KR101701928B1 - 폴더블 수소센서 및 그의 제조 방법 - Google Patents

폴더블 수소센서 및 그의 제조 방법 Download PDF

Info

Publication number
KR101701928B1
KR101701928B1 KR1020150140105A KR20150140105A KR101701928B1 KR 101701928 B1 KR101701928 B1 KR 101701928B1 KR 1020150140105 A KR1020150140105 A KR 1020150140105A KR 20150140105 A KR20150140105 A KR 20150140105A KR 101701928 B1 KR101701928 B1 KR 101701928B1
Authority
KR
South Korea
Prior art keywords
mwcnt
nanocube
nanocubes
nylon
graphene
Prior art date
Application number
KR1020150140105A
Other languages
English (en)
Inventor
정귀상
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority to KR1020150140105A priority Critical patent/KR101701928B1/ko
Application granted granted Critical
Publication of KR101701928B1 publication Critical patent/KR101701928B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Abstract

본 발명은 폴더블 수소센서 및 그의 제조 방법에 관한 것으로서, 보다 구체적으로는 Pd 나노큐브(nanocube), 다중벽 탄소 나노튜브(multi-walled carbon nanotube; MWCNT) 및 고분자 지지체를 포함하는 복합체; 또는 Pd 나노큐브, 다중벽 탄소 나노튜브-그래핀 및 고분자 지지체를 포함하는 복합체를 포함하는 폴더블(foldable) 수소센서 및 그의 제조 방법에 관한 것이다. 본 발명에 따른 수소센서는 실온에서 10 ppm 내지 10,000 ppm의 수소 가스 검출 범위를 가지며, 접힘 전과 후 및 접힌 상태에서도 성능 및 특성에 변화가 거의 없는 폴더블/플렉서블한 특성을 갖는다.

Description

폴더블 수소센서 및 그의 제조 방법{A FOLDABLE HYDROGEN SENSOR AND METHOD FOR MANUFACTURING THE SAME}
본 발명은 폴더블 수소센서 및 그의 제조 방법에 관한 것으로서, 보다 구체적으로는 Pd 나노큐브(nanocube), 다중벽 탄소 나노튜브(multi-walled carbon nanotube; MWCNT) 및 고분자 지지체를 포함하는 복합체; 또는 Pd 나노큐브, 다중벽 탄소 나노튜브-그래핀 및 고분자 지지체를 포함하는 복합체를 포함하는 폴더블(foldable) 수소센서 및 그의 제조 방법에 관한 것이다.
포터블(portable) 및 웨어러블(wearable) 전자 장치에서의 증가하는 관심은 저가, 플렉서블, 경량 및 환경친화적 에너지 저장/전환 장치에 대한 연구를 이끌어왔다(비특허문헌 1 참조). 이 중, 수소 가스 관련 장치가 미래의 재생가능한 에너지 세계에서의 수소(H2) 가스의 독특한 특성으로 인해 가장 인기가 있다. H2 가스가 신에너지 세계에서 가장 인기있다고 하더라도, H2-기반 장치는 H2 누출로부터의 다수의 문제에 직면해 있다(비특허문헌 2 참조). H2 누출은 장치의 작동 효율을 감소시키거나 대규모 피해를 동반하는 폭발을 야기할 수 있다. 따라서, 폴더블/플렉서블 센서에서의 연구 경향에 따라, 최근 H2 누출의 검출이 최대의 관심사로 떠올랐다. 저가 및 뱃치(batch)-제조 공정의 폴더블 H2 센서는 최근 진보된 센서 기술의 요건을 만족시킬 수 있다(비특허문헌 1, 3 및 4 참조). 최근, 용이한 설치, 높은 굽힘 조건 하에서 작동하는 능력 및 우수한 센싱 성능의 이점을 갖는 폴더블 H2 센서는 수요가 많다.
Pd 나노결정의 촉매 활성은 그의 크기 및 형태에 의존한다. 촉매 형태는, 모서리, 가장자리 및 평면에서 표면 원자를 조절하고, 이는 가능한 반응의 결과에 영향을 미치기 때문에, 응답 활성 및 선택성을 조절하는데 있어서 상당한 역할을 한다(비특허문헌 5 내지 8 참조). 따라서, 큐브, 케이지(cage), 8면체, 4면체에 더불어, 양추(bipyramid), 플레이트(plate), 바(bar), 로드(rod) 및 와이어(wire)를 포함하는, 다양한 Pd 형태가 합성되고 연구되어 왔다(비특허문헌 5 내지 8 참조). 이러한 형태 조절을 갖는 Pd-촉매된 나노결정이 연구되었고, 감소된 적재 및 비용으로 산업적인 용도에 적용되었다. 다양한 형태 중, Pd 나노큐브(NCs)는 높은 촉매 활성(비특허문헌 6 참조)를 갖고, 하이브리드 또는 코어-쉘(core-shell) 구조를 만들기 위한 유망한 초기 물질인 것으로 보고되어 왔다. 본 발명자들의 이전 연구에서, Pd NCs는 H2 검출에 대해 탁월한 촉매 특성을 나타내었다(비특허문헌 9 내지 11 참조). Pd NC-그래핀 하이브리드는, 실온에서의 H2, 낮은 검출 한계 및 우수한 능력으로 작동하는 것과 같은 이점을 발생시켰다(비특허문헌 9 내지 10 참조). 그래핀에 도포되고 물리적 증착 방법에 의해 합성된 Pd 나노입자(nanoparticles; NPs)는 유연성(flexibility)을 갖는 고성능 H2 센서를 생산하였다(비특허문헌 12 참조). 불행히도, 본 발명자들의 경험에 의하면, (중간체 물질로서 그래핀 옥사이드(graphene oxide; GO)를 통한) 화학적 박리(exfoliation)에 의한 그래핀은 플렉서블 장치 용도에 대해 우수한 특성을 나타내지 않는다. 플렉서블 장치로 실현가능한 많은 종류의 탄소 물질들 중, 탄소 나노튜브(carbon nanotubes; CNTs)는 높은 기계적 강도, 높은 탄성 계수 및 높은 전기 전도도의 이점을 갖는다(비특허문헌 13 및 14 참조). 이러한 이점들은 플렉서블 장치 용도로 CNTs를 적용하기에 적합하다.
본 발명자들의 이전 연구에서, 본 발명자들은 GO 용액 및 Pd 전구체로부터의 그래핀 하이브리드 내의 다양한 Pd 나노결정(예컨대, 나노큐브, 나노다공성 및 코어-쉘)인 Pd-그래핀(Pd-Gr) 복합체(비특허문헌 15 참조)를 제조하였고, 이후 이를 저항식-기반 H2 센서로 적용하였다(비특허문헌 9, 10, 16 및 17 참조). 본 발명자들의 이전 실험으로부터, Pd-Gr 복합체/하이브리드가 저온에서의 H2 검출에 대한 잠재적인 후보임이 나타났다(비특허문헌 9, 10, 16 및 17 참조).
본 연구에서, 본 발명자들은 플렉서블/폴더블 H2 센서를 위한 신규한 Pd 나노큐브-CNT 하이브리드를 합성하고 연구하였으며, 여기서 그래핀은 센서의 성능을 향상시키기 위한 목적으로 첨가되었다. Pd 나노큐브는 2 단계의 시드-매개 성장(seed-mediated growth)을 통한 화학적 방법으로 합성되었고, 이후 H2 가스 검출을 위한 촉매로서 적용되었다. 기능화된 CNTs는 DI 수(DI water)에 분산되었고, 여과 방법을 통해 Pd 나노큐브 및 그래핀과 함께 나일론 막 상에 위치되었다(assembled). 또한, Pd 촉매 물질 지지체로서의 CTNs의 이점 및 플렉서블/폴더블 H2 센서에서의 그래핀의 역할이 본 명세서에서 상세히 논의된다.
D. Ge, L. Yang, L. Fan, C. Zhang, X. Xiao, Y. Gogotsi, S. Yang, Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons, Nano Energy 11 (2015) 568-578. T. Hubert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors - A review, Sens. Actuators B 157 (2011) 329-352. L. Donaldson, Stretchable and foldable electronic displays, Mater. Today 16 (2013) 416-. R.E. Triambulo, H.-G. Cheong, J.-W. Park, All-solution-processed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics, Organic Electron. 15 (2014) 2685-2695. B. Lim, M. Jiang, J. Tao, P.H.C. Camargo, Y. Zhu, Y. Xia, Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions, Adv. Funct. Mater. 19 (2009) 189-200. H. Zhang, M. Jin, Y. Xiong, B. Lim, Y. Xia, Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications, Acc. Chem. Res. 46 (2012) 1783-1794. Z. Shao, W. Zhu, H. Wang, Q. Yang, S. Yang, X. Liu, G. Wang, Controllable Synthesis of Concave Nanocubes, Right Bipyramids, and 5-Fold Twinned Nanorods of Palladium and Their Enhanced Electrocatalytic Performance, J. Phys. Chem. C 117 (2013) 14289-14294. W. Niu, L. Zhang, G. Xu, Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals, ACS Nano 4 (2010) 1987-1996. D.-T. Phan, G.-S. Chung, A novel Pd nanocube-graphene hybrid for hydrogen detection, Sens. Actuators B 199 (2014) 354-360. D.-T. Phan, G.-S. Chung, Effects of Pd nanocube size of Pd nanocube-graphene hybrid on hydrogen sensing properties, Sens. Actuators B 204 (2014) 437-444. M.F.B. Alam, D.-T. Phan, G.-S. Chung, Palladium nanocubes decorated on a one-dimensional ZnO nanorods array for use as a hydrogen gas sensor, Mater. Lett. 156 (2015) 113-117. M.G. Chung, D.-H. Kim, D.K. Seo, T. Kim, H.U. Im, H.M. Lee, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Flexible hydrogen sensors using graphene with palladium nanoparticle decoration, Sens. Actuators B 169 (2012) 387-392. M. Asad, M.H. Sheikhi, M. Pourfath, M. Moradi, High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs, Sens. Actuators B210 (2015) 1-8. J. Li, E.-C. Lee, Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors, Biosens. Bioelectron. 71 (2015) 414-419. D.-T. Phan, G.-S. Chung, Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites, Int. J. Hydrogen Energy 39 (2014) 620-629. D.-T. Phan, G.-S. Chung, A novel nanoporous Pd-graphene hybrid synthesized by a facile and rapid process for hydrogen detection, Sens. Actuators B 210 (2015) 661-668. D.-T. Phan, A.S.M.I. Uddin, G.-S. Chung, A large detectable-range, high-response and fast-response resistivity hydrogen sensor based on Pt/Pd core-shell hybrid with graphene, Sens. Actuators B 220 (2015) 962-967. F. Aviles, J.V. Cauich-Rodriguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado, Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon 47 (2009) 2970-2975. D.T. Phan, G.S. Chung, P-n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111), J. Phys. Chem. Sol., 74 (2013) 1509-1514. P.V. Kamat, Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support, J. Phys. Chem. Lett. 1 (2009) 520-527. A. Kaniyoor, R. Imran Jafri, T. Arockiadoss, S. Ramaprabhu, Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor, Nanoscale 1 (2009) 382-386. U. Lange, T. Hirsch, V.M. Mirsky, O.S. Wolfbeis, Hydrogen sensor based on a graphene - palladium nanocomposite, Electrochim. Acta 56 (2011) 3707-3712. Y. Sun, H.H. Wang, High-Performance, Flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles, Adv. Mater. 19 (2007) 2818-2823.
본 발명의 목적은 폴더블 수소센서 및 그의 제조 방법을 제공하는 것이다. 특히, Pd 나노큐브, 다중벽 탄소 나노튜브(MWCNT) 및 고분자 지지체(예컨대, 나일론)를 포함하는 복합체; 또는 Pd 나노큐브, 다중벽 탄소 나노튜브-그래핀 및 고분자 지지체(예컨대, 나일론)를 포함하는 복합체를 포함하는 수소센서를 제조함으로써, 접힘 전과 후 및 접힌 상태에서도 수소센서의 성능 및 특성에 변화가 거의 없는 폴더블/플렉서블한 특성을 나타내도록 하였다. 또한, 실온에서 10 ppm 내지 10,000 ppm의 수소 가스 검출 범위를 갖도록 하였으며, 높은 응답 값을 갖도록 하였다.
상기한 목적을 달성하기 위하여, 본 발명은, Pd 나노큐브, 다중벽 탄소 나노튜브(MWCNT) 및 고분자 지지체를 포함하는 복합체를 포함하는 폴더블 수소센서를 제공한다.
또한, 본 발명은, 하기 단계를 포함하는 폴더블 수소센서의 제조 방법을 제공한다:
(a) Pd 나노큐브 용액을 제공하는 단계;
(b) 다중벽 탄소 나노튜브(MWCNT) 용액을 제공하는 단계;
(c) 상기 Pd 나노큐브 용액 및 MWCNT 용액을 혼합한 혼합 용액을 초음파 처리하여, 현탁액을 수득하는 단계;
(d) 상기 현탁액을 고분자 막에 여과하여, 고분자 막 상에 Pd 나노큐브 및 MWCNT가 위치된 형태의 Pd 나노큐브, MWCNT 및 고분자 지지체를 포함하는 복합체를 수득하는 단계; 및
(e) 상기 복합체를 포함하는 수소센서를 수득하는 단계.
본 발명의 일실시예에 있어서, 상기 고분자 지지체는 나일론, 폴리이미드(PI), 폴리에틸렌 테레프팔레이트(PET), 폴리디메틸실록산(PDMS) 또는 폴리에틸렌 나프탈레이트(PEN)일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일실시예에 있어서, 상기 MWCNT는 그래핀(Gr)과 혼합될 수 있다.
본 발명의 일실시예에 있어서, 상기 MWCNT와 Gr은 1:1 중량비로 혼합될 수 있다.
본 발명의 일실시예에 있어서, 상기 Pd 나노큐브는 시드-매개 성장을 통한 화학적 방법으로 제조될 수 있다.
본 발명의 일실시예에 있어서, 상기 Pd 나노큐브는 50 nm 내지 100 nm의 평균 크기를 가질 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일실시예에 있어서, 상기 수소센서는 실온에서 10 ppm 내지 10,000 ppm의 수소 가스 검출 범위를 가질 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일실시예에 있어서, 상기 Pd 나노큐브 및 MWCNT는 여과 방법에 의해 상기 고분자 지지체 상에 위치될 수 있다.
본 발명의 일실시예에 있어서, MWCNT와 Gr이 혼합되는 경우, 상기 Pd 나노큐브 및 MWCNT와 Gr의 혼합물은 여과 방법에 의해 상기 고분자 지지체 상에 위치될 수 있다.
본 발명은 폴더블 수소센서 및 그의 제조 방법에 관한 것으로서, 보다 구체적으로는 Pd 나노큐브, 다중벽 탄소 나노튜브(MWCNT) 및 고분자 지지체(예컨대, 나일론)를 포함하는 복합체; 또는 Pd 나노큐브, 다중벽 탄소 나노튜브-그래핀 및 고분자 지지체(예컨대, 나일론)를 포함하는 복합체를 포함하는 폴더블 수소센서 및 그의 제조 방법에 관한 것이다. 본 발명에 따른 수소센서는 실온에서 10 ppm 내지 10,000 ppm의 수소 가스 검출 범위를 가지며, 접힘 전과 후 및 접힌 상태에서도 성능 및 특성에 변화가 거의 없는 폴더블/플렉서블한 특성을 갖는다. 또한, 본 발명에 따른 수소센서는 더 높은 신호-대-노이즈 수준을 가짐으로써, 스마트 의류, 직물, e-섬유(e-textile), 스마트 스킨, 인텔리전트 의류 및 웨어러블 센서 기술에서의 H2 검출에 바람직하게 적용될 수 있다. 또한, 본 발명에 따른 수소센서는 본 발명자들의 이전 연구에서 보고한 Pd 나노큐브-Gr 하이브리드보다 2 배 높은 응답 값을 가지는 효과를 나타낸다.
도 1은 (a) 여과 방법 및 (b) 상이한 접힘 상태의 Pd 나노큐브/MWCNT/나일론 막의 광학 이미지를 나타낸다.
도 2는 (a) Pd 나노큐브, (b) 기능화된 CNTs, (c) 나일론 막, 및 (d) Pd 나노큐브/MWCNTs/나일론의 SEM 이미지를 나타낸다.
도 3은 (a, b) Pd 나노큐브/MWCNTs/나일론 및 (c, d) Pd 나노큐브/MWCNTs-Gr/나일론의 SEM 이미지를 나타낸다.
도 4는 Pd 나노큐브/MWCNT/나일론 샘플의 (a) I-V 곡선(삽도: 시험 샘플), (b) H2에 대한 응답, 및 (c) 센싱 성능에 대한 접힘의 효과를 나타낸다.
도 5는 (a) 제조된 센서의 광학 이미지, (b) 1% H2에 대한 센서의 반복성 거동, 및 (c) 다양한 H2 농도에 대한 Pd 나노큐브/MWCNT-Gr/나일론 샘플의 응답을 나타낸다.
본 발명은 폴더블 수소센서 및 그의 제조 방법에 관한 것으로서, 보다 구체적으로는 Pd 나노큐브, 다중벽 탄소 나노튜브(MWCNT) 및 고분자 지지체(예컨대, 나일론)를 포함하는 복합체; 또는 Pd 나노큐브, 다중벽 탄소 나노튜브-그래핀 및 고분자 지지체(예컨대, 나일론)를 포함하는 복합체를 포함하는 폴더블 수소센서 및 그의 제조 방법에 관한 것이다.
본 발명에 대해 간략히 설명하면, 본 발명자들은 그래핀(Gr)을 갖는 탄소 나노튜브(CNT)-지지된 팔라듐(Pd) 나노큐브를 간단한 화학적 방법을 통해 합성하여, 폴더블 수소(H2) 센서를 제조하였다. Pd 나노큐브는 2-단계 화학적 루트(시드-매개 성장)에 의해 합성되었다. 70 nm의 평균 크기를 갖는 고도로 균일한 콜로이드성 Pd 나노큐브가 여과 방법을 통해 나일론 여과 막 상에 위치된 CNT-Gr 네트워크 상에 도포되었다. 수득된 Pd 나노큐브-도포된 CNT-Gr 네트워크가 높은 민감성 및 우수한 선택성을 갖는 수소 센싱 물질로서 적용되었다. Pd 나노큐브-CNT-Gr을 갖는 폴더블 저항식-타입 센서는 실온에서 우수한 선형성으로 10 ppm 내지 10,000 ppm 사이의 검출 범위를 가졌다. 또한, 신규한 H2 센서는 본 발명자들의 이전 연구에서 보고한 Pd 나노큐브-Gr 하이브리드보다 2 배 높은 응답을 나타내었다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
< 실시예 >
[ 실시예 1] Pd 나노큐브의 제조
본 합성 방법에서 사용된 모든 화학물질은 Sigma Aldrich, Dongwoo Fine-Chem., 및 Dae Jung Chem. & Inds. Co. Ltd.로부터 구입된 분석용 등급이었고, 추가적인 정제 없이 사용되었다. 본 발명자들의 이전 연구에 개시된 바와 같이, 70 nm의 평균 나노큐브 크기를 갖는 Pd 나노큐브 용액이 시드-매개 성장에 의해 제조되었다(비특허문헌 9 내지 10 참조).
[ 실시예 2] MWCNT의 제조
1 g의 MWCNTs를 100 mL의 진한 H2SO4 및 100 mL의 HNO3에 혼합함으로써, 상업용 다중벽 탄소 나노튜브(MWCNTs)(Φ = 4.5-5 nm; l = 3-6 μm)가 기능화되었다. 혼합된 용액은 테플론 비커에서 85℃에서 10 시간 동안 교반되었다. 이후, 현탁 용액은 수 시간 동안 냉각된 후, 1L DI 수가 첨가되었다. 수 일 후, 자유 침강(free settling)에 의해 MWCNTs가 수집되었다. 용액의 pH 수준이 7 내지 8에 도달할 때까지 DI 수를 반복적으로 첨가함으로써, 중화된 MWCNTs가 수득되었다. 중화 공정 후, 분산된 MWCNT 용액은 초고속으로 원심분리되었다. 침전된 MWCNTs가 제거되었고, 점재하는(isolated) MWCNTs를 함유하는 현탁 DI 수가 추가적인 실험으로 위해 수집되었다.
[ 실시예 3] Pd 나노큐브 / MWCNT /나일론 및 Pd 나노큐브 / MWCNT - Gr /나일론 센서 샘플의 제조
본 연구에서, 2 개의 센서 샘플이 제조되었는데, 한 개는 그래핀이 없는 것(Pd 나노큐브/MWCNT/나일론)이었고, 한 개는 그래핀이 있는 것(Pd 나노큐브/MWCNT-Gr/나일론)이었다. 먼저, Pd 나노큐브/MWCNT/나일론 샘플에서, 10 mL Pd 나노큐브 용액 및 90 mL 분산된 MWCNT 용액을 포함하는 100 mL 용액이 2 시간 동안 초음파처리되어, 균일한 현탁액을 수득하였다. Pd 나노큐브 및 MWCNTs의 현탁 용액이 여과 방법으로 나일론 종이(CHMLAB) 상에 위치되었다. 여과 공정 후, Pd 나노큐브/MWCNT/나일론 종이는 40℃에서 밤새 건조되었다. 표면 상에 Pd 나노큐브/MWCNTs를 갖는 수득된 나일론 종이가 저항식 센서를 제조하기 위해 사용되었다. Pd 나노큐브/MWCNT-Gr/나일론 샘플과 관련하여, 여과 공정에서의 제조된 현탁 용액이 순수한 MWCNTs 대신에 MWCNT-그래핀(1:1)의 100 mL 혼합물이었다. 현탁 그래핀(환원된 그래핀 옥사이드) 용액이 본 발명자들의 이전 연구에 개시된 것과 유사한 방식으로 제조되었다(비특허문헌 9 내지 10 참조). 센서 샘플은 단순히 가위로 나일론 막 종이로부터 일부를 잘라냄으로써 제조되었다. 제조된 센서의 표면 상에 은(Ag) 페이스트를 도포함으로써, 2 개의 옴 접촉(Ohmic contact)이 제조되었다. 이후, 상기 샘플은 오븐에서 100℃에서 1 시간 동안 가열되어, 센서 제조 공정 동안의 모든 오염물질들을 제거하였다.
[ 실시예 4] 센서 성능 연구
센서 기능성을 연구하기 위하여, 센서를 개방 공간 환경에 두었다. 1 V로 고정된 바이어스 전압을 갖는 Keithley 프로브 스테이션(probe station)(SCS-4200)이 센서의 저항 값을 기록하였다. 컴퓨터화된 질량 유량 제어기 시스템(ATOVAC, GMC 1200)이 합성 공기(Deokyang Co. Ltd) 내의 H2의 농도를 변화시키기 위해 사용되었다. 1 분 당 50 표준 세제곱 센티미터(standard cubic centimeters per minute (sccm)의 일정한 유속으로 상이한 H2 농도의 가스 혼합물이 근접한 센서 샘플로 전달되었다. 합성 공기가 각각의 H2 펄스 사이에 퍼징되어(purged), 센서의 표면이 대기 조건으로 돌아가도록 하였다.
도 1(a)는 여과 방법에서의 MWCNT-Gr 및 Pd 나노큐브를 포함하는 현탁 용액의 광학 이미지를 나타낸다. H2SO4/HNO3의 산 혼합물로 처리 후, MWCNT 표면 상으로의 하이드록실(-OH) 및 카르복실(-COOH)의 부착으로 인해, 도 1(a)에 개시된 바와 같이, MWCNTs는 안정한 콜로이드로서 DI 수에 분산될 수 있다. DI 수 내에 분산된 MWCNTs는, COOH 기 및 OH 기가 MWCNTs의 표면에 성공적으로 부착된 것을 분명히 나타낸다(비특허문헌 18 참조). MWCNTs의 산화 처리는 그래핀 옥사이드를 수득하기 위한 순수한 그라파이트의 산화 공정과 유사하다(비특허문헌 19 참조). 기저면 또는 가장자리 면에 부착된 다량의 하이드록실(-OH), 카르복실(-C(=O)OH) 카르보닐(-C=O) 및 에폭사이드 작용기로 인해, 그래핀 옥사이드는 강한 친수성이고 수중에서 쉽게 박리되어 안정한 콜로이드성 분산액을 형성한다. 그러나, 산소-함유 작용기가 하이드라진과의 환원 동안 거의 대부분 제거됨에 따라, GO가 우수한 전도도 특성을 갖는 환원된 그래핀 옥사이드(reduced graphene oxide; RGO) 또는 그래핀으로 변환된다. GO와 비교하여, 표면에 부착된 산소 작용기를 갖는 산화된 MWCNTs는 여전히 우수한 전도도를 갖고, MWCNTs의 특성은 H2SO4/HNO3 혼합물로 처리한 후에도 거의 변하지 않는다(비특허문헌 18 내지 19 참조). 도 1(b)는 수 회 접힌 Pd 나노큐브/MWCNT/나일론 샘플의 광학 이미지를 나타낸다. Pd 나노큐브/MWCNT/나일론 샘플 및 Pd 나노큐브/MWCNT-Gr/나일론 샘플의 전도도가, 프로브를 샘플의 표면에 직접적으로 연결함으로써 측정되었다. 도 2(a) 및 (b)는 합성도니 Pd 나노큐브 및 산화된 MWCNTs(H2SO4/HNO3 처리 후)를 나타낸다. 도 3(c) 및 (d)는 나일론 막의 표면 및 서로 분산되고 나일론 표면 상에 위치된 Pd 나노큐브/MWCNTs를 나타낸다.
도 3(a) 및 (b) 및 3(c) 및 (d)는 각각 낮은 배율에서의 Pd 나노큐브/MWCNT/나일론 및 Pd 나노큐브/MWCNT-Gr/나일론 샘플의 SEM 이미지를 나타낸다. 도 3(a)에서, Pd 나노큐브/MWCNTs의 매우 얇은 층으로 인해, 나일론 막 종이의 표면이 관찰되었다. 도 3(b)는, Pd 나노큐브 및 MWCNTs가 Pd 나노큐브 및 MWCNTs의 서로 간의 우수한 분산으로 나일론 표면 상에 위치되어 있음을 나타낸다. 그래핀을 Pd 나노큐브/MWCNT/나일론 샘플에 첨가한 후, 도 3(c)에 개시된 바와 같이, Pd 나노큐브/MWCNT-Gr/나일론 샘플은 나일론 표면 상에 Pd 나노큐브 및 MWCNT-Gr의 보다 두꺼운 응집층을 나타내었다. 도 3(d)는 Pd 나노큐브/MWCNT-Gr/나일론 샘플의 확장된 표면 이미지이고, 여기서 MWCNT-Gr 네트워크의 다공성 및 다른 나노물질과의 복합체/하이브리드에서의 그래핀의 탁월한 특성으로 인해, Pd 나노큐브의 밀도가 증가하였다. 복합체/하이브리드에서, 그래핀은 Pd 나노큐브를 지지하기 위한 보다 많은 비표면적(specific area)을 갖고, 따라서, MWCNTs 보다 우수한 기계적 특성을 갖는, 잘 분산되고, 점재하고, 둘러싸여있고, 유지된 Pd 나노큐브를 위한 완벽한 뼈대이다(비특허문헌 20 참조). 또한, 그래핀의 원자 두께는 나노복합체-기반 가스 센서에서 중요한 가스 분자 확산 및 전하 이동을 위한 새로운 통로를 제공한다(비특허문헌 20 참조).
도 4(a)는 Pd 나노큐브/MWCNT/나일론 샘플의 기계적 안정성 및 우수한 전도도를 나타낸다. 첫 번째로, 도 4(a)의 삽도에 개시된 바와 같이, 프로브가 Pd 나노큐브/MWCNT/나일론 샘플의 표면에 직접적으로 연결되어 I-V 곡선을 기록하였다(MWCNTs의 우수한 전도도, 유연성 및 기계적 안정성으로 인해, 임의의 전극을 제조하지 않음). 두 번째로, 도 4(a)의 I-V 곡선은 프로브 및 Pd 나노큐브/MWCNT/나일론 표면 사이의 우수한 옴 접촉을 나타내며, 여기서 수 회 접고(fold-in) 편(fold-out) 후에 무시할만한 변화가 I-V 곡선에서 관찰된다. 이 결과는, 나일론 표면 상에 위치된 Pd 나노큐브/MWCNT 네트워크가 우수한 기계적 안정성 및 폴더블/플렉서블 특성을 갖는다는 것을 나타낸다. 도 4(b)는 실온에서의 1% 및 0.5% H2 가스에 대한 Pd 나노큐브/MWCNT/나일론 샘플의 응답을 나타낸다. H2 가스는 미리 설정된 농도로 합성 공기와 혼합되고, 도 4(a)의 삽도에 개시된 바와 같이, 유출구 가스는 Pd 나노큐브/MWCNT/나일론 샘플에 근접하게 위치된다. 도 4(b)에 개시된 바와 같이, H2 가스가 방출된 경우, Pd 나노큐브/MWCNT/나일론 샘플의 저항이 서서히 증가하였고, 이후 H2 공급이 중단된 후에 감소하였다. 도 4(c)는 접힘 전과 후에, 1% H2에 대한 Pd 나노큐브/MWCNT/나일론 샘플의 응답을 나타낸다. MWCNTs의 탁월한 실현가능성 덕분에, 응답은 샘플 접힘 동안 거의 변하지 않았다. 그러나, Pd 나노큐브/MWCNT/나일론 샘플의 도 4(a)의 I-V 곡선 및 도 4(b) 및 (c)의 H2 가스에 대한 응답은, 샘플의 노이즈 수준이 여전히 높다는 것을 나타낸다. 신호-대-노이즈 수준이 낮은 수준이어서, 실제 적용에 있어서 H2 센서의 보다 적은 신뢰성을 야기한다. 이 문제를 해결하고 센서 응답의 안정성을 향상시키기 위하여, 본 발명자들은 그래핀을 MWCNT 네트워크에 첨가하였다. 그래핀의 역할은 MWCNT 네트워크에 더 많은 전도 통로를 부여함으로써 샘플에서 노이즈를 감소시키는 것 뿐만 아니라, Pd 나노큐브 적재를 위한 지지체 부위를 증가시키고 Pd 나노큐브 및 그래핀 계면 사이의 효율적인 상호작용을 제공함으로써 센서의 민감성을 향상시키기 위한 것이다(비특허문헌 9 내지 10 참조).
도 5(a)는 평평하고 접힌 부위의 Pd 나노큐브/MWCNT-Gr/나일론 샘플로부터 제조된 H2 센서의 광학 이미지를 나타낸다. Pd 나노큐브/MWCNT/나일론 샘플에 비해, Pd 나노큐브/MWCNT-Gr/나일론 샘플에서 보다 어두운 색이 관찰되었다(RGO의 흑색에 기인함). 도 5(b)는 1% H2 가스에 대한 Pd 나노큐브/MWCNT-Gr/나일론 샘플의 우수한 반복성을 나타낸다. 그래핀의 우수한 전도도로 인해, 센서 신호가 명확하고, 높은 신호-대-노이즈 수준이다. 또한, 응답/회복 시간이 Pd 나노큐브/MWCNT/나일론 샘플보다 빨랐다. 도 5(c)는 상이한 H2 가스 농도에 대한, 접힌 상태의 Pd 나노큐브/MWCNT-Gr/나일론 샘플의 응답을 나타낸다. H2 센서-기반 Pd-Gr 또는 Pd-CNT의 센싱 메카니즘은 잘 알려져 있으며, 여기서 Pd는 H2 분자를 흡착하고, PdHx로 변화시키며(동시에 Pd의 부피를 수 퍼센티지 포인트 확장시킴), 이는 순수한 Pd 나노큐브 물질에 비해 더 적은 작동 기능을 갖는다. PdHx와 관련된 더 적은 작동 기능은 Pd 나노큐브로부터 그래핀 또는 MWCNTs로 더 많은 전자를 이동시키기에 유리하다. Pd 및 그래핀/MWCNTs의 계면에 축적되는 전자는 그래핀/MWCNTs의 정공(hole)을 중성화시킬 수 있고, 그에 따라 그래핀/MWCNTs의 p-형 캐리어 밀도를 감소시킬 수 있으므로, 센서의 저항의 증가를 야기한다(비특허문헌 9 내지 10 참조).
센서 응답(S)은 H2 가스에 대한 노출에 의한, 고정된 바이어스 전압(1 V)에서의 저항식-센서의 저항 변화의 퍼센트로 정의된다:
S (%) = ΔR/Ra x 100 = (Rg - Ra)/Ra x 100 (1)
식 중, Ra는 공기만의 존재 하에서의 센서의 저항이고, Rg는 특정 농도의 H2의 존재 하에서의 저항이다. 1% 가스 농도에 대한 H2 센서의 응답 값 S(%)는 Pd 나노큐브/MWCNT/나일론 및 Pd 나노큐브/MWCNT-Gr/나일론 샘플 각각에서 13% 및 35% 였다. Pd 나노큐브/MWCNT-Gr/나일론 샘플에서, 그래핀은 Pd 나노큐브를 지지하기 위한 더 높은 비표면적을 갖고, 따라서 MWCNTs 보다 우수한 특성을 갖는, 잘 분산되고, 점재하고, 둘러싸여있고 접촉된 Pd 나노큐브를 위한 완벽한 뼈대이다(비특허문헌 9, 10 및 20 참조). 또한, 평면의 2D 구조를 갖는 그래핀은 1D 구조의 MWCNTs에 비해 Pd 나노큐브의 평평한 표면에 더 많은 접촉 영역을 제공한다. H2 흡착/탈착 동안 전자 또는 전하 이동은 Pd 및 탄소 물질(MWCNTs 및 그래핀) 사이의 상기 접촉 영역에서 거의 나타났고, 따라서 Pd 나노큐브/MWCNT-Gr/나일론 샘플은 Pd 나노큐브/MWCNT/나일론 샘플에 비해 더 높은 응답을 갖는다. Pd 나노큐브/MWCNT-Gr/나일론을 기반으로 하는 본 발명자들의 실온에서의 H2 센서의 응답(10,000 ppm H2에서 S = 35%)은 이전에 보고된 본 발명자들의 Pd 큐브-Gr 하이브리드(10,000 ppm H2에서 S = 18%)(비특허문헌 9 내지 10 참조)보다 2 배 높고, 문헌에서 기타 보고된 결과들, 예컨대 Pt/Gr(40,000 ppm H2에서 S = 16%)(비특허문헌 21 참조), Pd/Gr(1,000 ppm H2에서 S = 33%)(비특허문헌 12 참조), Pd-Gr 복합체(5,000 ppm H2에서 S = 32%)(비특허문헌 22 참조) 및 플렉서블 Pd-CNTs(10,000 ppm H2에서 S = 44%)(비특허문헌 23 참조)와 비교할만한 수준이다.
본 연구에서, 본 발명자들은 담지 그래핀(embedded graphene)과 함께 및 담지 그래핀 없이, Pd 나노큐브/MWCNT/나일론을 합성함으로써, 간단한 화학 및 여과 방법을 통해 폴더블 H2 센서를 제조하였다. H2 촉매로 사용되는 Pd 나노큐브는 크기(대략 70 nm)가 매우 균일하였고, MWCNT/나일론 및 MWCNT-Gr/나일론 네트워크 내에 잘 분산되었다. H2 센서를 위한 Pd 나노큐브-Gr에 대한 본 발명자들의 이전 연구와 비교하여, Pd 나노큐브/MWCNT-Gr/나일론 샘플은 약 2 배 높은 응답을 가졌다. Pd 나노큐브/MWCNTs/나일론을 기반으로 하는 H2 센서는, 폴더블/플렉서블 특성과 함께, 1% 및 0.5% H2에 대하여 분명한 응답을 나타내었다. Pd 나노큐브/MWCNT-Gr/나일론이 또한 1% H2에서의 35%의 응답(S)을 포함하는 동일한 특성을 나타내었으나, 이는 더 높은 신호-대-노이즈 수준을 나타내었다. 또한, 본 연구의 결과는, Pd 나노큐브/MWCNT-Gr/나일론이 스마트 의류, 직물, e-섬유(e-textile), 스마트 스킨, 인텔리전트 의류 및 웨어러블 센서 기술에서의 H2 검출에 바람직하게 적용될 수 있다는 것을 나타낸다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. Pd 나노큐브(nanocube), 그래핀(graphene; Gr)과 혼합된 다중벽 탄소 나노튜브(multi-walled carbon nanotube; MWCNT) 및 고분자 지지체를 포함하는 복합체를 포함하는 폴더블(foldable) 수소센서.
  2. 제 1 항에 있어서,
    상기 고분자 지지체는 나일론, 폴리이미드(PI), 폴리에틸렌 테레프팔레이트(PET), 폴리디메틸실록산(PDMS) 또는 폴리에틸렌 나프탈레이트(PEN)인 수소센서.
  3. 삭제
  4. 제 1 항에 있어서,
    상기 MWCNT와 Gr은 1:1 중량비로 혼합되어 있는 수소센서.
  5. 제 1 항에 있어서,
    상기 Pd 나노큐브는 시드-매개 성장을 통한 화학적 방법으로 제조되는 수소센서.
  6. 제 1 항에 있어서,
    상기 Pd 나노큐브는 50 nm 내지 100 nm의 평균 크기를 갖는 수소센서.
  7. 제 1 항에 있어서,
    상기 수소센서는 실온에서 10 ppm 내지 10,000 ppm의 수소 가스 검출 범위를 갖는 수소센서.
  8. 제 1 항에 있어서,
    상기 Pd 나노큐브 및 MWCNT는 여과 방법에 의해 상기 고분자 지지체 상에 위치되는 수소센서.
  9. 제 1 항에 있어서,
    상기 Pd 나노큐브 및 MWCNT와 Gr의 혼합물은 여과 방법에 의해 상기 고분자 지지체 상에 위치되는 수소센서.
  10. 하기 단계를 포함하는 폴더블 수소센서의 제조 방법:
    (a) Pd 나노큐브 용액을 제공하는 단계;
    (b) 그래핀(graphene; Gr)이 혼합된 다중벽 탄소 나노튜브(MWCNT) 용액을 제공하는 단계;
    (c) 상기 Pd 나노큐브 용액 및 MWCNT 용액을 혼합한 혼합 용액을 초음파 처리하여, 현탁액을 수득하는 단계;
    (d) 상기 현탁액을 고분자 막에 여과하여, 고분자 막 상에 Pd 나노큐브 및 MWCNT가 위치된 형태의 Pd 나노큐브, MWCNT 및 고분자 지지체를 포함하는 복합체를 수득하는 단계; 및
    (e) 상기 복합체를 포함하는 수소센서를 수득하는 단계.
  11. 삭제
  12. 제 10 항에 있어서,
    상기 MWCNT와 Gr은 1:1 중량비로 혼합되는 방법.
  13. 제 10 항에 있어서,
    상기 고분자 지지체는 나일론, 폴리이미드(PI), 폴리에틸렌 테레프팔레이트(PET), 폴리디메틸실록산(PDMS) 또는 폴리에틸렌 나프탈레이트(PEN)인 방법.
  14. 제 10 항에 있어서,
    상기 단계 (a)에서, Pd 나노큐브는 시드-매개 성장을 통한 화학적 방법으로 제조되는 방법.
  15. 제 10 항에 있어서,
    Pd 나노큐브는 50 nm 내지 100 nm의 평균 크기를 갖는 방법.
KR1020150140105A 2015-10-06 2015-10-06 폴더블 수소센서 및 그의 제조 방법 KR101701928B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150140105A KR101701928B1 (ko) 2015-10-06 2015-10-06 폴더블 수소센서 및 그의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150140105A KR101701928B1 (ko) 2015-10-06 2015-10-06 폴더블 수소센서 및 그의 제조 방법

Publications (1)

Publication Number Publication Date
KR101701928B1 true KR101701928B1 (ko) 2017-02-02

Family

ID=58154140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150140105A KR101701928B1 (ko) 2015-10-06 2015-10-06 폴더블 수소센서 및 그의 제조 방법

Country Status (1)

Country Link
KR (1) KR101701928B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134764A (ko) * 2019-05-23 2020-12-02 한국과학기술원 그래핀 기반의 유연 수소 센서 및 그 제조 방법
WO2023120778A1 (ko) * 2021-12-20 2023-06-29 (주)유니드 수소가스 감지용 실리콘 테이프 조성물, 그 수소가스 감지 실리콘 테이프, 그 제조방법
WO2023200177A1 (ko) * 2022-04-11 2023-10-19 한양대학교 에리카산학협력단 수소 감지용 안료, 그 제조방법 및 이를 포함하는 수소 센서
US11953444B2 (en) 2018-02-05 2024-04-09 Korea University Research And Business Foundation Zero-power detecting sensor of chemical substance and sensing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050039016A (ko) * 2003-10-23 2005-04-29 한국화학연구원 팔라듐이 코팅된 탄소 나노튜브 수소센서
KR20110100807A (ko) * 2010-03-05 2011-09-15 전자부품연구원 플렉서블 가스 센서 어레이 및 그 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050039016A (ko) * 2003-10-23 2005-04-29 한국화학연구원 팔라듐이 코팅된 탄소 나노튜브 수소센서
KR20110100807A (ko) * 2010-03-05 2011-09-15 전자부품연구원 플렉서블 가스 센서 어레이 및 그 제조 방법

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
A. Kaniyoor, R. Imran Jafri, T. Arockiadoss, S. Ramaprabhu, Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor, Nanoscale 1 (2009) 382-386.
B. Lim, M. Jiang, J. Tao, P.H.C. Camargo, Y. Zhu, Y. Xia, Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions, Adv. Funct. Mater. 19 (2009) 189-200.
D. Ge, L. Yang, L. Fan, C. Zhang, X. Xiao, Y. Gogotsi, S. Yang, Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons, Nano Energy 11 (2015) 568-578.
D.-T. Phan, A.S.M.I. Uddin, G.-S. Chung, A large detectable-range, high-response and fast-response resistivity hydrogen sensor based on Pt/Pd core-shell hybrid with graphene, Sens. Actuators B 220 (2015) 962-967.
D.-T. Phan, G.-S. Chung, A novel nanoporous Pd-graphene hybrid synthesized by a facile and rapid process for hydrogen detection, Sens. Actuators B 210 (2015) 661-668.
D.-T. Phan, G.-S. Chung, A novel Pd nanocube-graphene hybrid for hydrogen detection, Sens. Actuators B 199 (2014) 354-360.
D.-T. Phan, G.-S. Chung, Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites, Int. J. Hydrogen Energy 39 (2014) 620-629.
D.-T. Phan, G.-S. Chung, Effects of Pd nanocube size of Pd nanocube-graphene hybrid on hydrogen sensing properties, Sens. Actuators B 204 (2014) 437-444.
D.T. Phan, G.S. Chung, P-n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111), J. Phys. Chem. Sol., 74 (2013) 1509-1514.
Duy-Thach Phan et al. Sensors and Actuators B. Vol. 199, pp354-360. *
F. Aviles, J.V. Cauich-Rodriguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado, Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon 47 (2009) 2970-2975.
H. Zhang, M. Jin, Y. Xiong, B. Lim, Y. Xia, Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications, Acc. Chem. Res. 46 (2012) 1783-1794.
J. Li, E.-C. Lee, Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors, Biosens. Bioelectron. 71 (2015) 414-419.
L. Donaldson, Stretchable and foldable electronic displays, Mater. Today 16 (2013) 416-.
M. Asad, M.H. Sheikhi, M. Pourfath, M. Moradi, High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs, Sens. Actuators B210 (2015) 1-8.
M.F.B. Alam, D.-T. Phan, G.-S. Chung, Palladium nanocubes decorated on a one-dimensional ZnO nanorods array for use as a hydrogen gas sensor, Mater. Lett. 156 (2015) 113-117.
M.G. Chung, D.-H. Kim, D.K. Seo, T. Kim, H.U. Im, H.M. Lee, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Flexible hydrogen sensors using graphene with palladium nanoparticle decoration, Sens. Actuators B 169 (2012) 387-392.
P.V. Kamat, Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support, J. Phys. Chem. Lett. 1 (2009) 520-527.
R.E. Triambulo, H.-G. Cheong, J.-W. Park, All-solution-processed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics, Organic Electron. 15 (2014) 2685-2695.
T. Hubert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors - A review, Sens. Actuators B 157 (2011) 329-352.
U. Lange, T. Hirsch, V.M. Mirsky, O.S. Wolfbeis, Hydrogen sensor based on a graphene - palladium nanocomposite, Electrochim. Acta 56 (2011) 3707-3712.
W. Niu, L. Zhang, G. Xu, Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals, ACS Nano 4 (2010) 1987-1996.
Y. Sun, H.H. Wang, High-Performance, Flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles, Adv. Mater. 19 (2007) 2818-2823.
Yugang Sun et al. J. PHys. Chem. C 2008. Vol. 112, pp.1250-1259. *
Z. Shao, W. Zhu, H. Wang, Q. Yang, S. Yang, X. Liu, G. Wang, Controllable Synthesis of Concave Nanocubes, Right Bipyramids, and 5-Fold Twinned Nanorods of Palladium and Their Enhanced Electrocatalytic Performance, J. Phys. Chem. C 117 (2013) 14289-14294.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953444B2 (en) 2018-02-05 2024-04-09 Korea University Research And Business Foundation Zero-power detecting sensor of chemical substance and sensing method
KR20200134764A (ko) * 2019-05-23 2020-12-02 한국과학기술원 그래핀 기반의 유연 수소 센서 및 그 제조 방법
KR102233869B1 (ko) * 2019-05-23 2021-03-30 한국과학기술원 그래핀 기반의 유연 수소 센서 및 그 제조 방법
WO2023120778A1 (ko) * 2021-12-20 2023-06-29 (주)유니드 수소가스 감지용 실리콘 테이프 조성물, 그 수소가스 감지 실리콘 테이프, 그 제조방법
WO2023200177A1 (ko) * 2022-04-11 2023-10-19 한양대학교 에리카산학협력단 수소 감지용 안료, 그 제조방법 및 이를 포함하는 수소 센서

Similar Documents

Publication Publication Date Title
Phan et al. A novel Pd nanocube–graphene hybrid for hydrogen detection
Zhang et al. Fabrication of conductive graphene oxide-WO3 composite nanofibers by electrospinning and their enhanced acetone gas sensing properties
Bhati et al. Improved sensitivity with low limit of detection of a hydrogen gas sensor based on rGO-loaded Ni-doped ZnO nanostructures
Ismail et al. A sensitive and selective amperometric hydrazine sensor based on mesoporous Au/ZnO nanocomposites
Baig et al. Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications
Zhu et al. Flexible and lightweight Ti3C2Tx MXene@ Pd colloidal nanoclusters paper film as novel H2 sensor
Choi et al. Recent developments in 2D nanomaterials for chemiresistive-type gas sensors
Dai et al. Hierarchical assembly of α-Fe2O3 nanorods on multiwall carbon nanotubes as a high-performance sensing material for gas sensors
Choi et al. Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure
Wang et al. Designed synthesis of In2O3 beads@ TiO2–In2O3 composite nanofibers for high performance NO2 sensor at room temperature
Li et al. Design of core–shell heterostructure nanofibers with different work function and their sensing properties to trimethylamine
Shehzad et al. Three-dimensional macro-structures of two-dimensional nanomaterials
Meng et al. Graphene-based hybrids for chemiresistive gas sensors
Phan et al. Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites
Tan et al. Self-template derived CuO nanowires assembled microspheres and its gas sensing properties
Lim et al. A new route toward ultrasensitive, flexible chemical sensors: metal nanotubes by wet-chemical synthesis along sacrificial nanowire templates
Yang et al. Immobilization of Pt nanoparticles in carbon nanofibers: bifunctional catalyst for hydrogen evolution and electrochemical sensor
KR101701928B1 (ko) 폴더블 수소센서 및 그의 제조 방법
Phan et al. Effects of Pd nanocube size of Pd nanocube-graphene hybrid on hydrogen sensing properties
Li et al. Graphitic carbon nitride nanosheets decorated flower-like NiO composites for high-performance triethylamine detection
Phan et al. High-sensitivity and fast-response hydrogen sensor for safety application using Pt nanoparticle-decorated 3D graphene
Zhang et al. Layer-by-layer self-assembly of tricobalt tetroxide-polymer nanocomposite toward high-performance humidity-sensing
Yaqoob et al. Foldable hydrogen sensor using Pd nanocubes dispersed into multiwall carbon nanotubes-reduced graphene oxide network assembled on nylon filter membrane
Ghule et al. Porous metal-graphene oxide nanocomposite sensors with high ammonia detectability
Guo et al. The enhanced ethanol sensing properties of CNT@ ZnSnO3 hollow boxes derived from Zn-MOF (ZIF-8)

Legal Events

Date Code Title Description
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191205

Year of fee payment: 4