KR101703635B1 - Manufacturing method of nickel oxide-loaded activated carbon for lithium ion recovery - Google Patents
Manufacturing method of nickel oxide-loaded activated carbon for lithium ion recovery Download PDFInfo
- Publication number
- KR101703635B1 KR101703635B1 KR1020150148312A KR20150148312A KR101703635B1 KR 101703635 B1 KR101703635 B1 KR 101703635B1 KR 1020150148312 A KR1020150148312 A KR 1020150148312A KR 20150148312 A KR20150148312 A KR 20150148312A KR 101703635 B1 KR101703635 B1 KR 101703635B1
- Authority
- KR
- South Korea
- Prior art keywords
- activated carbon
- nickel compound
- lithium
- hours
- lithium ion
- Prior art date
Links
Images
Classifications
-
- C01B31/08—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides; Hydroxides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
본 발명은 해수로부터 리튬을 회수하기 위한 흡착제로 니켈화합물을 이용한 활성탄의 표면처리에 관한 것으로서, 기존의 활성탄 보다 리튬 이온의 흡착 효율이 향상된 활성탄에 관한 것이다.TECHNICAL FIELD The present invention relates to a surface treatment of activated carbon using a nickel compound as an adsorbent for recovering lithium from seawater, and more particularly, to an activated carbon having improved lithium ion adsorption efficiency over existing activated carbon.
전 세계적으로 매장량이 극히 적은 금속중의 하나인 리튬(리튬 화합물 포함)은 특히, 일부 국가에 편재되어 있어서 광물자원의 안정적 확보를 위해 다양한 자원 확보정책이 수립, 수행되고 있다. 게다가 국내 매장량이 전무한 우리나라는 리튬과 같은 희소 금속 자원의 안정적 확보를 통해 안정적인 국가발전과 더불어 그 가치를 향상시킬 수 있는 자원기술의 확보가 절대적으로 요구되고 있다.Lithium (including lithium compounds), one of the metals with extremely few reserves in the world, is especially prevalent in some countries, and various resource securing policies are being established and carried out to secure stable mineral resources. In addition, Korea, which has no domestic reserves, is absolutely required to secure stable resource resources such as lithium, and secure resource technology that can improve its value along with stable national development.
이러한 리튬의 절대적 수요가 주된 원인은 전자산업재료, 특히 이차전지재료에 많은 양의 리튬이 요구되고 있고 그 밖에 의약품, 세라믹, 핵융합 에너지원 등으로도 주목되고 있기 때문에 앞으로 그 수요는 지속적으로 증가할 것으로 예상된다.This demand for lithium is mainly due to the demand for large quantities of lithium in electronic industry materials, especially secondary battery materials, as well as pharmaceuticals, ceramics, and fusion energy sources. .
리튬의 전세계적 매장량을 추측하면, 육상자원의 세계 매장량이 200~900만 톤에 불과한 것을 고려하면 해수 내 용존하는 리튬의 평균 농도치는 약 17 ppm으로 매우 낮지만 전체 해수의 양은 1.36×1021L로 고려했을 때, 리튬 예상 회수량은 약 2.5×1014kg으로 예측한다. 따라서 리튬의 안정적인 공급을 위해서 전세계적으로 해수 내 잔존하는 리튬 회수 기술이 개발되고 있다.Assuming global reserves of lithium, the average concentration of dissolved lithium in the seawater is very low at about 17 ppm, considering that the global reserves of land resources are only about 20 to 9 million tons. However, the total amount of seawater is 1.36 × 10 21 L , The expected lithium recovery is estimated to be about 2.5 × 10 14 kg. Therefore, in order to provide a stable supply of lithium, the lithium recovery technology remaining in the seawater is being developed all over the world.
이렇듯 해수 내의 리튬을 회수하기 위한 방법으로는 흡착법, 용매추출법, 공침법, 이온교환법 등 다양한 방법들이 연구되고 있는데, 이 중에서 해수로부터 리튬을 회수하는 방법에는 흡착법이 가장 효과적인 것으로 알려져 있다. 따라서 다양한 성분들이 용존하는 해수로부터 미량의 리튬을 회수하는 기술로는 리튬이온에 대한 선택적인 흡착 효율 및 분리성능을 가진 흡착제를 이용하여 리튬 회수 기술을 개발하는 것이 중요하다.Various methods such as adsorption method, solvent extraction method, coprecipitation method and ion exchange method have been studied as methods for recovering lithium in seawater. Among them, adsorption method is known to be most effective for recovering lithium from seawater. Therefore, it is important to develop a lithium recovery technology using an adsorbent having selective adsorption efficiency and separation performance for lithium ions as a technique for recovering a trace amount of lithium from seawater in which various components are dissolved.
본 발명의 목적은, 활성탄의 니켈화합물 표면처리를 통하여 흡착 효율이 향상된 활성탄과 이를 이용한 리튬 회수 기술을 제공하는데 있다.An object of the present invention is to provide activated carbon having improved adsorption efficiency through surface treatment of nickel compounds of activated carbon and lithium recovery technology using the same.
상기 목적을 달성하기 위하여, 본 발명은 니켈화합물을 이용하여 활성탄의 표면을 개질하는 단계를 포함하는 니켈화합물이 도입된 활성탄의 제조방법을 제공하는 것을 일 측면으로 한다.In order to accomplish the above object, the present invention provides a method for producing activated carbon into which a nickel compound is introduced, comprising the step of modifying the surface of activated carbon using a nickel compound.
상기 니켈화합물은 NiSO4, NiCl2, Ni2O3 및 NiOOH로 이루어진 군에서 선택되는 것일 수 있으며, 상기 니켈화합물은 활성탄 100 중량부 대비 0.25 내지 4 중량부일 수 있고, 상기 활성탄과 상기 니켈화합물의 반응시간은 1 내지 24시간일 수 있다.The nickel compound may be selected from the group consisting of NiSO 4 , NiCl 2 , Ni 2 O 3, and NiOOH. The nickel compound may be 0.25 to 4 parts by weight based on 100 parts by weight of the activated carbon. The reaction time can be from 1 to 24 hours.
또한, 본 발명은 상기 제조방법에 의하여 제조되는 니켈화합물이 도입된 활성탄을 제공하는 것을 다른 측면으로 한다.Another aspect of the present invention is to provide activated carbon into which a nickel compound produced by the above production method is introduced.
상기와 같은 본 발명에 따르면, 니켈화합물을 이용하여 활성탄의 표면을 처리함으로써, 활성탄 표면 개질과 산소 관능기 증가를 통하여 리튬이온과의 전기적인 인력을 향상시킴으로써 기존의 활성탄보다 리튬 이온의 흡착 효율이 향상시키는 효과가 있다.According to the present invention, the surface of activated carbon is treated with a nickel compound to improve the attraction of lithium ions to the activated carbon by improving the surface attraction of the activated carbon and the increase of the oxygen functional group, .
도 1은 본 발명의 일 형태에 따른 니켈화합물이 도입된 활성탄의 제조방법의 실시예 3에 의해 제조된 활성탄의 TEM 사진을 도시한 것이다.
도 2는 본 발명의 일 형태에 따른 니켈화합물이 도입된 활성탄의 제조방법의 실시예 5에 의해 제조된 활성탄의 TEM 사진을 도시한 것이다.
도 3은 본 발명의 일 형태에 따른 니켈화합물이 도입된 활성탄의 제조방법에 제조된 활성탄과 비교대상이 되는 비교예 1에 의해 제조된 활성탄의 TEM 사진을 도시한 것이다.FIG. 1 is a TEM photograph of activated carbon prepared in Example 3 of the method for producing activated carbon into which a nickel compound is introduced according to an embodiment of the present invention.
FIG. 2 is a TEM photograph showing the activated carbon prepared in Example 5 of the process for producing activated carbon having a nickel compound according to an embodiment of the present invention.
FIG. 3 is a TEM photograph of activated carbon prepared by the method of preparing activated carbon having nickel compounds according to an embodiment of the present invention, and activated carbon prepared by Comparative Example 1 being a comparative object.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 일 형태에 따른 니켈화합물을 도입한 활성탄의 제조방법은 니켈화합물을 이용하여 활성탄의 표면을 개질하는 단계를 포함한다. 구체적으로 (1) 활성탄에 니켈화합물을 첨가한 용액을 이용하여 교반하여 니켈화합물로 표면처리 된 활성탄을 제조하는 단계; 및 (2) 상기 니켈화합물로 표면처리 된 활성탄을 건조하는 단계를 포함할 수 있다.A method for producing activated carbon incorporating a nickel compound according to an embodiment of the present invention includes the step of modifying the surface of activated carbon using a nickel compound. Specifically, (1) mixing activated carbon with a solution containing a nickel compound to prepare activated carbon surface-treated with a nickel compound; And (2) drying the surface-treated activated carbon with the nickel compound.
상기 니켈화합물의 종류는 NiSO4, NiCl2, Ni2O3 및 NiOOH일 수 있다.The kind of the nickel compound may be NiSO 4 , NiCl 2 , Ni 2 O 3, and NiOOH.
상기 니켈화합물은 활성탄 100 중량부 대비 0.25 내지 4 중량부일 수 있다. 0.25 중량부 미만인 경우는 도입되는 니켈화합물의 양이 너무 적어서 활성탄 표면에 붙는 산소 관능기의 양이 적기 때문에 바람직하지 못하고, 4 중량부를 초과하면 과량의 니켈화합물과 니켈이 활성탄에 니켈화합물이 도입하는 것을 방해하여 바람직하지 못하다. The nickel compound may be 0.25 to 4 parts by weight based on 100 parts by weight of activated carbon. When the amount of the nickel compound is less than 0.25 parts by weight, the amount of the nickel compound to be introduced is so small that the amount of the oxygen functional groups attached to the surface of the activated carbon is small. When the amount of the nickel compound exceeds 4 parts by weight, It is undesirable to interfere.
상기 활성탄과 상기 니켈화합물의 반응시간은 1 내지 24시간이 바람직하다. 1시간 미만이면 반응시간이 너무 짧아서 활성탄의 표면에 산소관능기가 발생하기 힘들고, 24시간을 초과하면 대기 중 산소의 영향으로 니켈화합물의 형성에 변형이 일어나서 활성탄의 물성을 약화시키기 때문에 바람직하지 못하다.The reaction time of the activated carbon and the nickel compound is preferably 1 to 24 hours. If the reaction time is less than 1 hour, the reaction time is too short to generate oxygen functional groups on the surface of activated carbon. If the reaction time exceeds 24 hours, deformation of the nickel compound is formed due to oxygen in the atmosphere and the physical properties of activated carbon are weakened.
상기 (1) 단계는 교반속도가 50 내지 200 rpm일 수 있으며, 반응온는 실온에서 24시간 반응시키는 것이 바람직하다.In the step (1), the stirring speed may be 50 to 200 rpm, and the reaction is preferably carried out at room temperature for 24 hours.
상기 (2) 단계는 (1) 단계에서 제조된 니켈화합물로 표면처리 된 활성탄을 증류수로 수차례 중성이 될 때까지 세척한 후 80 내지 90℃에서 12 내지 24 시간 건조시키는 것일 수 있다. In the step (2), the activated carbon surface-treated with the nickel compound prepared in the step (1) may be washed several times with distilled water until it becomes neutral, and then dried at 80 to 90 ° C for 12 to 24 hours.
본 발명은 상기 본 발명의 일 형태에 따른 제조방법에 의해 제조된 니켈화합물이 도입된 활성탄을 제공한다.The present invention provides an activated carbon into which a nickel compound produced by the production method according to an embodiment of the present invention has been introduced.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.
실시예 1.Example 1.
활성탄 1g을 에탄올과 증류수에 여러 번 세척하여 80℃ 오븐에서 24시간 건조한다. 건조된 활성탄에 활성탄 100 중량부 대비 0.25 중량비의 NiSO4를 첨가한 Ethylene Glycol 용액을 이용하여 2시간 교반하여 표면 처리한다. 표면 처리한 활성탄을 24시간 동안 세척한 후 80℃ 오븐에서 24시간 건조한다. 약 40 ppm의 리튬 수용액을 제조하고 표면처리 한 활성탄 125mg을 리튬 수용액 250ml애 교반기를 이용하여 100 rpm으로 유지시켜 24시간 교반해준 후 감압 거름하여 80℃ 오븐에서 24시간 동안 건조한다. 활성탄을 거른 후 남아있는 리튬 수용액의 상등액을 취한다.1 g of activated carbon is washed several times with ethanol and distilled water, and dried in an oven at 80 ° C for 24 hours. The dried activated carbon is subjected to surface treatment with ethylene glycol solution containing 0.25 weight ratio of NiSO 4 to 100 parts by weight of activated carbon for 2 hours with stirring. The surface-treated activated carbon is washed for 24 hours and then dried in an oven at 80 ° C for 24 hours. A lithium aqueous solution of about 40 ppm was prepared, and 125 mg of the surface-treated activated carbon was maintained at 100 rpm by using a 250 ml agitator of lithium aqueous solution and stirred for 24 hours, followed by vacuum drying and drying in an oven at 80 ° C for 24 hours. After filtering the activated carbon, take the supernatant of the remaining lithium aqueous solution.
실시예 2.Example 2.
상기 실시예 1과 동일하게 과정을 실시하되, NiSO4의 첨가량을 활성탄 100 중량부 대비 0.5 중량부로 하여 활성탄을 처리한 후 표면개질 된 니켈화합물이 도입된 활성탄을 제조한다.The same procedure as in Example 1 was carried out except that the amount of NiSO 4 added was changed to 0.5 part by weight based on 100 parts by weight of activated carbon, and activated carbon was treated to prepare activated carbon having surface-modified nickel compounds.
실시예 3.Example 3.
상기 실시예 1과 동일하게 과정을 실시하되, NiSO4의 첨가량을 활성탄 100 중량부 대비 1 중량부로 하여 활성탄을 처리한 후 표면개질 된 니켈화합물이 도입된 활성탄을 제조한다.The same procedure as in Example 1 was carried out except that the amount of NiSO 4 added was changed to 1 part by weight with respect to 100 parts by weight of activated carbon, and the activated carbon having the surface modified nickel compound introduced therein was prepared.
실시예 4.Example 4.
상기 실시예 1과 동일하게 과정을 실시하되, NiSO4의 첨가량을 활성탄 100 중량부 대비 2 중량부로 하여 활성탄을 처리한 후 표면개질 된 니켈화합물이 도입된 활성탄을 제조한다.The same procedure as in Example 1 was carried out except that the amount of NiSO 4 added was changed to 2 parts by weight based on 100 parts by weight of activated carbon, followed by treatment with activated carbon to prepare activated carbon having the surface modified nickel compound introduced therein.
실시예 5.Example 5.
상기 실시예 1과 동일하게 과정을 실시하되, NiSO4의 첨가량을 활성탄 100 중량부 대비 4 중량부로 하여 활성탄을 처리한 후 표면개질 된 니켈화합물이 도입된 활성탄을 제조한다.The same procedure as in Example 1 was carried out, except that the amount of NiSO 4 added was changed to 4 parts by weight based on 100 parts by weight of activated carbon, followed by treatment with activated carbon to prepare activated carbon having the surface modified nickel compound introduced therein.
실시예 6.Example 6.
상기 실시예 1과 동일하게 과정을 실시하되, 표면처리 시간을 4시간으로 하고 제조한 후 샘플 세척을 48시간 진행하고 90℃ 오븐에서 건조하여 표면개질 된 니켈화합물이 도입된 활성탄을 제조한다.The procedure of Example 1 was repeated except that the surface treatment time was changed to 4 hours. After the sample was washed for 48 hours and dried in an oven at 90 ° C., the activated carbon having the surface modified nickel compound was prepared.
실시예 7.Example 7.
상기 실시예 2와 동일하게 과정을 실시하되, 표면처리 시간을 4시간으로 하고 제조한 후 샘플 세척을 48시간 진행하고 90℃ 오븐에서 건조하여 표면개질 된 니켈화합물이 도입된 활성탄을 제조한다.The procedure of Example 2 was repeated except that the surface treatment time was changed to 4 hours. After the sample was washed for 48 hours and dried in an oven at 90 ° C., the activated carbon having the surface modified nickel compound introduced therein was prepared.
실시예 8.Example 8.
상기 실시예 3과 동일하게 과정을 실시하되, 표면처리 시간을 4시간으로 하고 제조한 후 샘플 세척을 48시간 진행하고 90℃ 오븐에서 건조하여 표면개질 된 니켈화합물이 도입된 활성탄을 제조한다.The procedure of Example 3 was repeated except that the surface treatment time was changed to 4 hours. After the sample was washed for 48 hours, the activated carbon was dried in an oven at 90 ° C to prepare activated carbon having the surface modified nickel compound introduced therein.
실시예 9.Example 9.
상기 실시예 4와 동일하게 과정을 실시하되, 표면처리 시간을 4시간으로 하고 제조한 후 샘플 세척을 48시간 진행하고 90℃ 오븐에서 건조하여 표면개질 된 니켈화합물이 도입된 활성탄을 제조한다.The procedure of Example 4 was repeated, except that the surface treatment time was set to 4 hours, and the sample was washed for 48 hours and then dried in an oven at 90 ° C to prepare activated carbon having the surface modified nickel compound introduced therein.
실시예 10.Example 10.
상기 실시예 5와 동일하게 과정을 실시하되, 표면처리 시간을 4시간으로 하고 제조한 후 샘플 세척을 48시간 진행하고 90℃ 오븐에서 건조하여 표면개질 된 니켈화합물이 도입된 활성탄을 제조한다.The same procedure as in Example 5 was performed except that the surface treatment time was changed to 4 hours and the sample was washed for 48 hours and dried in an oven at 90 ° C to prepare an activated carbon having a surface modified nickel compound introduced therein.
비교예 1.Comparative Example 1
활성탄 1g을 에탄올과 증류수에 여러 번 세척하여 80℃ 오븐에서 24시간 건조한다. 약 40 ppm의 리튬 수용액을 제조하고, 건조된 활성탄 125mg을 리튬 수용액 250ml에 교반기를 이용하여 100 rpm으로 유지시켜 24시간 교반해준 후 감압 필터한다. 활성탄을 거른 후 남아있는 리튬 수용액의 상등액을 취한다.1 g of activated carbon is washed several times with ethanol and distilled water, and dried in an oven at 80 ° C for 24 hours. A lithium aqueous solution of about 40 ppm is prepared, and 125 mg of the dried activated carbon is stirred at 250 rpm in a lithium aqueous solution at 100 rpm for 24 hours using a stirrer, followed by vacuum filtration. After filtering the activated carbon, take the supernatant of the remaining lithium aqueous solution.
비교예 2.Comparative Example 2
활성탄 1g을 에탄올과 증류수에 여러 번 세척하여 90℃ 오븐에서 48시간 건조한다. 약 40 ppm의 리튬 수용액을 제조하고, 건조된 활성탄 125mg을 리튬 수용액 250ml에 교반기를 이용하여 100 rpm으로 유지시켜 24시간 교반해준 후 감압필터 한다. 활성탄을 거른 후 남아있는 리튬 수용액의 상등액을 취한다.1 g of activated carbon is washed several times with ethanol and distilled water, and dried in an oven at 90 ° C for 48 hours. A lithium aqueous solution of about 40 ppm is prepared, and 125 mg of the dried activated carbon is stirred at 250 rpm in a lithium aqueous solution at 100 rpm for 24 hours using a stirrer, followed by vacuum filtration. After filtering the activated carbon, take the supernatant of the remaining lithium aqueous solution.
측정예 1. 투과전자현미경 검사Measurement example 1. Transmission electron microscopy
활성탄의 니켈화합물 도입 이후, 표면 처리에 따른 활성탄의 표면 변화를 투과전자현미경(TEM)을 이용하여 측정하고, 이의 결과를 도 1에 도시하였다.After the introduction of the nickel compound into the activated carbon, the surface change of the activated carbon according to the surface treatment was measured using a transmission electron microscope (TEM), and the results are shown in Fig.
측정예 2. 원자흡수분광계 분석Measurement example 2. Atomic absorption spectrometer analysis
활성탄의 니켈화합물 도입에 따른 리튬 이온 흡착 효율을 관찰하기 위해 각 농도별 니켈화합물이 도입된 활성탄과 반응한 리튬 수용액의 상등액을 취하여 원자흡수분광계(AAS)를 통해 측정한 결과값을 토대로 흡착 효율식(식 1)에 대입하여 리튬 이온 흡착 효율을 표 2에 나타내었다.In order to observe the efficiency of lithium ion adsorption by the introduction of nickel compounds of activated carbon, the supernatant of activated carbon containing nickel compounds and lithium hydroxide reacted at each concentration was taken and measured by atomic absorption spectrometer (AAS) (Equation 1), and the lithium ion adsorption efficiency is shown in Table 2. < tb > < TABLE >
식 1 : Equation 1:
(Co: 리튬 수용액 회수 전 초기 농도, Ca: 리튬 수용액 회수 후 반응농도, w: 흡착제의 무게, V: 반응시킨 리튬 수용액의 부피)(C o : initial concentration before lithium aqueous solution recovery, C a : reaction concentration after recovery of lithium aqueous solution, w: weight of adsorbent, V: volume of reacted lithium aqueous solution)
첨가량
(중량부)Nickel compound
Addition amount
(Parts by weight)
(h)Processing time
(h)
(h)Washing time
(h)
(℃)Drying temperature
(° C)
(rpm)Stirring speed
(rpm)
측정결과.Measurement results.
본 발명의 일 형태에 따른 니켈화합물이 도입된 활성탄의 제조방법에 의해 제조된 활성탄을 분석하기 위하여 AAS와 TEM을 이용하여 분석하였다.In order to analyze the activated carbon produced by the method of producing activated carbon having nickel compound according to an embodiment of the present invention, it was analyzed using AAS and TEM.
니켈화합물로 표면 처리한 활성탄을 TEM을 통해 관찰한 결과 도 1과 같이 활성탄의 구조에 안정된 니켈화합물이 도입된 것을 알 수 있다. 이는 적당한 니켈화합물로 인하여 활성탄 표면에 니켈화합물이 형성됨에 따라 산소 관능기가 증가하여 흡착이 일어나는 범위가 증가하여 흡착이 용이해짐을 증명한다.As a result of observation of the activated carbon surface-treated with a nickel compound through TEM, it can be seen that a stable nickel compound is introduced into the structure of activated carbon as shown in Fig. This shows that the formation of nickel compounds on the surface of activated carbon due to a suitable nickel compound increases the oxygen functional groups and increases the extent of adsorption, thereby facilitating adsorption.
니켈화합물로 표면 처리한 활성탄을 이용하여 리튬 이온 흡착 효율을 분석하면 표 2와 같이 니켈화합물의 도입에 다라 리튬 이온 흡착 효율이 증가하는 것을 알 수 있다. 이는 니켈화합물로 처리한 결과 활성탄의 표면에 산소 관능기가 증가하여 수용액 상태에서 리튬 이온과 전기적인 인력으로 인해 흡착 효율이 높아짐을 증명한다.Analysis of the lithium ion adsorption efficiency using activated carbon surface-treated with a nickel compound shows that the lithium ion adsorption efficiency increases with the introduction of the nickel compound as shown in Table 2. As a result of treatment with nickel compounds, it is proved that the oxygen functional groups on the surface of the activated carbon are increased and the adsorption efficiency is increased due to the lithium ion and electric attraction in the aqueous solution state.
상기 결과를 종합하였을 때 활성탄의 니켈화합물 도입이 활성탄 표면에 산소 관능기의 증가를 가져온다. 증가한 산소 관능기는 활성탄과 리튬 이온의 전기적인 인력을 향상시켜 기존의 활성탄의 흡착 효율을 강화시키는 것을 확인할 수 있다.When the above results are summarized, introduction of nickel compounds of activated carbon results in increase of oxygen functional groups on the surface of activated carbon. The increased oxygen functional group improves the attracting efficiency of the activated carbon by improving the attractive force of the activated carbon and the lithium ion.
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.
Claims (5)
상기 표면이 개질된 활성탄을 80 내지 90℃에서 1 내지 24시간 건조하는 단계; 를 포함하는 니켈화합물이 도입된 활성탄의 제조방법..
Modifying the surface of activated carbon by using NiSO 4 of 0.25 to 4 parts by weight based on 100 parts by weight of activated carbon; And
Drying the surface-modified activated carbon at 80 to 90 ° C for 1 to 24 hours; A method for producing activated carbon having a nickel compound incorporated therein.
상기 활성탄과 상기 NiSO4의 반응시간은 1 내지 24 시간인 것을 특징으로 하는 니켈화합물이 도입된 활성탄의 제조방법.
The method according to claim 1,
Wherein the reaction time of the activated carbon and the NiSO 4 is 1 to 24 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150148312A KR101703635B1 (en) | 2015-10-23 | 2015-10-23 | Manufacturing method of nickel oxide-loaded activated carbon for lithium ion recovery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150148312A KR101703635B1 (en) | 2015-10-23 | 2015-10-23 | Manufacturing method of nickel oxide-loaded activated carbon for lithium ion recovery |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101703635B1 true KR101703635B1 (en) | 2017-02-08 |
Family
ID=58155185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150148312A KR101703635B1 (en) | 2015-10-23 | 2015-10-23 | Manufacturing method of nickel oxide-loaded activated carbon for lithium ion recovery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101703635B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015020090A (en) | 2013-07-16 | 2015-02-02 | 独立行政法人産業技術総合研究所 | Manufacturing method of lithium-adsorbing material, and lithium-adsorbing material |
-
2015
- 2015-10-23 KR KR1020150148312A patent/KR101703635B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015020090A (en) | 2013-07-16 | 2015-02-02 | 独立行政法人産業技術総合研究所 | Manufacturing method of lithium-adsorbing material, and lithium-adsorbing material |
Non-Patent Citations (1)
Title |
---|
- Int. J. Electrochem. Sci., 8 (2013) 5036-5041 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suryawanshi et al. | Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions | |
US11299671B2 (en) | Preparation method for graphene quantum dots with different oxygen contents, graphene quantum dot, and fluorescent material | |
US10193133B2 (en) | Method for manufacturing of metal oxide nanoparticles and metal oxide nanoparticles thereby | |
KR101757323B1 (en) | Preparing method of reduced titanium dioxide | |
JP2019532909A (en) | Manufacture of graphene | |
CN107159132B (en) | CO 2/CO selective adsorbent and preparation method thereof | |
CN104148019A (en) | Preparation method for MOF-5 metal-organic frameworks | |
KR20140109246A (en) | Functional-group-modified carbon material, and method for producing same | |
KR102529356B1 (en) | Method for producing reduced graphene oxide from electrode graphite scrap | |
Ng et al. | Surface studies of halloysite nanotubes by XPS and ToF‐SIMS | |
US20150119494A1 (en) | Method of manufacturing composite material having nano structure grown on carbon fiber and composite material having nano structure manufactured using the same | |
Sun et al. | Nanotwins in polycrystalline Cu 7 S 4 cages: highly active architectures for enhancing photocatalytic activities | |
US20190393504A1 (en) | Method for manufacturing activated carbon using coffee bean extract and electrode for battery comprising same | |
CN108201875B (en) | Spinel type manganese oxide lithium ion sieve H1.6Mn1.6O4Preparation method of (1) | |
KR20200023884A (en) | Lithium ion adsorbent and a method for recovering lithium ion using the same | |
KR101703635B1 (en) | Manufacturing method of nickel oxide-loaded activated carbon for lithium ion recovery | |
CN112408362A (en) | Carbon quantum dot and preparation method and application thereof | |
KR102178358B1 (en) | Method for preparation of functionalized graphene | |
Weng et al. | Novel recovery of a low-concentration gold thiosulfate complex through electroreduction via a walnut shell charcoal electrode | |
KR101563887B1 (en) | Manufacturing method of activated carbons for lithium recovery | |
US20240076188A1 (en) | Methods and systems for producing dispersed graphene from spent lithium-ion batteries | |
JP2011240287A (en) | Solid chelating agent and method of manufacturing the same, and method for separation of cobalt, manganese and nickel employing the agent | |
KR101442758B1 (en) | Valuable metal collector derived from seaweed biomass, its preparation methods and the method of collecting the valuable metal using the said | |
KR101605634B1 (en) | Method for recovering silver and platinum of waste pastes using phosphoric acid | |
CN111420634B (en) | Bifunctional group magnetic graphene oxide adsorption material, preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20200102 Year of fee payment: 4 |