KR101687726B1 - Novel carotinoid and use thereof - Google Patents
Novel carotinoid and use thereof Download PDFInfo
- Publication number
- KR101687726B1 KR101687726B1 KR1020140109360A KR20140109360A KR101687726B1 KR 101687726 B1 KR101687726 B1 KR 101687726B1 KR 1020140109360 A KR1020140109360 A KR 1020140109360A KR 20140109360 A KR20140109360 A KR 20140109360A KR 101687726 B1 KR101687726 B1 KR 101687726B1
- Authority
- KR
- South Korea
- Prior art keywords
- ile
- leu
- asp
- gly
- ala
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C403/00—Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B61/00—Dyes of natural origin prepared from natural sources, e.g. vegetable sources
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/01—Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P23/00—Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 신규한 카로틴노이드 및 그의 제조 방법에 관한 것이다. 또한, 본 발명은 상기 카로틴노이드를 포함하는 항산화용 조성물, 및 천연 색소 조성물에 관한 것이다. 또한, 본 발명은 상기 신규한 카로틴노이드가 기질로 이용된 효소 분해 산물인 아포-카로티날에 관한 것이다. 또한, 본 발명은 카로틴노이드를 유효성분으로 포함하는, 줄기세포 분화 유도 조성물에 관한 것이다.
본 발명의 신규한 카로틴노이드는 종래의 자연환경에서는 생산할 수 없는 인위적 분자 진화 (directed evolution)과 조합법 (combinatorial biosynthesis)를 이용한 새로운 구조의 카로틴노이드로서, 신규한 항산화 소재로서 유용하게 사용될 수 있다. The present invention relates to novel carotenoids and processes for their preparation. The present invention also relates to a composition for antioxidation comprising the carotenoid, and a natural coloring composition. The present invention also relates to an apo-carotenal wherein the novel carotenoid is an enzyme degradation product used as a substrate. The present invention also relates to a stem cell differentiation inducing composition comprising carotenoid as an active ingredient.
The novel carotene nodule of the present invention is a carotenoid having a novel structure using artificial molecular evolution and combinatorial biosynthesis which can not be produced in a conventional natural environment and can be usefully used as a novel antioxidant material.
Description
본 발명은 신규한 카로틴노이드 및 그의 제조 방법에 관한 것이다.The present invention relates to novel carotenoids and processes for their preparation.
또한, 본 발명은 상기 카로틴노이드를 포함하는 항산화용 조성물, 및 천연 색소 조성물에 관한 것이다.The present invention also relates to a composition for antioxidation comprising the carotenoid, and a natural coloring composition.
또한, 본 발명은 상기 신규한 카로틴노이드가 기질로 이용된 효소 분해 산물인 아포-카로티날에 관한 것이다.The present invention also relates to an apo-carotenal wherein the novel carotenoid is an enzyme degradation product used as a substrate.
또한, 본 발명은 카로틴노이드를 유효성분으로 포함하는, 줄기세포 분화 유도 조성물에 관한 것이다.
The present invention also relates to a stem cell differentiation inducing composition comprising carotenoid as an active ingredient.
아이소프레노이드 계열 물질은 자연계에 가장 널리 분포하는 클래스의 이차대사 산물로, 스테롤, 호르몬, 테르핀, 퀴논 등 다양한 형태로 모든 종에서 발견되는 물질이다. 이들은 이소펜테닐 다이포스페이트 (IPP)라고 불리는 C5 물질이 단위요소로써 구성된다.Isoprenoids are the most widely distributed class of secondary metabolites in nature, and are found in all species in a variety of forms including sterols, hormones, terpins, and quinones. They consist of a C5 material called isopentenyl diphosphate (IPP) as a unit element.
카로틴노이드는 자연계에서 발현되는 대표적인 천연색소로, 과일, 식물, 곰팡이, 미생물 등에서 발견되며 그 구조는 700여 종에 이를 정도로 다양한 구조로 발견되고 있다. 이들은 최근에 항암, 항산화 등 생리활성이 높은 물질로 주목받으며, 화장품, 사료 등 다양한 산업에서 유용물질로 주목받고 있다.Carotenoids are a natural coloring matter expressed in nature, and are found in fruits, plants, fungi, microorganisms, etc., and its structure is found in various structures such as 700 kinds. Recently, they are attracting attention as a substance having high physiological activities such as anticancer and antioxidation, and they are attracting attention as a useful substance in various industries such as cosmetics and feed.
카로틴노이드의 미생물을 통한 생산, 즉 대사공학 연구는 1980년대부터 이루어져 왔으며, 주로 C40 카로틴노이드에 초점이 맞추어져 있으며, C30 카로틴노이드에 관한 연구는 아직 활발히 이루어져 있지 않다. 대표적인 C40 카로틴노이드와 C30 카로틴노이드의 대장균을 통한 생산에 관한 연구는 2003년에 Minnesota 대학의 Schmidt-dannert 교수팀에 의해 이루어 졌으며5), C30 카로틴노이드의 인위적 분자진화 (directed evolution)에 관한 연구는 Schmidt-dannert 교수팀 과 캘리포니아 공과대학의 Arnold 교수팀에 의해 이루어졌다. 하지만 이들 연구에서 자연적인 C40 카로틴노이드와 유사한 C30 카로틴노이드 시리즈의 생합성은 이루어지지 않았으며, 그 생산량 또한 제한적이었다.Microbial production of carotenoids, or metabolic engineering studies, has been around since the 1980s, focusing primarily on C40 carotenoids, and studies on C30 carotenoids are not yet active. Studies on the production of representative C40 carotenoids and C30 carotenoids via E. coli were carried out in 2003 by the team of Prof. Schmidt-dannert at the University of Minnesota. 5) Studies on the artificial molecular evolution of C30 carotenoids Schmidt-dannert and Professor Arnold of the California Institute of Technology. In these studies, however, the biosynthesis of the C30 carotenoid series, similar to the natural C40 carotenoids, was not achieved, and the production was also limited.
카로틴노이드 절단 산화 효소 (Carotenoids Cleavage Dioxygenase, CCD)는 카로틴노이드 대사효소 중 하나로, 주로 식물이나 시아노 박테리아, 동물들에서 발견되며 간혹 미생물에서도 발견되는 효소이다. 이 효소는 자연적인 카로틴노이드 (주로 베타카로틴)에 작용하여 카로틴노이드를 절단하여 레틴알 (retinal)이나 기타 아포카로테날 (apo-carotenal)을 생성한다. 기존의 카로틴노이드 절단 산화효소에 관한 연구는 C40 카로틴노이드에서만 이루어져 있으며 자연계에서 흔하지 않은 C30 카로틴노이드의 CCD들에 대한 대사 연구는 이루어 진 적이 없다.
Carotenoids Cleavage Dioxygenase (CCD) is one of the carotenoid metabolizing enzymes found mainly in plants, cyanobacteria, and animals, and is sometimes found in microorganisms. The enzyme acts on natural carotene nodules (mainly beta carotene) to cleave carotenoids to produce retinal or other apo-carotenal. Previous studies on carotenoid cleavage enzymes have been conducted only on C40 carotenoids, and metabolism studies of C30 carotenoids, which are not common in nature, have not been conducted.
이에 본 발명자들은 C30 카로틴노이드의 생산에 중요한 4,4'-다이아포파이토인 디새츄라아제 (4,4'-diapophytoene desaturase, CrtN) 효소를 인위적 분자진화 (directed evolution)을 통해 활성을 변화시키고, 여기에 C40 카로틴노이드 작용 효소인 라이코펜 싸이클라아제 (lycopene cyclase, CrtY)의 인위적 분자진화를 진행하여 C30 카로틴노이드인 4,4'-다이아포토룰렌 (4,4'-diapotorulene)과 4,4‘-다이아포-베타-카로틴 (4,4'-diapo-β-carotene) 의 생합성회로를 구축 및 최적화하였다. 또한 이를 다양한 카로틴노이드 수식효소 (라이코펜 일롱가아제-lycopene elongase, CrtEb; 베타카로틴 케톨라아제-β-carotene ketolase, CrtO 및 CrtW; 베타카로틴 하이드록실라아제-β-carotene hydroxylase, CrtZ; 글루코실 트랜스퍼라아제-glucosyl transferase, CrtX; 스페로이데논 모노옥시게나아제-spheroidenone monooxygenase, CrtA; 4,4'-다이아포뉴로스포렌알데하이드 디하이드로기나아제 4,4’-diaponeurosporen-aldehyde dehydrogenase, AldH)와 조합하여 14 종의 신규 구조의 카로틴노이드를 대장균 내에서 생합성 하였고, 이들을 LC/MS 분석을 통해 확인하였다. 또한 이들 C30 카로틴노이드를 CCD 중 하나인 NSC3 (Nostoc sp. PCC 7120으로부터 분리한 효소)와 반응시켜 7종의 새로운 구조의 apo-carotenal을 생합성 하였다. 뿐만 아니라, 신규한 카로틴노이드의 항산화 활성을 확인하였으며, 카로틴노이드의 신경세포로의 분화능을 확인함으로써 본 발명을 완성하였다.
Therefore, the present inventors changed the activity of 4,4'-diapophytoene desaturase (CrtN) enzyme, which is important for the production of C30 carotenoid, through artificial molecular evolution, Here, an artificial molecular evolution of the C40 carotenoid activity enzyme lycopene cyclase (CrtY) is carried out, and 4,4'-diapotorulene (4,4'-diapotorulene) and 4,4'- The biosynthetic circuit of 4,4'-diapo-β-carotene was constructed and optimized. It is also possible to use it for various carotene modifying enzymes (lycopene elongase, CrtEb, beta-carotene ketolase, CrtO and CrtW, beta carotene hydroxylase-beta-carotene hydroxylase, CrtZ, Alpha-glucosyl transferase, CrtX, spheroidenone monooxygenase, CrtA, 4,4'-diaponurosporaldehyde dehydrogenase or 4,4'-diaponeurosporen-aldehyde dehydrogenase, AldH) Carotenoids of 14 new structures were biosynthesized in E. coli and identified by LC / MS analysis. In addition, these C30 carotenoids were reacted with one of the CCDs, NSC3 (an enzyme isolated from Nostoc sp. PCC 7120), to synthesize seven new apo-carotenal structures. In addition, the antioxidative activity of a novel carotenoid was confirmed, and the present invention was completed by confirming the ability of carotenoid to differentiate into neurons.
본 발명의 일 양상은 신규한 카로틴노이드 및 그의 제조 방법을 제공하는 것이다.One aspect of the present invention is to provide a novel carotenoid and a process for preparing the same.
또한, 본 발명의 일 양상은 상기 카로틴노이드를 포함하는 항산화용 조성물, 및 천연 색소 조성물을 제공하는 것이다.Another aspect of the present invention is to provide a composition for antioxidation comprising the carotenoid, and a natural coloring composition.
또한, 본 발명의 일 양상은 상기 신규한 카로틴노이드가 기질로 이용된 효소 분해 산물인 아포-카로티날을 제공하는 것이다.In addition, an aspect of the present invention is to provide an apo-carotenal wherein the novel carotenoid is an enzyme degradation product which is used as a substrate.
또한, 본 발명의 일 양상은 카로틴노이드를 유효성분으로 포함하는, 줄기세포 분화 유도 조성물을 제공하는 것이다.
Another aspect of the present invention is to provide a stem cell differentiation inducing composition comprising carotenoid as an active ingredient.
본 발명의 일 양상은 신규한 카로틴노이드 및 그의 제조 방법을 제공한다.One aspect of the present invention provides novel carotenoids and processes for their preparation.
본 발명에서 “카로틴노이드”란 자연계의 대표적 색소 물질로서, 산업적 식품 색소 첨가제, 의약소재 (항암, 항염증 등), 방향제, 정밀화학 소재 등으로 그 가치가 매우 높은 물질 중에 하나이다. In the present invention, " carotenoid " is a representative coloring matter of nature, and is one of highly valuable substances such as an industrial food coloring additive, a medicinal material (anti-cancer, anti- inflammatory), a fragrance, and a fine chemical material.
본 발명에서 제공하는 신규한 카로틴노이드는 The novel carotenoids provided in the present invention
4,4'-디아포뉴로스포린-6,6'-디오엔 (4,4'-diaponeurosporen-6,6'-dione);4,4'-diaponeurosporen-6,6'-dione;
4,4'-디아폴리코펜-6,6'-디오엔 (4,4'-diapolycopene-6,6'-dione);4,4'-diapolycopene-6,6'-dione;
7-하이드록시-8-케토-4,4'-디아포토룰렌 (7-hydroxy-8-keto-4,4'-diapotorulene);7-hydroxy-8-keto-4,4'-diapotorulene;
4,4‘-디아포-β-크립토잔틴 (4,4‘-diapo-β-cryptoxanthin);4,4'-diapo-β-cryptoxanthin;
4,4'-디아포제아잔틴 (4,4'-diapozeaxanthin);4,4'-diapozeaxanthin;
4,4'-디아포에키네논 (4,4'-diapoechinenone); 4,4'-diapoechinenone;
4,4'-디아포-β-크립토잔틴 글루코사이드 (4,4'-diapo-β-cryptoxanthin glucoside);4,4'-diapo-beta-cryptoxanthin glucoside;
4,4‘-디아포토룰렌-4'-알 (4,4‘-diapotorulen-4'-al); 및 4,4'-diapotorulene-4'-al (4,4'-diapotorulene-4'-al); And
4,4’- 디아포토룰렌 -4'-오익산 (4,4’-diapotorulen-4'-oic acid) 으로 이루어진 군으로부터 선택된 1종 이상의 카로틴노이드이다.(4,4'-diapotorulene-4'-oic acid). The term " carotenoid "
본 발명에 따른 상기 카로틴노이드는 CrtM (diapophytoene synthase) 및 CrtN (diapophytoene desaturase) 를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 E. coli에 형질전환시킴으로써 생산될 수 있다. The carotenoids according to the present invention can be produced by transforming E. coli with a vector comprising a polynucleotide encoding CrtM (diapophytoene synthase) and CrtN (diapophytoene desaturase).
상기 벡터는 바람직하게는 CrtY (lycopene cyclase)를 코딩하는 폴리뉴글레오티드를 추가로 포함할 수 있다.The vector may further comprise a polynucleotide encoding preferably CrtY (lycopene cyclase).
또한, 상기 CrtN는 야생형 외에도 인위적 분자 진화를 통하여 활성을 변화시킨 CrtN 일 수 있으며, 상기 CrtN는 바람직하게는 서열번호 1 내지 12로 이루어진 군으로부터 선택될 수 있다. In addition, the CrtN may be CrtN whose activity is changed through an artificial molecular evolution in addition to the wild type, and the CrtN can be preferably selected from the group consisting of SEQ ID NOS: 1-12.
상기 서열번호 1 내지 12의 CrtN의 서열 정보는 하기와 같다.Sequence information of CrtN of SEQ ID NOS: 1 to 12 is as follows.
또한, 상기 CrtY는 야생형뿐 만 아니라, 인위적 분자 진화를 통하여 활성을 변화시킨 CrtY일 수 있으며, 상기 CrtY는 바람직하게는 서열번호 13 내지 28으로 이루어진 군으로부터 선택될 수 있다.
The CrtY may be not only a wild-type but also CrtY whose activity has been changed through an artificial molecular evolution, and the CrtY may be preferably selected from the group consisting of SEQ ID NOS: 13 to 28.
상기 카로틴노이드는 상기 단계에서, CrtZ (beta-carotene 3,3'-monooxygenase), CrtW (beta -carotene ketolase), CrtO (beta -carotene ketolase), CrtX (glycosyl transferase), CrtP (diaponeurosporene oxidase), CrtA (spheroidenone monooxygenase), CrtEb (Lycopene elongase), 및 AldH (diaponeurosporen-aldehyde dehydrogenase)로 이루어진 군으로부터 선택된 1종 이상의 효소를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 E. coli에 형질전환시키는 단계를 추가로 포함하여 제조될 수 있다. The carotenoid may be selected from the group consisting of CrtZ, beta-carotene ketolase, CrtO, CrtX, CrtP, CrtP, further comprising the step of transforming E. coli into a vector comprising a polynucleotide encoding at least one enzyme selected from the group consisting of spheroidenone monooxygenase, CrtEb (Lycopene elongase), and AldH (diaponeurosporene-aldehyde dehydrogenase) .
본 발명의 바람직한 구체예에서는, C30 카로틴노이드의 생산에 중요한 4,4'-다이아포파이토인 디새츄라아제 (4,4'-diapophytoene desaturase, CrtN) 효소를 인위적 분자진화 (directed evolution)을 통해 활성을 변화시키고, 여기에 C40 카로틴노이드 작용 효소인 라이코펜 싸이클라아제 (lycopene cyclase, CrtY)의 인위적 분자진화를 진행하여 C30 카로틴노이드인 4,4'-다이아포토룰렌 (4,4'-diapotorulene)과 4,4‘-다이아포-베타-카로틴 (4,4'-diapo-β-carotene) 의 생합성회로를 구축 및 최적화하였다. 또한 이를 다양한 카로틴노이드 수식효소 (라이코펜 일롱가아제-lycopene elongase, CrtEb; 베타카로틴 케톨라아제-β-carotene ketolase, CrtO 및 CrtW; 베타카로틴 하이드록실라아제-β-carotene hydroxylase, CrtZ; 글루코실 트랜스퍼라아제-glucosyl transferase, CrtX; 스페로이데논 모노옥시게나아제-spheroidenone monooxygenase, CrtA; 4,4'-다이아포뉴로스포렌알데하이드 디하이드로기나아제 4,4’-diaponeurosporen-aldehyde dehydrogenase, AldH)와 조합하여 14 종의 신규 구조의 카로틴노이드를 대장균 내에서 생합성 하였고, 이들을 LC/MS 분석을 통해 확인하였다.
In a preferred embodiment of the present invention, the 4,4'-diapophytoene desaturase (CrtN) enzyme, which is important for the production of C30 carotenoid, is activated through artificial molecular evolution , And an artificial molecular evolution of lycopene cyclase (CrtY), which is a C40 carotenoid enzyme, was carried out to produce 4,4'-diapotorulene, a C30 carotenoid, The biosynthetic circuit of 4,4'-diapo-β-carotene was constructed and optimized. It is also possible to use it for various carotene modifying enzymes (lycopene elongase, CrtEb, beta-carotene ketolase, CrtO and CrtW, beta carotene hydroxylase-beta-carotene hydroxylase, CrtZ, Alpha-glucosyl transferase, CrtX, spheroidenone monooxygenase, CrtA, 4,4'-diaponurosporaldehyde dehydrogenase or 4,4'-diaponeurosporen-aldehyde dehydrogenase, AldH) Carotenoids of 14 new structures were biosynthesized in E. coli and identified by LC / MS analysis.
또한, 본 발명의 일 양상은 상기 카로틴노이드를 포함하는 항산화용 조성물을 제공한다.Further, one aspect of the present invention provides a composition for antioxidation comprising the carotenoid.
본 발명의 유효성분인 상기 카로틴노이드는 매우 높은 항산화 효과를 나타내는 바, 약학적 조성물, 식품 조성물, 및 화장료 조성물로 이용될 수 있다. The carotenoid as an active ingredient of the present invention exhibits a very high antioxidative effect and can be used as a pharmaceutical composition, a food composition, and a cosmetic composition.
상기 약학적 조성물은 암, 염증성 질환, 노화억제, 피로, 퇴행성 질환, 신경계 질환, 심혈관계 질환 등에 이용될 수 있다.The pharmaceutical composition may be used for cancer, inflammatory diseases, aging inhibition, fatigue, degenerative diseases, neurological diseases, cardiovascular diseases and the like.
상기 암의 제한되지 않은 예는 ACTH 생성 종양, 급성 림프구성 또는 림프아구성 백혈병, 급성 또는 만성의 림포구성 백혈병, 급성 비림프구성 백혈병, 방광암, 뇌종양, 유방암, 경관암, 만성 골수성 백혈병, 장암, T-존 림프종, 자궁내막증, 식도암, 담즙 방광암, 에윙스 육종(Ewing's sarcoma), 두 및 목암, 설암, 홉킨스 림프종, 카포시스 육종, 신장암, 간암, 폐암, 중피종, 다발성 골수종, 신경아세포종, 비홉킨 림프종, 골육종, 난소암, 신경아세포종, 유선암, 경관암, 전립선암, 췌장암, 대장암, 페니스암, 레티노블라스토마, 피부암, 위암, 갑상선압, 자궁암, 고환암, 윌름스 종양, 또는 트로포블라스토마 등이 있다. Non-limiting examples of such cancers include, but are not limited to, ACTH-producing tumors, acute lymphocytic or lymphocytic leukemia, acute or chronic lymphocytic leukemia, acute non-lymphoid leukemia, bladder cancer, brain tumor, breast cancer, The present invention provides a method of treating a cancer selected from the group consisting of T-cell lymphoma, endometriosis, esophageal cancer, gall bladder cancer, Ewing's sarcoma, dandelion, stomach cancer, Hopkins lymphoma, A tumor of the stomach, a cancer of the thyroid gland, a tumor of the uterus, a testicular cancer, a Wilms' tumor, or a tropoblastoma tumor, .
상기 염증성 질환은 통상의 염증반응에 의해 발생하는 질환을 의미하는 것으로, 구체적으로 위염, 위궤양, 기관지염, 천식, 부종, 간염, 신장염, 동맥경화, 염증성 장질환(inflammatory bowel disease, IBD), 대장염, 류마티스성 관절염, 골관절염, 관절염증관련 질환, 암, 퇴행성 질환 등을 포함하나, 이에 제한되는 것은 아니다.The inflammatory disease refers to a disease caused by a common inflammatory reaction and specifically includes gastritis, gastric ulcer, bronchitis, asthma, edema, hepatitis, nephritis, arteriosclerosis, inflammatory bowel disease (IBD) Rheumatoid arthritis, osteoarthritis, joint inflammation related diseases, cancer, degenerative diseases, and the like.
상기 신경계 질환 신경통, 중증근무력증, 근 위축증, 근위축성 측삭경화증(ALS), 진행성 근 위축증, 길레인-발레 증후군(Guillain-Barre syndrome), 헝틴톤 질환, 알쯔하이머 질환, 파킨슨병과 같은 신경 질환일 수 있으며, 제한되지 않는다.May be a neurological disorder such as neurological disease neuralgia, myasthenia gravis, muscular atrophy, amyotrophic lateral sclerosis (ALS), progressive muscular atrophy, Guillain-Barre syndrome, Huntington's disease, Alzheimer's disease, Parkinson's disease , ≪ / RTI >
상기 심혈관계 질환은 아테롬성 동맥경화증, 협심증, 심근경색, 심장 마비 또는 바이패스 수술에 의한 심혈계 손상과 같은 심혈계 질환일 수 있으며, 제한되지 않는다.
The cardiovascular disease may be, but is not limited to, a cardiovascular disease such as atherosclerosis, angina pectoris, myocardial infarction, cardiac arrest or cardiovascular damage due to bypass surgery.
본 발명의 약학 조성물에 포함되는 카로틴노이드의 함량은, 치료제의 사용방법, 복용자의 상태, 질환의 종류 및 중증 정도에 따라 적절히 조절할 수 있다. 본 발명의 약학 조성물에서 카로틴노이드는 0.001~50중량%로 포함되는 것이 바람직하나, 반드시 이에 한정되는 것은 아니다. 상기 카로틴노이드의 함량이 0.001중량% 미만일 경우에는 항산화 효과가 미미할 수 있으며, 50중량%를 초과하는 경우 사용량 대비 효과 상승률이 낮아 비경제적일 수 있다.The content of carotenoid contained in the pharmaceutical composition of the present invention can be appropriately controlled depending on the method of using the therapeutic agent, the condition of the recipient, the kind of the disease, and the severity. In the pharmaceutical composition of the present invention, the carotenoid is preferably contained in an amount of 0.001 to 50% by weight, but is not limited thereto. When the content of carotenoid is less than 0.001% by weight, the antioxidative effect may be insignificant. When the carotenoid content is more than 50% by weight, it may be uneconomical because the rate of increase of effect is low.
본 발명의 조성물은 약학 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다. 또한 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 당해 기술 분야에 알려진 적합한 제제는 문헌(Remington's Pharmaceutical Science, 최근, Mack Publishing Company, Easton PA)에 개시되어 있는 것을 사용하는 것이 바람직하다. 포함될 수 있는 담체, 부형제 및 희석제로는 락토오스, 덱스트로오스, 수크로오스, 소르비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로오스, 메틸 셀룰로오스, 미정질 셀룰로오스, 폴리비닐 피롤리돈, 물, 메틸히드록시 벤조에이트, 프로필히드록시 벤조에이트, 탈크, 마그네슘 스테아레이트, 광물유 등이 있다. 상기 조성물을 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 조성물에 적어도 하나 이상의 부형제, 예를 들면 전분, 칼슘 카보네이트(calcium carbonate), 수크로오스, 락토오스, 젤라틴 등을 섞어 조제된다. 또한 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제 등이 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다. The compositions of the present invention may further comprise suitable carriers, excipients and diluents conventionally used in the manufacture of pharmaceutical compositions. In addition, it can be formulated in the form of powders, granules, tablets, capsules, suspensions, emulsions, oral preparations such as syrups and aerosols, external preparations, suppositories and sterilized injection solutions according to a conventional method. Suitable formulations known in the art are preferably those as disclosed in Remington ' s Pharmaceutical Science, recently, Mack Publishing Company, Easton PA. Examples of carriers, excipients and diluents which may be included include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methylcellulose, Cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like. When the composition is formulated, it is prepared using a diluent such as a filler, an extender, a binder, a wetting agent, a disintegrant, a surfactant, or an excipient usually used. Solid formulations for oral administration include tablets, pills, powders, granules, capsules and the like, which may contain at least one excipient such as starch, calcium carbonate, sucrose, lactose, Gelatin and the like. In addition to simple excipients, lubricants such as magnesium stearate and talc are also used. Examples of the liquid preparation for oral use include suspensions, solutions, emulsions, and syrups. In addition to water and liquid paraffin, simple diluents commonly used, various excipients such as wetting agents, sweeteners, fragrances, preservatives and the like may be included . Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, suppositories, and the like. Examples of the suspending agent include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like. Examples of the suppository base include witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin and the like.
본 발명에서 사용되는 용어 "투여"는 임의의 적절한 방법으로 개체에게 소정의 본 발명의 조성물을 제공하는 것을 의미한다.The term "administering" as used herein is meant to provide any desired composition of the invention to a subject in any suitable manner.
본 발명은 약학 조성물은 연구자, 수의사, 의사 또는 기타 임상에 의해 생각되는 조직계, 동물 또는 인간에서 생물학적 또는 의학적 반응을 유도하는 유효 성분 또는 약학적 조성물의 양, 즉 치료되는 질환 또는 장애의 증상의 완화를 유도하는 양인 치료상 유효량으로 투여할 수 있다. 본 발명의 약학 조성물에 대한 치료상 유효 투여량 및 투여횟수는 원하는 효과에 따라 변화될 것임은 당업자에게 자명하다. 그러므로, 투여될 최적의 투여량은 당업자에 의해 쉽게 결정될 수 있으며, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효성분 및 다른 성분의 함량, 제형의 종류, 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여시간, 투여 경로 및 조성물의 분비율, 치료기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 바람직한 효과를 위해서, 본 발명의 약학 조성물은 1~10,000㎎/㎏/day, 바람직하게는 1~200㎎/㎏/day 내지 의 양으로 투여할 수 있으며, 하루에 한번 투여할 수도 있고, 수 회에 나누어 투여할 수도 있다. The present invention relates to pharmaceutical compositions comprising an amount of an active ingredient or pharmaceutical composition that induces a biological or medical response in a tissue system, animal or human, as contemplated by a researcher, veterinarian, physician or other clinician, RTI ID = 0.0 > effective < / RTI > amount. It will be apparent to those skilled in the art that the therapeutically effective dose and frequency of administration for the pharmaceutical compositions of the present invention will vary with the desired effect. Thus, the optimal dosage to be administered can be readily determined by those skilled in the art and will vary with the nature of the disease, the severity of the disease, the amount of active and other ingredients contained in the composition, the type of formulation, and the age, The age, body weight, sex, diet, time of administration, route of administration and fraction of the composition, duration of treatment, concurrent medication, and the like. For a desired effect, the pharmaceutical composition of the present invention may be administered in an amount of 1 to 10,000 mg / kg / day, preferably 1 to 200 mg / kg / day, or may be administered once a day, . ≪ / RTI >
본 발명의 약학 조성물은 개체에게 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁 내 경막 또는 뇌혈관 내 주사에 의해 투여될 수 있다.
The pharmaceutical compositions of the present invention can be administered to a subject in a variety of routes. All modes of administration may be expected, for example, by oral, rectal or intravenous, intramuscular, subcutaneous, intra-uterine dural or intracerebral injection.
또한, 상기 카로틴노이드는 항산화용 화장료 조성물에 이용될 수 있다. In addition, the carotenoids can be used in cosmetic compositions for antioxidation.
상기 카로틴노이드는 화장료 조성물 총 중량에 대하여 0.001~50중량%로 포함되는 것이 바람직하나, 이에 한정되는 것은 아니다. 상기 카로틴노이드의 함량이 0.001중량% 미만일 경우에는 항산화 효과가 미미할 수 있으며, 50중량%를 초과할 경우에는 사용량 대비 효과 상승률이 낮아 비경제적일 수 있다.The carotenoid is preferably contained in an amount of 0.001 to 50% by weight based on the total weight of the cosmetic composition, but is not limited thereto. If the content of carotenoid is less than 0.001% by weight, the antioxidative effect may be insignificant. If the carotenoid content is more than 50% by weight, it may be uneconomical because the rate of increase of effect is low.
본 발명의 화장료 조성물은 상기 유효성분 이외에 화장료 조성물에 통상적으로 사용되는 항산화제, 안정화제, 용해화제, 비타민, 안료, 향료 등과 같은 통상적인 보조제 및 담체가 더 포함될 수 있다. 예를 들어, 상기 화장료 조성물에는 글리세린, 부틸렌 글라이콜, 폴리옥시에칠렌 경화피마자유, 토코페릴 아세테이트, 시트릭산, 판테놀, 스쿠알란, 소듐 시트레이트, 알란토인 등의 보조성분이 추가로 더 포함될 수 있다.The cosmetic composition of the present invention may further contain conventional auxiliary agents and carriers such as antioxidants, stabilizers, solubilizers, vitamins, pigments, fragrances and the like which are conventionally used in cosmetic compositions, in addition to the above-mentioned effective ingredients. For example, the cosmetic composition may further contain an auxiliary component such as glycerin, butylene glycol, polyoxyethylene hardened castor oil, tocopheryl acetate, citric acid, panthenol, squalane, sodium citrate, allantoin and the like .
본 발명의 화장료 조성물은 기본적으로 피부에 도포되는 것이므로, 당업계의 화장료 조성물을 참조하여 통상적으로 제조되는 어떠한 제형으로도 제조될 수 있다. 예를 들어, 용액, 현탁액, 유탁액, 페이스트, 겔, 크림, 로션, 파우더, 비누, 계면활성제-함유 클린싱, 오일, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션 및 스프레이 등으로 제형화될 수 있으나, 이에 한정되는 것은 아니다. 보다 상세하게는, 유연 화장수, 영양 화장수, 영양크림, 마사지크림, 에센스, 아이크림, 클렌징크림, 클렌징폼, 클렌징워터, 마스크팩, 스프레이 또는 파우더의 제형으로 제조될 수 있다.Since the cosmetic composition of the present invention is basically applied to the skin, it can be prepared into any formulation conventionally produced by referring to the cosmetic composition of the related art. For example, they may be formulated as solutions, suspensions, emulsions, pastes, gels, creams, lotions, powders, soaps, surfactant-containing cleansing, oils, powder foundations, emulsion foundations, wax foundations and sprays, But is not limited thereto. More specifically, it can be manufactured in the form of a soft lotion, a nutritional lotion, a nutritive cream, a massage cream, an essence, an eye cream, a cleansing cream, a cleansing foam, a cleansing water, a mask pack, a spray or a powder.
본 발명의 제형이 페이스트, 크림 또는 겔인 경우에는 담체 성분으로 동물성유, 식물성유, 왁스, 파라핀, 전분, 트라칸트, 셀룰로오스 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 실리카, 탈크, 산화아연 등이 포함될 수 있다.When the formulation of the present invention is a paste, cream or gel, the carrier component may include an animal oil, vegetable oil, wax, paraffin, starch, tragacanth, cellulose derivative, polyethylene glycol, silicone, bentonite, silica, talc, have.
본 발명의 제형이 파우더 또는 스프레이인 경우에는 담체 성분으로 락토스, 탈크, 실리카, 알루미늄 히드록시드, 칼슘 실리케이트, 폴리아미드 파우더 등이 포함될 수 있고, 특히 스프레이인 경우에는 추가적으로 클로로플루오로히드로카본, 프로판/부탄, 디메틸 에테르 등의 추진체를 포함할 수 있다.When the formulation of the present invention is a powder or a spray, the carrier component may include lactose, talc, silica, aluminum hydroxide, calcium silicate, polyamide powder and the like. Particularly in the case of a spray, a mixture of chlorofluorohydrocarbons, propane / Propane, dimethyl ether, and the like.
본 발명의 제형이 용액 또는 유탁액인 경우에는 담체 성분으로 용매, 용해화제, 유탁화제 등이 포함될 수 있고, 구체적으로 물, 에탄올, 이소프로판올, 에틸 카보네이트, 에틸 아세테이트, 벤질 알코올, 벤질 벤조에이트, 프로필렌글리콜, 1,3-부틸글리콜 오일, 글리세롤 지방족 에스테르, 폴리에틸렌 글리콜, 소르비탄의 지방산 에스테르 등이 포함될 수 있다.When the formulation of the present invention is a solution or an emulsion, the carrier component may include a solvent, a solubilizing agent, and an emulsifying agent. Specific examples thereof include water, ethanol, isopropanol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, Glycol, 1,3-butyl glycol oil, glycerol aliphatic ester, polyethylene glycol, fatty acid esters of sorbitan, and the like.
본 발명의 제형이 현탁액인 경우에는 담체 성분으로 물, 에탄올, 프로필렌글리콜 등의 액상 희석제; 에톡실화 이소스테아릴 알코올, 폴리옥시에틸렌 소르비톨 에스테르, 폴리옥시에틸렌 소르비탄 에스테르 등의 현탁제; 미소결정성 셀룰로오스, 알루미늄 메타히드록시드, 벤토나이트, 아가, 트라칸트 등이 포함될 수 있다.When the formulation of the present invention is a suspension, a liquid diluent such as water, ethanol, propylene glycol or the like as a carrier component; Suspending agents such as ethoxylated isostearyl alcohol, polyoxyethylene sorbitol ester, and polyoxyethylene sorbitan ester; Microcrystalline cellulose, aluminum metahydroxide, bentonite, agar, trachant, and the like.
본 발명의 제형이 계면-활성제 함유 클린징인 경우에는 담체 성분으로서 지방족 알코올 설페이트, 지방족 알코올 에테르 설페이트, 설포숙신산 모노에스테르, 이세티오네이트, 이미다졸리늄 유도체, 메틸타우레이트, 사르코시네이트, 지방산 아미드 에테르 설페이트, 알킬아미도베타인, 지방족 알코올, 지방산 글리세리드, 지방산 디에탄올아미드, 식물성유, 라놀린유도체, 에톡실화 글리세롤 지방산 에스테르 등이 포함될 수 있다.
When the formulation of the present invention is an interfacial active agent-containing cleansing, the carrier component may include aliphatic alcohol sulfate, aliphatic alcohol ether sulfate, sulfosuccinic acid monoester, isethionate, imidazolinium derivative, methyltaurate, sarcosinate, fatty acid amide Ether sulfates, alkylamidobetaines, aliphatic alcohols, fatty acid glycerides, fatty acid diethanolamides, vegetable oils, lanolin derivatives, ethoxylated glycerol fatty acid esters, and the like.
또한 본 발명은 카로틴노이드를 유효성분으로 포함하는 항산화용 식품 조성물을 제공한다. 본 발명의 카로틴노이드가 식품 첨가물로 사용할 경우, 상기 카로틴노이드를 그대로 첨가하거나, 다른 식품 또는 식품 성분과 함께 혼합하여 사용되는 등 통상적인 방법에 따라 적절하게 사용될 수 있다. The present invention also provides a food composition for antioxidation comprising carotenoid as an active ingredient. When the carotenoid of the present invention is used as a food additive, it can be suitably used according to a conventional method such as adding the carotenoid directly, mixing it with another food or food ingredient, and the like.
또한 상기 유효성분인 카로틴노이드의 혼합양은 사용 목적(예방, 건강 또는 치료적 처치)에 따라 적합하게 변경될 수 있음은 물론이며, 상기 카로틴노이드는 식품 조성물 총 중량에 대하여 0.001~50중량%으로 포함될 수 있으나, 이에 한정되는 것은 아니다. 그 함량이 0.001중량% 미만일 경우에는 항산화 작용이 미미할 수 있으며, 50중량%를 초과할 경우 사용량 대비 효과 상승률이 낮아 비경제적일 수 있다.In addition, the mixing amount of the carotenoid as the active ingredient may be suitably changed according to the purpose of use (prevention, health or therapeutic treatment), and the carotenoid may be contained in an amount of 0.001 to 50% by weight based on the total weight of the food composition But is not limited thereto. When the content is less than 0.001% by weight, the antioxidant activity may be insignificant. When the content is more than 50% by weight, the rate of effect increase relative to the amount of use may be low, which may be uneconomical.
구체적인 예로, 식품 또는 음료의 제조 시에는 본 발명의 카로틴노이드는 원료에 대하여 15중량% 이하, 바람직하게는 10중량% 이하의 양으로 첨가되는 것이다. 그러나 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하여 장기간 섭취할 경우에는 상기 범위 이하의 양으로 첨가될 수 있으며, 안전성 면에서 아무런 문제가 없기 때문에 유효성분은 상기 범위 이상의 양으로도 사용될 수 있다. As a specific example, the carotenoid of the present invention is added in an amount of not more than 15% by weight, preferably not more than 10% by weight based on the raw material. However, when it is intended for health and hygiene purposes or for the purpose of controlling health, it can be added in an amount below the above range, and there is no problem in terms of safety. Therefore, the active ingredient can be used in an amount exceeding the above range have.
상기 식품의 종류에는 특별한 제한은 없다. 본 발명의 카로틴노이드를 첨가할 수 있는 식품의 예로는 육류, 소시지, 빵, 초콜릿, 캔디류, 스낵류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 수프, 음료수, 차, 드링크제, 알코올 음료, 비타민 복합제 등이 있으며, 통상적인 의미에서의 건강식품을 모두 포함한다.There is no particular limitation on the kind of the food. Examples of the food to which the carotenoid of the present invention can be added include meat products, sausages, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gums, dairy products including ice cream, various soups, , A drink, an alcoholic beverage, a vitamin complex, and the like.
본 발명의 식품 조성물이 음료로 제조될 경우 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등의 추가 성분을 포함할 수 있다. 상기 천연 탄수화물로는 포도당, 과당 등의 모노사카라이드; 말토오스, 수크로오스 등의 디사카라이드; 덱스트린, 사이클로덱스트린 등의 천연 감미제나 사카린, 아스파르탐 등의 합성 감미제 등이 사용될 수 있다. 상기 천연 탄수화물은 본 발명의 식품 조성물 총 중량에 대하여 0.01~10중량%, 바람직하게는 0.01~0.1중량%로 포함되는 것이다.When the food composition of the present invention is prepared as a beverage, it may contain additional ingredients such as various flavors or natural carbohydrates such as ordinary beverages. Examples of the natural carbohydrate include monosaccharides such as glucose and fructose; Disaccharides such as maltose and sucrose; Natural sweeteners such as dextrin and cyclodextrin, synthetic sweeteners such as saccharin and aspartame, and the like. The natural carbohydrate is contained in an amount of 0.01 to 10% by weight, preferably 0.01 to 0.1% by weight based on the total weight of the food composition of the present invention.
상기 외에 본 발명의 식품 조성물은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 포함할 수 있다. 뿐만 아니라, 본 발명의 조성물은 천연 과일주스, 과일주스 음료 및 야채 음료의 제조를 위한 과육을 포함할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 상기의 첨가제 비율은 크게 제한되지는 않으나, 본 발명의 식품 조성물 총 중량에 대하여 0.01~0.1중량% 범위내로 포함되는 것이 좋다.
In addition to the above, the food composition of the present invention may contain various nutrients, vitamins, electrolytes, flavors, colorants, pectic acid and salts thereof, alginic acid and its salts, organic acids, protective colloid thickeners, pH adjusters, stabilizers, preservatives, glycerin, , Carbonating agents used in carbonated beverages, and the like. In addition, the compositions of the present invention may include flesh for the production of natural fruit juices, fruit juice drinks and vegetable drinks. These components may be used independently or in combination. The proportion of the above additives is not limited to a great extent, but may be in the range of 0.01 to 0.1% by weight based on the total weight of the food composition of the present invention.
또한 본 발명의 일 양상은 상기 신규한 카로틴노이드를 포함하는 색소 조성물을 제공한다. 상기 신규한 카로틴노이드를 색소로 이용하는 경우, 화장료, 염색료, 식품 첨가물, 물감, 공업용 색소 등으로 다양하게 이용될 수 있다.
Further, one aspect of the present invention provides a pigment composition comprising the novel carotenoid. When the novel carotenoid is used as a coloring matter, it can be used variously as a cosmetic, a dyeing, a food additive, a coloring agent, an industrial coloring agent and the like.
또한, 본 발명의 일 양상은 상기 신규한 카로틴노이드가 기질로 이용된 효소 분해 산물인 아포-카로티날을 제공한다. 상기 아포-카로티날은 In addition, one aspect of the present invention provides an apo-carotenal wherein said novel caroteneoid is an enzyme degradation product that is used as a substrate. The apo-carotenal
C17 Apo-14'-디아포뉴로스포레날 (C17 Apo-14'-diaponeurosporenal);C17 Apo-14 ' -diaponeurosporenal (C17 Apo-14 '-diaponeurosporenal);
C13 Apo-13'-디아포뉴로스포레논 (C13 Apo-13'-diaponeurosporenone);C13 Apo-13'-diaponeurosporenone (C13 Apo-13'-diaponeurosporenone);
C22 Apo-10'-디아포뉴로스포레날 (C22 Apo-10'-diaponeurosporenal);C22 Apo-10'-diaponeurosporenal (C22 Apo-10'-diaponeurosporenal);
C17 Apo-14'-디아포뉴로스포레날 (C17 Apo-14'-diaponeurosporenal);C17 Apo-14 ' -diaponeurosporenal (C17 Apo-14 '-diaponeurosporenal);
C17 Apo-14'-디아포토룰레날 (C17 Apo-14'-diapotorulenal); 또는C17 Apo-14'-diapotorulenal (C17 Apo-14'-diapotorulenal); or
C22 Apo-10'-디아포토룰레날 (C22 Apo-10'-diapotorulenal) 일 수 있다.
C22 Apo-10'-diapotorulenal. ≪ / RTI >
또한, 본 발명의 일 양상은 카로틴노이드를 유효성분으로 포함하는, 줄기세포 분화 유도 조성물을 제공한다.Further, one aspect of the present invention provides a stem cell differentiation inducing composition comprising carotenoid as an active ingredient.
본 명세서에서 사용된 용어 “줄기세포”는, 다양한 신체 조직으로 분화할수 있는 능력을 갖는 미분화 세포로서, 이는 만능 줄기 세포(totipotent stem cell), 전분화능 줄기세포 (pluripotent stem cell), 다분화능 줄기세포(multipotent stem cell)로 분류될 수 있다. As used herein, the term " stem cells " is undifferentiated cells capable of differentiating into various body tissues, including totipotent stem cells, pluripotent stem cells, multipotential stem cells (multipotent stem cells).
성체줄기세포, 배아줄기세포, 중간엽줄기세포, 지방줄기세포, 조혈모세포, 제대혈줄기세포 및 역분화줄기세포일 수 있으며, 동종 또는 자가 줄기세포일 수 있다.Adult stem cells, embryonic stem cells, mesenchymal stem cells, adipose stem cells, hematopoietic stem cells, umbilical cord blood stem cells, and degenerated stem cells, and may be homogenous or autologous stem cells.
상기 줄기세포는 바람직하게는 제대, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막, 융모막, 탈락막, 및 태반으로 구성된 군에서 선택되는 것으로부터 유래될 수 있다. 또한, 상기 줄기세포는 인간, 태아 또는 인간을 제외한 포유동물로부터 유래될 수 있다. 상기 인간을 제외한 포유동물은 보다 바람직하게는 개과 동물, 고양이과 동물, 원숭이과 동물, 소, 양, 돼지, 말, 랫트, 마우스 또는 기니피그 등일 수 있으며, 그 유래를 제한하지 않는다.The stem cells may preferably be derived from the group consisting of umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane, chorionic membrane, decidual membrane, and placenta. The stem cells may also be derived from mammals other than humans, fetuses or humans. The mammal other than the human is more preferably a canine animal, a feline animal, a monkey animal, a cow, a sheep, a pig, a horse, a rat, a mouse or a guinea pig, and the origin thereof is not limited.
상기 분화는 바람직하게는 신경세포로의 분화일 수 있다. The differentiation may be preferably into neuronal differentiation.
상기 조성물은 줄기 세포 배양시 분화 유도를 촉진하기 위하여 생리활성물질을 추가적으로 첨가할 수 있다. 상기 생리활성물질은 FGF (fibroblast growth factor), EGF (epidermal growth factor), PDGF (platelet-derived growth factor), CTGF(connective tissue growth factor), BMPs(bone morphogenic proteins), LPS(lipopolysaccharide), TNF-α(tumor necrosis factor-α), TGF-α(transforming growth factor-α), TGF-β(transforming growth factor-β), 아스코르브산(ascorbic acid) 및 덱사메타손(dexamethasone)으로 이루어지는 군으로부터 선택된 1종 이상의 첨가제를 더 포함할 수 있다.The composition may further include a physiologically active substance to promote induction of differentiation during stem cell culture. The physiologically active substance may be selected from the group consisting of fibroblast growth factor (FGF), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), connective tissue growth factor (CTGF), bone morphogenic proteins (BMPs), lipopolysaccharide at least one selected from the group consisting of tumor necrosis factor-alpha, transforming growth factor-alpha, transforming growth factor-beta, ascorbic acid and dexamethasone. And may further include additives.
상기 줄기세포의 배양은 세포배양에 사용되는 통상의 배지인 DMEM (Dulbecco's modified essential medium) 또는 NPBM(Neural progenitor cell basal medium: Clonetics)를 사용할 수 있다.The stem cells can be cultured using Dulbecco's modified essential medium (DMEM) or Neural progenitor cell basal medium (Clonetics), which is a conventional medium used for cell culture.
줄기세포를 배양시 배양조건에는 특별한 제한이 없으며, 줄기세포는 부유한 상태 또는 배양용기에 부착한 상태로 배양될 수 있다. 배양용기로는 예를 들어, 챔버글래스, 비코팅 접시(non-coating dish)등 당업계에 널리 사용되는 용기를 사용할 수 있다.
There are no particular restrictions on the culturing conditions when the stem cells are cultured, and the stem cells can be cultured in the floating state or attached to the culture vessel. As the culture container, for example, a container widely used in the art such as a chamber glass, a non-coating dish and the like can be used.
본 발명의 신규한 카로틴노이드는 종래의 자연환경에서는 생산할 수 없는 인위적 분자 진화 (directed evolution)과 조합법 (combinatorial biosynthesis)를 이용한 새로운 구조의 카로틴노이드로서, 신규한 항산화 소재로서 유용하게 사용될 수 있다.
The novel carotene nodule of the present invention is a carotenoid having a novel structure using artificial molecular evolution and combinatorial biosynthesis which can not be produced in a conventional natural environment and can be usefully used as a novel antioxidant material.
도 1은 module화된 C30 카로틴노이드 대사회로 발현 결과를 나타낸 도이다.
도 2는 CrtA와 CrtD를 통한 대장균내에서 새로운 구조의 카로틴노이드 생산 결과이다.
도 3은 Lycopene elongase (CrtEb)를 통한 새로운 구조의 C35 카로틴노이드인 4,4'-diapononaflavuxanthin의 생산을 나타낸 도이다.
도 4는 screen한 CrtN mutant 클론들을 나타낸 도이다.
도 5는 CrtN mutant들의 HPLC profile 변화확인을 나타낸 도이다.
도 6은 Site-directed evolution을 통해 확보된 clone들의 HPLC 분석을 통한 카로틴노이드생산 프로파일 변화를 나타낸 도이다.
도 7은 screen한 pale yellowish 클론들의 카로틴노이드 프로파일을 나타낸 도이다.
도 8은 diaponeurosporene생산 모듈인 pACM-MSA-NySA와 여러 종류의 CrtY를 complementation하여 대장균 내에서 발현한 결과를 나타낸 도이다.
도 9는 Screen한 mutant CrtY 클론들을 pACM-MSA-NSA 와 complementation하여 활성을 HPLC로 분석한 결과를 나타낸 도이다.
도 10은 directed evolution한 효소들의 조합을 통해 homogeneous한 product를 만들 수 있게 최적화된 diapotorulene 대사회로를 나타낸 도이다.
도 11은 diapo-ζ-carotene 생합성 유전자 module과 CrtY의 functional complementation한 결과이다. P. agglomerans의 CrtY가 diapo-β-carotene의 생합성에 가장 효과적인 것을 확인할 수 있다.
도 12는 CrtZ, CrtO/CrtW, CrtX를 이용한 diapotorulene의 modification한 결과이다. 3, 4, 5, 6번 구조는 자연계에서 발견되지 않는 신규 구조의 카로틴노이드이다.
도 13은 C20 retinal등과 비슷한 구조를 가지는 monocyclic C30 카로틴노이드의 생산한 결과이다. 8, 10구조는 자연계에 존재하지 않는 새로운 구조의 C30 카로틴노이드이다.
도 14는 대장균내에서 생합성된 신규 bicyclic C30 카로틴노이드를 나타낸 도이다. 4, 5, 6, 7, 8 구조는 자연계에서 발견된적 없는 신규 구조의 카로틴노이드이다.
도 15는 diapotorulene 및 이의 assignment의 1H NMR spectrum 이다.
도 16은 diapotorulene의 1H-1H COSY NMR spectrum을 나타낸 도이다.
도 17은 본 발명에서 확보한 신규 구조의 C30 카로틴노이드의 생합성 대사회로를 나타낸 도이다.
도 18은 β-apo-8'-carotenal에 대한 NSC3의 활성 확인 결과 (HPLC-MS)를 나타낸 도이다.
도 19는 본 발명에서 생합성한 C30 카로틴노이드를 NSC3에 기질로 작용하여 대장균 내에서 활성을 확인한 결과 (HPLC-MS) 나타낸 도이다.
도 20은 본 발명에서 생합성한 신규 구조의 C30 카로틴노이드를 분리하여 in vitro상에서 NSC3에 반응시킨 결과 (HPLC)를 나타낸 도이다.
도 21은 본 발명에서 활용한 NSC3 단백질의 활성 측정 결과 1을 나타낸 도이다.
도 22는 본 발명에서 활용한 NSC3 단백질의 활성 측정 결과 2를 나타낸 도이다.
도 23은 본 발명에서 생합성한 새로운 구조의 apo-carotenal들을 나타낸 도이다.
도 24는 본 발명에서 분석한 C30 카로틴노이드의 DPPH radical scavenging assay분석 결과를 나타낸 도이다.
도 25는 retinal, retinoic acid, diapotorulene, diapotorulen-al, diapotorulenoic acid의 화학 구조를 나타낸 도이다.
도 26은 diapotorulene을 농도별로 처리한 rBMSCs의 morphology관찰. normal cell에 비해 cell morphology가 얇고 길게 변화하는 것을 관찰할 수 있는 도이다.
도 27은 diapotorulene처리 4일째, rBMSCs의 morphology관찰 모습을 나타낸 도이다. cell이 좀더 얇고 길어 지며, neuron cell과 비슷한 morphology를 띄어 간다.
도 28은 diapotorulene 처리 후, 7일째 된 rBMSCs cell의 morphology 관찰 모습을 나타낸 도이다. 확연하게 cell의 morphology가 neuron cell의 형상을 띄고 있는 것을 관찰할 수 있다.
도 29는 rBMSCs cell의 diapotorulene에 대한 cell cytotoxicity 관찰 결과이다.Fig. 1 is a diagram showing the results of expression of a module C 30 carotenoid metabolism circuit.
Figure 2 shows the results of carotenoid production of new structures in E. coli via CrtA and CrtD.
Figure 3 shows the production of 4,4'-diapononaflavuxanthin, a novel structured C 35 carotenoid, via Lycopene elongase (CrtEb).
FIG. 4 is a diagram showing screened CrtN mutant clones. FIG.
Figure 5 shows confirmation of changes in the HPLC profile of CrtN mutants.
6 is a graph showing changes in the production profile of carotenoids through HPLC analysis of clones obtained through site-directed evolution.
Figure 7 shows the carotenoid profile of pale yellowish clones screened.
FIG. 8 is a diagram showing the results of expression in E. coli by complementation of pACM-M SA -Ny SA , which is a diaponeurosporene production module, with CrtY.
FIG. 9 is a graph showing the results of HPLC analysis of the mutant CrtY clones screened by complementation with pACM-M SA -N SA .
Figure 10 shows a diapotorulene metabolism circuit optimized to produce a homogeneous product through a combination of directed evolution enzymes.
Figure 11 shows the functional complementation of the diapo-zeta-carotene biosynthesis gene module and CrtY. CrtY of P. agglomerans is most effective for biosynthesis of diapo-β-carotene.
12 shows the results of modification of diapotorulene using CrtZ, CrtO / CrtW and CrtX.
FIG. 13 shows the results of production of monocyclic C 30 carotenoid having a structure similar to that of C 20 retinal. The 8, 10 structure is a C 30 carotenoid with a new structure that does not exist in nature.
14 is a diagram showing a novel bicyclic C 30 carotenoid biosynthesized in E. coli.
15 is a 1 H NMR spectrum of diapotorulene and its assignments.
16 is a diagram showing the 1 H- 1 H COYY NMR spectrum of diapotorulene.
17 is a diagram showing the biosynthesis of the metabolic pathways of C 30 carotenoids carotene novel structure obtained by the present invention.
FIG. 18 is a graph showing the results (HPLC-MS) of the activity of NSC3 against β-apo-8'-carotenal.
19 is a diagram showing the results (HPLC-MS) confirmed the activity in E. coli by the action of a C 30 carotenoids carotene biosynthesis in the present invention as a substrate on NSC3.
Figure 20 is to separate the C 30-carotene, carotenoids novel structure in the biosynthesis in the present invention is a diagram showing a result of the reaction NSC3 on in vitro (HPLC).
21 is a graph showing the
FIG. 22 is a graph showing the
23 is a diagram showing apo-carotenals of a new structure biosynthesized in the present invention.
24 is a diagram showing the DPPH radical scavenging assay analysis of C 30 carotenoids carotene analysis in the present invention.
25 is a diagram showing chemical structures of retinal, retinoic acid, diapotorulene, diapotorulene-al, and diapotorulenoic acid.
26 is a morphology observation of rBMSCs treated with diapotorulene at different concentrations. cell morphology is thinner and longer than normal cells.
FIG. 27 is a diagram showing a morphology observation of rBMSCs on the fourth day of diapotorulene treatment. FIG. Cells are thinner and longer, and they have similar morphology to neuron cells.
FIG. 28 is a diagram showing morphology observation of rBMSCs cell after 7 days of diapotorulene treatment. FIG. It is evident that the morphology of the cell is shaped like a neuron cell.
FIG. 29 shows cell cytotoxicity results of diapotorulene in rBMSCs cells.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.
시료 및 방법Samples and methods
실험예 1 - 인위적 분자진화와 스크리닝Experimental Example 1 - Artificial Molecular Evolution and Screening
CrtN과 CrtY의 인위적 분자진화 방법은 error-prone PCR법을 이용하였다. Error-prone PCR 반응에는 MgCl2가 첨가되지 않은 버퍼에 1.5 mM 혹은 2.5 mM 최종농도의 MgCl2를 넣어 사용하였으며 비율을 바꾼 dNTP (ATP:TTP:CTP:GTP 1:1:1:4)와 taq polymerase를 사용하여 진행하였다. Template로 사용된 야생형 유전자는 pUCM 벡터에 클로닝 되어있는 pUCM-CrtNSA와 pUCM-CrtYcYdBL이었으며 프로모터와 터미네이터가 포함되게 PCR하였다. 반응한 PCR 생성물은 클로닝한 제한효소자리 (EcoRI, XbaI)로 다시 처리한 후 다시 pUCM 벡터에 삽입하여 라이브러리를 생성하였다. 생성된 라이브러리는 pUCM-CrtN*과 pUCM-CrtY* 이었으며, 각각 pACM-MSA와 pACM-MSA-NSA를 갖고 있는 대장균에 형질전환되어 암피실린과 클로람페니콜을 모두 갖고 있는 한천배지 위에 도말하였다. 콜로니는 37℃하루 배양 후, 상온에서 색이 잘 발현될 때까지 배양되었으며, 색의 변화에 따라 클론들을 암피실린과 클로람페니콜을 갖고 있는 4ml LB에 접종하여 플라스미드 프렙을 통해 original clone들을 확보하였다. 이 클론들로부터 pUCM-CrtN* 과 pUCM-CrtY*을 각각 아가로스 젤 을통해 분리 후 정제하였으며, 이 플라스미드는 시퀀싱 분석 및 다시 pACM-MSA와 pACM-MSA-NSA에 형질 전환되어 이차적으로 프로파일을 확인하였다.
An artificial molecular evolution of CrtN and CrtY was performed by error-prone PCR. For error-prone PCR reactions, MgCl2 was added to MgCl2-free buffer at a final concentration of 1.5 mM or 2.5 mM, and dNTP (ATP: TTP: CTP: GTP 1: 1: 1: 4) . The wild-type gene used as a template was pUCM-CrtN SA and pUCM-CrtYcYd BL cloned in the pUCM vector and PCR was performed to include a promoter and a terminator. The PCR product was reacted with cloned restriction enzyme sites (EcoRI, XbaI) and inserted into the pUCM vector to generate a library. The resulting libraries were pUCM-CrtN * and pUCM-CrtY * , respectively, and transformed into E. coli having pACM-M SA and pACM-M SA -N SA , respectively, and plated on agar medium containing both ampicillin and chloramphenicol. Colonies were cultured at 37 ℃ for one day until they were well expressed at room temperature. The clones were inoculated into 4 ml of LB containing ampicillin and chloramphenicol by changing the color to obtain original clones through the plasmid preparation. From these clones, pUCM-CrtN * and pUCM-CrtY * were separated and purified through agarose gel, respectively. This plasmid was sequenced and again transformed into pACM-M SA and pACM-M SA -N SA , The profile was confirmed.
실험예 2 - 대사회로 유전자의 모듈화Experimental Example 2 - Modulation of metabolic gene
대사회로 유전자의 모듈화는 기존에 본 연구실 구축해놓은 모듈을 사용하거나 새로 구축할 시에는 이전에 사용한 방법을 이용하여 모듈화 하였다. 사용하거나 구축된 모듈은 하기 표에 기재하였다. Modulation of metabolic gene has been modularized by using previously established module or by using previously used method. The modules used or built are listed in the following table.
실험예 3 - 대장균 배양 및 카로틴노이드 생산Experimental Example 3 - Escherichia coli culture and carotenoid production
pBBR1MCS벡터를 제외한 cloning과 카로틴노이드의 생산을 위해 Escherichia coli strain SURE를 사용하였으며, pBBR1MCS로의 cloning과 pBBR1MCS 벡터를 포함한 유전자 모듈의 발현에는 E. coli XL1-Blue strain을 사용하였다. 카로틴노이드 생산을 위해 재조합 대장균은 TB 50ml 혹은 200ml 에 30 °C, 250 rpm에서 36시간 배양하였고 형질 전환된 plasmid에 따라 적절한 항생제를 첨가하였다 (chloramphenicol 50 μg/ml, ampicillin 100 μg/ml, kanamycin 50 μg/ml).
Escherichia coli strain SURE was used for cloning except for the pBBR1MCS vector and for producing carotenoid. E. coli XL1-Blue strain was used for cloning into pBBR1MCS and expressing the gene module containing pBBR1MCS vector. For the production of carotenoids, recombinant E. coli was cultured in TB 50ml or 200ml at 30 ° C for 36 hours at 250 rpm and appropriate antibiotics were added according to the transformed plasmid (
실험예 4 - 카로틴노이드의 분리Experimental Example 4 - Isolation of Carotenoid
카로틴노이드의 분리를 위해 배양한 세포를 원심 분리 후, acetone 5 ml 혹은 10 ml 로 색이 완전히 빠질 때까지 반복적으로 추출하였다. 추출된 용액을 진공 원심 건조기 (EZ2-Plus, Genevac)를 이용해 농축하였으며, 농축된 용액에 5 ml의 ethyl acetate를 가하여 섞어 준 후, 5N NaCl 용액을 가하여 용액 층을 분리하였다. 색이 포함된 상층을 분리 후, 3차수로 2번 세척하여 남은 수분을 제거한 후, 진공 원심 건조기를 이용해 완전히 말렸다. 완전히 마른 샘플에 100 ~ 200 μl의 ethyl acetate를 가하여 녹여서 추후의 분석에 이용하였다. LC/MS 분석을 위해, 위의 과정을 거친 샘플을 silica 컬럼에 loading한 후 hexane:ethyl acetate (9:1) 용액에 acetone을 조금씩 높여가며 분획을 나누어 elution하였다. Elution된 샘플은 TLC와 HPLC 분석을 통해 purity를 확인 후, LC/MS분석에 사용하였다.
Cells cultured for the separation of carotenoids were centrifuged and 5 ml or 10 ml of acetone was repeatedly extracted until the color completely disappeared. The extracted solution was concentrated using a vacuum centrifugal dryer (EZ2-Plus, Genevac). 5 ml of ethyl acetate was added to the concentrated solution, and 5 N NaCl solution was added to separate the solution layer. After separating the upper layer containing the color, it was washed twice with the third order water to remove the remaining water, and was completely dried using a vacuum centrifugal dryer. 100-200 μl of ethyl acetate was added to the completely dried sample to dissolve and used for further analysis. For the LC / MS analysis, the sample was loaded on the silica column and eluted with hexane: ethyl acetate (9: 1). The eluted samples were used for LC / MS analysis after confirmation of purity by TLC and HPLC analysis.
실험예 5 - 카로틴노이드의 분석Experimental Example 5 - Analysis of carotenoids
카로틴노이드의 TLC분석은 hexane:ethyl acetate:acetone (9:1:1) 용액을 이용해 전개하였다. glucosylated된 물질의 분석에는 9:1:3 용액을 사용하였다. 10 ~ 20 μl의 준비된 샘플을 이용해 HPLC분석을 진행하였으며 HPLC는 80% acetonitrile, 15% methanol, 5% isopropanol 용액을 이동상으로, Zorbax eclipse XDB-C18 컬럼 (4.6 × 150 mm 혹은 250 mm, 5 μm; Agilent Technology)을 고정상으로 1 ml/min의 유속으로 분석하였다. 구조분석을 위해, HPLC retention time과 흡수 spectrum, mass spectrum을 비교하여 분석하였다. Mass spectrum은 Varian 1200L LC/MS system을 이용하여 positive 모드와 negative 모드를 모두 모니터 하였고, 이온화에는 APCI (atmosphere pressure chemical ionization) 모듈을 사용하였다.
TLC analysis of carotenoids was performed using hexane: ethyl acetate: acetone (9: 1: 1). A 9: 1: 3 solution was used for the analysis of the glucosylated material. HPLC was performed using 10-20 μl of the prepared sample. The HPLC was performed using a Zorbax eclipse XDB-C18 column (4.6 × 150 mm or 250 mm, 5 μm; Agilent Technology) was analyzed at a flow rate of 1 ml / min in a stationary phase. For structural analysis, HPLC retention time, absorption spectrum and mass spectrum were compared. The mass spectra were monitored for both positive and negative modes using a Varian 1200L LC / MS system and the atmosphere pressure chemical ionization (APCI) module was used for ionization.
실험예 6- CExperimental Example 6- C 3030 카로틴노이드의 항산화능 확인 (DPPH radical scavenging assay) Identification of antioxidant activity of carotenoid (DPPH radical scavenging assay)
실시 조건으로, DPPH는 200mM 농도로 methanol에 녹여 stock solution으로 사용하였으며, 40ml의 0.1M acetic acid buffer (pH 5.5) 에 methanol을 60ml 섞은 buffered methanol을 사용하였다. 반응 조건은 총 500 μl volume 반응 부피에 250 μl의 200mM DPPH, 200 μl buffered methanol, 50 μl의 카로틴노이드를 넣어 반응하였으며, 카로틴노이드는 농도별로 최종농도, 10 μM, 5 μM, 2.5 μM, 0 μM 농도가 되도록 넣어주었다. 반응물은 빛이 들어오지 않는 곳에서 상온에서 한 시간 반응하였으며, 3 번씩 진행하여 평균 ± 표준편차로 IC50 값을 계산하였다. 카로틴노이드의 자연적인 분해를 보정하기 위해 DPPH를 넣지 않은 반응 batch를 같이 반응하여 517 nm 측정시에 blank reaction으로 사용하였다.
As a running condition, DPPH was dissolved in methanol at 200 mM concentration and used as a stock solution. Buffered methanol was used in 40 ml of 0.1 M acetic acid buffer (pH 5.5) mixed with 60 ml of methanol. For the reaction conditions, 250 μl of 200 mM DPPH, 200 μl of buffered methanol and 50 μl of carotenoid were added to a total volume of 500 μl volume reaction. Carotenoids were reacted at final concentrations of 10 μM, 5 μM, 2.5 μM, 0 μM Concentration. The reactants were reacted at room temperature for one hour in the absence of light and proceeded three times to calculate the IC 50 value with mean ± SD. To compensate for the natural degradation of carotenoids, a DPPH-free reaction batch was reacted together and used as a blank reaction at 517 nm.
실험예 7 - 4,4‘-diapotorulene의 쥐 간엽줄기세포 (rBMSCs)의 신경세포로의 분화능 확인Experimental Example 7 - Determination of the ability of 4,4'-diapotorulene to differentiate into mesenchymal stem cells (rBMSCs) into neurons
실험에 사용된 줄기세포는 rat Bone Marrow Mesenchymal stem cells(rBMSCs)로 Fisher rat의 대퇴부로부터 분리하였으며, passage 4 ~ 6의 것을 사용하였다. 48 well plate에 3 × 103 cells/well로 세포를 분주하고, 하룻동안 culture media에서 배양한 뒤, 20%의 FBS와 10 ng/ml basic Fibroblast Growth Factor (bFGF)를 포함한 DMEM media (pre-induction media)를 12 시간 처리하였다. 12 시간 뒤 Dimethyl sulfoxide(DMSO) 에 5 mM 농도로 녹아 있는 Diapotorulene를 희석하여 각각 2 μM, 10 μM, 20 μM, 50 μM 농도로 신경분화유도 배지를 제조 하였고, 각 군에 대해 DMSO의 양을 동일하게 하여 신경분화를 유도하였으며, Normal군은 아무 처리도 하지 않은 군이고, Control 군은 실험군과 같은 양의 DMSO만을 첨가한 군을 의미한다.
The stem cells used in the experiment were isolated from the femoral region of the rat with rat bone marrow mesenchymal stem cells (rBMSCs).
결과result
실시예 1- 대장균을 통한 CExample 1 - Preparation of C 3030 카로틴노이드의 발현과 조합법을 통한 신규 규조의 C Expression of carotenoids and the combination of new diatomic C 3030 카로틴노이드 발현 Carotenoid expression
staphyloxanthin의 대사회로에 1가지 효소 (4,4'-diaponeurosporen-aldehyde dehydrogenase, AldH)가 빠져 있음을 밝혀내고 이를 대장균내에서 발현시켰으며, staphyloxanthin과 유사한 구조의 카로틴노이드를 대장균 내에서 생합성 하였다. 이때 완성된 C30 카로틴노이드 유전자 모듈을 통해 대장균에 발현시킨 결과로는 일부의 4,4'-diaponeurosporene과 4,4'-diapolycopene이 섞여서 발현되는 결과를 확인하였다 (도 1). Wildtype diapophytoene synthase (CrtM)와 diapophytoene desaturase (CrtN)의 gene module을 대장균에서 발현시킨 결과, diapolycopene과 diaponeurosporene이 같이 발현되었으며, high copy인 pUCM에 CrtN이 발현되었을 경우 diapolycopene의 비율이 증가하였다 (도 1). 완성된 diaponeurosporene-diapolycopene producing 모듈에 Rhodobacter capsulatus의 Spheroidene monooxygenase (CrtA)와 함께 모듈화 하였고, C3', 4'-desaturase (CrtD)와 조합하여 linear한 C30 카로틴노이드 대사회로를 연장시키는 한편, 새로운 구조의 카로틴노이드를 대장균 내에서 생산하였다 (도 2). 또한, Corynebacterium glutamicum의 lycopene elongase (CrtEb)를 조합하여, diaponeurosporene에 IPP를 elongation하여 새로운 C35 구조의 linear한 4,4‘-diapononaflavuxanthin을 생산하였다 (도 3).
In the staphyloxanthin metabolism pathway, one enzyme (4,4'-diaponeurosporen-aldehyde dehydrogenase, AldH) was excluded and expressed in E. coli. Carotenoids similar in structure to staphyloxanthin were biosynthesized in E. coli. As a result of expression in E. coli through the completed C 30 carotenoid gene module, a part of 4,4'-diaponeurosporene and 4,4'-diapolycopene were mixed and expressed ( FIG. 1 ). Expression of wildtype diapophytoene synthase (CrtM) and diapophytoene desaturase (CrtN) gene modules in Escherichia coli revealed that diapolycopene and diaponeurosporene coexisted, and when CrtN was expressed in high copy pUCM, the proportion of diapolycopene increased ( Figure 1 ) . The completed diaponeurosporene-diapolycopene-producing module was modularized with Rhodobacter capsulatus Spheroidene monooxygenase (CrtA) and combined with C3 ', 4'-desaturase (CrtD) to extend the linear C 30 carotenoid metabolism circuit. Carotenoids were produced in E. coli ( Fig. 2 ). In addition, lycopene elongase (CrtEb) of Corynebacterium glutamicum was combined with elongation of IPP in diaponeurosporene to produce a new C 35 structure linear 4,4'-diapononaflavuxanthin ( FIG. 3 ).
실시예 2- 4,4‘-diapophytoene desaturase (CrtN)의 인위적 분자진화Example 2- An artificial molecular evolution of 4,4'-diapophytoene desaturase (CrtN)
C30 카로틴노이드의 대사회로를 확장하기 위해 라이코펜 싸이클라아제 (lycopene cyclase, CrtY)는 카로틴노이드 backbone에 양 끝까지 모두 conjugated된 double bond가 존재한다면 작용할 수 없기 때문에 4,4'-diapolycopene에는 CrtY 효소가 작용할 수 없다. 따라서 CrtN의 활성을 바꾸기 위해 우리는 CrtN효소에 인위적 분자진화 기술을 통해 활성을 바꿨으며, 활성이 바뀐 돌연변이 클론들을 선별하였다. 붉은색이 많이 발현된 클론 (CrtNr), 노란색이 많이 발현된 클론 (CrtNy), 연한 노란색이 많이 발현된 클론 (CrtNz)들을 선별하였으며, 선별된 클론들의 프로파일 및 시퀀스 분석을 진행하였으며 시퀀싱한 클론들의 각각 돌연변이된 부위를 site-directed mutagenesis를 통해 확인하였다 In order to expand the metabolism cycle of C 30 carotenoid, lycopene cyclase (CrtY) can not function if there is a double bond conjugated to both ends of the carotenoid backbone. Therefore, CrtY enzyme is added to 4,4'-diapolycopene It can not work. Therefore, in order to change the activity of CrtN, we changed the activity of the CrtN enzyme through an artificial molecular evolution technique, and selected mutant clones with altered activity. CrtNr, CrtNy, CrtNy, and CrtNz clones were selected, and the profile and sequence analysis of the selected clones were performed. Sequenced clones Each mutated site was identified by site-directed mutagenesis
그 결과를 도 4, 5, 6, 7 및 표 1, 2에 나타내었다.The results are shown in Figs. 4, 5, 6 and 7 and Tables 1 and 2.
도 4는 screen한 CrtN mutant 클론들을 나타낸 도이다. FIG. 4 is a diagram showing screened CrtN mutant clones. FIG.
도 5는 CrtN mutant들의 HPLC profile 변화확인을 나타낸 도이다.Figure 5 shows confirmation of changes in the HPLC profile of CrtN mutants.
도 6은 Site-directed evolution을 통해 확보된 clone들의 HPLC 분석을 통한 카로틴노이드생산 프로파일 변화를 나타낸 도이다.6 is a graph showing changes in the production profile of carotenoids through HPLC analysis of clones obtained through site-directed evolution.
도 7은 screen한 pale yellowish 클론들의 카로틴노이드 프로파일을 나타낸 도이다.
Figure 7 shows the carotenoid profile of pale yellowish clones screened.
CrtNrO4
A737G (GAG → GGG)C401T (GCA? GTA)
A737G (GAG? GGG)
0.3 → 0.130.22? 0.17
0.3? 0.13
E246GA134V
E246G
CrtNr07
A626G (GAA → GGA)
A695G (AAT → AGT)A75G (GAA → GAG)
A626G (GAA → GGA)
A695G (AAT → AGT)
0.7 → 0.09
0.39 → 0.130.7? 0.3
0.7? 0.09
0.39 - > 0.13
E209G
N232S-
E209G
N232S
CrtNyO2
T840C (AGT → AGC)
A1049G (GAT → GGT)T635C (TTT to TCT)
T840C (AGT → AGC)
A1049G (GAT to GGT)
0.13 → 0.27
0.59 → 0.380.51? 0.19
0.13? 0.27
0.59 - > 0.38
-
D350GF212S
-
D350G
CrtNy08
T367C (TTT → CTT)
T578G (ATT→ AGT)
A627G (GAA → GAG)
A1046G (CAT → CGT)A185G (TAT → TGT)
T367C (TTT? CTT)
T578G (ATT → AGT)
A627G (GAA → GAG)
A1046G (CAT? CGT)
0.51 → 0.1
0.47 → 0.13
0.7 → 0.3
0.52 → 0.420.53 - > 0.43
0.51? 0.1
0.47 - > 0.13
0.7? 0.3
0.52 - > 0.42
F123L
I193S
-
H348RY62C
F123L
I193S
-
H348R
CrtNy11
T1327C (TTC → CTC)
T1458C (AGT → AGC)T173C (ATG? ACG)
T1327C (TTC → CTC)
T1458C (AGT → AGC)
0.49 → 0.1
0.13 → 0.271.0 - > 0.23
0.49 - > 0.1
0.13? 0.27
F443L
-M58T
F443L
-
diaponeurosporenediapo-ζ-carotene /
diaponeurosporene
diaponeurosporenediapo-ζ-carotene /
diaponeurosporene
diaponeurosporenediapo-ζ-carotene /
diaponeurosporene
diaponeurosporenediapo-ζ-carotene /
diaponeurosporene
CrtNr 클론은 4,4'-diapolycopene이 많이 발현되었으며, CrtNy 클론은 4,4'-diaponeurosporene, CrtNz 클론은 4,4'-diapo-ζ-carotene이 많이 발현되는 클론들이었다. 분석한 각 클론들의 아미노산 시퀀스는 다음과 같다.
The CrtNr clones were highly expressed in 4,4'-diapolycopene. The CrtNy clones were 4,4'-diaponeurosporene and the CrtNz clones were 4,4'-diapo-ζ-carotene. The amino acid sequence of each clone analyzed is as follows.
또한 mutant들 중 CrtNy11 clone은 다시 CrtM과 module화 진행하여 pACM-MSA-NySA를 구축하여 이후의 pathway extension에 이용하였고, CrtNz2-24 clone은 pACM-MSA-NzSA로써 추가 연구에 이용하였다.
In addition, one of the mutant clone CrtNy11 proceeds CrtM module and granulation to build pACM-M SA -N ySA was used in the subsequent extension pathway again, CrtN z 2-24 clone is added to the study as pACM-M SA -N zSA Respectively.
실시예 3- Lycopene cyclase (CrtY)의 인위적 분자진화Example 3 - Artificial Molecular Evolution of Lycopene cyclase (CrtY)
위에서 조합한 pACM-MSA-NySA를 다양한 소스에서 얻은 CrtY와 조합하여 cyclic C30 카로틴노이드의 생성을 확인해 보았다. 사용된 CrtY는 Pantoea agglomerans, Pantoea ananatis, Brevibacterium linens, Corynebacterium glutamicum, Salinibacter ruber 유래 였으며, 대장균에 pACM-MSA-NySA와 함께 co-transformation진행하여 culture 후, 카로틴노이드 프로파일을 HPLC로 분석 하였다 (도 8). 실험결과, Brevibacterium linens의 CrtY를 complementation한 결과에서 diapotorulene의 생산이 크게 증가된 것이 확인되었으며, 놀랍게도 P. agglomerans의 CrtY는 diapo-β-carotene의 생산도 확인되었다. 먼저, B. linens의 CrtY의 directed evolution을 통해 diaponeurosporene에 대한 기질 특이성을 높이고, 좀더 homogeneous한 diapotorulene의 생산을 꾀하였다. 진행 방식은 CrtN과 동일하였으며, pACM-MSA-NSA를 갖고 있는 E. coli comp. cell에 mutant CrtY library를 구축하여 색이 옅어진 clone들을 screen하였다. 실험결과, 색이 옅어진 여러 clone들을 screen할 수 있었고, 이들의 HPLC분석을 통해 profile을 분석하였다 (도 9).
The synthesis of cyclic C 30 carotenoids was confirmed by combining pacM-M SA -Ny SA from above with CrtY from various sources. The use CrtY analyzed the Pantoea agglomerans, Pantoea ananatis, Brevibacterium linens , Corynebacterium glutamicum, was derived Salinibacter ruber, pACM-M SA -Ny then proceeds co-transformation with a culture SA, carotene, carotenoids profile in E. coli by HPLC (Fig. 8 ). As a result, the production of diapotorulene was greatly increased in the complementation of CrtY of Brevibacterium linens . Surprisingly, the production of diapo-β-carotene by CrtY of P. agglomerans was also confirmed. First, the directed evolution of CrtY in B. linens enhanced the substrate specificity for diaponeurosporene and produced a more homogeneous diapotorulene. E. coli comp in progress method was the same as CrtN, has a pACM-M SA -N SA. The mutant CrtY library was constructed in the cell and screened for the clones that were light in color. As a result of the experiment, it was possible to screen various clones having weak color, and their profiles were analyzed by their HPLC analysis ( FIG. 9 ).
위에서 screen한 CrtY 돌연변이 클론들의 sequence분석을 통해 돌연변이 된 자리를 확인하였다.Sequence analysis of the CrtY mutant clones screened above identified mutated sites.
그 결과는 하기와 같다.
The results are as follows.
위 클론들 중, CrtYt01번 clone을 이용하여 pACM-MSA-NySA-YtBL 모듈을 구축하였으며, diapotorulene의 생산을 homogeneous하게 할 수 있는 시스템을 구축하였다. 이 결과는 인위적 분자진화와 조합법을 이용해 heterogeneous한 생산을 homogenous하게 함으로써, 대사회로의 선택성을 높이고 이를 통해 대사회로를 더욱 신장할 수 있게 한 연구 결과이다 (도 10).Among the clones, CrtYt01 clone was used to construct a pACM-M SA- Ny SA -Yt BL module and a system was constructed to homogenize the production of diapotorulene. This result is a result of homogenization of heterogeneous production using an artificial molecular evolution and combination method, thereby enhancing the selectivity of the metabolic pathway and thereby further elongating the metabolic pathway ( FIG. 10 ).
한편, bicyclic C30 카로틴노이드인 diapo-β-carotene의 생산을 위해 마찬가지로 B. linens의 CrtY를 pACM-MSA-NzSA에 적용하여 directed evolution진행해 보았으나, 이 경우에는 원하는 clone들이 잘 screen되지 못하였고, 대안으로 P. agglomerans의 CrtY를 module화하여 diapo-β-carotene을 생합성 하는 모듈을 확보하였다 (도 11). 이 경우에, diapo-β-carotene의 생산이 major하게 보였으나, 실질적으로 pACM-MSA-NzSA module이 diapo-ζ-carotene만 major로 생산하지 못하고 diaponeurosporene도 생합성이 이루어지기 때문에 diapo-β-carotene의 생합성은 온전히 homogeneous하게 이루어지지 못하였다.
On the other hand, for the production of diapo-β-carotene, a bicyclic C 30 carotenoid, CrtY of B. linens was applied to pACM-M SA -Nz SA to proceed with directed evolution. In this case, . Alternatively, a module for biosynthesis of diapo-β-carotene was obtained by modifying CrtY of P. agglomerans ( FIG. 11 ). In this case, the production of diapo-β-carotene appears to be significant, but since the pACM-M SA -Nz SA module does not produce only diapo-ζ-carotene as a major, diaponeurosporene also biosynthesizes, The biosynthesis of carotene was not homogeneous.
실시예 4 - Diapotorulene, diapo-β-carotene 생합성 회로의 functional extension을 통한 일련의 신규 구조의 CExample 4 - Diapotorulene, diapo-β-carotene A series of novel structures through the functional extension of the biosynthetic circuit C 3030 카로틴노이드 생합성. Carotenoid biosynthesis.
위에서 확보한 diapotorulene과 diapo-β-carotene의 생합성 유전자 모듈을 이용, 다양한 C40 카로틴노이드 생합성 관련 유전자와 조합하여, diapotorulene, diapo-β-carotene 유도체 카로틴노이드 들을 생산할 수 있었다. 먼저, mono-cyclic C30 카로틴노이드 대사회로를 구축하였으며, β-carotene hydroxylase (CrtZ)와 β-carotene ketolase (CrtW/CrtO), glycosyl transferase (CrtX)를 이용해 diapotorulene을 수식한 결과, 7-hydroxy-4,4'-diapotorulene, 8-keto-4,4'-diapotorulene, 7-hydroxy-8-keto-4,4'-diapotorulene, 7-hydroxy-4,4'-diapotorulene glucoside등의 새로운 monocyclic C30 카로틴노이드가 대장균내에서 생합성 되었다 (도 12). 또한 diaponeurosporene oxidase (crtP), diaponeurosporen-aldehyde dehydrogenase (aldH) mutant CrtY를 이용하여 aldehyde group이나 carboxyl group을 가지는 C30 monocyclic 카로틴노이드인 4,4‘-diapotorulen-4'-al, 4,4’-diapotorulen-4'-oic acid를 대장균 내에서 생산하였다 (도 13). 다음으로 diapo-β-carotene 대사회로를 extension하기 위해 CrtZ, CrtO, CrtX 의 효소를 이용하여 diapo-β-carotene을 modify하였으며, 그 결과로 4,4‘-diapo-β-cryptoxanthin, 4,4'-diapozeaxanthin, 4,4'-diapoechinenone, 4,4'-diapo-β-cryptoxanthin glucoside의 신규 bicyclic C30 카로틴노이드의 생산을 확인하였다 (도 14).
The diapotorulene and diapo-β-carotene derivative carotenoids were synthesized by combining with various C 40 carotenoid biosynthesis-related genes using the biosynthesis gene module of diapotorulene and diapo-β-carotene obtained above. First, a mono-cyclic C 30 carotenoid metabolism circuit was constructed. Diapotorulene was modified with β-carotene hydroxylase (CrtZ), β-carotene ketolase (CrtW / CrtO) and glycosyl transferase (CrtX) New monocyclic C 30s such as 4,4'-diapotorulene, 8-keto-4,4'-diapotorulene, 7-hydroxy-8-keto-4,4'-diapotorulene and 7-hydroxy- Carotenoids were biosynthesized in E. coli ( Fig. 12 ). Also diaponeurosporene oxidase (crtP), diaponeurosporen- aldehyde dehydrogenase (aldH) mutant using the CrtY having an aldehyde group or a carboxyl group C 30 monocyclic carotene Carcinoid of 4,4'-diapotorulen-4'-al,
실시예 5 - 새롭게 합성한 신규 구조의 카로틴노이드들의 구조 분석Example 5 - Structural analysis of newly synthesized carotenoids
위에서 확보한 카로틴노이드들의 구조는 HPLC retention time, UV/Vis spectrum, MS spectrum의 세가지 분석 결과를 통해 확인하였으며, 이들 중, diapotorulene은 추가적으로 silica fractionation을 통해 분리 및 정제 되었으며, 1H NMR, 1H-1H COSY NMR을 통해 그 구조를 확인하였다. (도 15, 16). 이외의 본 발명에서 확인한 C30 카로틴노이드들의 MS spectra는 하기의 표 3과 같으며 대장균에서 생합성한 신규 구조의 C30 카로틴노이드 대사회로는 도 17과 같다.Secured on the carotene structure of the solenoid is HPLC retention time, UV / Vis spectrum , it was confirmed through the three results of the MS spectrum, of these, diapotorulene was isolated and purified through further silica fractionation, 1 H NMR, 1 H- The structure was confirmed by 1 H COZY NMR. ( Figs. 15 and 16 ). The MS spectra of the C 30 carotenoids identified in the present invention are as shown in Table 3 below, and the C 30 carotenoid metabolism circuit of novel structure biosynthesized in E. coli is shown in FIG .
실시예 6 - NSC3 효소의 cloning 및 활성 확인Example 6 - Cloning and activity confirmation of NSC3 enzyme
다른 카로틴노이드 절단 효소로써, 시아노 박테리아인 Nostoc sp. PCC 7120으로부터 NSC3 효소를 cloning하여 대장균 내에서 발현하였다. 카로틴노이드 절단 효소는 시아노박테리아를 비롯, 식물 및 동물종에서 발견되며, 베타카로틴 등의 카로틴노이드를 절단하여 레틴알 (retinal)을 비롯한 아포-카로텐알 (apo-carotenal)을 생산하는 일을 한다. 생성된 레틴알이나 아포-카로텐알 들은 비타민 전구체나 호르몬 등으로 이용되며, 아직까지 그 대사회로가 온전히 밝혀져 있지 않은 실정이다. 또한 이러한 아포-카로텐알을 비롯한 카로틴노이드 들의 항암, 항산화효과에 대한 관심이 높아져 감에 따라, 다양한 구조의 카로틴노이드의 생리활성에 관한 연구도 점점 활발해 지고 있는 추세이다. 하지만 기존 카로틴노이드 절단 효소들은 C40 카로틴노이드 기질에 관한 연구만 이루어져 왔으며, C30 카로틴노이드를 기질로 이용한 연구는 본 발명에서 처음 이루어 졌다. 본 발명에서는 NSC3 효소를 클로닝 및 대장균에 발현하여 효소적 특징을 확인하였으며 C30 카로틴노이드를 기질로 사용하여 대장균 내에서 새로운 구조의 apo-carotenal을 생합성 하였다. As other carotenoid cleavage enzymes, cyanobacteria Nostoc sp. The NSC3 enzyme was cloned from PCC 7120 and expressed in E. coli. Carotenoid cleaving enzymes are found in plant and animal species, including cyanobacteria, and work to produce apo-carotenal, including retinal, by cleaving carotene nodules such as beta carotene . The produced retinoids or apo-carotene eggs are used as vitamin precursors and hormones, and the metabolic circuits have not yet been fully understood. In addition, since interest in carotenoids including antioxidant and antioxidant effects of carotenoids has increased, research on the physiological activity of carotenoids of various structures is also becoming more and more active. However, existing carotenoid cleavage enzymes have been studied only on C 40 carotenoid substrates, and studies using C 30 carotenoids as substrates have been made in the present invention for the first time. In the present invention, the NSC3 enzyme was cloned and expressed in Escherichia coli to confirm the enzymatic characteristics, and a new structure of apo-carotenal was biosynthesized in E. coli using C30 carotenoid as a substrate.
먼저 확보한 NSC3 의 활성을 in vitro에서 β-apo-8‘-carotenal을 기질로 사용하여 확인해 보았다 (도 18). 확인결과 NSC3는 C13-C14, C15-C15', C14'-C13' bond에 활성을 보였으며, 그 결과 레틴알, β-apo-14'-carotenal, β-apo-13-carotenone을 생성하였고, 이는 기존에 밝혀진 Nostoc sp. PCC 7120으로부터 확인된 NSC1, NSC2와는 차별적인 활성을 보여주었다. 추가적으로 본 발명에서 확보한 C30 카로틴노이드 생합성 모듈을 이용, NSC3의 대장균 내에서의 in vivo 활성을 확인해 보았다 (도 19). NSC3는 C30 카로틴노이드 기질을 잘 이용하였으며, 그 반응 결과 여러 새로운 구조의 apo-carotenal이 생성됨을 확인될 수 있었다. 하지만 C40 카로틴노이드 기질은 대장균 내에서 NSC3가 작용하지 못했으며 3,4,3',4'-tetradehydrolycopene과 torulene만이 절단된 생산물이 확인되었는데 torulene의 경우 레틴알이 생산물로 확인되었지만, 3,4,3',4'-tetradehydrolycopene은 생산물의 분석을 정확히 하지 못하였다. 추가적으로, 정확한 C30 카로틴노이드 기질을 확인하기 위해 분리된 C30 카로틴노이드를 이용, NSC3를 in vitro상에서 활성을 확인하였으며 (도 20), in vitro상에서 NSC3 효소의 여러 가지 특성을 분석 하였다 (도 21, 22). 최종적으로 본 발명에서 확인된 구조의 apo-carotenal들은 도 23과 같다.
The activity of NSC3 obtained earlier was confirmed in vitro using β-apo-8'-carotenal as a substrate ( FIG. 18 ). As a result, NSC3 was active at C13-C14, C15-C15 'and C14'-C13' bonds, resulting in retinoids, β-apo-14'-carotenal and β-apo-13- This is because Nostoc sp. Showed distinctive activity from NSC1 and NSC2 identified from PCC 7120. Additionally, use of a C 30-carotene, carotenoids biosynthetic modules obtained in the present invention, saw out the in vivo activity in the NSC3 of Escherichia coli (Figure 19). NSC3 was well used for the C 30 carotenoid substrate, and it was confirmed that several new structures of apo-carotenal were produced. However, the C 40 carotenoid substrate did not act on NSC3 in E. coli, and only truncated products of 3,4,3 ', 4'-tetradehydrolycopene and torulene were identified. , 3 ', 4'-tetradehydrolycopene did not accurately analyze the product. Were analyzed additionally, various properties of the accurate C 30-carotene, carotenoids NSC3 enzyme the C 30-carotene using a solenoid, NSC3 separation to make the temperament over has confirmed that the activity (Fig. 20), in vitro on the in vitro (FIG. 21 , 22 ). Finally, the apo-carotenals of the structure identified in the present invention are shown in FIG .
실시예 7 - 다양한/신규 카로틴노이드 구조의 항산화 효과 측정Example 7 - Measurement of antioxidative effect of various / novel carotene nodal structures
카로틴노이드 등 천연물질의 항산화 능력에 관심이 많아지면서, 여러 대표적인 구조의 카로틴노이드 들의 항산화효과가 다양한 방법으로 측정되고 연구되고 있다. 이들 대부분의 연구는 자연계에서 흔히 찾을 수 있는 zeaxanthin, lycopene, β-carotene, astaxanthin등에 집중되어 있으며, DL-α-tocopherol등의 대표적인 항산화 물질들과 비교하여 그 항산화 능력을 측정하곤 한다. 하지만 C30 카로틴노이드의 항산화 능력에 대한 연구는 매우 미진하며, Staphylococcus aureus의 숙주에서의 생존성을 확인하기 위한 staphyloxanthin의 항산화능 정도의 연구가 되어 있는 실정이다. As antioxidant capacity of natural substances such as carotenoids has increased, antioxidative effects of various representative carotenoids have been measured and studied in various ways. Most of these studies are concentrated on zeaxanthin, lycopene, β-carotene, and astaxanthin, which are commonly found in the natural world, and their antioxidant capacity is measured in comparison with representative antioxidants such as DL-α-tocopherol. However, studies on the antioxidant capacity of C 30 carotenoids have been limited, and studies on the antioxidant activity of staphyloxanthin have been conducted to confirm the viability of Staphylococcus aureus in the host.
본 발명에서 확보한 카로틴노이드 들의 항산화능을 확인하기 위해선, 대장균으로부터 생합성시킨 카로틴노이드들의 추출 및 분리/정제가 선결 되어야 하므로, 각각 구조의 카로틴노이드가 dorminant하게 발현되는 조합의 플라스미드를 형질전환 시켜, 대장균 세포를 culture하였다. Cell culture 후, cell들은 회수되어 acetone으로 추출과정을 진행하였고, silica fractionation을 통해 각각 분리/정제를 진행하였다. 모든 과정은 glass tube, vial에 진행되어 plastic contamination을 피하였다. 최종적으로 분리한 sample들은 methanol에 녹여 정량하였으며, 측정에 사용되기 전까지 질소로 충진하여 -80℃에 보관하였다.In order to confirm the antioxidant ability of the carotenoids obtained in the present invention, the extraction and separation / purification of carotenoids biosynthesized from E. coli must be preliminarily performed. Therefore, a plasmid in which a carotenoid of each structure is dorminantly expressed is transformed, Escherichia coli cells were cultured. After cell culture, the cells were recovered and extracted with acetone. Separation / purification was carried out through silica fractionation. All procedures were carried out in glass tubes and vials to avoid plastic contamination. The final samples were dissolved in methanol and quantified. The samples were stored at -80 ° C until they were filled with nitrogen until they were used for measurement.
C30 카로틴노이드의 항산화 효과는 DPPH radical scavenging assay를 통해 확인하였다. 이는 single electron transfer reaction (SET)에 기인한 radical scavenging assay로, 카로틴노이드의 항산화능 측정시 널리 이용되는 방법이다. 하지만 DPPH assay는 실시하는 방법, 조건에 따라 IC50 value가 매우 달라지며, 카로틴노이드에 적합한 정형화된 뚜렷한 method가 없는 실정으로, 본 연구에서는 이를 보정하기 위해 2009년도 Bhat 연구 그룹에서 실시한 방법을 수정하여 실시하였다. 실시 조건으로, DPPH는 200mM 농도로 methanol에 녹여 stock solution으로 사용하였으며, 40ml의 0.1M acetic acid buffer (pH 5.5) 에 methanol을 60ml 섞은 buffered methanol을 사용하였다. 반응 조건은 총 500 μl volume 반응 부피에 250 μl의 200mM DPPH, 200 μl buffered methanol, 50 μl의 카로틴노이드를 넣어 반응하였으며, 카로틴노이드는 농도별로 최종농도, 10 μM, 5 μM, 2.5 μM, 0 μM 농도가 되도록 넣어주었다. 반응물은 빛이 들어오지 않는 곳에서 상온에서 한 시간 반응하였으며, 3 번씩 진행하여 평균 ± 표준편차로 IC50 값을 계산하였다 (도 24, 표 4).
The antioxidative effect of C 30 carotenoid was confirmed by DPPH radical scavenging assay. This is a radical scavenging assay based on a single electron transfer reaction (SET), which is widely used to measure the antioxidant activity of carotenoids. However, in the DPPH assay, the IC 50 value varies greatly depending on the method and condition to be used. In the present study, the method of the 2009 Bhat study group was modified to compensate for the lack of a formalized method suitable for carotenoids Respectively. As a running condition, DPPH was dissolved in methanol at 200 mM concentration and used as a stock solution. Buffered methanol was used in 40 ml of 0.1 M acetic acid buffer (pH 5.5) mixed with 60 ml of methanol. For the reaction conditions, 250 μl of 200 mM DPPH, 200 μl of buffered methanol and 50 μl of carotenoid were added to a total volume of 500 μl volume reaction. Carotenoids were reacted at final concentrations of 10 μM, 5 μM, 2.5 μM, 0 μM Concentration. Reactants were reacted at room temperature for one hour in the absence of light, and the IC 50 values were calculated by the mean ± standard deviation ( FIG. 24, Table 4 ).
본 실험에서 사용한 결과로, 100 mM DPPH와 10 ~ 20 μM 카로틴노이드 비율에서 반응이 잘 일어났으며 그보다 낮은 비율에서는 radical scavenging 반응이 잘 일어나지 않았다. 카로틴노이드의 자연적인 breakdown을 보정하기 위해 DPPH를 넣지 않은 반응 batch를 같이 반응하여 517 nm 측정시에 blank reaction으로 사용하였다. 반응 결과로, 반응한 C30 카로틴노이드의 radical 제거능은 diapolycopene-dial > diapolycopene > diaponeurosporenoic acid > diaponeurosporen-al > diaponeurosporene > diapotorulene > diapo-β-carotene 순으로 확인되었으며, 이 결과는 redical scavenging activity에 가장 영향을 주는 factor는 conjugated double bond의 개수 이며, 같은 개수일 경우 oxygen이 많이 치환되어 있는 경우가 더 radical 제거능이 좋으며, β-ring을 갖는 카로틴노이드 (β-carotene, torulene등) 보다는 linear한 카로틴노이드의 경우 더욱 라디컬 제거에 효과적이라는 것을 알 수 있다. 더욱이, β-ring을 가지는 카로틴노이드를 제외하고 linear한 C30 카로틴노이드의 경우 DL-α-tocopherol보다도 높은 라디컬 제거능을 보여주었다. 본 실험결과를 통해 항산화능이 높은 카로틴노이드 후보군 선정에 있어 큰 도움을 줄 것이며, 카로틴노이드의 항산화능을 측정하는데 있어 좋은 모델 실험 방법이 될 수 있을 것이다.
As a result of this experiment, the reaction occurred well at 100 mM DPPH and 10-20 μM carotenoid ratio, but the radical scavenging reaction did not occur at a lower rate. To compensate for the natural breakdown of carotenoids, a reaction batch without DPPH was reacted together and used as a blank reaction at 517 nm. As a result, the radical scavenging ability of the reacted C 30 carotenoids was confirmed in the order of diapolycopene-dial>diapolycopene> diaponeurosporenoic acid>diaponeurosporen-al>diaponeurosporene>diapotorulene> diapo-β-carotene, The number of conjugated double bonds is the number of conjugated double bonds. In case of the same number of oxygen, the radical substitution is more favorable when oxygen is substituted, and a linear carotenoid rather than a β-ring carotenoid (β-carotene, torulene etc.) It can be seen that it is more effective for radical removal. Furthermore, except for carotenoids with β-rings, linear C 30 carotenoids showed a higher degree of radical elimination than DL-α-tocopherol. The results of this experiment will be helpful for the selection of candidate carotenoids with high antioxidant ability and it will be a good model test method for the antioxidant ability of carotenoid.
실시예 8 - 다양한/신규 구조에 따른 카로틴노이드의 줄기세포 분화능 측정Example 8 - Measurement of stem cell differentiation ability of carotenoid according to various / new structure
카로틴노이드의 줄기세포 분화능 연구는 아직 시작단계이며 연구가 거의 이루어지지 않았다. 다만 retinal이나 retinoic acid등에 대한 줄기세포의 신경세포로의 분화능을 연구된 바가 있으며, 특히 retinoic acid의 경우 그 효과가 매우 좋은 것으로 알려져 있다. 최근 줄기세포 연구에 대한 관심이 높아지면서, 천연 생리활성 물질들의 줄기세포 분화능 증가에 대한 연구에 대한 관심이 높아지고 있으며, 그와 더불어 카로틴노이드의 줄기세포 분화능에 대한 연구도 조금씩 이루어지고 있는 추세이다. 본 발명에서 생합성한 C30 카로틴노이드는, 기존의 C40 카로틴노이드 보다 짧고, retinal이나 retinoic acid등 작은 (C20) 카로틴노이드처럼 size가 작으며 신규 구조 이므로 충분히 활용해 볼 가치가 있다고 판단하였다. 본 실험에 이용한 카로틴노이드는 4,4'-diapotorulene으로, retinal이나 retinoic acid와 구조가 유사한 4,4'-diapotorulen-4-al이나 4,4'-diapotorulenoic acid등과 같은 구조의 C30 카로틴노이드를 이용하고자 하였으나, 위 물질들의 분리/정제에 어려움이 있어 4,4'-diapotorulene을 model로써 사용하였다 (도 25). 4,4'-diapotorulene은 pACM-MSA-NySA-YtBL plasmid를 E. coli에 형질전환 시킨 후, TB배지에 36시간 30℃에서 culture하여 cell을 얻은 후, cell로부터 acetone으로 추출, silica column을 통해 분리하여 확보하였다. purity는 HPLC를 통해 분석하였다. 실험에 사용된 줄기세포는 rat Bone Marrow Mesenchymal stem cells (rBMSCs)로 Fisher rat의 대퇴부로부터 분리하였으며, passage 4 ~ 6의 것을 사용하였다. 48 well plate에 3 × 103 cells/well로 세포를 분주하고, 하룻동안 culture media에서 배양한 뒤, 20%의 FBS와 10 ng/ml basic Fibroblast Growth Factor (bFGF)를 포함한 DMEM media(pre-induction media)를 12 시간 처리하였다. 12 시간 뒤 Dimethyl sulfoxide(DMSO) 에 5 mM 농도로 녹아 있는 diapotorulene를 희석하여 각각 2 μM, 10 μM, 20 μM, 50 μM 농도로 신경분화유도 배지를 제조 하였고, 각 군에 대해 DMSO의 양을 동일하게 하여 신경분화를 유도하였으며, normal군은 아무 처리도 하지 않은 군이고, control군은 실험군과 같은 양의 DMSO만을 첨가한 군을 의미한다. diapotorulene의 처리 후, 일주일간 세포의 morphology변화를 관찰하였으며, 세포 독성을 MTT assay를 통해 확인하였다 (도 26, 27, 28, 29). 관찰결과 세포들이 신경양 세포 모양의 morphology적 특성을 띄는 것을 확인하였으며, 4,4'-diapotorulene이 줄기세포의 신경양 세포로의 분화에 큰 영향을 주며 신경세포로의 분화능을 가진 것으로 사료된다.
Studies on the ability of carotenoids to differentiate into stem cells are still in its infancy and little research has been done. However, the ability of stem cells to differentiate into neurons has been studied for retinal and retinoic acid, and retinoic acid has been known to be very effective. As interest in stem cell research has increased in recent years, there has been a growing interest in the study of the ability of natural biologically active substances to increase stem cell differentiation. In addition, studies on the ability of carotenoids to differentiate into stem cells have been carried out gradually. The C 30 carotenoids biosynthesized in the present invention are shorter than conventional C 40 carotenoids and smaller in size than small (C 20 ) carotenoids such as retinal or retinoic acid. Carotene cannabinoid used in the experiments is a C 30-carotene cannabinoid structure, such as 4,4'-diapotorulene as, retinal or retinoic acid and the structure is similar to 4,4'-diapotorulen-4-al, or 4,4'-diapotorulenoic acid However, 4,4'-diapotorulene was used as a model because of difficulties in separation / purification of the above substances ( Fig. 25) . 4,4'-diapotorulene was transformed into pACM-M SA- Ny SA -Yt BL plasmid into E. coli and cultured in TB medium for 36 hours at 30 ° C. Cells were extracted from the cell with acetone, column. The purity was analyzed by HPLC. The stem cells used in the experiment were isolated from the femoral region of the rat with rat bone marrow mesenchymal stem cells (rBMSCs).
<110> AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> Novel carotinoid and use thereof <130> 1-28p <160> 28 <170> KopatentIn 2.0 <210> 1 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr04 amino acids <400> 1 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Val Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Gly Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 2 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr08 amino acids <400> 2 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Ile Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 3 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> crtN_wt amino acids <400> 3 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 4 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr05 amino acids <400> 4 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Gly Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 5 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr07 amino acids <400> 5 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Ser Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 6 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr06 amino acids <400> 6 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 7 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr02 amino acids <400> 7 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Ser His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Ala Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Arg Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 8 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtNy06 amino acids <400> 8 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 9 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtNy11 amino acids <400> 9 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Thr Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Leu Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 10 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtN_wt amino acids <400> 10 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 11 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtNy02 amino acids <400> 11 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Ser Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Gly Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 12 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtNy08 amino acids <400> 12 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Cys Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Leu Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ser Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser Arg Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Arg Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 13 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT1_Yc amino acids <400> 13 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Val Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 14 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT9_Yc amino acids <400> 14 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Val Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 15 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT11_Yc amino acids <400> 15 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Val Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 16 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT6_Yc amino acids <400> 16 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Ile Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 17 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> crtY_Yc_wild amino acids <400> 17 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Ile Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 18 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT10_Yc amino acids <400> 18 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Val Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Ile Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 19 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT5_Yc amino acids <400> 19 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Thr His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Ile Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 20 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> crtY_Yc mutation clone Consensus amino acids <400> 20 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Xaa Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Xaa Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 21 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT1_Yd amino acids <400> 21 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Arg Leu Asn Arg Ser Arg Lys Asp Thr Gln 100 105 <210> 22 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT5_Yd amino acids <400> 22 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Arg Lys Asp Thr Gln 100 105 <210> 23 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT9_Yd amino acids <400> 23 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Arg Lys Asp Thr Gln 100 105 <210> 24 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> crtY_Yd_wild amino acids <400> 24 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Arg Lys Asp Thr Gln 100 105 <210> 25 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT11_Yd amino acids <400> 25 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Arg Lys Asp Thr Gln 100 105 <210> 26 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT10_Yd amino acids <400> 26 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Arg Lys Asp Thr Gln 100 105 <210> 27 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT6_Yd amino acids <400> 27 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Tyr Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Arg Lys Asp Thr Gln 100 105 <210> 28 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY_Yd mutation clone Consensus amino acids <400> 28 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Xaa Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Xaa Leu Asn Arg Ser Arg Lys Asp Thr Gln 100 105 <110> AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> Novel carotinoid and use thereof <130> 1-28p <160> 28 <170> Kopatentin 2.0 <210> 1 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNrO4 amino acids <400> 1 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Val Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Gly Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 2 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr08 amino acids <400> 2 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Ile Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 3 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> crtN_wt amino acids <400> 3 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 4 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr05 amino acids <400> 4 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Gly Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 5 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr07 amino acids <400> 5 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Ser Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 6 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNr06 amino acids <400> 6 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 7 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN Reddish clone crtNrO2 amino acids <400> 7 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Ser His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Ala Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Arg Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 8 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtNy06 amino acids <400> 8 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Gly Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 9 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtNy11 amino acids <400> 9 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Thr Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Leu Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 10 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtN_wt amino acids <400> 10 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 11 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtNy02 amino acids <400> 11 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Tyr Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Phe Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ile Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Ser Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser His Gly Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 12 <211> 502 <212> PRT <213> Artificial Sequence <220> <223> CrtN yellowish clone crtNy08 amino acids <400> 12 Met Lys Ile Ala Val Ile Gly Ala Gly Val Thr Gly Leu Ala Ala Ala 1 5 10 15 Ala Arg Ile Ala Ser Gln Gly His Glu Val Thr Ile Phe Glu Lys Asn 20 25 30 Asn Asn Val Gly Gly Arg Met Asn Gln Leu Lys Lys Asp Gly Phe Thr 35 40 45 Phe Asp Met Gly Pro Thr Ile Val Met Met Pro Asp Val Cys Lys Asp 50 55 60 Val Phe Thr Met Cys Gly Lys Asn Tyr Glu Asp Tyr Ile Glu Leu Arg 65 70 75 80 Gln Leu Arg Tyr Ile Tyr Asp Val Tyr Phe Asp Arg Asp Asp Cys Ile 85 90 95 Thr Val Pro Thr Asp Leu Ala Glu Leu Gln His Met Leu Glu Ser Ile 100 105 110 Glu Pro Gly Ser Thr His Gly Phe Met Ser Leu Leu Thr Asp Val Tyr 115 120 125 Lys Lys Tyr Glu Ile Ala Arg Arg Tyr Phe Leu Glu Arg Thr Tyr Arg 130 135 140 Lys Pro Ser Asp Phe Tyr Asn Met Thr Ser Leu Val Gln Gly Ala Lys 145 150 155 160 Leu Lys Thr Leu Asn His Ala Asp Gln Leu Ile Glu His Tyr Ile Asp 165 170 175 Asn Glu Lys Ile Gln Lys Leu Leu Ala Phe Gln Thr Leu Tyr Ile Gly 180 185 190 Ser Asp Pro Lys Arg Gly Pro Ser Leu Tyr Ser Ile Ile Pro Met Ile 195 200 205 Glu Met Met Phe Gly Val His Phe Ile Lys Gly Gly Met Tyr Gly Met 210 215 220 Ala Gln Gly Leu Ala Gln Leu Asn Lys Asp Leu Gly Val Asn Ile Glu 225 230 235 240 Leu Asn Ala Glu Ile Glu Gln Ile Ile Ile Asp Pro Lys Phe Lys Arg 245 250 255 Ala Asp Ala Ile Lys Val Asn Gly Asp Ile Arg Lys Phe Asp Lys Ile 260 265 270 Leu Cys Thr Ala Asp Phe Pro Ser Val Ala Glu Ser Leu Met Pro Asp 275 280 285 Phe Ala Pro Ile Lys Lys Tyr Pro Pro His Lys Ile Ala Asp Leu Asp 290 295 300 Tyr Ser Cys Ser Ala Phe Leu Met Tyr Ile Gly Ile Asp Ile Asp Val 305 310 315 320 Thr Asp Gln Val Arg Leu His Asn Val Ile Phe Ala Asp Asp Phe Arg 325 330 335 Gly Asn Ile Glu Glu Ile Phe Glu Gly Arg Leu Ser Arg Asp Pro Ser 340 345 350 Ile Tyr Val Tyr Val Pro Ala Val Ala Asp Lys Ser Leu Ala Pro Gln 355 360 365 Gly Gln Thr Gly Ile Tyr Val Leu Met Pro Thr Pro Glu Leu Lys Thr 370 375 380 Gly Ser Gly Ile Asp Trp Ser Asp Glu Ala Leu Thr Asp Gln Ile Lys 385 390 395 400 Asp Val Ile Tyr Arg Lys Leu Ala Thr Ile Glu Val Phe Glu Asp Ile 405 410 415 Lys Ser His Ile Val Ser Glu Thr Ile Phe Thr Pro Asn Asp Phe Glu 420 425 430 Gln Thr Tyr His Ala Lys Phe Gly Ser Ala Phe Gly Leu Met Pro Thr 435 440 445 Leu Ala Gln Ser Asn Tyr Tyr Arg Pro Gln Asn Val Ser Ser Asp Tyr 450 455 460 Lys Asp Leu Tyr Phe Ala Gly Ala Ser Thr His Pro Gly Ala Gly Val 465 470 475 480 Pro Ile Val Leu Thr Ser Ala Lys Ile Thr Val Asp Glu Met Ile Lys 485 490 495 Asp Ile Glu Gln Gly Val 500 <210> 13 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT1_Yc amino acids <400> 13 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Val Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 14 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT9_Yc amino acids <400> 14 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Val Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 15 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT11_Yc amino acids <400> 15 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Val Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 16 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT6_Yc amino acids <400> 16 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Ile Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 17 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> crtY_Yc_wild amino acids <400> 17 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Ile Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 18 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT10_Yc amino acids <400> 18 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Val Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Ile Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 19 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT5_Yc amino acids <400> 19 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Ile Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Thr His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Ile Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 20 <211> 125 <212> PRT <213> Artificial Sequence <220> <223> crtY_Yc mutation clone Consensus amino acids <400> 20 Met Ser Ala Phe Glu Tyr Leu Leu Leu Met Gly Ala Cys Leu Leu Ile 1 5 10 15 Thr Leu Pro Leu Glu Leu Leu Phe Ser Ala Arg Val Tyr Arg Arg Pro 20 25 30 Lys Leu Leu Ile Gly Ser Leu Ile Pro Ile Leu Val Phe Ser Leu 35 40 45 Trp Asp Ile Ile Ala Xaa Asp Arg Asp His Trp Thr Tyr Asn Gln Gln 50 55 60 Phe Val Thr Gly Ile His Ile Gly Asn Leu Pro Leu Glu Glu Leu Val 65 70 75 80 Phe Phe Ile Val Xaa Pro Ile Cys Ala Leu Leu Ser Tyr Glu Ala Val 85 90 95 Gly Thr Val Leu Lys Phe Val Ala Lys Lys Ser Gly Thr Arg Ala Gly 100 105 110 Arg Lys Ser Gly Asn Arg Lys Asp Gly Gly Asp Val Ala 115 120 125 <210> 21 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT1_Yd amino acids <400> 21 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Arg Leu Asn Arg Ser Ser Lys Asp Thr Gln 100 105 <210> 22 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT5_Yd amino acids <400> 22 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Ser Lys Asp Thr Gln 100 105 <210> 23 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT9_Yd amino acids <400> 23 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Ser Lys Asp Thr Gln 100 105 <210> 24 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> crtY_Yd_wild amino acids <400> 24 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Ser Lys Asp Thr Gln 100 105 <210> 25 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT11_Yd amino acids <400> 25 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Ser Lys Asp Thr Gln 100 105 <210> 26 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT10_Yd amino acids <400> 26 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Cys Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Ser Lys Asp Thr Gln 100 105 <210> 27 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY mutation clone YT6_Yd amino acids <400> 27 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Tyr Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Gln Leu Asn Arg Ser Ser Lys Asp Thr Gln 100 105 <210> 28 <211> 107 <212> PRT <213> Artificial Sequence <220> <223> CrtY_Yd mutation clone Consensus amino acids <400> 28 Met Leu Pro Glu Tyr Thr Val Met Thr Val Val Gly Ile Val Ile Val 1 5 10 15 Ile Gly Leu Glu Ile Phe Val Phe Arg Ser Gly Ile Phe Arg Arg Gly 20 25 30 Gln Tyr Trp Ala Ala Leu Ala Ile Xaa Leu Ala Phe Gln Cys Leu Val 35 40 45 Asp Gly Trp Leu Thr Lys Leu Ser Asp Pro Ile Val Arg Tyr Asn Pro 50 55 60 Ser Gln Phe Leu Asn Val Arg Phe Pro Trp Asp Ile Pro Ile Glu Asp 65 70 75 80 Phe Gly Phe Gly Phe Ala Met Ile Thr Ser Val Leu Met Leu Trp Gln 85 90 95 Trp Xaa Leu Asn Arg Ser Ser Lys Asp Thr Gln 100 105
Claims (15)
4,4'-디아폴리코펜-6,6'-디오엔 (4,4'-diapolycopene-6,6'-dione);
7-하이드록시-8-케토-4,4'-디아포토룰렌 (7-hydroxy-8-keto-4,4'-diapotorulene);
4,4‘-디아포-β-크립토잔틴 (4,4‘-diapo-β-cryptoxanthin);
4,4'-디아포제아잔틴 (4,4'-diapozeaxanthin);
4,4'-디아포에키네논 (4,4'-diapoechinenone);
4,4'-디아포-β-크립토잔틴 글루코사이드 (4,4'-diapo-β-cryptoxanthin glucoside); 및
4,4’- 디아포토룰렌 -4'-오익산 (4,4’-diapotorulen-4'-oic acid) 으로 이루어진 군으로부터 선택된 1종 이상의 신규한 카로틴노이드.4,4'-diaponeurosporen-6,6'-dione;
4,4'-diapolycopene-6,6'-dione;
7-hydroxy-8-keto-4,4'-diapotorulene;
4,4'-diapo-β-cryptoxanthin;
4,4'-diapozeaxanthin;
4,4'-diapoechinenone;
4,4'-diapo-beta-cryptoxanthin glucoside; And
At least one novel carotene nodine selected from the group consisting of 4,4'-diapotorulene-4'-oic acid.
상기 카로틴노이드는
CrtM (diapophytoene synthase) 및 CrtN (diapophytoene desaturase) 를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 E. coli에 형질전환 시키는 단계를 포함하는, 카로틴노이드 제조 방법에 의하여 제조된 것을 특징으로 하는, 카로틴노이드.The method according to claim 1,
The carotenoid
A method for producing a carotenoid comprising the step of transforming E. coli with a vector comprising a polynucleotide encoding CrtM (diapophytoene synthase) and CrtN (diapophytoene desaturase).
상기 카로틴노이드 제조 방법은
CrtZ (beta-carotene 3,3'-monooxygenase), CrtW (beta -carotene ketolase), CrtO (beta -carotene ketolase), CrtX (glycosyl transferase), CrtP (diaponeurosporene oxidase), CrtA (spheroidenone monooxygenase), CrtEb (Lycopene elongase), 및 AldH (diaponeurosporen-aldehyde dehydrogenase)로 이루어진 군으로부터 선택된 1종 이상의 효소를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 E. coli에 형질전환시키는 단계를 추가로 포함하는 것을 특징으로 하는, 카로틴노이드.The method of claim 2,
The method for producing carotenoids
CrtZ (beta-carotene ketolase), CrtO (beta-carotene ketolase), CrtX (glycosyl transferase), CrtP (diaponeurosporene oxidase), CrtA (spheroidenone monooxygenase), CrtEb elongase), and AldH (diaponeurosporene-aldehyde dehydrogenase), which comprises the step of transforming E. coli with a vector comprising a polynucleotide encoding at least one enzyme selected from the group consisting of carotenoids .
CrtZ (beta-carotene 3,3'-monooxygenase), CrtW (beta -carotene ketolase), CrtO (beta -carotene ketolase), CrtX (glycosyl transferase), CrtP (diaponeurosporene oxidase), CrtA (spheroidenone monooxygenase), CrtEb (Lycopene elongase), 및 AldH (diaponeurosporen-aldehyde dehydrogenase)로 이루어진 군으로부터 선택된 1종 이상의 효소를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 E. coli에 형질전환시키는 단계를 추가로 포함하는 것을 특징으로 하는, 카로틴노이드 제조 방법.The method of claim 7,
CrtZ (beta-carotene ketolase), CrtO (beta-carotene ketolase), CrtX (glycosyl transferase), CrtP (diaponeurosporene oxidase), CrtA (spheroidenone monooxygenase), CrtEb elongase), and AldH (diaponeurosporene-aldehyde dehydrogenase), which comprises the step of transforming E. coli with a vector comprising a polynucleotide encoding at least one enzyme selected from the group consisting of carotenoids Gt;
4,4'-디아포뉴로스포린-6,6'-디오엔 (4,4'-diaponeurosporen-6,6'-dione);
4,4'-디아폴리코펜-6,6'-디오엔 (4,4'-diapolycopene-6,6'-dione);
7-하이드록시-8-케토-4,4'-디아포토룰렌 (7-hydroxy-8-keto-4,4'-diapotorulene);
4,4'-디아포-β-크립토잔틴 (4,4'-diapo-β-cryptoxanthin);
4,4'-디아포제아잔틴 (4,4'-diapozeaxanthin);
4,4'-디아포에키네논 (4,4'-diapoechinenone);
4,4'-디아포-β-크립토잔틴 글루코사이드 (4,4'-diapo-β-cryptoxanthin glucoside); 및
4,4'- 디아포토룰렌 -4'-오익산 (4,4'-diapotorulen-4'-oic acid) 으로 이루어진 군으로부터 선택된 1종 이상인 것인, 줄기세포 분화 유도용 조성물.
1. A stem cell differentiation inducing composition comprising carotenoid as an active ingredient, wherein said carotenoid is
4,4'-diaponeurosporen-6,6'-dione;
4,4'-diapolycopene-6,6'-dione;
7-hydroxy-8-keto-4,4'-diapotorulene;
4,4'-diapo-β-cryptoxanthin;
4,4'-diapozeaxanthin;
4,4'-diapoechinenone;
4,4'-diapo-beta-cryptoxanthin glucoside; And
And 4,4'-diapotorulene-4'-oic acid. 4. The composition for inducing differentiation of stem cells according to claim 1, wherein the composition is at least one selected from the group consisting of 4,4'-diapotorulene-4'-oic acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140109360A KR101687726B1 (en) | 2014-08-22 | 2014-08-22 | Novel carotinoid and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140109360A KR101687726B1 (en) | 2014-08-22 | 2014-08-22 | Novel carotinoid and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160024013A KR20160024013A (en) | 2016-03-04 |
KR101687726B1 true KR101687726B1 (en) | 2016-12-20 |
Family
ID=55535749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140109360A KR101687726B1 (en) | 2014-08-22 | 2014-08-22 | Novel carotinoid and use thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101687726B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4303308A1 (en) * | 2022-07-07 | 2024-01-10 | Museum National D'histoire Naturelle | Recombinant host cells producing irones and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005179257A (en) * | 2003-12-19 | 2005-07-07 | B Road:Kk | Novel embryonic stem cell differentiation inducer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7098000B2 (en) * | 2003-06-04 | 2006-08-29 | E. I. Du Pont De Nemoure And Company | Method for production of C30-aldehyde carotenoids |
KR101293076B1 (en) * | 2011-05-03 | 2013-08-06 | 아주대학교산학협력단 | Construction of staphyloxanthin metabolic pathway and biosynthesis of staphyloxanthin like carotenoids through E.coli |
-
2014
- 2014-08-22 KR KR1020140109360A patent/KR101687726B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005179257A (en) * | 2003-12-19 | 2005-07-07 | B Road:Kk | Novel embryonic stem cell differentiation inducer |
Non-Patent Citations (1)
Title |
---|
Applied and Environmental Microbiology. 2013, Vol.79, No.11, pp.3336-3345* |
Also Published As
Publication number | Publication date |
---|---|
KR20160024013A (en) | 2016-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101154907B1 (en) | Method for production of carotenoid | |
US8524289B2 (en) | Process for producing carotenoid | |
DE69524369T2 (en) | Process for the extraction of carotenoids from bacterial cells | |
AU2007232749B2 (en) | Process for production of carotenoid | |
EP0670306A1 (en) | Process for extracting carotenoids | |
CN109890395A (en) | For preventing, alleviating or the composition containing new fine jade oligosaccharides for the treatment of of arthritis or osteoporosis | |
JP2008247839A (en) | Antioxidant comprising chalcone glycoside | |
WO2022215441A1 (en) | Novel polyphenol compound | |
KR101687726B1 (en) | Novel carotinoid and use thereof | |
KR102061933B1 (en) | Composition comprising sesquiterpene derivatives or as active ingredients for muscle strengthening, development, differentiation, regeneration or inhibiting muscle atrophy | |
KR20150064121A (en) | Method for producing carotenoid-containing composition, and carotenoid-containing composition | |
KR102048458B1 (en) | Composition for improving eye health comprising Tetraselmis | |
JP5116982B2 (en) | Method for producing carotenoid | |
CN107075474B (en) | Agent for maintaining undifferentiated state of stem cells and agent for promoting proliferation of stem cells | |
KR101985865B1 (en) | New Alkoxide Derivatives of Alizarin and Use Thereof | |
JP6178407B2 (en) | Anti-inflammatory drug | |
JP2015204764A (en) | Colorless carotenoid producing method | |
KR20170119422A (en) | Cosmetic compositions for improving of skin comprising the extract of Piper cambodianum | |
KR20190127550A (en) | Method For Producing Di-HYDROXY DERIVATIVES OF POLYUNSATURATED FATTY ACID | |
KR20190120720A (en) | Method for producing tri-hydroxy or tetra-hydroxy derivatives of polyunsaturated fatty acid | |
KR20240087874A (en) | Sabulilitoribacter sp. TSW2101 strain comprising zeaxanthin and method for producing zeaxanthin using the same | |
KR101586055B1 (en) | COMPOSITION FOR IMPROVING SKIN WHITENING COMPRISING 4-(β-D-GLUCOPYRANOSYLOXY)-1,5-NAPHTHALENEDIOL AS EFFECTIVE COMPONENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20191008 Year of fee payment: 4 |