- type perovskite molar percentage of La element and Ce element, molar percentage of Mn element and Bi element, mass percentage of CeO 2 and ZrO 2 in the cocatalyst , the mass percentage of pure γ-Al 2 O 3 powder and γ-Al 2 O 3 converted from aluminum sol in the γ-Al 2 O 3 coating auxiliary materials, the main catalytic active component, co-catalyst and coating The mass percentage of auxiliary materials, and the mass of the catalytic coating that can be produced by the planned configuration of the coating slurry;
步骤2、LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板制备:依据步骤1中设计各组元的比例以及计划配置涂层浆液可生成催化涂层的质量,计算出主催化活性成分中LaxCe1- xMnyBi1-yO3型钙钛矿纳米颗粒模板的质量以及LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板中La、Ce、Mn及Bi元素的摩尔数;Step 2. La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template preparation: According to the proportion of each component designed in step 1 and the planned configuration of the coating slurry, the quality of the catalytic coating can be generated, Calculate the mass of the La x Ce 1- x Mn y Bi 1-y O 3 type perovskite nanoparticle template in the main catalytic active component and the La The number of moles of La, Ce, Mn and Bi elements in the particle template;
结合每433.0g La(NO3)3·6H2O制备1mol La、每434.1g Ce(NO3)3·6H2O制备1molCe、每173.0g Mn(CH3COO)2制备1mol Mn、每485.1g Bi(NO3)3·5H2O制备1mol Bi、以及LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板中La、Ce、Mn及Bi元素的摩尔数之和与所用葡萄糖的摩尔数之比为1:1~2的比例,以及每摩尔葡萄糖重180.2g的换算比例计算出制备所述LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板所用La(NO3)3·6H2O、Ce(NO3)3·6H2O、Mn(CH3COO)2、Bi(NO3)3·5H2O和葡萄糖的质量;称取已确定质量的La(NO3)3·6H2O、Ce(NO3)3·6H2O、Mn(CH3COO)2、Bi(NO3)3·5H2O、葡糖糖以及质量介于La(NO3)3·6H2O、Ce(NO3)3·6H2O、Mn(CH3COO)2及Bi(NO3)3·5H2O质量之和的0.8~1.5倍范围内且D50粒径不超过500nm的炭黑,将上述6种原料一起加入按照1g炭黑对应30~50mL去离子水比例称取的去离子水中,超声波振荡6~8h,然后在超声波振荡的同时加热所述6种原料与去离子水的混合物,使得所述混合物在6~8h后蒸干,成为湿凝胶;再将所述湿凝胶在80~110℃下干燥6~12h,得到干凝胶;将所述干凝胶在马弗炉中以3℃/min的速率升温到400℃并保持2h,然后再以10℃/min的速率升温到700~800℃,煅烧3~4h,制得LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板;Combine every 433.0g La(NO 3 ) 3 ·6H 2 O to prepare 1 mol of La, every 434.1g of Ce(NO 3 ) 3 ·6H 2 O to prepare 1 mol of Ce, every 173.0g of Mn(CH 3 COO) 2 to prepare 1 mol of Mn, and every 485.1 g Bi(NO 3 ) 3 ·5H 2 O to prepare 1 mol Bi, and the number of moles of La, Ce, Mn and Bi elements in the La x Ce 1-x Mn y Bi 1-y O 3- type perovskite nanoparticle template The preparation of the La The mass of La(NO 3 ) 3 ·6H 2 O, Ce(NO 3 ) 3 ·6H 2 O, Mn(CH 3 COO) 2 , Bi(NO 3 ) 3 ·5H 2 O and glucose used in the mineral nanoparticle template; Weigh the determined masses of La(NO 3 ) 3 ·6H 2 O, Ce(NO 3 ) 3 ·6H 2 O, Mn(CH 3 COO) 2 , Bi(NO 3 ) 3 ·5H 2 O, and glucose. And the mass is between 0.8 and 0.8 of the sum of the masses of La(NO 3 ) 3 ·6H 2 O, Ce(NO 3 ) 3 ·6H 2 O, Mn(CH 3 COO) 2 and Bi(NO 3 ) 3 ·5H 2 O For carbon black within the range of 1.5 times and with a D50 particle size not exceeding 500nm, add the above 6 raw materials together into deionized water weighed according to the ratio of 1g carbon black to 30~50mL deionized water, oscillate ultrasonic for 6~8 hours, and then The mixture of the six raw materials and deionized water is heated while ultrasonic oscillation, so that the mixture is evaporated to dryness after 6 to 8 hours and becomes a wet gel; then the wet gel is dried at 80 to 110°C for 6 to 12h, obtain the xerogel; heat the xerogel to 400°C at a rate of 3°C/min in a muffle furnace and keep it for 2h, then heat it up to 700~800°C at a rate of 10°C/min, and calcine In 3 to 4 hours, the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template is obtained;
步骤3、主催化活性成分的制备:依据步骤1中设计各组元的比例以及计划配置涂层浆液可生成催化涂层的质量,计算出所述主催化活性成分中MoO3的质量;Step 3. Preparation of the main catalytic active component: According to the proportion of each component designed in step 1 and the mass of the catalytic coating that can be generated by the planned configuration of the coating slurry, calculate the mass of MoO 3 in the main catalytic active component;
结合每196.0g(NH4)2MoO4制备144.0g MoO3的换算比例计算出制备所述主催化活性成分所需要(NH4)2MoO4的质量;称取已确定质量的(NH4)2MoO4以及步骤2制备获得的LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板,将所述(NH4)2MoO4和LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板加入按照1g(NH4)2MoO4对应50~500ml去离子水的比例称取的去离子水中,超声波振荡形成浆状物;采用NaOH或者HNO3调节所述浆状物的pH值处于4~6的范围内,并将所述浆状物在研磨机上研磨至D50粒径处于800~1000nm范围内,再在超声波振荡的同时加热所述研磨后的浆状物,使得所述浆状物在4~8h后蒸干,成为固体;将所述蒸干后的固体在80~110℃下干燥6~12h,再在350℃下预烧2h,500~550℃下煅烧2~3h,煅烧后获得的粉末状和块状固体的LaxCe1-xMnyBi1-yO3钙钛矿-MoO3复合催化材料纳米颗粒即为催化剂的主催化活性成分;Calculate the mass of (NH 4 ) 2 MoO 4 required to prepare the main catalytic active component by combining the conversion ratio of preparing 144.0g MoO 3 per 196.0g (NH 4 ) 2 MoO 4 ; weigh the determined mass of (NH 4 ) 2 MoO 4 and the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template prepared in step 2, combine the (NH 4 ) 2 MoO 4 and La x Ce 1-x Mn y The Bi 1-y O 3 type perovskite nanoparticle template is added to deionized water weighed according to the ratio of 1g (NH 4 ) 2 MoO 4 to 50 to 500 ml of deionized water, and oscillated with ultrasonic waves to form a slurry; use NaOH or HNO 3. Adjust the pH value of the slurry to be in the range of 4 to 6, and grind the slurry on a grinder until the D 50 particle size is in the range of 800 to 1000 nm, and then heat the slurry while oscillating with ultrasonic waves. Grind the slurry so that the slurry is evaporated to dryness after 4 to 8 hours to become a solid; the evaporated solid is dried at 80 to 110°C for 6 to 12 hours, and then pre-calcinated at 350°C 2h, calcined at 500~550℃ for 2~3h, the powdered and massive solid La x Ce 1-x Mn y Bi 1-y O 3 perovskite-MoO 3 composite catalytic material nanoparticles obtained after calcination are The main catalytically active component of the catalyst;
步骤4、涂层浆液制备:依据步骤1中设计各组元的比例以及计划配置涂层浆液可生成催化涂层的质量,计算出制备催化涂层所需要CeO2和ZrO2的质量以及γ-Al2O3涂层辅料的质量;Step 4. Preparation of coating slurry: Based on the proportion of each component designed in step 1 and the mass of the catalytic coating produced by the planned configuration of the coating slurry, calculate the mass of CeO 2 and ZrO 2 and γ- The quality of Al 2 O 3 coating auxiliary materials;
结合每434.2g Ce(NO3)3·6H2O制备172.1g CeO2、每429.3g Zr(NO3)4·5H2O制备123.2g ZrO2以及铝溶胶中Al2O3的质量百分比计算出制备涂层浆液所需要Ce(NO3)3·6H2O、Zr(NO3)4·5H2O以及铝溶胶的质量;此外,还按照每100g催化涂层需要5~15g平均分子量为20000的聚乙二醇的比例,计算出制备催化涂层所需消耗聚乙二醇的质量;称取已确定质量的Ce(NO3)3·6H2O、Zr(NO3)4·5H2O、纯质γ-Al2O3粉体、铝溶胶、分子量为20000的聚乙二醇以及步骤3制备获得的LaxCe1-xMnyBi1-yO3钙钛矿-MoO3复合催化材料纳米颗粒,将上述6种原料一起加入到质量相当于所计划制备催化涂层质量5~15倍质量的去离子水中,超声波振荡形成浆状物;用NaOH或者HNO3调节所述浆状物的pH值处于5~7的范围内,并将所述浆状物在研磨机上研磨至D50粒径处于800~1000nm范围内,再将研磨后的浆状物在50~70℃下搅拌48~72h,即得到涂层浆液;Calculation of the mass percentage of Al 2 O 3 in aluminum sol based on the preparation of 172.1g CeO 2 per 434.2g Ce(NO 3 ) 3 ·6H 2 O, the preparation of 123.2g ZrO 2 per 429.3g Zr(NO 3 ) 4 ·5H 2 O Calculate the mass of Ce(NO 3 ) 3 ·6H 2 O, Zr(NO 3 ) 4 ·5H 2 O and aluminum sol required to prepare the coating slurry; in addition, the average molecular weight of 5 to 15 g per 100 g of catalytic coating is 20000 polyethylene glycol ratio, calculate the mass of polyethylene glycol required to prepare the catalytic coating; weigh the determined masses of Ce(NO 3 ) 3 ·6H 2 O and Zr(NO 3 ) 4 ·5H 2 O, pure γ-Al 2 O 3 powder, aluminum sol, polyethylene glycol with a molecular weight of 20000, and the La x Ce 1-x Mn y Bi 1-y O 3 perovskite-MoO prepared in step 3 3 Composite catalytic material nanoparticles, add the above 6 raw materials together into deionized water with a mass equivalent to 5 to 15 times the mass of the planned catalytic coating, oscillate with ultrasonic waves to form a slurry; adjust the above with NaOH or HNO 3 The pH value of the slurry is in the range of 5 to 7, and the slurry is ground on a grinder until the D 50 particle size is in the range of 800 to 1000 nm, and then the ground slurry is ground at 50 to 70°C Stir for 48 to 72 hours to obtain the coating slurry;
步骤5、将催化涂层涂敷于载体上:设计所要涂敷催化涂层的所述载体质量;称取已确定质量的所述载体,将所述载体浸没于50~70℃的所述涂层浆液中,并保证所述载体的上端面略高于浆液液面;待浆液自然提升充满所述载体的所有孔道后,将所述载体从浆液中取出,吹掉孔道内残留流体,在80~110℃下干燥4~16h,再在500~600℃下焙烧2~4h;重复上述浸渍、干燥和焙烧过程2~3次,即得到基于高分散钙钛矿催化成分的柴油机用催化剂。Step 5. Coat the catalytic coating on the carrier: design the mass of the carrier to be coated with the catalytic coating; weigh the carrier with the determined mass, and immerse the carrier in the coating at 50-70°C. layer of slurry, and ensure that the upper end surface of the carrier is slightly higher than the slurry level; after the slurry naturally lifts and fills all the pores of the carrier, the carrier is taken out of the slurry, and the residual fluid in the pores is blown away. At 80 Dry at ~110°C for 4 to 16 hours, then roast at 500 to 600°C for 2 to 4 hours; repeat the above impregnation, drying and roasting processes 2 to 3 times to obtain a diesel engine catalyst based on highly dispersed perovskite catalytic components.
将本发明制备所得的基于高分散钙钛矿催化成分的柴油机用催化剂封装为柴油机氧化催化器(DOC),将所述柴油机氧化催化器安装于柴油机排气道中,实现柴油机排气中PM、HC及CO的高效氧化净化。The diesel engine catalyst based on the highly dispersed perovskite catalytic component prepared by the present invention is packaged as a diesel oxidation catalytic converter (DOC), and the diesel oxidation catalytic converter is installed in the diesel engine exhaust passage to achieve PM and HC removal in the diesel engine exhaust. and efficient oxidation and purification of CO.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
基于炭黑吸附基质的先吸附再凝胶制备方法不仅操作简便、节省制备时间和成本,而且能够显著提高钙钛矿前驱体的分散效果,有利于制备尺度更小、粒径均匀、结构规整的LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒。而以LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒作为超细颗粒模板,可以进一步制备高分散度的LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒。LaxCe1-xMnyBi1-yO3钙钛矿-MoO3复合催化材料纳米颗粒主催化活性成分既具有抗硫、抗结焦、耐热、低成本优势,又能够显著增加单位质量催化活性点位的数量以及提高催化活性点位的催化活性,从而改善DOC整体的污染物净化性能,实现DOC中贵金属材料的完全替代,显著降低了催化剂的原料成本。此外,LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒主催化活性成分中LaxCe1-xMnyBi1-yO3钙钛矿与MoO3的同时添加可以产生协同增效作用,进一步提高催化剂整体的催化活性以及扩展高活性温度窗口。The preparation method of first adsorbing and then gelling based on carbon black adsorption matrix is not only easy to operate, saves preparation time and cost, but also can significantly improve the dispersion effect of perovskite precursor, which is beneficial to the preparation of smaller scale, uniform particle size and regular structure. La x Ce 1-x Mn y Bi 1-y O 3- type perovskite nanoparticles. Using La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticles as ultrafine particle templates, highly dispersed La x Ce 1-x Mn y Bi 1-y O 3 type can be further prepared Perovskite-MoO 3 composite catalytic material nanoparticles. The main catalytic active component of La x Ce 1-x Mn y Bi 1-y O 3 perovskite-MoO 3 composite catalytic material nanoparticles has the advantages of resistance to sulfur, anti-coking, heat resistance and low cost, and can significantly increase the unit mass. The number of catalytic active sites and the improvement of the catalytic activity of the catalytic active sites improve the overall pollutant purification performance of DOC, realize the complete replacement of precious metal materials in DOC, and significantly reduce the raw material cost of the catalyst. In addition, the main catalytic active component of the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles is La x Ce 1-x Mn y Bi 1-y O 3 perovskite. The simultaneous addition of MoO 3 can produce a synergistic effect, further improving the overall catalytic activity of the catalyst and expanding the high activity temperature window.
附图说明Description of the drawings
图1为柴油机排气PM、HC及CO净化性能发动机评价系统示意图。Figure 1 is a schematic diagram of the engine exhaust PM, HC and CO purification performance evaluation system.
其中:1-测功机;2-联轴器;3-试验柴油机;4-进气流量计;5-进气处理器;6-喷油器;7-燃油喷射控制系统;8-排气取样口A;9-温度传感器A;10-柴油机氧化催化器(DOC);11-温度传感器B;12-排气取样口B;13-选择性催化还原催化器;14-柴油机微粒捕集器;15-排气取样机构;16-发动机排气分析仪;17-尾气过滤器;18-气泵。Among them: 1-dynamometer; 2-coupling; 3-test diesel engine; 4-intake air flow meter; 5-intake processor; 6-injector; 7-fuel injection control system; 8-exhaust Sampling port A; 9-Temperature sensor A; 10-Diesel oxidation catalytic converter (DOC); 11-Temperature sensor B; 12-Exhaust gas sampling port B; 13-Selective catalytic reduction catalyst; 14-Diesel particulate trap ; 15-exhaust sampling mechanism; 16-engine exhaust analyzer; 17-exhaust gas filter; 18-air pump.
图2为利用所述柴油机排气PM、HC及CO净化性能发动机评价系统,在柴油机排气温度为300℃、空速为50000h-1时,实施例1~3所述催化剂对柴油机排气中PM、HC及CO的净化效率。Figure 2 is an engine evaluation system using the diesel engine exhaust PM, HC and CO purification performance. When the diesel engine exhaust temperature is 300°C and the air speed is 50000h -1 , the catalyst described in Examples 1 to 3 has a positive effect on the diesel engine exhaust gas. Purification efficiency of PM, HC and CO.
图3为利用所述柴油机排气PM、HC及CO净化性能发动机评价系统,在柴油机排气温度为400℃、空速为100000h-1时,实施例1~3所述催化剂对柴油机排气中PM、HC及CO的净化效率。Figure 3 is an engine evaluation system using the diesel engine exhaust PM, HC and CO purification performance. When the diesel engine exhaust temperature is 400°C and the air speed is 100000h -1 , the catalyst described in Examples 1 to 3 has a positive effect on the diesel engine exhaust gas. Purification efficiency of PM, HC and CO.
图4是利用所述柴油机排气PM、HC及CO净化性能发动机评价系统,在欧洲稳态试验循环(ESC)试验时,实施例1~3所述催化剂对柴油机排气中PM、HC及CO的净化效率。Figure 4 shows the use of the diesel engine exhaust PM, HC and CO purification performance engine evaluation system during the European Steady State Test Cycle (ESC) test. purification efficiency.
具体实施方式Detailed ways
下面结合附图及具体实施例对本发明做进一步的说明,但下述实施例绝非对本发明有任何限制。The present invention will be further described below in conjunction with the accompanying drawings and specific examples, but the following examples in no way limit the present invention.
本发明基于高分散钙钛矿催化成分的柴油机用催化剂,包括涂敷于载体上的催化涂层,所述载体为400目堇青石蜂窝陶瓷,所述催化涂层由主催化活性成分、助催化剂和涂层辅料组成;所述助催化剂由CeO2和ZrO2组成,所述涂层辅料由γ-Al2O3组成,各组分及其含量如下:The diesel engine catalyst based on highly dispersed perovskite catalytic components of the present invention includes a catalytic coating coated on a carrier. The carrier is a 400-mesh cordierite honeycomb ceramic. The catalytic coating is composed of a main catalytic active component and a cocatalyst. and coating auxiliary materials; the cocatalyst is composed of CeO 2 and ZrO 2 , and the coating auxiliary material is composed of γ-Al 2 O 3. Each component and its content is as follows:
(1)以LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒为主催化活性成分,且所述LaxCe1-xMnyBi1-yO3型钙钛矿和MoO3的质量百分比为:60~90%/40~10%,质量百分比之和为100%。(1) La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles are used as the main catalytically active component, and the La x Ce 1-x Mn y Bi 1- The mass percentage of yO3 type perovskite and MoO3 is: 60~90%/40~10%, and the sum of the mass percentages is 100%.
(2)所述LaxCe1-xMnyBi1-yO3型钙钛矿中,La元素和Ce元素的摩尔百分比为:60~90%/10~40%,摩尔百分比之和为100%;Mn元素和Bi元素的摩尔百分比为:50~80%/20~50%,摩尔百分比之和为100%;且La元素和Ce元素的摩尔数之和与Mn元素和Bi元素的摩尔数之和相等;所述LaxCe1-xMnyBi1-yO3型钙钛矿在催化剂中的作用不仅是主催化活性成分中的一种组分,同时还是制备LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒的纳米颗粒模板。(2) In the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite, the molar percentage of La element and Ce element is: 60~90%/10~40%, and the sum of molar percentages is 100%; the mole percentage of Mn element and Bi element is: 50~80%/20~50%, the sum of mole percentages is 100%; and the sum of the moles of La element and Ce element is equal to the mole of Mn element and Bi element The sum of the numbers is equal; the role of the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite in the catalyst is not only a component of the main catalytic active component, but also a component for preparing La x Ce 1 -x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles nanoparticle template.
(3)以CeO2和ZrO2为助催化剂,且所述CeO2和ZrO2的质量百分比为:70~90%/10~30%,质量百分比之和为100%。(3) CeO 2 and ZrO 2 are used as cocatalysts, and the mass percentages of CeO 2 and ZrO 2 are: 70-90%/10-30%, and the sum of the mass percentages is 100%.
(4)以γ-Al2O3为涂层辅料,且所述γ-Al2O3分别来自纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3,所述纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3的质量百分比为:80~90%/10~20%,质量百分比之和为100%。(4) Use γ-Al 2 O 3 as a coating auxiliary material, and the γ-Al 2 O 3 comes from pure γ-Al 2 O 3 powder and γ-Al 2 O 3 converted from aluminum sol, The mass percentage of the pure γ-Al 2 O 3 powder and the γ-Al 2 O 3 converted from the aluminum sol is: 80-90%/10-20%, and the sum of the mass percentages is 100%.
(5)以所述主催化活性成分、助催化剂及涂层辅料组成本发明催化剂的催化涂层,且所述主催化活性成分、助催化剂及涂层辅料的质量百分比为:1~5%/4~10%/85~95%,质量百分比之和为100%。(5) The catalytic coating of the catalyst of the present invention is composed of the main catalytic active component, co-catalyst and coating auxiliary materials, and the mass percentage of the main catalytic active component, co-catalyst and coating auxiliary materials is: 1 to 5%/ 4~10%/85~95%, the sum of mass percentages is 100%.
(6)以所述催化涂层与400目堇青石蜂窝陶瓷组成本发明催化剂,且所述400目堇青石蜂窝陶瓷为本发明催化剂的载体,并需要将所述催化涂层涂敷于所述载体上,且所述催化涂层与所述载体的质量百分比范围为:15~30%/85~70%,质量百分比之和为100%。(6) The catalyst of the present invention is composed of the catalytic coating and 400 mesh cordierite honeycomb ceramics, and the 400 mesh cordierite honeycomb ceramic is the carrier of the catalyst of the present invention, and the catalytic coating needs to be coated on the On the carrier, the mass percentage range of the catalytic coating and the carrier is: 15-30%/85-70%, and the sum of the mass percentages is 100%.
本发明提出的一种基于高分散钙钛矿催化成分的柴油机用催化剂,适用于柴油机排气中PM、HC及CO净化用、以炭黑为吸附基质、采取先吸附再凝胶步骤制备的LaxCe1- xMnyBi1-yO3型钙钛矿纳米颗粒、以所述LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒为模板制备LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒、以及以所述LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒为主催化活性成分、以CeO2和ZrO2为助催化剂、以γ-Al2O3为涂层辅料,具体工艺主要包括以下5个步骤:The invention proposes a catalyst for diesel engines based on highly dispersed perovskite catalytic components, which is suitable for the purification of PM, HC and CO in diesel engine exhaust. It uses carbon black as the adsorption matrix and adopts the steps of first adsorption and then gelation to prepare La. x Ce 1- x Mn y Bi 1-y O 3 type perovskite nanoparticles, using the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticles as templates to prepare La x Ce 1 -x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles, and the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalysis The material nanoparticles are the main catalytically active component, CeO 2 and ZrO 2 are used as cocatalysts, and γ-Al 2 O 3 is used as coating auxiliary materials. The specific process mainly includes the following 5 steps:
(1)催化剂组成设计;(1) Catalyst composition design;
(2)LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板制备;(2) La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template preparation;
(3)主催化活性成分的制备;(3) Preparation of main catalytic active ingredients;
(4)涂层浆液制备;(4) Coating slurry preparation;
(5)将催化涂层涂敷于载体上。(5) Coat the catalytic coating on the carrier.
以下通过具体的实施例并结合附图,对本发明技术方案作进一步的描述。需要说明的是所述实施例是叙述性的,而非限定性的,本发明所涵盖的内容并不限于下述实施例。The technical solution of the present invention will be further described below through specific embodiments and in conjunction with the accompanying drawings. It should be noted that the embodiments are illustrative rather than restrictive, and the content covered by the present invention is not limited to the following embodiments.
基于高分散钙钛矿催化成分的柴油机用催化剂包括:LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒、CeO2、ZrO2、γ-Al2O3以及400目堇青石蜂窝陶瓷。Diesel engine catalysts based on highly dispersed perovskite catalytic components include: La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles, CeO 2 , ZrO 2 , γ-Al 2 O 3 and 400 mesh cordierite honeycomb ceramics.
以LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒为主催化活性成分,且所述LaxCe1-xMnyBi1-yO3型钙钛矿和MoO3的质量百分比为:60~90%/40~10%,质量百分比之和为100%。La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles are used as the main catalytically active component, and the La x Ce 1-x Mn y Bi 1-y O 3 The mass percentages of type perovskite and MoO 3 are: 60~90%/40~10%, and the sum of the mass percentages is 100%.
所述LaxCe1-xMnyBi1-yO3型钙钛矿中,La元素和Ce元素的摩尔百分比为:60~90%/10~40%,摩尔百分比之和为100%;Mn元素和Bi元素的摩尔百分比为:50~80%/20~50%,摩尔百分比之和为100%;且La元素和Ce元素的摩尔数之和与Mn元素和Bi元素的摩尔数之和相等;所述LaxCe1-xMnyBi1-yO3型钙钛矿在催化剂中的作用不仅是主催化活性成分中的一种组分,同时还是制备LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒的纳米颗粒模板。In the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite, the mole percentages of La element and Ce element are: 60~90%/10~40%, and the sum of the mole percentages is 100%; The mole percentages of Mn element and Bi element are: 50~80%/20~50%, and the sum of mole percentages is 100%; and the sum of the moles of La element and Ce element is the sum of the moles of Mn element and Bi element. Equal; the role of the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite in the catalyst is not only a component of the main catalytic active component, but also a component for preparing La x Ce 1-x Mn Nanoparticle template for y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles.
以CeO2和ZrO2为助催化剂,且所述CeO2和ZrO2的质量百分比为:70~90%/10~30%,质量百分比之和为100%。CeO 2 and ZrO 2 are used as cocatalysts, and the mass percentages of CeO 2 and ZrO 2 are: 70-90%/10-30%, and the sum of the mass percentages is 100%.
以γ-Al2O3为涂层辅料,且所述γ-Al2O3分别来自纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3,所述纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3的质量百分比为:80~90%/10~20%,质量百分比之和为100%。γ-Al 2 O 3 is used as a coating auxiliary material, and the γ-Al 2 O 3 comes from pure γ-Al 2 O 3 powder and γ-Al 2 O 3 converted from aluminum sol. The mass percentage of γ-Al 2 O 3 powder and γ-Al 2 O 3 converted from aluminum sol is: 80~90%/10~20%, and the sum of the mass percentages is 100%.
以所述主催化活性成分、助催化剂及涂层辅料组成本发明催化剂的催化涂层,且所述主催化活性成分、助催化剂及涂层辅料的质量百分比为:1~5%/4~10%/85~95%,质量百分比之和为100%。The catalytic coating of the catalyst of the present invention is composed of the main catalytic active component, co-catalyst and coating auxiliary materials, and the mass percentage of the main catalytic active component, co-catalyst and coating auxiliary materials is: 1~5%/4~10 %/85~95%, the sum of mass percentages is 100%.
以所述催化涂层与400目堇青石蜂窝陶瓷组成本发明催化剂,且所述400目堇青石蜂窝陶瓷为本发明催化剂的载体,并需要将所述催化涂层涂敷于所述载体上,且所述催化涂层与所述载体的质量百分比范围为:15~30%/85~70%,质量百分比之和为100%。The catalyst of the present invention is composed of the catalytic coating and 400 mesh cordierite honeycomb ceramics, and the 400 mesh cordierite honeycomb ceramic is the carrier of the catalyst of the present invention, and the catalytic coating needs to be coated on the carrier, And the mass percentage range of the catalytic coating and the carrier is: 15-30%/85-70%, and the sum of the mass percentages is 100%.
以下通过具体实施例详细说明本发明催化剂的制备方法。The preparation method of the catalyst of the present invention is described in detail below through specific examples.
实施例1Example 1
(1)催化剂组成设计(1) Catalyst composition design
分别设计出以下比例:LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒中LaxCe1-xMnyBi1-yO3型钙钛矿和MoO3的质量百分比为:90%/10%,LaxCe1-xMnyBi1-yO3型钙钛矿中La元素和Ce元素的摩尔百分比为:60%/40%、Mn元素和Bi元素的摩尔百分比为:50%/50%,助催化剂中CeO2和ZrO2的质量百分比为:70%/30%,γ-Al2O3涂层辅料中纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3的质量百分比为:80%/20%,所述主催化活性成分、助催化剂以及涂层辅料的质量百分比为:1%/4%/95%,以及计划配置涂层浆液可生成催化涂层2000g。The following ratios are designed respectively: La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles La x Ce 1-x Mn y Bi 1-y O 3 type perovskite The mass percentage of ore and MoO 3 is: 90%/10%, the mole percentage of La element and Ce element in La x Ce 1-x Mn y Bi 1-y O 3 type perovskite is: 60%/40%, The molar percentage of Mn element and Bi element is: 50%/50%, the mass percentage of CeO 2 and ZrO 2 in the cocatalyst is: 70%/30%, pure γ-Al in γ-Al 2 O 3 coating accessories The mass percentage of 2 O 3 powder and γ-Al 2 O 3 converted from aluminum sol is: 80%/20%, and the mass percentage of the main catalytic active component, co-catalyst and coating auxiliary materials is: 1%/ 4%/95%, and the planned configuration of coating slurry can produce 2000g of catalytic coating.
(2)LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板制备(2) La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template preparation
称取14.6g La(NO3)3·6H2O、9.8g Ce(NO3)3·6H2O、4.9g Mn(CH3COO)2、13.7g Bi(NO3)3·5H2O、40g葡萄糖以及60g中位粒径(D50粒径)为452nm的炭黑,将所述6种原料加入3L去离子水中,超声波振荡6h,然后在超声波振荡的同时加热所述6种原料及去离子水的混合物,使得所述混合物在8h后蒸干,成为湿凝胶;再将所述湿凝胶在80℃下干燥12h,得到干凝胶;将所述干凝胶在马弗炉中以3℃/min的速率升温到400℃并保持2h,然后再以10℃/min的速率升温到800℃煅烧3h,即可制得LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板。Weigh 14.6g La(NO 3 ) 3 ·6H 2 O, 9.8g Ce(NO 3 ) 3 ·6H 2 O, 4.9g Mn(CH 3 COO) 2 , 13.7g Bi(NO 3 ) 3 ·5H 2 O , 40g glucose and 60g carbon black with a median particle size (D 50 particle size) of 452nm, add the 6 raw materials to 3L deionized water, oscillate ultrasonic for 6 hours, and then heat the 6 raw materials and the The mixture of deionized water was evaporated to dryness after 8 hours to form a wet gel; the wet gel was then dried at 80°C for 12 hours to obtain a dry gel; the dry gel was heated in a muffle furnace The temperature is raised to 400°C at a rate of 3°C/min and maintained for 2 hours, and then heated to 800°C for 3 hours at a rate of 10°C/min to prepare La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template.
(3)主催化活性成分的制备(3) Preparation of main catalytic active ingredients
称取2.7g(NH4)2MoO4以及步骤(2)制备获得的LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板,将所述2种原料加入1350ml去离子水中,超声波振荡形成浆状物;采用NaOH或者HNO3调节所述浆状物的pH值处于4~6的范围内,并将所述浆状物在研磨机上研磨至D50粒径处于800~1000nm范围内,再在超声波振荡的同时加热所述研磨后的浆状物,使得所述浆状物在8h后蒸干,成为固体。将所述蒸干后的固体在80℃下干燥12h,再在350℃下预烧2h,500℃下煅烧3h,成为粉末状和块状固体。所述煅烧后获得的粉末状和块状固体即为LaxCe1-xMnyBi1- yO3型钙钛矿-MoO3复合催化材料纳米颗粒。Weigh 2.7g (NH 4 ) 2 MoO 4 and the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template prepared in step (2), and add the two raw materials to 1350 ml. In ionized water, ultrasonic oscillation forms a slurry; use NaOH or HNO 3 to adjust the pH value of the slurry in the range of 4 to 6, and grind the slurry on a grinder until the D 50 particle size is 800 ~1000nm range, and then heat the ground slurry while ultrasonic oscillation, so that the slurry evaporates to dryness and becomes solid after 8 hours. The evaporated solid was dried at 80°C for 12 hours, then pre-calcinated at 350°C for 2 hours, and calcined at 500°C for 3 hours to become powdery and block solids. The powdery and massive solids obtained after the calcination are La x Ce 1-x Mny Bi 1- y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles.
(4)涂层浆液制备(4) Coating slurry preparation
称取141.3g Ce(NO3)3·6H2O、83.6g Zr(NO3)4·5H2O、1520g纯质γ-Al2O3粉体、1900g Al2O3质量含量为20%的铝溶胶、300g分子量为20000的聚乙二醇以及步骤(3)制备获得的LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒,将所述6种原料一起加入10kg去离子水中,超声波振荡形成浆状物;采用NaOH或者HNO3调节所述浆状物的pH值处于5~7的范围内,并将所述浆状物在研磨机上研磨至D50粒径处于800~1000nm范围内,再将研磨后的浆状物在70℃下搅拌48h,即得到涂层浆液。Weigh 141.3g Ce(NO 3 ) 3 ·6H 2 O, 83.6g Zr(NO 3 ) 4 ·5H 2 O, 1520g pure γ-Al 2 O 3 powder, and 1900g Al 2 O 3. The mass content is 20%. of aluminum sol, 300g of polyethylene glycol with a molecular weight of 20,000 and the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles prepared in step (3), and the The above 6 kinds of raw materials are added to 10kg of deionized water together, and ultrasonic vibration is used to form a slurry; use NaOH or HNO 3 to adjust the pH value of the slurry to be in the range of 5 to 7, and grind the slurry on a grinder Grind until the D 50 particle size is in the range of 800 to 1000 nm, and then stir the ground slurry at 70°C for 48 hours to obtain a coating slurry.
(5)将催化涂层涂敷于载体上(5) Apply the catalytic coating to the carrier
称取1kg所述载体,将所述载体浸没于70℃的所述涂层浆液中,并保证所述载体的上端面略高于浆液液面;待浆液自然提升充满所述载体的所有孔道后,将所述载体从浆液中取出,吹掉孔道内残留流体,在110℃下干燥4h,再在500℃下焙烧4h。重复上述浸渍、干燥和焙烧过程3次,即得到基于高分散钙钛矿催化成分的柴油机用催化剂。Weigh 1kg of the carrier, immerse the carrier in the coating slurry at 70°C, and ensure that the upper end surface of the carrier is slightly higher than the slurry level; wait for the slurry to naturally rise and fill all the pores of the carrier , take out the carrier from the slurry, blow off the residual fluid in the channels, dry at 110°C for 4h, and then bake at 500°C for 4h. Repeat the above impregnation, drying and roasting process three times to obtain a diesel engine catalyst based on highly dispersed perovskite catalytic components.
实施例2Example 2
(1)催化剂组成设计(1) Catalyst composition design
分别设计出以下比例:LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒中LaxCe1-xMnyBi1-yO3型钙钛矿和MoO3的质量百分比为:60%/40%,LaxCe1-xMnyBi1-yO3型钙钛矿中La元素和Ce元素的摩尔百分比为:90%/10%、Mn元素和Bi元素的摩尔百分比为:80%/20%,助催化剂中CeO2和ZrO2的质量百分比为:90%/10%,γ-Al2O3涂层辅料中纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3的质量百分比为:90%/10%,所述主催化活性成分、助催化剂以及涂层辅料的质量百分比为:5%/10%/85%,以及计划配置涂层浆液可生成催化涂层2000g。The following ratios are designed respectively: La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles La x Ce 1-x Mn y Bi 1-y O 3 type perovskite The mass percentage of ore and MoO 3 is: 60%/40%, the mole percentage of La element and Ce element in La x Ce 1-x Mn y Bi 1-y O 3 type perovskite is: 90%/10%, The molar percentage of Mn element and Bi element is: 80%/20%, the mass percentage of CeO 2 and ZrO 2 in the cocatalyst is: 90%/10%, pure γ-Al in γ-Al 2 O 3 coating accessories The mass percentage of 2 O 3 powder and γ-Al 2 O 3 converted from aluminum sol is: 90%/10%, and the mass percentage of the main catalytic active component, co-catalyst and coating auxiliary materials is: 5%/ 10%/85%, and the planned configuration of coating slurry can produce 2000g of catalytic coating.
(2)LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板制备(2) La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template preparation
称取85.7g La(NO3)3·6H2O、9.6g Ce(NO3)3·6H2O、30.4g Mn(CH3COO)2、21.3g Bi(NO3)3·5H2O、80g葡萄糖以及120g中位粒径(D50粒径)为373nm的炭黑,将所述6种原料加入3.6L去离子水中,超声波振荡8h,然后在超声波振荡的同时加热所述6种原料及去离子水的混合物,使得所述混合物在6h后蒸干,成为湿凝胶;再将所述湿凝胶在80℃下干燥12h,得到干凝胶;将所述干凝胶在马弗炉中以3℃/min的速率升温到400℃并保持2h,然后再以10℃/min的速率升温到700℃煅烧4h,即可制得LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板。Weigh 85.7g La(NO 3 ) 3 ·6H 2 O, 9.6g Ce(NO 3 ) 3 ·6H 2 O, 30.4g Mn(CH 3 COO) 2 , 21.3g Bi(NO 3 ) 3 ·5H 2 O , 80g glucose and 120g carbon black with a median particle size (D 50 particle size) of 373nm, add the 6 raw materials to 3.6L deionized water, oscillate ultrasonic for 8 hours, and then heat the 6 raw materials while oscillating ultrasonic and deionized water, so that the mixture is evaporated to dryness after 6 hours to become a wet gel; then the wet gel is dried at 80°C for 12 hours to obtain a dry gel; the dry gel is dried in a muffle Raise the temperature in the furnace to 400°C at a rate of 3°C/min and maintain it for 2 hours, and then raise the temperature to 700°C for 4 hours at a rate of 10°C/min to prepare La x Ce 1-x Mn y Bi 1-y O Type 3 perovskite nanoparticle template.
(3)主催化活性成分的制备(3) Preparation of main catalytic active ingredients
称取54.4g(NH4)2MoO4以及步骤(2)制备获得的LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板,将所述2种原料加入3000ml去离子水中,超声波振荡形成浆状物;采用NaOH或者HNO3调节所述浆状物的pH值处于4~6的范围内,并将所述浆状物在研磨机上研磨至D50粒径处于800~1000nm范围内,再在超声波振荡的同时加热所述研磨后的浆状物,使得所述浆状物在4h后蒸干,成为固体。将所述蒸干后的固体在110℃下干燥6h,再在350℃下预烧2h,550℃下煅烧2h,成为粉末状和块状固体。所述煅烧后获得的粉末状和块状固体即为LaxCe1- xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒。Weigh 54.4g (NH 4 ) 2 MoO 4 and the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template prepared in step (2), and add 3000 ml of the two raw materials. In ionized water, ultrasonic oscillation forms a slurry; use NaOH or HNO 3 to adjust the pH value of the slurry in the range of 4 to 6, and grind the slurry on a grinder until the D 50 particle size is 800 ~1000nm range, and then heat the ground slurry while ultrasonic oscillation, so that the slurry evaporates to dryness and becomes a solid after 4 hours. The evaporated solid was dried at 110°C for 6 hours, then pre-calcinated at 350°C for 2 hours, and then calcined at 550°C for 2 hours to become powdery and block solids. The powdery and massive solids obtained after the calcination are La x Ce 1- x Mny Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles.
(4)涂层浆液制备(4) Coating slurry preparation
称取454.1g Ce(NO3)3·6H2O、69.7g Zr(NO3)4·5H2O、1530g纯质γ-Al2O3粉体、850g Al2O3质量含量为20%的铝溶胶、100g分子量为20000的聚乙二醇以及步骤(3)制备获得的LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒,将所述6种原料一起加入30kg去离子水中,超声波振荡形成浆状物;采用NaOH或者HNO3调节所述浆状物的pH值处于5~7的范围内,并将所述浆状物在研磨机上研磨至D50粒径处于800~1000nm范围内,再将研磨后的浆状物在50℃下搅拌72h,即得到涂层浆液。Weigh 454.1g Ce(NO 3 ) 3 ·6H 2 O, 69.7g Zr(NO 3 ) 4 ·5H 2 O, 1530g pure γ-Al 2 O 3 powder, and 850g Al 2 O 3. The mass content is 20%. Aluminum sol, 100g polyethylene glycol with a molecular weight of 20,000 and La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles prepared in step (3), and the The above 6 kinds of raw materials are added to 30kg of deionized water together, and ultrasonic oscillation is used to form a slurry; NaOH or HNO 3 is used to adjust the pH value of the slurry to be in the range of 5 to 7, and the slurry is placed on a grinder Grind until the D 50 particle size is in the range of 800 to 1000 nm, and then stir the ground slurry at 50°C for 72 hours to obtain a coating slurry.
(5)将催化涂层涂敷于载体上(5) Apply the catalytic coating to the carrier
称取1kg所述载体,将所述载体浸没于50℃的所述涂层浆液中,并保证所述载体的上端面略高于浆液液面;待浆液自然提升充满所述载体的所有孔道后,将所述载体从浆液中取出,吹掉孔道内残留流体,在80℃下干燥16h,再在600℃下焙烧2h。重复上述浸渍、干燥和焙烧过程2次,即得到基于高分散钙钛矿催化成分的柴油机用催化剂。Weigh 1kg of the carrier, immerse the carrier in the coating slurry at 50°C, and ensure that the upper end surface of the carrier is slightly higher than the slurry level; wait for the slurry to naturally rise and fill all the pores of the carrier , take out the carrier from the slurry, blow off the residual fluid in the channels, dry at 80°C for 16h, and then bake at 600°C for 2h. Repeat the above impregnation, drying and roasting process twice to obtain a diesel engine catalyst based on highly dispersed perovskite catalytic components.
实施例3Example 3
(1)催化剂组成设计(1) Catalyst composition design
分别设计出以下比例:LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒中LaxCe1-xMnyBi1-yO3型钙钛矿和MoO3的质量百分比为:80%/20%,LaxCe1-xMnyBi1-yO3型钙钛矿中La元素和Ce元素的摩尔百分比为:80%/20%、Mn元素和Bi元素的摩尔百分比为:60%/40%,助催化剂中CeO2和ZrO2的质量百分比为:80%/20%,γ-Al2O3涂层辅料中纯质γ-Al2O3粉体和由铝溶胶转化成的γ-Al2O3的质量百分比为:80%/20%,所述主催化活性成分、助催化剂以及涂层辅料的质量百分比为:3%/7%/90%,以及计划配置涂层浆液可生成催化涂层2000g。The following ratios are designed respectively: La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles La x Ce 1-x Mn y Bi 1-y O 3 type perovskite The mass percentage of ore and MoO 3 is: 80%/20%, the mole percentage of La element and Ce element in La x Ce 1-x Mn y Bi 1-y O 3 type perovskite is: 80%/20%, The molar percentage of Mn element and Bi element is: 60%/40%, the mass percentage of CeO 2 and ZrO 2 in the cocatalyst is: 80%/20%, pure γ-Al in γ-Al 2 O 3 coating auxiliary materials The mass percentage of 2 O 3 powder and γ-Al 2 O 3 converted from aluminum sol is: 80%/20%, and the mass percentage of the main catalytic active component, co-catalyst and coating auxiliary materials is: 3%/ 7%/90%, and the planned configuration of coating slurry can produce 2000g of catalytic coating.
(2)LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板制备(2) La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template preparation
称取54.7g La(NO3)3·6H2O、13.7g Ce(NO3)3·6H2O、16.4g Mn(CH3COO)2、30.7g Bi(NO3)3·5H2O、60g葡萄糖以及120g中位粒径(D50粒径)为373nm的炭黑,将所述6种原料加入4.8L去离子水中,超声波振荡7h,然后在超声波振荡的同时加热所述6种原料及去离子水的混合物,使得所述混合物在7h后蒸干,成为湿凝胶;再将所述湿凝胶在80℃下干燥12h,得到干凝胶;将所述干凝胶在马弗炉中以3℃/min的速率升温到400℃并保持2h,然后再以10℃/min的速率升温到800℃煅烧3h,即可制得LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板。Weigh 54.7g La(NO 3 ) 3 ·6H 2 O, 13.7g Ce(NO 3 ) 3 ·6H 2 O, 16.4g Mn(CH 3 COO) 2 , 30.7g Bi(NO 3 ) 3 ·5H 2 O , 60g glucose and 120g carbon black with a median particle size ( D50 particle size) of 373nm. Add the 6 raw materials to 4.8L deionized water, oscillate ultrasonically for 7 hours, and then heat the 6 raw materials while oscillating ultrasonically. and deionized water, so that the mixture is evaporated to dryness after 7 hours to become a wet gel; then the wet gel is dried at 80°C for 12 hours to obtain a dry gel; the dry gel is dried in a muffle Raise the temperature in the furnace to 400°C at a rate of 3°C/min and maintain it for 2 hours, and then raise the temperature to 800°C for 3 hours at a rate of 10°C/min to prepare La x Ce 1-x Mn y Bi 1-y O Type 3 perovskite nanoparticle template.
(3)主催化活性成分的制备(3) Preparation of main catalytic active ingredients
称取16.3g(NH4)2MoO4以及步骤(2)制备获得的LaxCe1-xMnyBi1-yO3型钙钛矿纳米颗粒模板,将所述2种原料加入1600ml去离子水中,超声波振荡形成浆状物;采用NaOH或者HNO3调节所述浆状物的pH值处于4~6的范围内,并将所述浆状物在研磨机上研磨至D50粒径处于800~1000nm范围内,再在超声波振荡的同时加热所述研磨后的浆状物,使得所述浆状物在6h后蒸干,成为固体。将所述蒸干后的固体在100℃下干燥8h,再在350℃下预烧2h,550℃下煅烧2h,成为粉末状和块状固体。所述煅烧后获得的粉末状和块状固体即为LaxCe1- xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒。Weigh 16.3g (NH 4 ) 2 MoO 4 and the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite nanoparticle template prepared in step (2), and add the two raw materials to 1600 ml. In ionized water, ultrasonic oscillation forms a slurry; use NaOH or HNO 3 to adjust the pH value of the slurry in the range of 4 to 6, and grind the slurry on a grinder until the D 50 particle size is 800 ~1000nm range, and then heat the ground slurry while ultrasonic oscillation, so that the slurry evaporates to dryness and becomes a solid after 6 hours. The evaporated solid was dried at 100°C for 8 hours, then pre-calcinated at 350°C for 2 hours, and then calcined at 550°C for 2 hours to become powdery and block solids. The powdery and massive solids obtained after the calcination are La x Ce 1- x Mny Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles.
(4)涂层浆液制备(4) Coating slurry preparation
称取282.6g Ce(NO3)3·6H2O、97.6g Zr(NO3)4·5H2O、1440g纯质γ-Al2O3粉体、1800g Al2O3质量含量为20%的铝溶胶、200g分子量为20000的聚乙二醇以及步骤(3)制备获得的LaxCe1-xMnyBi1-yO3型钙钛矿-MoO3复合催化材料纳米颗粒,将所述6种原料一起加入20kg去离子水中,超声波振荡形成浆状物;采用NaOH或者HNO3调节所述浆状物的pH值处于5~7的范围内,并将所述浆状物在研磨机上研磨至D50粒径处于800~1000nm范围内,再将研磨后的浆状物在60℃下搅拌60h,即得到涂层浆液。Weigh 282.6g Ce(NO 3 ) 3 ·6H 2 O, 97.6g Zr(NO 3 ) 4 ·5H 2 O, 1440g pure γ-Al 2 O 3 powder, and 1800g Al 2 O 3. The mass content is 20%. of aluminum sol, 200g of polyethylene glycol with a molecular weight of 20,000 and the La x Ce 1-x Mn y Bi 1-y O 3 type perovskite-MoO 3 composite catalytic material nanoparticles prepared in step (3), and the resulting The above 6 raw materials are added to 20kg of deionized water together, and ultrasonic oscillation is used to form a slurry; NaOH or HNO 3 is used to adjust the pH value of the slurry to be in the range of 5 to 7, and the slurry is placed on a grinder Grind until the D 50 particle size is in the range of 800 to 1000 nm, and then stir the ground slurry at 60°C for 60 hours to obtain a coating slurry.
(5)将催化涂层涂敷于载体上(5) Apply the catalytic coating to the carrier
称取1kg所述载体,将所述载体浸没于60℃的所述涂层浆液中,并保证所述载体的上端面略高于浆液液面;待浆液自然提升充满所述载体的所有孔道后,将所述载体从浆液中取出,吹掉孔道内残留流体,在100℃下干燥8h,再在550℃下焙烧3h。重复上述浸渍、干燥和焙烧过程3次,即得到基于高分散钙钛矿催化成分的柴油机用催化剂。Weigh 1kg of the carrier, immerse the carrier in the coating slurry at 60°C, and ensure that the upper end surface of the carrier is slightly higher than the slurry level; wait for the slurry to naturally rise and fill all the pores of the carrier , take out the carrier from the slurry, blow off the residual fluid in the channels, dry at 100°C for 8 hours, and then bake at 550°C for 3 hours. Repeat the above impregnation, drying and roasting processes three times to obtain a diesel engine catalyst based on highly dispersed perovskite catalytic components.
利用图1所示的柴油机排气PM、HC及CO净化性能发动机评价系统,对所述实施例1~3所制备催化剂的柴油机排气PM、HC及CO净化性能进行评价。试验前需将实施例1~3所制备催化剂分别切割、各自组合成整体式催化剂,并对所述切割、组合成的整体式催化剂进行封装处理。试验方法为:The diesel engine exhaust PM, HC and CO purification performance engine evaluation system shown in Figure 1 was used to evaluate the diesel engine exhaust PM, HC and CO purification performance of the catalysts prepared in Examples 1 to 3. Before the test, the catalysts prepared in Examples 1 to 3 need to be separately cut and combined into a monolithic catalyst, and the cut and combined monolithic catalysts must be packaged. The test method is:
(1)稳态工况试验:使用测功机1及联轴器2控制试验发动机3的扭矩和转速,并通过燃油喷射控制系统7调整喷油器6对柴油机的供油速度,控制发动机排气流量与催化剂体积的比例分别为50000h-1和100000h-1,并先后控制柴油机氧化催化器(DOC)10中排气平均温度分别为300℃和400℃,进行PM、HC及CO净化性能评价。进气流量计4的进气流量测量值为燃油喷射控制系统的控制策略提供反馈参数;而进气处理器5为发动机提供特定温度、湿度的清洁空气。温度传感器A9和温度传感器B11分别测量DOC10两端的排气温度,求取所述两个温度的平均值即可获得DOC 10中的排气平均温度。DOC10处理前、后的排气样品分别经排气取样口A8和排气取样口B12进入排气取样机构15及发动机排气分析仪16进行PM、HC及CO比排放量分析,而经排气成分分析后的排气通过尾气过滤器17净化颗粒污染物后由气泵18排放出实验室。同时,试验发动机3在取样后的剩余排气先后经由选择性催化还原催化器13和柴油机微粒捕集器14进行排气净化后,也经尾气过滤器17净化颗粒污染物后由气泵18排放出实验室。利用所述柴油机排气PM、HC及CO净化性能发动机评价系统,在DOC中平均排气温度为300℃、空速为50000h-1时以及DOC中平均排气温度为400℃、空速为100000h-1时,实施例1~3所制备催化剂对柴油机排气PM、HC及CO的净化效率分别如图2和图3所示。(1) Steady-state working condition test: use the dynamometer 1 and the coupling 2 to control the torque and speed of the test engine 3, and adjust the fuel supply speed of the injector 6 to the diesel engine through the fuel injection control system 7 to control the engine exhaust The ratios of air flow and catalyst volume were 50000h -1 and 100000h -1 respectively, and the average exhaust gas temperatures in the diesel oxidation catalytic converter (DOC) 10 were controlled to 300°C and 400°C respectively to evaluate PM, HC and CO purification performance. . The intake air flow measurement value of the intake air flow meter 4 provides feedback parameters for the control strategy of the fuel injection control system; and the air intake processor 5 provides clean air with a specific temperature and humidity for the engine. Temperature sensor A9 and temperature sensor B11 respectively measure the exhaust gas temperatures at both ends of the DOC 10. The average exhaust gas temperature in the DOC 10 can be obtained by averaging the two temperatures. The exhaust samples before and after DOC10 treatment enter the exhaust sampling mechanism 15 and the engine exhaust analyzer 16 through the exhaust sampling port A8 and the exhaust sampling port B12 respectively for PM, HC and CO specific emission analysis. The exhaust gas after composition analysis is purified of particulate pollutants through the exhaust filter 17 and then discharged out of the laboratory by the air pump 18 . At the same time, after the remaining exhaust gas from the test engine 3 is purified through the selective catalytic reduction catalytic converter 13 and the diesel particulate trap 14, it is also purified of particulate pollutants through the exhaust filter 17 and then discharged from the air pump 18. laboratory. Using the diesel engine exhaust PM, HC and CO purification performance engine evaluation system, the average exhaust temperature in DOC is 300°C and the airspeed is 50000h -1 , and the average exhaust temperature in DOC is 400°C and the airspeed is 100000h. -1 , the purification efficiency of diesel engine exhaust PM, HC and CO by the catalysts prepared in Examples 1 to 3 is shown in Figure 2 and Figure 3 respectively.
(2)ESC试验:采用所述柴油机排气PM、HC及CO净化性能发动机评价系统,并按照国家标准GB 17691-2005《车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国III、IV、V阶段)》中规定的ESC试验规程评价实施例1~3所制备催化剂对柴油机排气PM、HC及CO的净化效果如图4所示。(2) ESC test: The above-mentioned diesel engine exhaust PM, HC and CO purification performance engine evaluation system is used, and in accordance with the national standard GB 17691-2005 "Vehicle Compression Ignition, Gaseous Fuel Ignition Engine and Automotive Exhaust Pollutant Emissions" The purification effect of the catalysts prepared in Examples 1 to 3 on diesel engine exhaust PM, HC and CO was evaluated according to the ESC test procedures specified in Limit Values and Measurement Methods (China III, IV, and V Stages), as shown in Figure 4.
综上,将本发明制备的催化剂涂敷于DOC中,能够高效净化柴油机排放的PM、HC及CO等污染物。复合催化材料纳米颗粒主催化活性成分具有抗硫、耐热、低成本优势,还通过提高单位质量催化活性点位数量增强了催化剂整体的催化活性,实现贵金属完全替代,且其中钙钛矿与MoO3的同时添加可以产生协同增效作用,进一步提高催化剂的催化活性并扩展高活性温度窗口。基于炭黑吸附基质的先吸附再凝胶制备方法显著提高钙钛矿前驱体的分散效果,有利于制备尺度更小、粒径均匀、结构规整的复合催化材料纳米颗粒。In summary, coating the catalyst prepared in the present invention in DOC can effectively purify PM, HC, CO and other pollutants emitted by diesel engines. The main catalytic active component of composite catalytic material nanoparticles has the advantages of sulfur resistance, heat resistance, and low cost. It also enhances the overall catalytic activity of the catalyst by increasing the number of catalytic active sites per unit mass, achieving complete replacement of precious metals, and among them, perovskite and MoO The simultaneous addition of 3 can produce a synergistic effect, further improving the catalytic activity of the catalyst and expanding the high activity temperature window. The preparation method of first adsorption and then gelation based on the carbon black adsorption matrix significantly improves the dispersion effect of the perovskite precursor, which is beneficial to the preparation of composite catalytic material nanoparticles with smaller scale, uniform particle size and regular structure.
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变化,这些均属于本发明的保护之内。Although the present invention has been described above in conjunction with the accompanying drawings, the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative and not restrictive. Those of ordinary skill in the art will not Under the inspiration of the present invention, many changes can be made without departing from the spirit of the present invention, and these all fall within the protection of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211417963.2A CN115805069B (en) | 2022-11-14 | 2022-11-14 | Catalyst for diesel engine based on high-dispersion perovskite catalytic component and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211417963.2A CN115805069B (en) | 2022-11-14 | 2022-11-14 | Catalyst for diesel engine based on high-dispersion perovskite catalytic component and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115805069A CN115805069A (en) | 2023-03-17 |
CN115805069B true CN115805069B (en) | 2024-03-19 |
Family
ID=85483422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211417963.2A Active CN115805069B (en) | 2022-11-14 | 2022-11-14 | Catalyst for diesel engine based on high-dispersion perovskite catalytic component and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115805069B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1473654A (en) * | 2002-08-06 | 2004-02-11 | 中国科学院大连化学物理研究所 | Composite oxide catalyst and its preparation method and application |
JP2008004286A (en) * | 2006-06-20 | 2008-01-10 | Toyota Motor Corp | Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst material, oxygen reduction catalyst material, fuel cell catalyst material, fuel cell electrode |
DE202012005818U1 (en) * | 2011-06-17 | 2012-07-13 | BLüCHER GMBH | Porous materials based on metallic mixed oxides |
CN104707617A (en) * | 2015-03-02 | 2015-06-17 | 滁州学院 | Double-perovskite metal oxide catalyst and preparation method thereof |
CN107970907A (en) * | 2016-10-21 | 2018-05-01 | 中国石油化工股份有限公司 | A kind of nano composite oxide catalyst and its preparation method and application |
CN107983330A (en) * | 2017-11-24 | 2018-05-04 | 中国科学院长春应用化学研究所 | A kind of perovskite type catalyst of modification and preparation method thereof, the application in isoprene is catalyzed and synthesized |
CN108883389A (en) * | 2016-02-22 | 2018-11-23 | 香港大学 | Method for producing porous crystalline material having highly uniform structure |
CN112221495A (en) * | 2020-10-13 | 2021-01-15 | 天津大学 | Catalyst for noble metal substituted perovskite diesel oxidation catalyst and preparation method thereof |
EP3916819A1 (en) * | 2020-05-29 | 2021-12-01 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO | Perovskite layer |
CN113797915A (en) * | 2021-10-24 | 2021-12-17 | 合肥神舟催化净化器股份有限公司 | Diesel oxidation catalyst based on metal oxide nanoparticles, and preparation method and application thereof |
-
2022
- 2022-11-14 CN CN202211417963.2A patent/CN115805069B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1473654A (en) * | 2002-08-06 | 2004-02-11 | 中国科学院大连化学物理研究所 | Composite oxide catalyst and its preparation method and application |
JP2008004286A (en) * | 2006-06-20 | 2008-01-10 | Toyota Motor Corp | Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst material, oxygen reduction catalyst material, fuel cell catalyst material, fuel cell electrode |
DE202012005818U1 (en) * | 2011-06-17 | 2012-07-13 | BLüCHER GMBH | Porous materials based on metallic mixed oxides |
CN104707617A (en) * | 2015-03-02 | 2015-06-17 | 滁州学院 | Double-perovskite metal oxide catalyst and preparation method thereof |
CN108883389A (en) * | 2016-02-22 | 2018-11-23 | 香港大学 | Method for producing porous crystalline material having highly uniform structure |
CN107970907A (en) * | 2016-10-21 | 2018-05-01 | 中国石油化工股份有限公司 | A kind of nano composite oxide catalyst and its preparation method and application |
CN107983330A (en) * | 2017-11-24 | 2018-05-04 | 中国科学院长春应用化学研究所 | A kind of perovskite type catalyst of modification and preparation method thereof, the application in isoprene is catalyzed and synthesized |
EP3916819A1 (en) * | 2020-05-29 | 2021-12-01 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO | Perovskite layer |
CN112221495A (en) * | 2020-10-13 | 2021-01-15 | 天津大学 | Catalyst for noble metal substituted perovskite diesel oxidation catalyst and preparation method thereof |
CN113797915A (en) * | 2021-10-24 | 2021-12-17 | 合肥神舟催化净化器股份有限公司 | Diesel oxidation catalyst based on metal oxide nanoparticles, and preparation method and application thereof |
Non-Patent Citations (6)
Title |
---|
A comparative study of the physical properties of in-cylinder soot generated from the combustion of n-heptane and toluene/n-heptane in a diesel engine;Jiangjun Wei et al.;《Proceedings of the Combustion Institute》;第35卷;1939–1946 * |
Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers;Beom-Soo Kim et al.;《Organic Electronics》;第17卷;102–106 * |
Structural Features of (Ce, La or Sr)(Mn or Co)O3 Nano- Perovskites as a Catalyst for Carbon Monoxide Oxidation;Mahnaz Ghiasi 、 Azim Malekzadeh;《Acta Metallurgica Sinica》;全文 * |
Sulfur resistant LaxCe1−xNi0.5Cu0.5O3 catalysts for an ultra-high temperature water gas shift reaction;Usman Oemar et al.;《Catalysis Science & Technology》;第6卷;6569–6580 * |
低温氧化型过渡金属氧化物催化剂研究进展;刘东升;邹志强;姚成;孟明;;化学工业与工程(06);全文 * |
柴油车排放碳黑颗粒消除催化剂的研究进展;刘坚, 赵震, 徐春明;催化学报(08);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115805069A (en) | 2023-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106582794B (en) | Catalysts for diesel engines based on modified molecular sieves and hydrotalcite-derived oxides and their preparation and application | |
CN103433028B (en) | Three-effect NOx, CO and HC removing catalyst for ship engine and preparation method thereof | |
CN102631917B (en) | Oxidation catalyst for purifying exhaust of diesel vehicle and preparation method for oxidation catalyst | |
CN109590017B (en) | Diesel engine catalyst based on composite main catalyst and hydrotalcite-derived oxide and preparation method thereof | |
CN109589987B (en) | Catalyst for diesel engine based on perovskite and modified hydrotalcite-derived oxide and preparation method thereof | |
CN112221495B (en) | Catalyst for noble metal substituted perovskite diesel oxidation catalyst and preparation method thereof | |
CN106669843B (en) | Catalyst for Oxidation and Purification of Diesel Engine Exhaust Pollutants Modified by Monovalent Copper | |
CN109589988B (en) | Diesel engine double-coating catalyst based on hydrotalcite-derived oxide and preparation method | |
CN111841622B (en) | Catalyst for metal modified molecular sieve based diesel oxidation catalyst and preparation and use methods thereof | |
CN107930678A (en) | A kind of selective catalytic reduction catalysts and preparation method based on copper vanadium dual metal modified molecular screen | |
CN106622348B (en) | Selective Catalytic Reduction Catalyst for Ferrous Modified Molecular Sieve Diesel Engine | |
CN106902865A (en) | Diesel vehicle particle oxidative catalyst and preparation method thereof | |
CN113797915B (en) | Diesel oxidation catalyst based on metal oxide nano particles, preparation method and application | |
CN112221511B (en) | Ternary metal oxide-based diesel particulate oxidation catalyst and preparation method thereof | |
CN103406124A (en) | Ternary composite oxide type selective catalytic reduction catalyst for lean burn engines | |
CN109499568B (en) | Diesel vehicle exhaust purification catalyst based on iron-modified hydrotalcite-derived oxide and preparation method thereof | |
CN115805069B (en) | Catalyst for diesel engine based on high-dispersion perovskite catalytic component and preparation method thereof | |
CN109589976B (en) | Diesel engine catalyst based on oxide composite main catalyst and preparation method | |
CN103394345B (en) | Catalyst for particulate-oxidation catalytic converter of direct-injection internal combustion engine in lean-combustion cylinder | |
CN112221496B (en) | Catalyst for multi-metal oxide-based diesel oxidation catalyst and preparation method thereof | |
CN114588931B (en) | Nitrogen oxide capture catalyst based on noble metal modified molecular sieve and its preparation method and application | |
CN109590016B (en) | Diesel engine catalyst based on modified hydrotalcite-derived oxide and preparation method | |
CN110124662A (en) | A kind of preparation method and applications for receiving scale cerium manganese potassium combined oxidation type catalyst | |
CN114682270B (en) | Hydrotalcite-derived oxide-based nitrogen oxide capture catalyst and preparation method and application thereof | |
CN114425410B (en) | Catalyst for treating ammonia leakage of selective catalytic reduction device and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |