KR101658872B1 - Ferritic stainless steel - Google Patents

Ferritic stainless steel Download PDF

Info

Publication number
KR101658872B1
KR101658872B1 KR1020147017424A KR20147017424A KR101658872B1 KR 101658872 B1 KR101658872 B1 KR 101658872B1 KR 1020147017424 A KR1020147017424 A KR 1020147017424A KR 20147017424 A KR20147017424 A KR 20147017424A KR 101658872 B1 KR101658872 B1 KR 101658872B1
Authority
KR
South Korea
Prior art keywords
less
welding
stainless steel
corrosion resistance
ferritic stainless
Prior art date
Application number
KR1020147017424A
Other languages
Korean (ko)
Other versions
KR20140098818A (en
Inventor
토모히로 이시이
신 이시카와
히로유키 오가타
Original Assignee
제이에프이 스틸 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이에프이 스틸 가부시키가이샤 filed Critical 제이에프이 스틸 가부시키가이샤
Publication of KR20140098818A publication Critical patent/KR20140098818A/en
Application granted granted Critical
Publication of KR101658872B1 publication Critical patent/KR101658872B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/04Welded or brazed overlays
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

용접부의 내식성 및 내용접 균열성이 우수한 페라이트계 스테인리스강을 제공한다. 질량%로, C: 0.001∼0.030%, Si: 0.03∼0.80%, Mn: 0.05∼0.50%, P: 0.03% 이하, S: 0.01% 이하, Cr: 19.0∼28.0%, Ni: 0.01∼0.30% 미만, Mo: 0.2∼3.0%, Al: 0.15 초과∼1.2%, V: 0.02∼0.50%, Cu: 0.1% 미만, Ti: 0.05∼0.50%, N: 0.001∼0.030%를 함유하고, Nb: 0.05% 미만으로 하여, 하기식 (1)을 충족시키고, 잔부가 Fe 및 불가피적 불순물로 이루어지는 것을 특징으로 하는 페라이트계 스테인리스강.
Nb×P≤0.0005‥‥(1)
또한, 식 중의 원소 기호는 각 원소의 함유량(질량%)을 나타낸다.
The present invention provides a ferritic stainless steel excellent in corrosion resistance and welded cracking resistance of a welded portion. The steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains 0.001 to 0.030% of C, 0.03 to 0.80% of Si, 0.05 to 0.50% of Mn, 0.05 to 0.50% of P, 0.03% or less of P, 0.01% or less of S, 19.0 to 28.0% , Mo: 0.2 to 3.0%, Al: more than 0.15 to 1.2%, V: 0.02 to 0.50%, Cu: less than 0.1%, Ti: 0.05 to 0.50%, and N: 0.001 to 0.030% %, Satisfying the following formula (1), and the balance of Fe and inevitable impurities.
Nb x P? 0.0005 (1)
The symbol of the element in the formula represents the content (mass%) of each element.

Description

페라이트계 스테인리스강{FERRITIC STAINLESS STEEL}Ferritic stainless steel {FERRITIC STAINLESS STEEL}

본 발명은, 용접에 의해 구조체의 제작이 행해지는 용도, 예를 들면, 머플러 등의 자동차 배기계 재료, 전기 온수기의 저탕용 탱크(hot-water storage tank) 재료나, 건구(fitting)·환기구·덕트 등의 건축용 재료 등에 있어서의, 용접부의 예민화(sensitization)가 일어나기 어렵고, 또한, 용접부의 템퍼 컬러(temper color)의 내식성이 우수하고, 또한, 2중 용접을 행한 용접 비드(welding bead)의 용접 균열(weld crack)이 일어나기 어려운 페라이트계 스테인리스강(ferritic stainless steel)에 관한 것이다. The present invention is applicable to applications in which a structure is manufactured by welding, for example, automobile exhaust system materials such as mufflers, hot-water storage tank materials for electric water heaters, fittings, ventilation ducts, , It is difficult to sensitize the welded portion in the construction materials such as the welded portion and the welded portion of the weld bead, To a ferritic stainless steel in which a weld crack is unlikely to occur.

페라이트계 스테인리스강은, 오스테나이트계 스테인리스강(austenitic stainless steel)과 비교하여 내식성(corrosion resistance)에 대한 높은 코스트 퍼포먼스나 열전도율(heat thermal conductivity)이 양호하고 열팽창 계수(coefficient of thermal expansion)가 작은, 응력 부식 균열(Stress Corrosion Cracking)이 일어나기 어려운 등 여러 가지의 우수한 특성으로부터, 자동차 배기계 부재, 지붕·건구 등의 건재, 키친이나 저수·저탕 탱크 등의 습윤 공간용 재료 등 폭 넓은 용도로 적용되어 왔다. The ferritic stainless steel is superior to austenitic stainless steel in terms of cost performance against corrosion resistance and heat thermal conductivity and has a small coefficient of thermal expansion, And stress corrosion cracking are difficult to occur, it has been widely applied to various materials such as automobile exhaust system members, building materials such as roofs and dry bulbs, wetting spaces such as kitchens and water storage tanks .

이들 구조물의 제작에 있어서는, 스테인리스강의 강판을 적당한 형상으로 절단·성형한 후 용접에 의해 접합되는 경우가 많다. 그러나, 페라이트계 스테인리스강에서는, 3매의 판이 접합되는 개소나 원주 용접의 시단(始端)과 종단(終端) 등의 용접 비드의 위를 재차 용접하는 2중 용접부에 있어서, 용접 균열이 발생하는 경우가 있다. 용접 부재의 형상의 복잡화에 수반하여, 이러한 2중 용접부가 증가하여, 용접 균열의 발생이 문제가 되고 있다. In the production of these structures, the steel sheet of the stainless steel is often cut and formed into an appropriate shape and then joined by welding. However, in a ferritic stainless steel, in a double welded portion where welds of the welding beads such as the starting end and the ending end of the welding of the three plates or the circumferential welding are re-welded, . As the shape of the welding member becomes complicated, such a double welding portion increases, and welding cracks have been a problem.

또한, 2중 용접부는 평탄하지 않고, 표면에 스케일이 존재하는 부분을 재차 용접하기 때문에, 용접 비드에 산소나 질소 등을 취입하기 쉬워 내식성이 저하되기 쉽다는 문제도 있다. 그러나, 종래 기술에는, 이러한 2중 용접부의 문제에 대응한 인식은 그다지 보이지 않는다. Further, since the double welded portion is not flat and the portion having the scale on the surface is welded again, oxygen and nitrogen are easily taken into the welded bead, so that there is also a problem that the corrosion resistance tends to be deteriorated. However, in the prior art, recognition corresponding to the problem of such a double welded portion is hardly seen.

특허문헌 1에는 내식성 및 용접성이 우수한 페라이트계 스테인리스강이 개시되어 있다. 이것은, Mg의 첨가와 S함유량의 적정화에 의해, 내식성과 용접의 용입성을 양립시킨 페라이트계 스테인리스강이지만, 2중 용접부의 균열이나 내식성에 대해서는 전혀 언급되어 있지 않다. 실제로, 특허문헌 1에 개시되는 페라이트계 스테인리스강을 용접하면, 2중 용접부에서 균열이 발생하는 경우가 있다. Patent Document 1 discloses a ferritic stainless steel excellent in corrosion resistance and weldability. This is a ferritic stainless steel in which the corrosion resistance and the weldability are both achieved by adding Mg and optimizing the S content, but there is no mention of cracking and corrosion resistance of the double welded portion. Actually, when the ferritic stainless steel disclosed in Patent Document 1 is welded, cracks sometimes occur in the double welded portion.

특허문헌 2에는 용접성이 우수한 페라이트계 스테인리스강이 개시되어 있다. 그러나, 이것은 용접의 용입성과 용접 후의 가공성이 개량된 페라이트계 스테인리스강이며, 용접 균열 등의 2중 용접부의 문제에 대해서는 언급되어 있지 않다. Patent Document 2 discloses a ferritic stainless steel excellent in weldability. However, this is a ferritic stainless steel in which the penetration of weldability and workability after welding are improved, and the problem of a double welded portion such as weld crack is not mentioned.

일본공개특허공보 평8-246105호Japanese Patent Application Laid-Open No. 8-246105 일본공개특허공보 2009-91654호Japanese Laid-Open Patent Publication No. 2009-91654

종래 기술이 안고 있는 상기와 같은 문제점을 감안하여, 본 발명은, 페라이트계 스테인리스강의 용접에 있어서, 2중 용접을 행했을 때에, 용접부의 예민화가 일어나기 어렵고, 또한, 용접부의 템퍼 컬러의 내식성이 우수하고, 또한, 용접 비드의 용접 균열이 일어나기 어려운 페라이트계 스테인리스강을 제공하는 것을 목적으로 한다. The present invention has been made in view of the above problems in the prior art and it is an object of the present invention to provide a ferritic stainless steel which is less susceptible to sensitization at the time of double welding, And also to provide a ferritic stainless steel in which weld cracking of the weld bead hardly occurs.

본 발명에서는, 상기 과제를 해결하기 위해, 2중 용접에 있어서의 용접 균열에 미치는 각종 원소의 영향에 대해서 예의 연구를 행했다. 또한, 2중 용접이란, 동일한 장소를 2회 또는 복수회 용접하는 것을 의미한다. 2중 용접부란, 예를 들면 원주 상을 용접했을 때의 용접 시단과 종단의 용접 비드의 중복 부분이나 십자로 용접했을 때의 용접 비드의 중복 부분 등, 2중 용접에 의해 용융·응고의 과정이 2회 이상 반복되는 부분 및 그 주변을 의미한다. In order to solve the above problems, the present invention has been extensively studied on the influence of various elements on welding cracks in double welding. Further, the double welding means welding the same place twice or plural times. The double welded part means, for example, the process of melting and solidification by double welding such as overlapping part of the weld bead at the welding start and end at the welding of the circumferential phase, or overlapping part of the welding bead at the time of cross welding Means a portion repeated at least twice and its periphery.

2중 용접에 의해 용접 균열이 발생한 부분을 절출하고, 파단면을 SEM(Scanning Electron Microscope)에 의해 관찰했다. 파단면에는 필름 형상의 Nb의 석출(precipitation)이 확인되었다. 비교로서, 용접 균열이 발생하지 않았던 부분을 절출하여 SEM에 의한 관찰을 행하면, 상기 파단면에 보여진 바와 같은 필름 형상의 Nb의 석출물은 확인할 수 없었다. 용접 균열의 발생에 필름 형상의 Nb의 석출이 영향을 주고 있다고 생각된다. A portion where weld cracking occurred was cut out by double welding, and the fracture surface was observed by SEM (Scanning Electron Microscope). The precipitation of film-like Nb was confirmed on the fracture surface. As a comparison, if a portion where weld cracks did not occur was taken out and observed by SEM, the film-like precipitate of Nb as shown in the broken section could not be confirmed. It is considered that the precipitation of Nb in film form affects the occurrence of welding cracks.

2중 용접부의 용접 균열에 미치는 각종 성분의 영향을 조사한 결과, P 및 Nb의 함유량이 적은 강에서는 용접 균열이 일어나지 않는 것이 분명해졌다. 여러 가지의 페라이트계 스테인리스강에 비드 온 플레이트(bead on plate)로 십자 용접을 행하고, 광학 현미경으로 2중 용접부의 용접 균열의 유무를 확인했다. 결과를 도 1에 나타낸다. 도 1 중에서, ○가 용접 균열이 확인되지 않았던 것, ×가 용접 균열이 확인된 것이다. Nb가 0.05% 미만, P가 0.03% 이하, Nb×P가 0.0005 이하의 범위에서는, 용접 균열이 일어나지 않은 것을 알 수 있다. As a result of investigating the influence of various components on the welding cracks in the double welded portion, it was found that welding cracks did not occur in the steel having a small content of P and Nb. Various ferritic stainless steels were cross-welded with bead-on-plate, and the presence of welding cracks in the double welded part was confirmed with an optical microscope. The results are shown in Fig. In Fig. 1,? Indicates that welding cracks were not confirmed, and? X welding cracks were confirmed. It can be seen that weld cracking does not occur in the range where Nb is less than 0.05%, P is 0.03% or less, and Nb 占 P is 0.0005 or less.

Nb 함유량을 저감함으로써 용접 균열의 방지가 되는 것이 분명해졌다. 그러나, Nb는 용접 비드의 예민화 억제에 유효한 원소이기 때문에, Nb 저감에 의해 예민화가 일어나기 쉬워질 염려가 있다. 또한, 2중 용접부는 표면이 평탄하지 않고, 스케일이 형성되어 있는 점에서, 용접 비드에 불순물을 취입하기 쉬워, 예민화에는 불리한 용접 조건이다. 그래서, 용접 비드의 예민화에 미치는 각종 원소의 영향을 조사했다. 그 결과, Nb 외에 V와 Al이 용접부의 예민화 억제에 유효하다는 것이 분명해졌다. 이것은, V와 Al이 각각 VN, AlN을 형성함으로써 Cr 질화물(Cr nitride)의 형성을 억제하기 때문이라고 생각된다. It has become clear that welding cracks can be prevented by reducing the Nb content. However, since Nb is an effective element for inhibiting the sensitization of the weld bead, there is a concern that it is likely to become susceptible to Nb reduction. Further, since the surface of the double welded portion is not flat and the scale is formed, it is easy to inject impurities into the welded bead, which is a welding condition adverse to sensitivity. Therefore, the effect of various elements on the sensitization of weld beads was investigated. As a result, it has become clear that V and Al besides Nb are effective in suppressing the sensitization of the welded portion. This is considered to be because V and Al form VN and AlN, respectively, thereby suppressing the formation of Cr nitride.

또한, 용접 비드에는 템퍼 컬러라고 불리는 산화 피막(oxide layer)이 형성됨으로써 예민화와 동일하게 Cr 결핍이 일어나 내식성이 저하되기 때문에, 템퍼 컬러의 내식성에 미치는 각종 원소의 영향을 평가했다. 그 결과, Si, Al, Ti가 템퍼 컬러에 농축함으로써, 치밀한 보호성이 좋은 산화 피막이 된다. 또한, 용접에 의한 산화량이 억제되어 산화에 의한 Cr 결핍이 억제되기 때문에, Si, Al, Ti의 함유량이 적절하면, 용접 비드의 내식성이 향상되는 것을 인식했다. In addition, since the oxide bead called a temper color is formed in the weld bead, the Cr deficiency is generated in the same manner as the sensitization, and the corrosion resistance is lowered. Therefore, the influence of various elements on the corrosion resistance of the temper color is evaluated. As a result, Si, Al, and Ti are concentrated to a temper color, thereby forming an oxide film having excellent dense protection. Further, since the amount of oxidation by welding is suppressed and the Cr deficiency due to oxidation is suppressed, it is recognized that the corrosion resistance of the weld bead is improved when the content of Si, Al, and Ti is appropriate.

본 발명은, 상기 인식에 기초하여, 추가로 검토를 더하여 이루어진 것으로, 본 발명의 요지는 이하와 같다. The present invention has been further made based on the above recognition, and the gist of the present invention is as follows.

[1] 질량%로, C: 0.001∼0.030%, Si: 0.03∼0.80%, Mn: 0.05∼0.50%, P: 0.03% 이하, S: 0.01% 이하, Cr: 19.0∼28.0%, Ni: 0.01∼0.30% 미만, Mo: 0.2∼3.0%, Al: 0.15 초과∼1.2%, V: 0.02∼0.50%, Cu: 0.1% 미만, Ti: 0.05∼0.50%, N: 0.001∼0.030%를 함유하고, Nb: 0.05% 미만으로 하여, 하기식 (1)을 충족하고, 잔부가 Fe 및 불가피적 불순물로 이루어지는 것을 특징으로 하는 페라이트계 스테인리스강.The steel according to any one of [1] to [4], wherein the steel sheet contains, as a% by mass, 0.001 to 0.030% of C, 0.03 to 0.80% of Si, 0.05 to 0.50% of Mn, Of Al, less than 0.10% of Mo, 0.2 to 3.0% of Mo, 0.1 to 1.2% of Al, 0.02 to 0.50% of V, 0.1 to less than 0.1% of Cu, 0.05 to 0.50% of Ti and 0.001 to 0.030% of N, Nb: less than 0.05%, satisfying the following formula (1), and the balance of Fe and inevitable impurities.

Nb×P≤0.0005‥‥(1) Nb x P? 0.0005 (1)

또한, 식 중의 원소 기호는 각 원소의 함유량(질량%)을 나타낸다. The symbol of the element in the formula represents the content (mass%) of each element.

[2] 추가로, 질량%로, Zr: 1.0% 이하, W: 1.0% 이하, REM: 0.1% 이하, Co: 0.3% 이하, B: 0.1% 이하 중으로부터 선택되는 1종 이상을 함유하는 것을 특징으로 하는 상기 [1]에 기재된 페라이트계 스테인리스강.[2] The steel sheet according to any one of [1] to [3], further comprising at least one selected from Zr: not more than 1.0%, W: not more than 1.0%, REM: not more than 0.1%, Co: not more than 0.3%, and B: The ferritic stainless steel according to the above [1], which is characterized in that it is a ferritic stainless steel.

본 발명에 의해, 2중 용접을 행했을 때에, 용접부의 예민화가 일어나기 어렵고, 또한, 용접부의 템퍼 컬러의 내식성이 우수하고, 또한, 용접 비드의 용접 균열이 일어나기 어려운 페라이트계 스테인리스강이 얻어진다. According to the present invention, a ferritic stainless steel is obtained that is less susceptible to sensitization of the welded portion when double welding is performed, excellent corrosion resistance of the welded portion's temper color, and less likely to cause weld cracking of the welded bead.

도 1은 2중 용접부의 용접 균열에 미치는 Nb 함유량 및 P 함유량의 영향을 설명하는 도면이다.
도 2는 십자 용접의 개략도이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view for explaining the influence of Nb content and P content on weld cracking in a double weld zone. FIG.
2 is a schematic view of a cross weld.

(발명을 실시하기 위한 형태)(Mode for carrying out the invention)

이하에 본 발명의 구성 요건의 한정 이유에 대해서 설명한다. The reasons for limiting the constituent elements of the present invention will be described below.

1. 성분 조성에 대해서1. About composition

맨 처음에, 본 발명의 강의 성분 조성을 규정한 이유를 설명한다. 또한, 성분%는, 모두 질량%를 의미한다. First, the reason why the steel composition composition of the present invention is defined will be described. The term "%" means "% by mass".

C: 0.001∼0.030%C: 0.001 to 0.030%

C는 강에 불가피적으로 포함되는 원소이다. C량이 많으면 강도가 향상되고, 적으면 가공성이 향상된다. 충분한 강도를 얻기 위해서는 0.001% 이상의 함유가 적당하지만, 0.030%를 초과하면 가공성의 저하가 현저해지는 데다가, Cr 탄화물을 석출하여 국소적인 Cr 결핍에 의한 내식성의 저하를 일으키기 쉬워진다. 따라서, C량은 0.001∼0.030%의 범위로 한다. 바람직하게는, 0.002∼0.018%의 범위이다. 더욱 바람직하게는 0.002∼0.010%의 범위이다. C is an element inevitably included in the river. If the amount of C is large, the strength is improved, and if it is small, the workability is improved. In order to obtain sufficient strength, the content is preferably 0.001% or more, but when it exceeds 0.030%, the workability is significantly deteriorated and Cr carbide is precipitated and the corrosion resistance due to the local Cr deficiency tends to decrease. Therefore, the amount of C is in the range of 0.001 to 0.030%. Preferably, it is in the range of 0.002 to 0.018%. And more preferably in the range of 0.002 to 0.010%.

Si: 0.03∼0.80%Si: 0.03 to 0.80%

Si는 탈산에 유용한 원소이며, 본 발명에서는, 용접에 의해 형성되는 템퍼 컬러에 Al이나 Ti와 함께 농축하여 산화 피막의 보호성을 향상시켜, 용접부의 내식성을 양호한 것으로 하는 중요한 원소이다. 그 효과는 0.03%의 첨가로 얻어진다. 그러나, 0.80%를 초과하는 첨가는 가공성의 저하가 현저해져, 성형 가공이 곤란해진다. 따라서, Si량은 0.03∼0.80%의 범위로 한다. 보다 바람직하게는 0.30 초과∼0.80%의 범위로 한다. 더욱 바람직하게는, 0.33∼0.50%의 범위이다. Si is an element useful for deoxidation. In the present invention, it is an important element for enhancing the corrosion resistance of the welded portion by improving the protective property of the oxide film by concentrating it with Al or Ti to a temper color formed by welding. The effect is obtained by adding 0.03%. However, addition of more than 0.80% causes remarkable deterioration of processability, which makes molding processing difficult. Therefore, the amount of Si is set in the range of 0.03 to 0.80%. And more preferably in the range of more than 0.30 to 0.80%. More preferably, it is in the range of 0.33 to 0.50%.

Mn: 0.05∼0.50%Mn: 0.05 to 0.50%

Mn은 강에 불가피적으로 포함되는 원소이며, 강도를 높이는 효과가 있다. 그 효과는 0.05% 이상의 첨가로 얻어지지만, 0.50%를 초과하는 첨가는 부식의 기점이 되는 MnS의 석출을 촉진하고, 내식성을 저하시키기 때문에, Mn량은 0.05∼0.50%의 범위로 한다. 바람직하게는, 0.08∼0.40%의 범위이다. Mn is an element inevitably included in the steel, and has an effect of increasing strength. The effect is obtained by the addition of 0.05% or more, but addition of more than 0.50% accelerates the precipitation of MnS which is a starting point of corrosion and decreases the corrosion resistance, so the Mn content is set in the range of 0.05 to 0.50%. Preferably, it ranges from 0.08 to 0.40%.

P: 0.03% 이하P: not more than 0.03%

P는 강에 불가피적으로 포함되는 원소이며, 과잉된 함유는 용접성을 저하시켜, 입계 부식(intergranular corrosion)을 발생시키기 쉽게 한다. 또한, 본 발명에서는, P의 증가가 2중 용접부의 용접 균열을 발생시키는 것을 인식했다. P의 증가에 의해 페라이트계 스테인리스강의 응고 온도가 저하됨으로써 Nb 탄질화물이 액상(液相)으로부터 석출되어 필름 형상이 되고, 응고의 과정에서의 용융지(溶融池)의 유동을 방해하여, 결정립의 형성을 저해하기 때문에, P의 함유량이 많은 페라이트계 스테인리스강에서는 용접 균열이 발생하기 쉬워진다고 생각된다. 2중 용접에 있어서 용접 균열의 경향이 보다 현저해지는 것은, 용융, 응고의 과정을 반복함으로써, 보다 Nb가 농축되어 석출되기 쉬워지기 때문이라고 생각된다. P의 함유량이 0.03%를 초과하면 용접 균열로의 영향이 현저해진다. 따라서, P의 함유량은 0.03% 이하로 한다. 바람직하게는 0.025% 이하이다. P is an element that is inevitably included in the steel, and the excessive content deteriorates the weldability and makes it easy to cause intergranular corrosion. Further, in the present invention, it has been recognized that an increase in P causes weld cracking of the double welded portion. As the coagulation temperature of the ferritic stainless steel is lowered due to the increase of P, the Nb carbonitride precipitates from the liquid phase to form a film, which interferes with the flow of the molten bond in the course of solidification, It is considered that weld cracks tend to occur in the ferritic stainless steel having a large P content. The reason why the tendency of welding cracks becomes more pronounced in double welding is considered to be that Nb is more concentrated and precipitated more easily by repeating the process of melting and solidification. If the content of P exceeds 0.03%, the effect on welding cracks becomes significant. Therefore, the content of P is 0.03% or less. Preferably 0.025% or less.

S: 0.01% 이하S: not more than 0.01%

S는 강에 불가피적으로 포함되는 원소이지만, 0.01%를 초과하면 CaS나 MnS 등의 수용성 황화물의 형성이 촉진되어 내식성을 저하시킨다. 따라서, S량은 0.01% 이하로 한다. 보다 바람직하게는 0.006% 이하이다. 더욱 바람직하게는 0.003% 이하이다. S is inevitably included in the steel, but when it exceeds 0.01%, the formation of water soluble sulfides such as CaS and MnS is promoted and the corrosion resistance is lowered. Therefore, the amount of S should be 0.01% or less. More preferably, it is 0.006% or less. And more preferably 0.003% or less.

Cr: 19.0∼28.0%Cr: 19.0 to 28.0%

Cr은 스테인리스강의 내식성을 확보하기 위해 가장 중요한 원소이다. 19.0% 미만의 첨가에서는, 용접에 의한 산화로, 표층의 Cr이 감소하는 용접 비드나, 그 주변에 있어서 충분한 내식성이 얻어지지 않는다. 한편 28.0%를 초과하여 첨가하면, 가공성, 제조성이 저하되기 때문에, Cr량은 19.0∼28.0%의 범위로 한다. 바람직하게는, 21.0∼26.0%의 범위이다. 보다 바람직하게는 21.0∼24.0%이다. Cr is the most important element for securing the corrosion resistance of stainless steel. When the content is less than 19.0%, weld beads in which Cr in the surface layer is reduced by oxidation due to welding, and sufficient corrosion resistance around the weld bead can not be obtained. On the other hand, if it is added in an amount exceeding 28.0%, the workability and the composition will be lowered. Therefore, the amount of Cr is set in the range of 19.0 to 28.0%. Preferably, it ranges from 21.0 to 26.0%. More preferably, it is 21.0 to 24.0%.

Ni: 0.01∼0.30% 미만Ni: 0.01 to less than 0.30%

Ni는 스테인리스강의 내식성을 향상시키는 원소이며, 부동태 피막을 형성하지 못하여 활성 용해가 일어나는 부식 환경에 있어서 부식의 진행을 억제하는 원소이다. 그 효과는 0.01% 이상의 첨가로 얻어진다. 그러나, 0.30% 이상의 첨가에서는, 가공성을 저하시키는 것에 더하여, 고가의 원소이기 때문에 비용의 증대를 초래한다. 따라서, Ni량은 0.01∼0.30% 미만의 범위로 한다. 바람직하게는, 0.03∼0.24%의 범위이다. 더욱 바람직하게는 0.03∼0.15% 미만의 범위이다. Ni is an element that improves the corrosion resistance of stainless steel and is an element that inhibits the progress of corrosion in a corrosive environment where active dissolution occurs because a passive film can not be formed. The effect is obtained by addition of 0.01% or more. However, in the case of addition of 0.30% or more, not only the workability is lowered but also the cost is increased because it is an expensive element. Therefore, the amount of Ni is set in a range of 0.01 to less than 0.30%. Preferably, it is in the range of 0.03 to 0.24%. And more preferably in a range of 0.03 to less than 0.15%.

Mo: 0.2∼3.0%Mo: 0.2 to 3.0%

Mo는 부동태 피막의 재부동태화를 촉진하여, 스테인리스강의 내식성을 향상하는 원소이다. Cr과 함께 함유함으로써 그 효과는 보다 현저해진다. Mo에 의한 내식성 향상 효과는 0.2% 이상의 첨가로 얻어진다. 그러나, 3.0%를 초과하면 강도가 증가하고, 압연 부하가 커지기 때문에 제조성이 저하된다. 따라서, Mo량은 0.2∼3.0%의 범위로 한다. 바람직하게는, 0.6∼2.4%의 범위이다. 더욱 바람직하게는 0.6∼2.0%의 범위이다. 더욱 바람직하게는, 0.8∼1.3%의 범위이다. Mo is an element which promotes the passivation of the passive film and improves the corrosion resistance of the stainless steel. The effect is more remarkable when it is contained together with Cr. The corrosion resistance improvement effect by Mo is obtained by adding 0.2% or more. However, when it exceeds 3.0%, the strength is increased and the rolling load is increased, so that the productivity is lowered. Therefore, the amount of Mo is set in the range of 0.2 to 3.0%. , Preferably in the range of 0.6 to 2.4%. And more preferably in the range of 0.6 to 2.0%. More preferably, it is in the range of 0.8 to 1.3%.

Al: 0.15 초과∼1.2%Al: more than 0.15 to 1.2%

Al은 탈산에 유용한 원소이며, 본 발명에서는 Si, Ti와 함께 용접에 의해 형성되는 템퍼 컬러에 농축하여, 용접부의 내식성을 향상시키는 원소이다. 게다가, Cr보다도 질소와의 친화력이 큰 Al이 AlN을 형성하여, Cr 질화물의 형성을 방해함으로써, 용접 비드의 예민화를 억제하는 원소이기도 하다. 이 효과는, 0.15% 초과의 첨가로 얻어진다. 그러나, 1.2%를 초과하여 첨가하면 페라이트 결정립이 증대하여, 가공성이나 제조성이 저하된다. 따라서, Al량은 0.15 초과∼1.2%의 범위로 한다. 바람직하게는, 0.17∼0.8%의 범위이다. Al is an element useful for deoxidation. In the present invention, it is an element that enhances the corrosion resistance of a welded portion by concentrating it with a temper color formed by welding together with Si and Ti. In addition, Al, which has a higher affinity with nitrogen than Cr, forms AlN and inhibits the formation of Cr nitride, thereby suppressing the susceptibility of the weld bead. This effect is obtained with an addition of more than 0.15%. However, when it is added in an amount exceeding 1.2%, the crystal grains of the ferrite are increased and the workability and the composition are lowered. Therefore, the Al content is in the range of more than 0.15 to 1.2%. Preferably, it is in the range of 0.17 to 0.8%.

V: 0.02∼0.50%V: 0.02 to 0.50%

V는 내식성이나 가공성을 향상시키는 원소이며, 용접 균열을 일으키기 어렵게 하는 원소이다. 또한, 질소와 결합하여 VN이 됨으로써 용접부의 예민화를 억제하는 원소이기도 하다. 용접부의 예민화 억제에는 Nb와 Ti의 복합 첨가가 유효하다는 것이 알려져 있지만, 본 발명에서는, 2중 용접부의 용접 균열 방지를 위해 Nb의 함유량을 억제할 필요가 있다. 그러나, Ti 단독 첨가로는 충분한 예민화 억제 효과가 얻어지지 않는 경우가 있다. 그 때문에, Nb의 대체로서 V 및 Al의 첨가가 용접부의 예민화 억제에 유효하다. 그 효과는, 0.02% 이상의 첨가로 얻어진다. 그러나, 0.50%를 초과하는 첨가는 반대로 가공성을 저하시킨다. 따라서, V의 함유량은 0.02∼0.50%의 범위로 한다. 바람직하게는, 0.03∼0.40%의 범위이다. V is an element that improves corrosion resistance and workability and is an element that makes it difficult to cause weld cracking. In addition, it is an element that inhibits the sensitization of the welded portion by bonding with nitrogen to form VN. It is known that the composite addition of Nb and Ti is effective for inhibiting sensitization of the welded portion. In the present invention, it is necessary to suppress the content of Nb in order to prevent weld cracking of the double welded portion. However, sufficient addition of Ti alone may not provide a sufficient inhibitory effect on the sensitization. Therefore, the addition of V and Al as substitutes for Nb is effective for suppressing the sensitization of the welded portion. The effect is obtained by adding 0.02% or more. However, the addition of more than 0.50% adversely affects the workability. Therefore, the content of V is in the range of 0.02 to 0.50%. Preferably, it is in the range of 0.03 to 0.40%.

Cu: 0.1% 미만Cu: less than 0.1%

Cu는 불가피적으로 포함되는 불순물이지만, 본 발명의 Cr 함유량, Mo 함유량을 갖는 내식성이 우수한 페라이트계 스테인리스강에서는 부동태 유지 전류를 증가시켜 부동태 피막을 불안정하게 하여, 내식성을 저하시키는 작용이 있다. 이 내식성 저하 작용은 Cu량이 0.1% 이상에서 현저해진다. 그 때문에, Cu량은 0.1% 미만으로 한다. Cu is an impurity inevitably contained. However, in the ferritic stainless steel having the Cr content and the Mo content of the present invention and having excellent corrosion resistance, there is an action of increasing the passivation current to make the passive film unstable and lowering the corrosion resistance. This corrosion resistance lowering effect becomes remarkable when the Cu amount is 0.1% or more. Therefore, the amount of Cu is less than 0.1%.

Ti: 0.05∼0.50%Ti: 0.05 to 0.50%

Ti는 C, N과 우선적으로 결합하여 Cr 탄질화물의 석출에 의한 내식성의 저하를 억제하는 원소이다. 본 발명에서는, 용접부의 예민화를 억제하기 위해 중요한 원소이며, 또한 용접부의 템퍼 컬러에 Si, Al과 함께 복합적으로 농축하여, 산화 피막의 보호성을 향상시키는 원소이기도 하다. 그 효과는, 0.05% 이상의 첨가로 얻어진다. 그러나, 0.50%를 초과하는 첨가는 가공성이 저하됨과 함께, Ti 탄질화물이 조대화되어, 표면 결함을 일으킨다. 따라서, Ti량은 0.05∼0.50%의 범위로 한다. 바람직하게는, 0.08∼0.38%의 범위이다. 더욱 바람직하게는, 0.25∼0.35%의 범위이다. Ti is an element that binds preferentially to C and N and suppresses deterioration of corrosion resistance due to precipitation of Cr carbonitride. In the present invention, it is an element which is important for suppressing the sensitization of the welded portion, and is also an element which is enriched with Si and Al in combination with the temper color of the welded portion to improve the protective property of the oxide film. The effect is obtained by adding 0.05% or more. However, in the case of exceeding 0.50%, the workability is lowered and the Ti carbonitride is coarsened, causing surface defects. Therefore, the amount of Ti is set in the range of 0.05 to 0.50%. Preferably, it is in the range of 0.08 to 0.38%. More preferably, it is in the range of 0.25 to 0.35%.

N: 0.001∼0.030%N: 0.001 to 0.030%

N은, C와 동일하게 강에 불가피적으로 포함되는 원소이며, 고용강화에 의해 강의 강도를 상승시키는 효과가 있다. 그 효과는 0.001% 이상에서 얻어진다. 그러나, Cr 질화물을 석출한 경우에는, 내식성을 저하시키기 위해, 0.030% 이하의 함유가 적당하다. 따라서, N량은 0.001∼0.030%의 범위로 한다. 바람직하게는, 0.002∼0.018%의 범위이다. 더욱 바람직하게는, 0.007∼0.011%의 범위이다. N is an element inevitably included in the steel in the same manner as C, and has the effect of increasing the strength of the steel by solid solution strengthening. The effect is obtained at 0.001% or more. However, when Cr nitride is precipitated, the content of Cr is preferably 0.030% or less in order to reduce the corrosion resistance. Therefore, the amount of N is set in the range of 0.001 to 0.030%. Preferably, it is in the range of 0.002 to 0.018%. More preferably, it is in the range of 0.007 to 0.011%.

Nb: 0.05% 미만Nb: less than 0.05%

Nb는, 일반적으로는, C, N과 우선적으로 결합하여 Cr 탄질화물의 석출에 의한 내식성의 저하를 억제하는 원소로 되어 있지만, 2중 용접부에 필름 형상으로 석출함으로써, 2중 용접부의 용접 균열을 발생시키는 원소이며, 그 첨가량은 낮은 편이 바람직하다. 용접 균열은 0.05% 이상의 첨가로 현저해진다. 따라서, Nb량은 0.05% 미만으로 한다. 바람직하게는, 0.02% 미만이다. Generally, Nb is an element which binds preferentially to C and N to suppress deterioration of corrosion resistance due to precipitation of Cr carbonitride. However, by depositing the film in a double welded portion, weld cracks in the double welded portion can be prevented And it is preferable that the addition amount is low. The welding crack becomes remarkable with the addition of 0.05% or more. Therefore, the amount of Nb is less than 0.05%. Preferably, it is less than 0.02%.

Nb×P: 0.0005 이하 Nb x P: not more than 0.0005

또한, 식 중의 원소 기호는 각 원소의 함유량(질량%)을 나타낸다. The symbol of the element in the formula represents the content (mass%) of each element.

2중 용접부에는 필름 형상의 Nb가 석출됨으로써 용접 균열이 발생한다. Nb의 석출은 주로 Nb의 함유량과 P의 함유량의 곱에 의존하고 있으며, 도 1에 나타낸 바와 같이 Nb×P가 0.0005 초과에서 용접 균열이 현저해진다. 따라서, Nb×P는 0.0005 이하로 한다. Nb in the form of film is deposited on the double welded portion, thereby causing weld cracking. The precipitation of Nb mainly depends on the product of the content of Nb and the content of P, and as shown in Fig. 1, when Nb x P is more than 0.0005, welding crack becomes remarkable. Therefore, Nb x P should be 0.0005 or less.

이상이 본 발명의 기본 화학 성분이며, 잔부는 Fe 및 불가피적 불순물로 이루어지지만, 추가로, 내식성, 인성(toughness)을 향상하는 목적으로 Zr, W, REM, Co, B를 선택 원소로서 첨가해도 좋다. Although the above is the basic chemical component of the present invention and the balance consists of Fe and inevitable impurities, Zr, W, REM, Co, and B may be added as selective elements for the purpose of improving corrosion resistance and toughness good.

Zr: 1.0% 이하Zr: not more than 1.0%

Zr은 C, N과 결합하여, 예민화를 억제하는 효과가 있다. 그 효과는 0.01% 이상의 첨가로 얻어진다. 그러나, 과잉의 첨가는 가공성을 저하시키는 데다가, 매우 비싼 원소이기 때문에 비용의 증대를 초래한다. 따라서, Zr을 첨가하는 경우는, Zr량은 1.0% 이하로 하는 것이 바람직하다. 더욱 바람직하게는 0.2% 이하이다. Zr binds with C and N, and has an effect of inhibiting sensitization. The effect is obtained by addition of 0.01% or more. However, the addition of excess causes deterioration of processability and is an extremely expensive element, resulting in an increase in cost. Therefore, when Zr is added, the amount of Zr is preferably 1.0% or less. More preferably, it is 0.2% or less.

W: 1.0% 이하W: 1.0% or less

W는 Mo와 동일하게 내식성을 향상하는 효과가 있다. 그 효과는 0.01% 이상의 첨가로 얻어진다. 그러나, 과잉의 첨가는 강도를 상승시키고, 제조성을 저하시킨다. 따라서, W를 첨가하는 경우는, W량은 1.0% 이하로 하는 것이 바람직하다. 더욱 바람직하게는 0.5% 이하이다. W has an effect of improving the corrosion resistance similarly to Mo. The effect is obtained by addition of 0.01% or more. However, excessive addition raises the strength and lowers the productivity. Therefore, when W is added, the amount of W is preferably 1.0% or less. More preferably, it is 0.5% or less.

REM: 0.1% 이하REM: Not more than 0.1%

REM(희토류 원소)은 내산화성을 향상하여, 산화 스케일의 형성을 억제하고, 용접부의 템퍼 컬러 바로 아래의 Cr 결핍 영역의 형성을 억제한다. 그 효과는 0.001% 이상의 첨가로 얻어진다. 그러나, 과잉의 첨가는 산세(acid-pickling)성 등의 제조성을 저하시키는 데다가, 비용의 증대를 초래한다. 따라서, REM을 첨가하는 경우는, REM량은 0.1% 이하로 하는 것이 바람직하다. REM (rare earth element) improves oxidation resistance, suppresses the formation of oxide scale, and suppresses the formation of Cr-depleted region immediately below the temper color of the weld. The effect is obtained by adding 0.001% or more. However, excessive addition causes a decrease in the composition such as acid-pickling property and the increase in cost. Therefore, when REM is added, the amount of REM is preferably 0.1% or less.

Co: 0.3% 이하Co: 0.3% or less

Co는 인성을 향상시키는 원소이다. 그 효과는 0.001% 이상의 첨가로 얻어진다. 그러나, 과잉의 첨가는 제조성을 저하시킨다. 따라서, Co를 첨가하는 경우는, Co량은 0.3% 이하로 하는 것이 바람직하다. 더욱 바람직하게는 0.1% 이하이다. Co is an element for improving toughness. The effect is obtained by adding 0.001% or more. However, excessive addition decreases the productivity. Therefore, when Co is added, the amount of Co is preferably 0.3% or less. More preferably, it is 0.1% or less.

B: 0.1% 이하B: not more than 0.1%

B는 2차 가공 취성을 개선하는 원소이며, 그 효과를 얻기 위해서는, 0.0001% 이상의 함유가 적당하다. 그러나, 과잉의 함유는, 고용강화에 의한 연성 저하를 일으킨다. 따라서, B를 함유하는 경우는, B량은 0.1% 이하로 하는 것이 바람직하다. 더욱 바람직하게는 0.01% 이하이다. B is an element for improving the secondary process brittleness. In order to obtain the effect, the content of B is preferably 0.0001% or more. However, the excessive content causes a decrease in ductility due to solid solution strengthening. Therefore, when B is contained, the amount of B is preferably 0.1% or less. More preferably, it is 0.01% or less.

2. 제조 조건에 대해서 2. Manufacturing conditions

다음으로 본 발명 강의 적합 제조 방법에 대해서 설명한다. 상기한 성분 조성의 강을, 전로(converter furnace), 전기로(electric furnace), 진공 용해로(vacuum melting furnace) 등의 공지의 방법으로 용제하고, 연속 주조법(continuous casting) 혹은 조괴(ingot casting)-분괴법(slabbing)에 의해 강 소재(슬래브 slab)로 한다. 이 강 소재를, 그 후 1100∼1300℃로 가열 후, 마무리 온도를 700℃∼1000℃, 권취 온도를 500℃∼850℃로 하여 열간 압연을 행하여, 판두께 2.0㎜∼5.0㎜의 강대(steel strip)로 완성한다. 이렇게 하여 제작한 열간 압연 강대(hot rolled strip)를 800℃∼1200℃의 온도로 어닐(anneal)하여 산세를 행하고, 다음으로, 냉간 압연을 행하고, 700℃∼1000℃의 온도에서 냉연판 어닐을 행한다. 냉연판 어닐 후에는 산세를 행하여, 스케일을 제거한다. 스케일(scale)을 제거한 냉간 압연 강대에는 스킨 패스 압연을 행해도 좋다. Next, a suitable manufacturing method of the steel of the present invention will be described. The steel having the above-described composition may be dissolved in a known method such as a converter furnace, an electric furnace or a vacuum melting furnace, and a continuous casting or ingot casting- It is made of steel material (slab slab) by slabbing. The steel material is then heated to 1100 to 1300 캜 and then subjected to hot rolling at a finishing temperature of 700 캜 to 1000 캜 and a coiling temperature of 500 캜 to 850 캜 to obtain a steel sheet having a thickness of 2.0 mm to 5.0 mm strip. The hot rolled strip thus produced is subjected to pickling by annealing at a temperature of 800 ° C to 1200 ° C, followed by cold rolling and annealing at 700 ° C to 1000 ° C for cold- I do. After cold-rolled sheet annealing, pickling is carried out to remove scale. Skin pass rolling may be performed on the cold rolled steel strip on which the scale is removed.

실시예 1Example 1

이하, 실시예에 기초하여 본 발명을 설명한다. Hereinafter, the present invention will be described on the basis of examples.

표 1에 나타내는 스테인리스강을 진공 용제하고, 1200℃로 가열한 후, 판두께 4㎜까지 열간 압연하고, 800∼1000℃의 범위에서 어닐하고, 산세에 의해 스케일을 제거했다. 또한, 판두께 0.8㎜까지 냉간 압연하고, 800℃∼1000℃의 범위에서 어닐하고, 산세를 행하여, 공시재로 했다. The stainless steel shown in Table 1 was vacuum-melted and heated to 1200 占 폚, hot-rolled to a plate thickness of 4 mm, annealed in the range of 800 to 1000 占 폚, and scaled by pickling. Further, the sheet was cold-rolled to a sheet thickness of 0.8 mm, annealed at a temperature in the range of 800 ° C to 1000 ° C, and pickled to obtain a specimen.

Figure 112014059323012-pct00001
Figure 112014059323012-pct00001

제작한 공시재에 비드 온 플레이트의 TIG 용접으로 도 2에 나타내는 바와 같은 십자 용접을 행했다. 용접 전류는 90A, 용접 속도는 60㎝/min로 했다. 실드 가스는, 앞쪽(토치측), 뒤쪽 모두 100%의 Ar 가스를 사용하고, 유량은 앞쪽이 15L/min, 뒤쪽이 10L/min로 했다. 앞쪽의 용접 비드의 폭은 대략 4㎜였다. Cross-welding as shown in Fig. 2 was carried out by TIG welding of the bead-on plate to the prepared sealing material. The welding current was 90 A and the welding speed was 60 cm / min. For the shield gas, 100% Ar gas was used for both the front side (torch side) and the rear side, and the flow rate was 15 L / min for the front side and 10 L / min for the rear side. The width of the front weld bead was approximately 4 mm.

제작한 용접 비드의 2중 용접부를 광학 현미경을 이용하여 용접 균열의 유무를 확인했다. 결과를 표 2에 나타낸다. The presence of weld cracks was confirmed by using an optical microscope for the double welded portion of the weld bead. The results are shown in Table 2.

Figure 112014059323012-pct00002
Figure 112014059323012-pct00002

발명예인 No.1∼No.15, No.22, No.23에는 용접 균열은 발생하지 않았지만, 비교예인 No.16, No.18∼No.21 중, Nb 및 Nb×P가 발명의 범위로부터 벗어나는 No.16, P가 발명의 범위로부터 벗어나는 No.20, Nb×P가 발명의 범위로부터 벗어나는 No.21에서는 용접 균열이 확인되었다. 이들 용접 균열 부분을 절출하여 SEM으로 파단면을 관찰한 결과, 어느 샘플에 있어서도 필름 형상의 Nb의 석출이 확인되었다. No welding cracks were observed in No.1 to No.15, No.22 and No.23 of Inventive Examples, but Nb and Nb 占 P among No.16 and No.18 to No.21 of Comparative Examples were not within the scope of the invention Welding cracks were confirmed at No. 20, Nb × P where deviation No. 16, P deviated from the scope of the invention, and No. 21 where Nb × P deviated from the scope of the invention. These weld cracks were cut out, and the fracture surface was observed with an SEM. As a result, Nb precipitation in film form was confirmed in all the samples.

용접 균열이 확인된 No.16, No.20, No.21을 제외하고, 제작한 용접 비드의 2중 용접부를 포함하는 20㎜ 정사각의 시험편을 채취하고, 10㎜ 정사각의 측정면을 남겨두고 시일재로 피복하고, 용접에 의한 템퍼 컬러를 붙인 채로 30℃의 3.5질량% NaCl 용액 중에서 공식 전위를 측정했다. 시험편의 연마나 부동태화 처리는 행하지 않았다. 그 이외의 측정 방법은 JIS G 0577(2005)에 준거했다. 측정한 공식 전위 V'c100을 표 2에 나타낸다. 발명예인 No.1∼No.15, No.22, No.23에서는, 모두 V'c100이 0mVvs SCE 이상으로 된 것에 대하여, 비교예인 No.18∼No.19에서는, 모두 V'c100이 0mV vs SCE 미만으로 되어 있어, 발명예의 내식성이 우수한 것이 확인되었다. Except for No.16, No.20 and No.21 where weld cracks were confirmed, a test specimen of 20 mm square including the double welded portion of the manufactured weld bead was sampled, and the measurement surface of 10 mm square was left, Coated with ash, and the formula potential was measured in a 3.5 mass% NaCl solution at 30 캜 with the temper color by welding. No polishing or passivating treatment of the test piece was performed. Other measuring methods were in accordance with JIS G 0577 (2005). Table 2 shows the measured formula potential V ' c100 . The invention is YES No.1~No.15, No.22, No.23, 'the c100 is relative to that with 0mVvs SCE or more, No.18~No.19 comparative example, both the V' both V c100 is 0mV vs SCE, and it was confirmed that the corrosion resistance of the inventive example was excellent.

또한, 표 1의 No.1∼No.23에 대해서, 2중 용접부의 용접 비드를 포함하는 40×40㎜의 시험편을 채취하고, 앞쪽을 시험면으로 하여 JIS H 8502(1999)의 중성 염수 분무 사이클 시험(neutral salt spray cyclic corrosion test)을 실시했다. 사이클수는 3사이클로 했다. 시험 후, 용접 비드의 부식의 유무를 육안에 의해 확인했다. 결과를 표 2에 나타낸다. 발명예인 No.1∼No.15, No.22, No.23에서는, 모두 부식이 확인되지 않은 것에 대하여, 비교예인 No.16, No.18∼No.21에서는 모두 부식이 확인되었다. 발명예의 용접 비드의 내식성이 우수한 것이 확인되었다. Test pieces of 40 x 40 mm including the weld beads of the double welded portion were taken from No. 1 to No. 23 of Table 1, and the front side was used as the test surface and the neutral salt water spray of JIS H 8502 (1999) Cycle test (neutral salt spray cyclic corrosion test). The number of cycles was 3 cycles. After the test, the presence or absence of corrosion of the weld bead was visually confirmed. The results are shown in Table 2. Corrosion was not confirmed in all of the inventive examples No. 1 to No. 15, No. 22, and No. 23, but corrosion was observed in No. 16 and No. 18 to No. 21 of Comparative Examples. It was confirmed that the weld bead of the inventive example was excellent in corrosion resistance.

본 발명의 페라이트계 스테인리스강은, 용접에 의해 구조체의 제작이 행해지는 용도, 예를 들면, 머플러 등의 자동차 배기계 재료, 전기 온수기의 저탕용 캔체 재료나 건구·환기구·덕트 등의 건축용 재료 등으로의 적용에 적합하다. The ferritic stainless steel of the present invention can be used for applications in which a structural body is manufactured by welding, for example, automobile exhaust system materials such as mufflers, canned materials for storage of electric water heaters, building materials such as dry bulb, ventilating duct, .

Claims (2)

질량%로, C: 0.001∼0.030%, Si: 0.03∼0.80%, Mn: 0.05∼0.50%, P: 0.03% 이하, S: 0.01% 이하, Cr: 19.0∼28.0%, Ni: 0.01 이상∼0.30% 미만, Mo: 0.6∼3.0%, Al: 0.15 초과∼1.2% 이하, V: 0.02∼0.50%, Cu: 0.1% 미만, Ti: 0.05∼0.50%, N: 0.001∼0.030%를 함유하고, Nb: 0.05% 미만으로 하여, 하기식 (1)을 충족하고, 잔부가 Fe 및 불가피적 불순물로 이루어지는 것을 특징으로 하는 용접부의 내식성과 내용접균열성이 우수한 페라이트계 스테인리스강.
Nb×P≤0.0005‥‥(1)
또한, 식 중의 원소 기호는 각 원소의 함유량(질량%)을 나타낸다.
0.001 to 0.030% of C, 0.03 to 0.80% of Si, 0.05 to 0.50% of Mn, 0.03% or less of P, 0.01% or less of S, 19.0 to 28.0% of Cr, 0.01 to 0.30% of Ni, % Of Cu, less than 0.1% of Cu, 0.05 to 0.50% of Ti, 0.001 to 0.030% of N, and a content of Nb : Less than 0.05%, satisfying the following formula (1), and the balance of Fe and inevitable impurities. The ferritic stainless steel is excellent in corrosion resistance and content of contact cracking.
Nb x P? 0.0005 (1)
The symbol of the element in the formula represents the content (mass%) of each element.
제1항에 있어서,
추가로, 질량%로, Zr: 1.0% 이하, W: 1.0% 이하, REM: 0.1% 이하, Co: 0.3% 이하 중으로부터 선택되는 1종 이상을 함유하는 것을 특징으로 하는 용접부의 내식성과 내용접균열성이 우수한 페라이트계 스테인리스강.
The method according to claim 1,
Further comprising at least one selected from the group consisting of Zr: not more than 1.0%, W: not more than 1.0%, REM: not more than 0.1%, and Co: not more than 0.3% Ferritic stainless steel excellent in cracking property.
KR1020147017424A 2011-12-27 2012-12-13 Ferritic stainless steel KR101658872B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011285527 2011-12-27
JPJP-P-2011-285527 2011-12-27
PCT/JP2012/007972 WO2013099132A1 (en) 2011-12-27 2012-12-13 Ferritic stainless steel

Publications (2)

Publication Number Publication Date
KR20140098818A KR20140098818A (en) 2014-08-08
KR101658872B1 true KR101658872B1 (en) 2016-09-22

Family

ID=48696680

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147017424A KR101658872B1 (en) 2011-12-27 2012-12-13 Ferritic stainless steel

Country Status (8)

Country Link
US (1) US20140363328A1 (en)
EP (1) EP2799577B1 (en)
JP (1) JP5435179B2 (en)
KR (1) KR101658872B1 (en)
CN (1) CN104024458B (en)
ES (1) ES2608460T3 (en)
TW (1) TWI503423B (en)
WO (1) WO2013099132A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949057B2 (en) * 2012-03-30 2016-07-06 Jfeスチール株式会社 Ferritic stainless steel with excellent corrosion resistance and low temperature toughness of welds
EP2910659B1 (en) * 2012-10-22 2017-12-27 JFE Steel Corporation Ferrite stainless steel and manufacturing method therefor
JP6306353B2 (en) * 2014-01-21 2018-04-04 Jfeスチール株式会社 Method for producing slab for ferritic stainless steel cold rolled steel sheet and method for producing ferritic stainless steel cold rolled steel sheet
JP6354772B2 (en) * 2015-04-10 2018-07-11 Jfeスチール株式会社 Ferritic stainless steel
CN105112798A (en) * 2015-09-01 2015-12-02 广西南宁智翠科技咨询有限公司 High-tenacity spring wire
JP6390594B2 (en) * 2015-11-13 2018-09-19 Jfeスチール株式会社 Ferritic stainless steel
WO2018179456A1 (en) * 2017-03-30 2018-10-04 Jfeスチール株式会社 Ferritic stainless steel
JP7058537B2 (en) 2018-03-30 2022-04-22 日鉄ステンレス株式会社 Ferritic stainless steel with excellent salt damage and corrosion resistance
CN109881082A (en) * 2019-03-22 2019-06-14 宁波宝新不锈钢有限公司 A kind of automobile exhaust system cold end ferritic stainless steel and preparation method thereof
CN110343948B (en) * 2019-06-12 2021-10-01 鹰普(中国)有限公司 Ferritic stainless steel CB30 material and heat treatment process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184731A (en) 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP2011190524A (en) * 2010-03-17 2011-09-29 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439866B2 (en) 1995-03-08 2003-08-25 日本冶金工業株式会社 Ferritic stainless steel with excellent corrosion resistance and weldability
US7494551B2 (en) * 2002-06-17 2009-02-24 Jfe Steel Corporation Ferritic stainless steel plate with Ti and method for production thereof
JP2005089850A (en) * 2003-09-19 2005-04-07 Nisshin Steel Co Ltd High strength ferritic stainless steel
JP4749881B2 (en) * 2005-02-15 2011-08-17 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent crevice corrosion resistance
JP4396676B2 (en) * 2005-08-17 2010-01-13 Jfeスチール株式会社 Ferritic stainless steel sheet with excellent corrosion resistance and method for producing the same
CA2777715C (en) * 2006-05-09 2014-06-03 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel excellent in resistance to crevice corrosion
JP5042553B2 (en) * 2006-08-03 2012-10-03 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent crevice corrosion resistance and formability
CN101680065B (en) * 2007-06-04 2011-11-16 住友金属工业株式会社 Ferrite heat resistant steel
JP5088244B2 (en) * 2007-06-07 2012-12-05 Jfeスチール株式会社 Stainless steel welded joint weld metal
JP2009091654A (en) 2007-09-18 2009-04-30 Jfe Steel Kk Ferritic stainless steel having excellent weldability
JP5489759B2 (en) * 2009-02-09 2014-05-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel with few black spots
JP2011173124A (en) * 2010-02-23 2011-09-08 Nisshin Steel Co Ltd Welding method of ferritic stainless steel
US20150023832A1 (en) * 2012-03-13 2015-01-22 Jfe Steel Corporation Ferritic stainless steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184731A (en) 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP2011190524A (en) * 2010-03-17 2011-09-29 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness

Also Published As

Publication number Publication date
WO2013099132A1 (en) 2013-07-04
EP2799577B1 (en) 2016-11-09
KR20140098818A (en) 2014-08-08
EP2799577A4 (en) 2015-07-15
ES2608460T3 (en) 2017-04-11
TWI503423B (en) 2015-10-11
CN104024458B (en) 2016-10-26
EP2799577A1 (en) 2014-11-05
US20140363328A1 (en) 2014-12-11
JP5435179B2 (en) 2014-03-05
TW201337004A (en) 2013-09-16
JPWO2013099132A1 (en) 2015-04-30
CN104024458A (en) 2014-09-03

Similar Documents

Publication Publication Date Title
KR101658872B1 (en) Ferritic stainless steel
KR101669740B1 (en) Ferritic stainless steel
JP5609571B2 (en) Ferritic stainless steel with excellent oxidation resistance
JP5534119B1 (en) Ferritic stainless steel
JP5152387B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
TWI548758B (en) Fat iron stainless steel
JP5903881B2 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JP5867243B2 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JP5556951B2 (en) Ferritic stainless steel
JP2002167653A (en) Stainless steel having excellent workability and weldability
WO2018116792A1 (en) Ferritic stainless steel
JP2013151733A (en) Ferrite-based stainless steel excellent in corrosion resistance of welded part with austenite-based stainless steel
JP2000273591A (en) High corrosion resistance chromium-containing steel excellent in high temperature strength and intergranular corrosion resistance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right