KR101653245B1 - Fermentation process for preparing thymidine by the recombinant E. coli - Google Patents

Fermentation process for preparing thymidine by the recombinant E. coli Download PDF

Info

Publication number
KR101653245B1
KR101653245B1 KR1020150004296A KR20150004296A KR101653245B1 KR 101653245 B1 KR101653245 B1 KR 101653245B1 KR 1020150004296 A KR1020150004296 A KR 1020150004296A KR 20150004296 A KR20150004296 A KR 20150004296A KR 101653245 B1 KR101653245 B1 KR 101653245B1
Authority
KR
South Korea
Prior art keywords
thymidine
gene
coli
seq
nucleotide sequence
Prior art date
Application number
KR1020150004296A
Other languages
Korean (ko)
Other versions
KR20160086659A (en
Inventor
이현철
서형종
구봉성
김진숙
이솔화
Original Assignee
(주)포바이오코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포바이오코리아 filed Critical (주)포바이오코리아
Priority to KR1020150004296A priority Critical patent/KR101653245B1/en
Publication of KR20160086659A publication Critical patent/KR20160086659A/en
Application granted granted Critical
Publication of KR101653245B1 publication Critical patent/KR101653245B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/073Pyrimidine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

대사공학적 접근방식을 이용하여 대장균에서 산업적 수준의 싸이미딘을 생산하기 위한 방법이 개시된다. 본 발명은 재사용 대사 경로(salvage pathway)에 관여하는 유전자인 deoA, tdk, uppudp가 제거되고, 서열번호 1로 기재되는 염기서열을 갖는 유전자 udhA, 서열번호 2로 기재되는 염기서열을 갖는 유전자 yfjB 및 서열번호 3으로 기재되는 염기서열을 갖는 유전자 pspB가 발현되고, 카바모일-아스파테이트 합성 억제에 관여하는 유전자인 purR, pepAargR이 제거되고, pyr 오페론(operon)을 구성하는 유전자 pyrBI, pyrC, pyrDpyrE가 과발현된 싸이미딘(thymidine) 생산능을 보유한 대장균 변이주를 제공한다.A method for producing industrial grade thymidine in E. coli using a metabolic engineering approach is disclosed. The present invention relates to a gene having a nucleotide sequence of SEQ ID NO: 1, deoA , tdk , upp and udp , which are genes involved in a reuse metabolic pathway, is removed, a gene udhA having a nucleotide sequence of SEQ ID NO: 2, yfjB and the SEQ ID NO: gene pspB having the nucleotide sequence described by the three is expressed, carbamoyl-aspartate is Tate gene, purR, pepA and argR relating to the synthesis inhibition is removed and genes that make up the pyr operon (operon) pyrBI, pyrC , pyrD, and pyrE overexpressing the thymidine-producing E. coli strain.

Description

대장균에서 대사공학적 방법을 이용한 싸이미딘의 대량생산 방법{Fermentation process for preparing thymidine by the recombinant E. coli}FIELD OF THE INVENTION [0001] The present invention relates to a method for mass production of thymidine using a metabolic engineering method in Escherichia coli (Fermentation process for preparing thymidine by the recombinant E. coli)

본 발명은 대장균을 이용한 싸이미딘 생산에 관한 것으로, 보다 상세하게는 대장균에서 유전자 재조합을 통해 변이된 균주로부터 싸이미딘을 고순도로 대량생산할 수 있는 방법에 관한 것이다.The present invention relates to thymidine production using E. coli, and more particularly, to a method for mass-producing thymidine from a strain mutated through genetic recombination in E. coli in high purity.

생물학적인 방법을 이용한 핵산의 합성은 주로 식품첨가제나 그 밖에 여러 가지 의약품제제의 전구체로서 이용하기 위해 연구되어 왔다. 특히 싸이미딘(thymidine)이나 데옥시유리딘(deoxyuridine)과 같은 피리미딘 데옥시뉴클레오사이드(pyrimidine deoxynucleoside)는 아지도싸이미딘(azidothymidine; AZT)이나 지도부딘(zidovudine)과 같은 여러가지 항바이러스 치료제를 합성하기 위한 전구물질로서 산업적으로 유용성이 매우 높은 물질로 알려져 있다. 싸이미딘을 포함하는 피리미딘 데옥시뉴클레오사이드는 증식하는 모든 생물체 안에서 합성되지만 그 양은 강력하게 조절을 받아 농도가 높지 않으며 제한적으로 존재하기 때문에 현재까지 저효율, 고비용의 유기합성법을 통해 생산되고 있다.The synthesis of nucleic acids using biological methods has been studied mainly as a precursor of food additives and various pharmaceutical preparations. In particular, pyrimidine deoxynucleoside such as thymidine or deoxyuridine synthesizes various antiviral therapeutic agents such as azidothymidine (AZT) and zidovudine It is known as a highly industrially useful precursor substance. Pyrimidine deoxynucleosides, including thymidine, are synthesized in all proliferating organisms, but their amount is strongly controlled and their concentration is low and limited, and so far they have been produced through low-cost, high-cost organic synthesis.

미생물을 이용하여 피리미딘 대사를 조절, 싸이미딘을 생산하는 방법에 관한 많은 연구가 보고되고 있다(비특허문헌 1 참조). 이들은 deoAudp를 제거하여 싸이미딘의 분해를 막고, tdk를 제거하여 싸이미딘이 dTMP(deoxythymidine monophosphate)로 재전환되는 것을 억제하고자 하였다. 특히 대장균(E. coli)에서는 deoA udp의 제거만으로도 싸이미딘의 분해가 거의 이루어지지 않게 된다. 그러나 유리딘과 같은 다른 뉴클레오사이드의 동반 증가가 문제되며, 이는 삼투압에도 영향을 미쳐 세포 성장(cell growth)에 저해(85~90%)를 가져온다.Many studies have been reported on a method for controlling thymidine metabolism and producing thymidine using microorganisms (see Non-Patent Document 1). They removed deoA and udp to prevent the degradation of thymidine and to remove tdk to inhibit the re-conversion of thymidine to dTMP (deoxythymidine monophosphate). Especially in E. coli , deoA And removal of udp alone results in almost no decomposition of thymidine. However, the coincident increase of other nucleosides such as uridine is problematic, which also affects the osmotic pressure, resulting in inhibition of cell growth (85-90%).

싸이미딘 생합성 과정에는 NDP 환원효소(ribonucleoside diphosphate reductase)에 의해 NDP에서 dNDP(deoxyribonucleoside diphosphate)로 리보오스(ribose)의 산소가 떨어져 나가는 환원과정이 포함된다. 여기에는 전자를 공급하는 조효소로 NADPH가 사용된다. 또한 NADPH 뿐만 아니라 티오레독신(thioredoxin), 글루타레독신(glutaredoxin) 등이 전자 주게(electron donor)로 작용한다. 따라서 환원력의 보강은 주요 핵산의 생합성을 높일 수 있으며, 그 예로 T4 파지의 발현은 효소활성이 높은 외래 종의 티오레독신을 도입하여 발현량을 늘리는 것보다 효과적이다(비특허문헌 2 및 3 참조). 이 때문에 높은 환원력을 필요로 하는 싸이미딘 생산 균주를 이용하는 업체에서 이 과정을 보강하기 위한 연구가 수행되어 왔다.The thymidine biosynthesis process involves the reduction of oxygen from the ribose by NDP to deoxyribonucleoside diphosphate (NDP) by a ribonucleoside diphosphate reductase. Here, NADPH is used as a coenzyme to supply electrons. In addition to NADPH, thioredoxin and glutaredoxin act as electron donors. Therefore, the reinforcement of the reducing power can increase the biosynthesis of the main nucleic acid, for example, the expression of T4 phage is more effective than the introduction of thioredoxin, which is a foreign enzyme species having a high enzyme activity, to increase the expression level (see Non-Patent Documents 2 and 3 ). For this reason, studies have been carried out to reinforce this process in companies using cyimidine producing strains requiring high reducing power.

대장균에서 피리미딘 데옥시뉴클레오사이드가 생성되는 과정에서 관련 효소의 전사 및 발현은 다양한 기작에 의해 강력하게 조절받는다. 존재하는 (데옥시)뉴클레오사이드/(데옥시)뉴클레오타이드의 농도에 따라 피드백 저해(feedback inhibition), 감쇠(attenuation) 등의 기작이 있다(비특허문헌 4 참조). 이를 극복하기 위해 싸이미딘 분해에 관여하는 유전자를 제거하고 dTMP 포스포하이드롤라아제(dTMP phosphohydrolase)를 발현하였지만 여전히 산업적인 수준의 싸이미딘을 생산하기 위해서는 필수적인 조절 요소에 대한 연구가 필요하다.During the production of pyrimidine deoxynucleosides in E. coli, transcription and expression of the related enzymes are strongly regulated by various mechanisms. There are mechanisms such as feedback inhibition and attenuation depending on the concentration of (deoxy) nucleoside / (deoxy) nucleotide present (see Non-Patent Document 4). In order to overcome this, the gene involved in thymidine degradation was removed and dTMP phosphohydrolase was expressed, but studies on the necessary regulatory elements are still required to produce industrial-grade thymidine.

[비특허문헌][Non-Patent Document]

비특허문헌 1: R. M. Q. Shanks, N. C. Caiazza, S. M. Hinsa, C. M. Toutain, G. A. O'Toole, 2006, Saccharomyces cerevisiae-Based Molecular Tool Kit for Manipulation of Genes from Gram-Negative Bacteria, Appl. Environ. Microbiol, 72(7), 5027-5036.Non-Patent Document 1: R. M. Q. Shanks, N. C. Caiazza, S. M. Hinsa, C. M. Toutain, G. A. O'Toole, 2006, Saccharomyces cerevisiae-Based Molecular Tool Kit for Manipulation of Genes from Gram-Negative Bacteria, Appl. Environ. Microbiol, 72 (7), 5027-5036.

비특허문헌 2: H. C. Lee, J. H. Kim, J. S. Kim, W. Jang, S. Y. Kim, 2009, Fermentative production of thymidine by a metabolically engineering E. coli strain., Appl. Environ. Microbiol., 75(8):2423-2432.Non-Patent Document 2: HC Lee, JH Kim, JS Kim, W. Jang, SY Kim, 2009, Fermentative production of thymidine by a metabolically engineering E. coli strain., Appl. Environ. Microbiol., 75 (8): 2423-2432.

비특허문헌 3: H. C. Lee, J. S. Kim, W. Jang, S. Y. Kim, 2010, High NADPH/NADP+ ratio improves thymidine production by ametabolically engineered strain., J. Biotechnol., 20;149(1-2):24-32.NADPH / NADP + ratio improves thymidine production by ametabolically engineered strain, J. Biotechnol., 20; 149 (1-2): 24- 32.

비특허문헌 4: Neuhard, J. and R.A. Kelln, Biosynthesis and Conversion of pyrimidines, Chapter 35 [In] Neidhardt, F.C. et al . [eds] "Escherichia coli and Salmonella Cellular and Molecular Biology", Second Edition, Vol. I, pp580-599, ASM Press, Washington D.C., 1996.Non-Patent Document 4: Neuhard, J. and RA Kelln, Biosynthesis and Conversion of Pyrimidines, Chapter 35 [In] Neidhardt, FC et al . [eds] " Escherichia coli and Salmonella Cellular and Molecular Biology ", Second Edition, Vol. I, pp 580-599, ASM Press, Washington DC, 1996.

이에 본 발명은 대사공학적 접근방식을 이용하여 대장균에서 산업적 수준의 싸이미딘을 생산하기 위한 방법을 제공하고자 한다.The present invention thus provides a method for producing industrial grade thymidine in E. coli using a metabolic engineering approach.

상기 과제를 해결하기 위하여 본 발명은, 재사용 대사 경로(salvage pathway)에 관여하는 유전자인 deoA, tdk, uppudp가 제거되고, 서열번호 1로 기재되는 염기서열을 갖는 유전자 udhA, 서열번호 2로 기재되는 염기서열을 갖는 유전자 yfjB 및 서열번호 3으로 기재되는 염기서열을 갖는 유전자 pspB가 발현되고, 카바모일-아스파테이트 합성 억제에 관여하는 유전자인 purR, pepAargR이 제거되고, pyr 오페론(operon)을 구성하는 유전자 pyrBI, pyrC, pyrDpyrE가 과발현된 싸이미딘(thymidine) 생산능을 보유한 대장균 변이주를 제공한다.In order to solve the above-mentioned problem, the present invention provides a recombinant vector comprising a gene udhA having the nucleotide sequence of SEQ ID NO: 1, deoA , tdk , upp and udp , which are genes involved in a reuse metabolic pathway, having the nucleotide sequence described by the gene yfjB and SEQ ID NO: 3 having the nucleotide sequence described gene is pspB expression, carbamoyl-aspartate is Tate gene, purR, pepA and argR relating to the synthesis inhibition is removed, pyr operon (operon ( Pyridine , pyrC , pyrD, and pyrE ), which constitute the thymidine-producing E. coli mutant strain.

또한 상기 대장균 변이주는 Escherichia coli BLT40(수탁번호: KFCC11603P)인 것을 특징으로 하는 대장균 변이주를 제공한다.Also, the Escherichia coli mutant is Escherichia coli BLT40 (accession number: KFCC11603P).

또한 상기 대장균 변이주를 사용하여 싸이미딘(thymidine)을 생산하는 방법을 제공한다.Also provided is a method for producing thymidine using the Escherichia coli mutant strain.

이러한 본 발명에 따른 대장균 변이주를 이용할 경우 순도 99% 이상의 싸이미딘을 산업적 수준으로 대량생산이 가능한 효과가 있다.When such an E. coli mutant according to the present invention is used, cyimidine having a purity of 99% or more can be mass-produced at an industrial level.

도 1은 본 발명의 실시예 2에서 재사용 대사 경로 효소의 제거 과정을 설명하는 모식도,
도 2는 본 발명의 실시예 2에서 재사용 대사 경로 효소가 제거된 균주에 대한 싸이미딘 분해 검정(thymidine degradation assay)을 수행한 결과를 나타낸 그래프,
도 3은 본 발명의 실시예 3에 따라 발현된 udhA(a), NAD kinase(yfjB)(b) 및 pspB(phage shock protein B)(c)의 DNA 염기서열을 나타낸 도면,
도 4는 본 발명의 실시예 3에서 억제 유전자 제거 및 환원력 강화를 위한 유전자 삽입 과정을 설명하는 모식도,
도 5는 본 발명의 실시예 4에서 pyrBIECD 오페론(operon)의 발현에 관한 벡터 지도(vector map)를 설명하는 모식도,
도 6은 본 발명의 실시예 5에서 싸이미딘 생산 균주를 선별하는 방법을 설명하는 도면,
도 7은 본 발명의 실시예 6에 따라 생산된 싸이미딘의 HPLC 분석 결과를 나타낸 그래프,
도 8은 본 발명의 실시예 7에서 변이 균주의 500ℓ 파일롯트 배양 결과를 나타낸 그래프,
도 9는 본 발명의 실시예 8에서 변이 균주를 이용하여 생산된 싸이미딘의 정제 공정을 예시적으로 나타낸 흐름도,
도 10은 본 발명의 실시예 8에서 앰버라이트(Amberlite XAD-16)를 사용한 싸이미딘의 정제를 설명하는 그래프,
도 11은 본 발명의 실시예 8에서 표준 싸이미딘(standard thymidine, 1g/ℓ, Sigma사, A)과 정제된 싸이미딘(1g/ℓ, B)에 대한 HPLC 분석 결과를 비교하여 나타낸 그래프.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view for explaining a process for removing a reusable metabolic pathway enzyme in Example 2 of the present invention;
FIG. 2 is a graph showing the results of performing a thymidine degradation assay on the strains from which the reusable metabolic pathway enzyme has been removed in Example 2 of the present invention;
FIG. 3 is a diagram showing DNA base sequences of udhA (a), NAD kinase ( yfjB ) (b) and pspB (phage shock protein B) (c) expressed according to Example 3 of the present invention,
FIG. 4 is a schematic diagram illustrating a gene insertion process for suppressing the suppression gene and enhancing the reducing power in Example 3 of the present invention. FIG.
5 is a schematic diagram illustrating a vector map for expression of the pyrBIECD operon in Example 4 of the present invention,
6 is a view for explaining a method of selecting a thymidine producing strain in Example 5 of the present invention,
7 is a graph showing the results of HPLC analysis of thymidine produced according to Example 6 of the present invention,
FIG. 8 is a graph showing the results of culturing a 500-L pile lot of mutant strains in Example 7 of the present invention,
9 is a flow chart exemplarily showing a process for purifying thymidine produced using a mutant strain in Example 8 of the present invention,
10 is a graph illustrating the purification of thymidine using Amberlite XAD-16 in Example 8 of the present invention,
11 is a graph comparing HPLC analysis results of standard thymidine (1 g / l, Sigma, A) and purified thymidine (1 g / l, B) in Example 8 of the present invention.

이하, 실시예를 통하여 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
Hereinafter, the present invention will be described in detail with reference to examples. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately The present invention should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention. Accordingly, it is to be understood that the constituent features of the embodiments described herein are merely the most preferred embodiments of the present invention, and are not intended to represent all of the inventive concepts of the present invention, so that various equivalents, And the like.

싸이미딘을 포함하는 피리미딘 데옥시뉴클레오사이드는 증식하는 모든 생물체 안에서 합성되지만 그 양은 강력하게 조절을 받아 제한적으로 존재하기 때문에 현재까지 저효율, 고비용의 유기합성법을 통해 생산되고 있다.Pyrimidine deoxynucleosides, including thymidine, are synthesized in all proliferating organisms, but since they are strongly regulated and limited, they are produced through low-cost, high-cost organic synthesis to date.

Lee 등의 문헌(비특허문헌 2 참조)에서는 싸이미딘 생산능을 보유한 대장균 변이주 분리를 위한 싸이미딘 생합성 경로 조절 메커니즘을 설명하고 있다.Lee et al. (See Non-Patent Document 2) describe a mechanism of regulating thymidine biosynthetic pathway for isolation of Escherichia coli mutants having thymidine production ability.

상기 Lee 등의 문헌을 참조하면, 대장균을 이용한 생물학적 방법으로 싸이미딘을 대량 생산하기 위해 본 발명에서는 먼저 싸이미딘 생합성 경로 중 재사용 대사 경로(salvage pathway)를 차단하여 싸이미딘의 분해를 억제하였다. 이에 관여하는 deoA, udp, upp tdk를 제거한 균주를 'BL-T24'로 명명하고, 싸이미딘 분해 검정(thymidine degradation assay)을 통해 반응 18시간까지도 초기의 싸이미딘이 분해되지 않음을 확인하였다.Referring to Lee et al., In order to mass-produce thymidine by a biological method using E. coli, the present invention first inhibited the decomposition of thymidine by blocking the reuse pathway in the thymidine biosynthetic pathway. DeoA , udp , upp And tdk were designated as 'BL-T24'. It was confirmed that thymidine degradation assay did not decompose the initial thymidine until 18 hours after the reaction.

또한 본 발명에서는 싸이미딘 생합성 경로의 직접적인 강화를 통해 싸이미딘 생산을 증가시키기 위해 udhA(transhydrogenase)와 NADK(NAD kinase)를 발현하여 세포 내부의 환원력을 보강하였다.In addition, in the present invention, udhA (transhydrogenase) and NADK (NAD kinase) were expressed in order to directly increase cytidine production through direct reinforcement of the cytidine biosynthetic pathway, thereby reinforcing the reducing power inside the cells.

또한 싸이미딘 생합성 초입과정에 작용하는 PyrBI(aspartate transcarbamylase), PyrC(dihydroorotase), PyrD(dihydroorotate dehydrogenase) 및 PyrE(orotate phosphoribosyltransferase)를 발현하였다. 이들은 세포 내부에 존재하는 UTP(uridine triphosphate), CTP(cytidine triphosphate) 등과 같은 뉴클레오타이드의 농도에 의해 조절받는 효소들이므로 고농도의 싸이미딘 생산으로 야기될 수 있는 해당 효소의 전사/발현 약화를 추가적인 발현을 통해 제공하고자 함이다. 또한 균주의 안정화를 위해 pbp(phage shock proteins, Psp operon)를 함께 발현하였다. PyrBI (aspartate transcarbamylase), PyrC (dihydroorotase), PyrD (dihydroorotate dehydrogenase) and PyrE (orotate phosphoribosyltransferase), which act on the initiation of thymidine synthesis, were also expressed. These are enzymes regulated by the concentration of nucleotides such as UTP (uridine triphosphate) and CTP (cytidine triphosphate), which are present inside the cell. Therefore, they express additional expression of transcription / expression weakness of the enzyme which can be caused by high concentration of thymidine production . In addition, pbp (phage shock proteins, Psp operon) was expressed together to stabilize the strain.

또한 변형된 생합성 대사 과정 중 발생한 일부 뉴클레오타이드의 축적에 의해 생합성 첫 단계인 카바모일-아스파테이트(carbamoyl-asapartate) 합성이 억제되는 조절을 받을 수 있어 여기에 관여하는 억제(repressor) 유전자로 알려진 purR, pepAargR 유전자를 제거하여 'BL-T30'으로 명명된 균주를 제작하였다.In addition, accumulation of some nucleotides occurring during the modified biosynthetic pathway can regulate the synthesis of carbamoyl-asapartate, which is the first step of biosynthesis, so that purR , known as a repressor gene involved in the synthesis, The pepA and argR genes were removed to produce a strain designated 'BL-T30'.

한편 상기의 생합성 조절 유전자와 싸이미딘 분해 효소가 제거된 본 발명에 따른 변이 균주는 모균주에 비해 고농도의 싸이미딘이 포함된 배지에서 성장 저해가 나타났다(6g/ℓ). 이를 개선하기 위해 20g/ℓ 싸이미딘 농도에서 내성을 가지며, 고농도의 5'-플루오로유라실(fluorouracil), 하이드록시유레아(hydroxyurea) 및 트리메토프림(trimethoprim)에서도 성장저해를 받지 않는 균주를 선별하여 최종 균주 'BL-T33'으로 명명하였다.On the other hand, the mutant strains according to the present invention in which the biosynthetic regulatory gene and thymidine degrading enzyme were removed showed growth inhibition (6 g / l) in medium containing high concentration of thymidine compared with the parent strain. To improve this, strains resistant to high concentrations of 5'-fluorouracil, hydroxyurea and trimethoprim, resistant to 20g / l thymidine concentration, were selected To give the final strain 'BL-T33'.

이와 같이 제작된 싸이미딘 생산 균주 BL-T33에 특정 벡터(pTrc99y-pyrBIECD)가 삽입된 최종 균주 'BL-T40'을 이용하여 7ℓ 발효(fermentation)를 통해 90시간 7g/ℓ의 싸이미딘을 생산하였고, 500ℓ 파일롯트(pilot)에서는 120시간 7g/ℓ의 싸이미딘을 생산하였다. 또한 생산된 싸이미딘의 정제 공정을 확립하여 순도 99%의 싸이미딘을 최종 생산하였다.The resulting thymidine production strain BL-T33 produced 7 g / l of thymidine through a 7-L fermentation using a final strain BL-T40 in which a specific vector (pTrc99y-pyrBIECD) was inserted And 500 g of pilot in the case of 120 g of 7 g / l of thymidine. Also, a purification process of the produced thymidine was established to finally produce thymidine having a purity of 99%.

따라서 본 발명은 재사용 대사 경로(salvage pathway)에 관여하는 유전자인 deoA, tdk, uppudp가 제거되고, 서열번호 1로 기재되는 염기서열을 갖는 유전자 udhA, 서열번호 2로 기재되는 염기서열을 갖는 유전자 yfjB 및 서열번호 3으로 기재되는 염기서열을 갖는 유전자 pspB가 발현되고, 카바모일-아스파테이트 합성 억제에 관여하는 유전자인 purR, pepAargR이 제거되고, pyr 오페론(operon)을 구성하는 유전자 pyrBI, pyrC, pyrDpyrE가 과발현된 싸이미딘(thymidine) 생산능을 보유한 대장균 변이주를 개시하며, 본 발명의 바람직한 구현예에 따르면 상기 대장균 변이주는 Escherichia coli BLT40(수탁번호: KFCC11603P)일 수 있다.Accordingly, the present invention having the nucleotide sequence represented by gene udhA, SEQ ID NO: 2 having the nucleotide sequence to remove the gene deoA, tdk, upp and udp involved in the re-use pathway (salvage pathway) is, described in SEQ ID NO: 1 A gene pspB having a nucleotide sequence represented by SEQ ID NO: 3 and a gene yfjB is expressed, purR , pepA and argR , which are involved in the inhibition of carbamoyl-aspartate synthesis, are removed and a gene pyrBI , pyrC, pyrD and pyrE and starts the ssayimi Dean (thymidine) E. coli mutants have a production capacity over-expression, in accordance with a preferred embodiment of the invention the E. coli mutant Escherichia coli BLT40 (accession number: KFCC11603P).

이하, 실시예를 들어 본 발명을 상세히 설명하기로 한다.
Hereinafter, the present invention will be described in detail with reference to examples.

실시예Example 1: 고농도  1: High concentration 싸이미딘Cyimidine 저항성 균주의 선별 Selection of resistant strains

싸이미딘 생산 균주 개발에 앞서 자신이 만든 고농도의 싸이미딘에서도 성장이 저해되지 않는 내성 균주 제작의 필요성 있었다. 싸이미딘 내성균 스크리닝(screening)을 위하여 소-전이인자 돌연변이유발(mini-transposon mutagenesis) 방법을 이용한 돌연변이체 라이브러리(mutant library)를 제작하였다. 모균주인 대장균 균주(E. coli strain)에 벡터(pMV23 transposon vector)를 도입하여 랜덤 삽입 돌연변이(random insertion mutation)가 일어나도록 유도하였다. 그 후 10g/ℓ 싸이미딘이 포함된 LB 배지에서 키워 성장 저해를 보이지 않는 내성균을 1차로 선별하여 'BL-T10'이라 명명하였다. BL-T10을 자외선 돌연변이(UV mutation)하여 20g/ℓ 싸이미딘 배지에서도 성장저해를 보이지 않는 내성균을 2차로 선별하였으며 이를 'BL-T20'이라 명명하였다.
Prior to the development of thymidine production strains, there was a need to produce resistant strains that did not inhibit growth even at high concentrations of thymidine produced by them. A mutant library was constructed using the mini-transposon mutagenesis method for the screening of thymidine resistant bacteria. A vector (pMV23 transposon vector) was introduced into the E. coli strain of the parent strain to induce a random insertion mutation. Then, resistant bacteria which did not inhibit growth by growth on LB medium containing 10 g / L thymidine were firstly selected and named 'BL-T10'. BL-T10 was UV-mutated to select resistant bacteria that did not show growth inhibition even at 20 g / l thymidine medium, which was named 'BL-T20'.

실시예Example 2:  2: 싸이미딘Cyimidine 생산을 위한 재사용 대사 경로( Reusable metabolic pathways for production ( salvagesalvage pathwaypathway )의 차단() Blocking thymidine티미딘 phosphorylasephosphorylase (( deoAdeoA ), ), thymidine티미딘 kinasekinase (( tdktdk ), ), UMPUMP pyrophosphorylase( pyrophosphorylase ( uppupp ) 및 ) And uridineuridine phosphorylasephosphorylase (( udpudp ) 유전자)) gene)

재사용 대사 경로(salvage pathway)에 관여하는 deoA, udpupp는 핵염기(nucleobase)에 (데옥시)리보오스((deoxy)ribose)를 붙이거나 가수분해하는 효소를 발현하는 유전자로, 싸이미딘의 분해를 막기 위해 상기 유전자들을 제거하였다. 또한 싸이미딘에 포스페이트(phosphate)를 붙여주는 싸이미딘 키나아제(thymidine kinase; tdk)를 제거하여 dTMP로 전환되는 것을 차단하였다. DeoA , udp, and upp involved in the reuse pathway are genes that express enzymes that attach or hydrolyze (deoxy) ribose (deoxyribose) to the nucleobase. The degradation of thymidine The genes were removed. In addition, thymidine kinase (tdk) that binds phosphate to thymidine was removed to block the conversion to dTMP.

상기 각 유전자를 녹아웃(knock out)하기 위해 도 1에 도시된 바와 같이 유전자 양 말단의 50nt와 상보적인 서열을 가지는 PCR 절편(fragment)을 이용하였다. 이 절편은 선택 표지(selection marker)인 클로람페니콜(chloramphenicol) 유전자를 포함하며, deoA(accession no. AAC75351), tdk(accession no. AAC74320), upp(accession no. ACB03650) 및 udp(accession no. ACB04853)의 양 말단 50nt 서열이 연결되어 있다. 이 절편은 숙주(host) 내로 형질전환(transformation) 되면 FLP 재조합 효소(Flippase recombinase)에 의해 게놈 DNA(genomic DNA)에 있는 각 유전자의 말단과 상동재조합(homologous recombination) 된다. 표적(target) 유전자가 제거되고 그 자리에 들어간 클로람페니콜 유전자는 FLP 헬퍼 플라스미드(helper plasmid)를 발현시켜 제거할 수 있다. 각 유전자가 모두 제거된 균주는 싸이미딘 분해능을 손실한 돌연변이로서 'BL-T24'로 명명하였다.In order to knock out each of the above genes, a PCR fragment having a sequence complementary to 50 nt at both ends of the gene was used as shown in Fig. This fragment contains the chloramphenicol gene, which is a selection marker, and contains deoA (Accession No. AAC75351), tdk (accession No. AAC74320), upp (accession No. ACB03650) and udp (accession No. ACB04853) And a 50 nt sequence at both ends. When this fragment is transformed into a host, it is homologous recombined with the end of each gene in the genomic DNA by the FLP recombinase. The target gene is removed and the chloramphenicol gene in place can be removed by expressing the FLP helper plasmid. The strain in which all the genes were removed was named 'BL-T24' as a mutation that lost the cytidine-resolving ability.

이와 같이 재사용 대사 경로 효소(salvage enzyme)가 제거된 'BL-T24' 균주와 모균주인 'BL21'로 싸이미딘 분해 검정(thymidine degradation assay)을 수행하여 싸이미딘 분해 경로가 차단되었는지 확인 비교하였고, 그 결과를 도 2에 나타내었다. 도 2를 참조하면 모균주인 'BL21'의 경우 반응 1시간 후 약 40%의 싸이미딘이 감소하였고, 4시간 후 거의 모든 싸이미딘이 분해되었으나, 'BL-T24'의 경우 18시간이 지난 후에도 초기 싸이미딘이 분해되지 않고 남아 있어 재사용 대사 경로에 의한 싸이미딘의 분해가 차단되었음을 확인할 수 있다.
In this way, thymidine degradation assay was performed with the 'BL-T24' strain in which the reuse metabolic pathway enzyme was removed and the 'BL21' strain in the parent strain to confirm that thymidine degradation pathway was blocked. The results are shown in Fig. Referring to FIG. 2, in the case of the parent strain 'BL21', about 40% of thymidine was decreased after 1 hour of reaction, and almost all thymidine was degraded after 4 hours. However, in case of BL-T24, It can be confirmed that the initial thymidine did not decompose and the decomposition of thymidine by the reuse metabolic pathway was blocked.

실시예Example 3: 억제( 3: inhibition ( repressorrepressor ) 유전자() gene( purRpurR , , pepApepA  And argRargR )) 의 억제 및 외래 유전자(And the foreign gene udhAudhA , , yfjByfjB  And pspBpspB )의 발현) Expression

싸이미딘 생산에 있어 NADPH의 수준은 이미 중요한 부분으로 알려져 있다(H. C. Lee, J. S. Kim, W. Jang, S. Y. Kim, 2010, High NADPH/NADP+ ratio improves thymidine production by ametabolically engineered strain., J. Biotechnol., 20;149(1-2):24-32; H. Fang, W. Xie, Q. Xu, C. Zhang, N. Chen, 2013, Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15., Biotechnol. Lett., 35(2):245). NADPH의 세포내 농도를 높이기 위해서는 NADP에서 NADPH로의 전환을 촉진하는 관련 유전자를 과발현하는 방법이 있다. 관련 유전자에는 막-결합성 수소전달효소(membrane-bound transhydrogenase)인 pntAB와 용해성 수소전달효소(soluble transhydrogenase)인 udhA가 있다(K. A. Datsenko, B. L. Wanner, 2000, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR product., PNAS., 97(12): 6640-6645). 또한 NADPH의 전구체가 되는 NADP는 세포내에서 주로 NADPH 형태로 존재하기 때문에 NAD를 NADP로 전환시켜주는 NAD 키나아제(kinase)를 강화하여도 NADPH의 증가로 이어질 수 있다. 본 발명에서는 도 3에 나타낸 바와 같이 용해성 수소전달효소인 udhA(a)와 NAD kinase(yfjB)(b)를 과발현시켜 세포 내부의 환원력을 보강하였으며, 이로 인해 불안정해질 수 있는 세포의 안정화를 위해 pspB(phage shock protein B)(c)도 함께 발현시켰다.The level of NADPH in cytidine production is already known to be an important part (HC Lee, JS Kim, W. Jang, SY Kim, 2010, High NADPH / NADP + ratio improves thymidine production by ametabolically engineered strain, J. Biotechnol. 20, 149 (1-2): 24-32; H. Fang, W. Xie, Q. Xu, C. Zhang, N. Chen, 2013, Enhancement of cytidine production by coexpression of gnd , zwf , and prs genes in recombinant Escherichia coli CYT15., Biotechnol. Lett., 35 (2): 245). In order to increase the intracellular concentration of NADPH, there is a method of overexpressing a related gene promoting the conversion of NADP to NADPH. Related genes include membrane-bound transhydrogenase, pntAB, and soluble transhydrogenase, udhA (KA Datsenko, BL Wanner, 2000, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR product., PNAS., 97 (12): 6640-6645). In addition, since NADP, which is a precursor of NADPH, is mainly present in the form of NADPH in the cells, strengthening of NAD kinase that converts NAD to NADP may lead to increase of NADPH. In the present invention, as shown in FIG. 3, overexpression of soluble hydrogen transport enzymes udhA (a) and NAD kinase ( yfjB ) (b) enhances the internal reducing ability of the cells. To stabilize cells that can become unstable, pspB (phage shock protein B) (c).

상기 억제 유전자의 제거와 환원력 강화를 위한 udhA, NADK 및 pspB의 발현은 도 4에 나타낸 바와 같이 상술한 상보 PCR 절편을 이용하였다. 먼저 pKD3의 클로람페니콜과 FRT(FLP recognition target)를 rrnB 프로모터/터미네이터(promoter/terminator)가 있는 벡터(pBAD vector)에 클로닝(cloning)하여 새로운 플라스미드(plasmid pCM1)를 제작하였다.The expression of udhA , NADK and pspB for the removal of the inhibitory gene and for the enhancement of the reducing power was performed using the above-described complementary PCR fragment as shown in FIG. First, a plasmid pCM1 was prepared by cloning pKD3's chloramphenicol and FRT (FLP recognition target) into a vector having an rrnB promoter / terminator (pBAD vector).

대장균으로부터 얻은 용해성 수소전달효소 유전자(udhA), 대장균 NAD 키나아제 유전자(yfjB) 및 pspB 유전자를 상기 pCM1에 클로닝하여 pCM-udhA, pCM-NADK 및 pCM-pspB를 제작하였으며, 사용된 각각의 프라이머(primer)는 하기 표 1에 나타내었다.Soluble hydrogen transferase gene obtained from E. coli (udhA), was prepared E. coli NAD kinase gene (yfjB) and by cloning the gene on the pspB pCM1 pCM- udhA, pCM-NADK pCM- pspB and, each primer was used (primer ) Are shown in Table 1 below.

Figure 112015002974912-pat00001
Figure 112015002974912-pat00001

본 발명에 따른 변이 균주의 변형된 생합성 대사 과정 중 발생한 일부 뉴클레오타이드의 축적은 생합성 첫 단계인 카바모일-아스파테이트 합성이 억제되는 조절을 야기할 수 있다. 여기에 관여하는 억제 유전자로 purR, pepAargR이 알려져 있으며, 이들 유전자를 제거하여 3배 이상의 carA 효소 증가가 확인되었고, 이것은 싸이미딘의 생산 증가로 이어지는 것이 보고된 바 있다(B. S. Koo, H. H. Hyun, S. Y. Kim, C. H. Kim, H. C. Lee, 2011, Enhancement of thymidine production in E. coli by elimination repressors regulating the carbamoyl phosphate synthetase operon., Biotechnol. Lett, 33(1):71-78). 따라서 싸이미딘 생합성 유입 단계를 강화하여 싸이미딘의 생산 증가를 유도하기 위해 상기 3개의 억제 유전자를 제거하였으며, 억제 유전자 제거와 동시에 위의 발현 카세트(cassette)를 삽입(insertion)하기 위해 다음과 같은 PCR 절편을 제작하였다.Accumulation of some nucleotides occurring during the modified biosynthetic metabolism of the mutant strain according to the present invention may lead to the inhibition of carbamoyl-aspartate synthesis, which is the first step of biosynthesis. This suppression and gene purR, pepA and argR known as participating in, to remove these genes have been identified, more than three times the carA enzyme increases, which has been reported to lead to an increase in ssayimi Dean production (BS Koo, HH Hyun , SY Kim, CH Kim, HC Lee, 2011, Enhancement of thymidine production in E. coli by elimination repressors regulating the carbamoyl phosphate synthetase operon., Biotechnol. Lett. 33 (1): 71-78). Therefore, the three inhibitory genes were removed in order to enhance the production of thymidine by enhancing the step of introducing thymidine biosynthesis. In order to insert the expression cassette into the expression cassette, Section.

pCM-udhA를 주형으로 하여 purR 양 말단 50nt와 상보적인 서열을 포함하는 udhA 발현 카세트 절편(expression cassette fragment)을 PCR하였고, pCM-NADK를 주형으로 하여 pepA 양 말단 50nt와 상보적인 서열을 포함하는 NADK 발현 카세트 절편을 PCR하였고, pCM-pspB를 주형으로 하여 argR 양 말단 50nt와 상보적인 서열을 포함하는 pspB 발현 카세트 절편을 PCR하였으며, 사용된 각각의 프라이머 서열은 하기 표 2에 나타내었다.to the pCM- udhA as the template for PCR was udhA expression cassette fragment (fragment expression cassette) containing purR both ends and 50nt complementary sequence, and a pCM-NADK as a template pepA both ends NADK containing 50nt complementary to the sequence The expression cassette fragment was PCR, and a pspB expression cassette fragment containing a sequence complementary to 50 nt of both ends of argR was used as a template for pCM- pspB . The primer sequences used are shown in Table 2 below.

Figure 112015002974912-pat00002
Figure 112015002974912-pat00002

각 절편은 숙주내로 형질전환하여 FLP 재조합효소에 의해 게놈 DNA에 있는 각 유전자의 말단과 상동재조합 되도록 하였다. 표적 유전자가 제거되고 그 자리에 들어간 클로람페니콜 유전자에 대해서는 FLP 헬퍼 플라스미드를 발현시켜 제거하고 연결되어 들어간 udhA, yfjBpspB가 게놈 DNA에 삽입되도록 하였고(도 4 참조), 이 균주를 'BL-T30'이라 명명하였다.
Each fragment was transformed into a host and homologous to the end of each gene in genomic DNA by FLP recombinase. The target gene was removed and the chloramphenicol gene in the place was removed by expressing the FLP helper plasmid, and the inserted udhA , yfjB and pspB were inserted into the genomic DNA (see Fig. 4) .

실시예Example 4:  4: 싸이미딘Cyimidine 생합성 경로 유전자의 발현( Expression of Biosynthetic Pathway Gene aspartateaspartate transcarbamylase( transcarbamylase ( PyrBIPyrBI ), ), dihydroorotase디 디오 로로토스 (( PyrCPyrC ), ), dihydroorotate이 디오 로 오테이트 dehydrogenase( dehydrogenase ( PyrDPyrD ) 및 ) And orotateorotate phosphoribosyltransferasephosphoribosyltransferase (( PyrEPyrE ))))

피리미딘 생합성 단계에서 아스파테이트부터 UMP(uridine monophosphate)까지의 초기 전환은 pyr 오페론(operon)에 의해 이루어지는데, 이들 효소들은 특정한 전사 인자(transcription factor)에 의존하지 않고 세포내에 존재하는 UTP, CTP의 농도에 따라 조절되는 감쇠 메커니즘(attenuation mechanism)으로 조절되는 것으로 알려 있다(L. Charles, J. Turnbough, R. L. Switzer, 2008, Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors., Microbiol. Mol. Biol. Rev., 72(2):266-300). 대사 경로의 조작을 통해 제작된 본 발명에 따른 개발 균주는 정상적인 세포보다 비특이적으로 특정 뉴클레오타이드의 축적이 야기될 수 있어 이들 효소의 억제 조절이 예상된다. In the pyrimidine biosynthetic phase, the initial conversion of aspartate to uridine monophosphate (UMP) is carried out by pyr operon. These enzymes do not depend on specific transcription factors, (L. Charles, J. Turnbough, RL Switzer, 2008, Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors, Microbiol. Mol. Biol Rev., 72 (2): 266-300). The developed strain according to the present invention produced through the manipulation of the metabolic pathway can cause the accumulation of specific nucleotides nonspecifically than normal cells, and the suppression of the inhibition of these enzymes is expected.

따라서 본 발명에서는 이들 효소의 지속적인 발현을 통해 조절 메커니즘을 피하고 싸이미딘 생산 증가로 이어질 수 있도록 도 5에 나타낸 바와 같이 pyr 오페론에 해당하는 pyrBI, pyrC, pyrDpyrE 유전자를 벡터(pTrc99y vector)에 삽입하여 과발현시켰다. pyr 오페론을 발현하는 플라스미드 제작에는 효모 재조합 시스템(yeast recombination system)을 이용하였으며 pTrc99y에 4개의 PCR 절편을 삽입하여 pTrc99y-pyrBIECD를 제작하였다. 각각의 PCR 절편은 하기 표 3에 나타낸 프라이머를 사용하여 얻었다.Therefore, in the present invention, pyrBI , pyrC , pyrD and pyrE genes corresponding to pyr operon are inserted into a vector (pTrc99y vector) as shown in FIG. 5 so as to avoid the regulatory mechanism through continuous expression of these enzymes and increase the production of thymidine Lt; / RTI > A yeast recombination system was used to construct a plasmid expressing the pyr operon. Four PCR fragments were inserted into pTrc99y to construct pTrc99y-pyrBIECD. Each PCR fragment was obtained using the primers shown in Table 3 below.

Figure 112015002974912-pat00003
Figure 112015002974912-pat00003

실시예Example 5:  5: 뉴클레오사이드Nucleoside 유사체( Analog ( nucleosidenucleoside analoguesanalogues )에 대한 내성 균주 선별) Resistant strains

상기 생합성 조절 유전자와 싸이미딘 분해 효소가 제거된 변이 균주 'BL-T30'은 고농도의 싸이미딘이 포함된 배지에서 성장 저해가 나타난다(6g/ℓ). 이를 개선하기 위해 20g/ℓ 싸이미딘 농도에서 내성을 가지며, 고농도의 5-플루오로유라실(fluorouracil), 하이드록시유레아(hydroxyurea) 및 트리메토프림(trimethoprim)에서도 성장 저해를 받지 않는 균주를 단계별로 선별하여 최종 'BL-T33'으로 명명하였다.BL-T30 ', a mutant strain in which the biosynthetic regulatory gene and thymidine degrading enzyme are removed, shows growth inhibition (6 g / l) in medium containing high concentration of thymidine. To improve this, strains resistant to high concentrations of 5-fluorouracil, hydroxyurea, and trimethoprim at a concentration of 20 g / l thymidine were cultured in a stepwise manner And selected as the final 'BL-T33'.

먼저 'BL-T30'에 자외선 돌연변이(UV mutation)를 수행하고 피리미딘 유사체(pyrimidine analogue) 5-플루오로유라실이 첨가된 배지에서 자라는 균주를 선별하여 'BL-T31'이라 명명하였다. 100mM 5-플루오로유라실에서 저항성을 나타낸 균주는 도 6에 설명된 스크리닝 시스템(screening system)으로 하기 표 4에 나타낸 조성을 갖는 배지(complete minimal media)에서 싸이미딘 생산능을 확인할 수 있다.First, 'UV-mutation' was performed on 'BL-T30' and strains growing on medium supplemented with pyrimidine analogue 5-fluorouracil were selected and named 'BL-T31'. The strains showing resistance in 100 mM 5-fluoro uracil can be assayed for cytidine production ability in the complete minimal media with the composition shown in Table 4 below using the screening system described in Fig.

Figure 112015002974912-pat00004
Figure 112015002974912-pat00004

이후, 다시 'BL-T31'에 자외선 돌연변이를 수행하고 하이드록시유레아 저항성 균주를 선별하여 'BL-T32'로 명명하였다. 마지막으로 'BL-T32'에 자외선 돌연변이를 수행한 후 트리메토프림 저항성 균주를 선별하여 최종 'BL-T33'으로 명명하였다. 'BL-T33'은 5-플루오로유라실, 하이드록시유레아 및 트리메토프림 모두에서 저항성을 나타내며, 이 균주에 pTrc99y-pyrBIECD vector를 삽입하여 'BL-T40'을 제작하였으며, 변이 균주 'BL-T40'에 대하여 2014년 12월 12일자로 한국미생물보존센터(KCCM: Korean Culture Center of Microorganisms)에 기탁하고 수탁번호 KFCC11603P를 부여받았다. Then, UV mutation was performed again on 'BL-T31', and a hydroxyurea resistant strain was selected and named 'BL-T32'. Finally, UV-mutation was performed on 'BL-T32', and then the strain-resistant strain was selected and named 'BL-T33'. 'BL-T33' was resistant to both 5-fluorouracil, hydroxyurea and trimethoprim. BL-T40 was constructed by inserting pTrc99y-pyrBIECD vector into this strain. The mutant BL- T40 'on Dec. 12, 2014 to the Korean Culture Center of Microorganisms (KCCM) and received the accession number KFCC11603P.

'BL-T30'에서 'BL-T40'에 이르는 단계별 균주의 싸이미딘 생산능을 측정하여 하기 표 5에 나타내었으며, 돌연변이를 진행할수록 점차 증가한 것을 알 수 있다. 최종 균주인 'BL-T40'은 플라스크 스케일(flask scale)에서 싸이미딘 생산 배지로 배양하였을 때 1,649mg/ℓ의 높은 생산율을 보였다.The thymidine production ability of the stepwise strains ranging from 'BL-T30' to 'BL-T40' was measured and shown in the following Table 5, and it can be seen that the mutation progressively increased as the mutation progressed. The final strain BL-T40 showed a high production rate of 1,649 mg / L when cultured on a flask scale with thymidine production medium.

Figure 112015002974912-pat00005
Figure 112015002974912-pat00005

실시예Example 6:  6: 싸이미딘Cyimidine 생산을 위한 7ℓ  7ℓ for production 유가식Oil price formula 배양 culture

'BL-T40' 균주의 싸이미딘 생산성을 7ℓ 발효조에서 확인하기 위해 유가식 배양법으로 배양을 수행하였다. 싸이미딘을 생산하기 위한 생산 배지의 조성은 하기 표 6과 같다.In order to confirm the cytidine productivity of the 'BL-T40' strain in a 7-liter fermentor, the cultivation was carried out by fed-batch culture. The composition of the production medium for producing thymidine is shown in Table 6 below.

Figure 112015002974912-pat00006
Figure 112015002974912-pat00006

싸이미딘 생산 균주 'BL-T40'을 5㎖ LB 배지에 접종하여 37℃, 200rpm 조건으로 전 배양하였다. 이후 전 배양액 1㎖, 1.5㎖ 각각을 LB 배지 100㎖, 150㎖이 포함된 500㎖ 배플 플라스크(baffled flask)에 접종하여 37℃, 200rpm이 되도록 배양하였다. 3OD에 도달하면 생산 배지 2.5ℓ가 포함된 7ℓ 자 발효기(jar fermenter)에 접종하여 34℃, 500rpm, 1vvm 조건으로 유가 배양하였다. pH는 수산화암모늄(NH4OH)을 이용하여 pH 7.0을 유지하도록 조절하였고, 배양 중 탄소원인 글리세롤(glyceol)의 농도를 실시간 측정하여 배지내 글리세롤 농도가 30g/ℓ 이하로 떨어지면 60~80g/ℓ이 되도록 첨가해 주었다. 배양 90시간 탄소원의 소모가 끝나는 시점에서 최종 생산된 싸이미딘 7.1g/ℓ 농도를 확인하였으며, 싸이미딘의 정량은 도 7에 나타낸 바와 같이 균체를 제거한 배지 성분을 HPLC로 분석하여 농도를 확인하는 방식으로 수행되었다.
Thymidine production strain 'BL-T40' was inoculated in 5 ml of LB medium and pre-cultured at 37 ° C and 200 rpm. Then, 1 ml and 1.5 ml of the preculture were inoculated into a 500 ml baffled flask containing 100 ml and 150 ml of LB medium and cultured at 37 ° C and 200 rpm. When 3OD was reached, the cells were inoculated on a 7 L jar fermenter containing 2.5 L of the production medium and cultured at 34 ° C., 500 rpm, and 1 vvm. The pH was adjusted to maintain the pH at 7.0 using ammonium hydroxide (NH 4 OH), and the concentration of glycerol, a carbon source during the culture, was measured in real time. When the concentration of glycerol in the medium fell below 30 g / . At the end of the 90-hour carbon source consumption, the final concentration of thymidine was found to be 7.1 g / l. The amount of thymidine was quantitatively determined by a method in which the concentration of the medium was determined by HPLC .

실시예Example 7:  7: 싸이미딘Cyimidine 생산을 위한 500ℓ  500ℓ for production 파일롯트Pilots 배양 culture

500ℓ 파일롯트에서 싸이미딘의 생산은 전술한 7ℓ 배양에서 명시된 배지를 사용하여 수행되었다. 50㎖ LB 배지가 포함된 500㎖ 배플 플라스크에 'BL-T40'을 접종하여 1차 씨드(1st seed)를 준비하고, 4ℓ의 씨드 배지가 포함된 7ℓ 발효기에 1차 씨드액 50㎖를 접종한 후 37℃, 500rpm, 1.0vvm의 조건으로 12시간 배양하여 2차 씨드(2nd seed)를 준비하였다. 이후, 2대의 7ℓ 자(jar) 배양을 통해 얻은 2차 씨드액 8ℓ를 300ℓ 생산 배지가 포함된 500ℓ 파일롯트에서 접종하여 34℃, 260~480rpm 조건으로 120시간 배양하여 싸이미딘을 생산하였다. 배양 중 통기량과 내압은 0.5~1.0vvm 및 0.1~0.5kg/㎤ 범위로 조절하였다. 전술한 7ℓ 배양과 같이 배양 중 탄소원인 글리세롤의 농도를 분석하여 30g/ℓ 이하로 떨어지지 않게 하고, 피딩(feeding) 양은 배양액의 당농도가 60~80g/ℓ을 유지하도록 조절하였다.Production of thymidine in a 500 l pilot lot was carried out using the indicated medium in the 7 liter culture described above. The first seed (1 st seed) was prepared by inoculating 'BL-T40' into a 500 ml baffle flask containing 50 ml of LB medium and inoculating 50 ml of primary seed solution into a 7 l fermenter containing 4 l of seed medium after 12 hours incubation with 37 ℃, 500rpm, conditions of 1.0vvm to prepare a secondary seed (seed 2 nd). Then, 8 liters of the secondary seed liquid obtained through two 7-liter jar cultures were inoculated in a 500-L pile containing 300 L production medium and cultured at 34 ° C. and 260 to 480 rpm for 120 hours to produce thymidine. During the culture, the aeration amount and the internal pressure were adjusted in the range of 0.5 to 1.0 vvm and 0.1 to 0.5 kg / cm 3. The concentration of glycerol, which is a carbon source, during the culture was analyzed to prevent the sugar content from dropping below 30 g / L, and the feeding amount was adjusted to maintain the sugar concentration of the culture medium at 60 to 80 g / L.

도 8에 나타낸 바와 같이, 싸이미딘의 생산은 배양 초기에는 균의 생장과 함께 생산 농도가 증가하는 전형적인 1차 대사산물(primary metabolite)의 양산을 나타내었고, 배양 90시간 당소모가 끝나가는 시점에서 균의 생장이 정지기에 도달하고 싸이미딘 생산 속도가 점차 줄어들었으며, 120시간 최종 발효액의 균체 농도는 140 OD, 생산된 싸이미딘의 농도는 7.6g/ℓ임을 확인하였다.
As shown in FIG. 8, the production of thymidine exhibited mass production of a typical primary metabolite in which the production concentration increased with the growth of bacteria at the initial stage of culture, and at the time of consumption of 90 hours of culture The bacterial growth reached the stationary phase and the production rate of thymidine gradually decreased. The cell concentration of the final fermentation broth was 140 OD and the concentration of thymidine produced was 7.6 g / ℓ for 120 hours.

실시예Example 8:  8: 싸이미딘의Cyimidine 정제 공정 Purification process

도 9는 본 발명의 변이 균주를 이용하여 생산된 싸이미딘의 정제 공정을 예시적으로 나타낸 흐름도이다. 먼저 배양이 끝난 후 세포를 제거하고 얻은 배양액을 1~10㎛ 기공 크기(pore size)의 필터 시스템(micro-filtration system)으로 2단계에 걸쳐 수행하여 불순물을 제거하였다. 그 후 나노 필터(nano-filteration)나 진공 증발기(vacuum-evaporator)를 사용하여 싸이미딘 농도가 약 30g/ℓ 정도 되도록 농축하였다. 여기에 활성 탄소(activated carbon A, 싸이미딘은 binding하지 않음)를 부피비가 3%(w/v) 되도록 첨가한 후 1시간 동안 진탕(shaking)하여 싸이미딘 이외의 성분이 결합(binding) 되도록 하였다. 이어서 활성 탄소를 필터링하여 활성 탄소가 없는(activated carbon A-free) 수용액을 얻었다. 싸이미딘이 포함된 이 용액에 다시 활성탄소(activated carbon B)를 3%(w/w) 되도록 첨가하여 싸이미딘을 결합(binding)시켰다. 그 후 진공 필터링(vacuum filtering)하여 빠져 나온 용액은 제거하고 싸이미딘-활성 탄소(thymidine-activated carbon B)가 남은 조밀한 케익(cked cake)을 3배 비드 용적(bead volume)으로 수세(washing)하였다. 최종 싸이미딘의 용리(elution)는 20% 이소프로필 알코올(isopropyl alcohol)로 수행하였다(표 7 및 도 10 참조).9 is a flowchart exemplarily showing a purification process of thymidine produced using the mutant strain of the present invention. After the culture was completed, the cells were removed and the resulting culture was subjected to two steps of a micro-filtration system with a pore size of 1 to 10 쨉 m to remove impurities. Thereafter, the solution was concentrated to a concentration of about 30 g / l of thymidine using a nano-filter or a vacuum-evaporator. Then, activated carbon A (without thymidine binding) was added thereto in a volume ratio of 3% (w / v), followed by shaking for 1 hour to bind components other than thymidine . The activated carbon was then filtered to obtain an activated carbon A-free aqueous solution. Thymidine was added to the solution containing 3% (w / w) of activated carbon B to bind thymidine. Then, the solution removed by vacuum filtering is removed, and a cakes of thymidine-activated carbon (B) remaining is washed in a bead volume of 3 times, Respectively. The elution of the final thymidine was performed with 20% isopropyl alcohol (see Table 7 and Figure 10).

Figure 112015002974912-pat00007
Figure 112015002974912-pat00007

상기 용리 후 얻어진 프랙션(fraction)은 약 80g/ℓ의 싸이미딘 농도를 보이며, 이후 4℃에서 결정화를 수행하였다. 필터링을 통해 결정화된 싸이미딘을 얻은 후 4℃ 탈이온수(deionized water)로 천천히 수세(washing)하였다. 최대 수율을 얻기 위해 수세 과정 중 녹아 나온 싸이미딘에 대해서도 다시 재결정화 과정을 반복하였다. 싸이미딘 결정을 50℃ 오븐에서 12시간 동안 건조시키고, HPLC 분석을 수행하여 싸이미딘의 순도를 결정하였다. 도 11에 나타낸 바와 같이, 표준 싸이미딘(standard thymidine, Sigma사)과 비교 결과 상기의 정제 과정을 통해 순도 99%의 싸이미딘을 얻을 수 있음을 확인하였다.
The fraction obtained after the elution showed a cytidine concentration of about 80 g / l, and then crystallization was carried out at 4 캜. Crystallized thymidine was obtained by filtration and then slowly washed with 4 ° C deionized water. In order to obtain the maximum yield, the recrystallization process was repeated for the thymidine dissolved in the wash. The thymidine crystals were dried in an oven at 50 < 0 > C for 12 hours and HPLC analysis was performed to determine the purity of thymidine. As shown in FIG. 11, it was confirmed that cyimidine having a purity of 99% can be obtained through the above purification process as a result of comparison with standard thymidine (Sigma).

이상에서 설명한 본 발명의 바람직한 실시예들은 기술적 과제를 해결하기 위해 개시된 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 사상 및 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이며, 이러한 수정 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.While the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, Such modifications and changes are to be considered as falling within the scope of the following claims.

한국미생물보존센터(국내)Korea Microorganism Conservation Center (Domestic) KFCC11603PKFCC11603P 2014121220141212

<110> ForBioKorea Co., Ltd. <120> Fermentation process for preparing thymidine by the recombinant E. coli <130> NP14-12224 <160> 3 <170> KopatentIn 2.0 <210> 1 <211> 1401 <212> DNA <213> Artificial Sequence <220> <223> E.coli soluble transhydrogenase(udhA) <400> 1 atgccacatt cctacgatta cgatgccata gtaataggtt ccggccccgg cggcgaaggc 60 gctgcaatgg gcctggttaa gcaaggtgcg cgcgtcgcag ttatcgagcg ttatcaaaat 120 gttggcggcg gttgcaccca ctggggcacc atcccgtcga aagctctccg tcacgccgtc 180 agccgcatta tagaattcaa tcaaaaccca ctttacagcg accattcccg actgctccgc 240 tcttcttttg ccgatatcct taaccatgcc gataacgtga ttaatcaaca aacgcgcatg 300 cgtcagggat tttacgaacg taatcactgt gaaatattgc agggaaacgc tcgctttgtt 360 gacgagcata cgttggcgct ggattgcccg gacggcagcg ttgaaacact aaccgctgaa 420 aaatttgtta ttgcctgcgg ctctcgtcca tatcatccaa cagatgttga tttcacccat 480 ccacgcattt acgacagcga ctcaattctc agcatgcacc acgaaccgcg ccatgtactt 540 atctatggtg ctggagtgat cggctgtgaa tatgcgtcga tcttccgcgg tatggatgta 600 aaagtggatc tgatcaacac ccgcgatcgc ctgctggcat ttctcgatca agagatgtca 660 gattctctct cctatcactt ctggaacagt ggcgtagtga ttcgtcacaa cgaagagtac 720 gagaagatcg aaggctgtga cgatggtgtg atcatgcatc tgaagtcggg taaaaaactg 780 aaagctgact gcctgctcta tgccaacggt cgcaccggta ataccgattc gctggcgtta 840 cagaacattg ggctagaaac tgacagccgc ggacagctga aggtcaacag catgtatcag 900 accgcacagc cacacgttta cgcggtgggc gacgtgattg gttatccgag cctggcgtcg 960 gcggcctatg accaggggcg cattgccgcg caggcgctgg taaaaggcga agccaccgca 1020 catctgattg aagatatccc taccggtatt tacaccatcc cggaaatcag ctctgtgggc 1080 aaaaccgaac agcagctgac cgcaatgaaa gtgccatatg aagtgggccg cgcccagttt 1140 aaacatctgg cacgcgcaca aatcgtcggc atgaacgtgg gcacgctgaa aattttgttc 1200 catcgggaaa caaaagagat tctgggtatt cactgctttg gcgagcgcgc tgccgaaatt 1260 attcatatcg gtcaggcgat tatggaacag aaaggtggcg gcaacactat tgagtacttc 1320 gtcaacacca cctttaacta cccgacgatg gcggaagcct atcgggtagc tgcgttaaac 1380 ggtttaaacc gcctgtttta a 1401 <210> 2 <211> 879 <212> DNA <213> Artificial Sequence <220> <223> E.coli NAD kinase(yfjB) <400> 2 atgaataatc atttcaagtg tattggcatt gtgggacacc cacggcaccc cactgcactg 60 acaacacatg aaatgctcta ccgctggctg tgcacaaaag gttacgaggt catcgttgag 120 caacaaatcg ctcacgaact gcaactgaag aatgtgaaaa ctggcacgct cgcggagatt 180 gggcaactag ctgatctcgc ggtagtcgtt ggtggcgacg gtaatatgct gggcgcggca 240 cgcacactcg cccgttacga tattaaagtt attggaatca accgtggcaa cctgggtttc 300 ctgactgacc ttgaccccga taacgcccag caacagttag ccgatgtgct ggaaggccac 360 tacatcagcg agaaacgttt tttgctggaa gcgcaagtct gtcagcaaga ttgccagaaa 420 cgcatcagca ccgcgataaa tgaagtggtg cttcatccag gcaaagtggc gcatatgatt 480 gagttcgaag tgtatatcga cgagatcttt gcgttttctc agcgatctga tggactaatt 540 atttcgacgc caacaggctc caccgcctat tccctctctg caggcggtcc tattctgacc 600 ccctctctgg atgcgattac cctggtgccc atgttcccgc atacgttgtc agcacgacca 660 ctggtcataa acagcagcag cacgatccgt ctgcgttttt cgcatcgccg taacgacctg 720 gaaatcagtt gcgacagcca gatagcactg ccgattcagg aaggtgaaga tgtcctgatt 780 cgtcgctgtg attaccatct gaatctgatt catccgaaag attacagtta tttcaacaca 840 ttaagcacca agctcggctg gtcaaaaaaa ttattctaa 879 <210> 3 <211> 225 <212> DNA <213> Artificial Sequence <220> <223> E.coli phage shock protein B(pspB) <400> 3 atgagcgcgc tatttctggc tattccgtta accatttttg tgctgtttgt tttaccgatc 60 tggttatggc tgcattacag caatcgttct ggtcgcagtg aattgtcgca aagtgagcag 120 cagcgattag cgcaactggc tgatgaagca aaacggatgc gcgaacgtat tcaggcgctg 180 gaatctattc ttgatgcaga acatccgaac tggagggatc gctaa 225 <110> ForBioKorea Co., Ltd. <120> Fermentation process for preparing thymidine by the recombinant          E. coli <130> NP14-12224 <160> 3 <170> Kopatentin 2.0 <210> 1 <211> 1401 <212> DNA <213> Artificial Sequence <220> <223> E. coli soluble transhydrogenase (udhA) <400> 1 atgccacatt cctacgatta cgatgccata gtaataggtt ccggccccgg cggcgaaggc 60 gctgcaatgg gcctggttaa gcaaggtgcg cgcgtcgcag ttatcgagcg ttatcaaaat 120 gttggcggcg gttgcaccca ctggggcacc atcccgtcga aagctctccg tcacgccgtc 180 agccgcatta tagaattcaa tcaaaaccca ctttacagcg accattcccg actgctccgc 240 tcttcttttg ccgatatcct taaccatgcc gataacgtga ttaatcaaca aacgcgcatg 300 cgtcagggat tttacgaacg taatcactgt gaaatattgc agggaaacgc tcgctttgtt 360 gacgagcata cgttggcgct ggattgcccg gacggcagcg ttgaaacact aaccgctgaa 420 aaatttgtta ttgcctgcgg ctctcgtcca tatcatccaa cagatgttga tttcacccat 480 ccacgcattt acgacagcga ctcaattctc agcatgcacc acgaaccgcg ccatgtactt 540 atctatggtg ctggagtgat cggctgtgaa tatgcgtcga tcttccgcgg tatggatgta 600 aaagtggatc tgatcaacac ccgcgatcgc ctgctggcat ttctcgatca agagatgtca 660 gattctctct cctatcactt ctggaacagt ggcgtagtga ttcgtcacaa cgaagagtac 720 gagaagatcg aaggctgtga cgatggtgtg atcatgcatc tgaagtcggg taaaaaactg 780 aaagctgact gcctgctcta tgccaacggt cgcaccggta ataccgattc gctggcgtta 840 cagaacattg ggctagaaac tgacagccgc ggacagctga aggtcaacag catgtatcag 900 accgcacagc cacacgttta cgcggtgggc gacgtgattg gttatccgag cctggcgtcg 960 gcggcctatg accaggggcg cattgccgcg caggcgctgg taaaaggcga agccaccgca 1020 catctgattg aagatatccc taccggtatt tacaccatcc cggaaatcag ctctgtgggc 1080 aaaaccgaac agcagctgac cgcaatgaaa gtgccatatg aagtgggccg cgcccagttt 1140 aaacatctgg cacgcgcaca aatcgtcggc atgaacgtgg gcacgctgaa aattttgttc 1200 catcgggaaa caaaagagat tctgggtatt cactgctttg gcgagcgcgc tgccgaaatt 1260 attcatatcg gtcaggcgat tatggaacag aaaggtggcg gcaacactat tgagtacttc 1320 gtcaacacca cctttaacta cccgacgatg gcggaagcct atcgggtagc tgcgttaaac 1380 ggtttaaacc gcctgtttta a 1401 <210> 2 <211> 879 <212> DNA <213> Artificial Sequence <220> <223> E. coli NAD kinase (yfjB) <400> 2 atgaataatc atttcaagtg tattggcatt gtgggacacc cacggcaccc cactgcactg 60 acaacacatg aaatgctcta ccgctggctg tgcacaaaag gttacgaggt catcgttgag 120 caacaaatcg ctcacgaact gcaactgaag aatgtgaaaa ctggcacgct cgcggagatt 180 gggcaactag ctgatctcgc ggtagtcgtt ggtggcgacg gtaatatgct gggcgcggca 240 cgcacactcg cccgttacga tattaaagtt attggaatca accgtggcaa cctgggtttc 300 ctgactgacc ttgaccccga taacgcccag caacagttag ccgatgtgct ggaaggccac 360 tacatcagcg agaaacgttt tttgctggaa gcgcaagtct gtcagcaaga ttgccagaaa 420 cgcatcagca ccgcgataaa tgaagtggtg cttcatccag gcaaagtggc gcatatgatt 480 gagttcgaag tgtatatcga cgagatcttt gcgttttctc agcgatctga tggactaatt 540 atttcgacgc caacaggctc caccgcctat tccctctctg caggcggtcc tattctgacc 600 ccctctctgg atgcgattac cctggtgccc atgttcccgc atacgttgtc agcacgacca 660 ctggtcataa acagcagcag cacgatccgt ctgcgttttt cgcatcgccg taacgacctg 720 gaaatcagtt gcgacagcca gatagcactg ccgattcagg aaggtgaaga tgtcctgatt 780 cgtcgctgtg attaccatct gaatctgatt catccgaaag attacagtta tttcaacaca 840 ttaagcacca agctcggctg gtcaaaaaaa ttattctaa 879 <210> 3 <211> 225 <212> DNA <213> Artificial Sequence <220> E. coli phage shock protein B (pspB) <400> 3 atgagcgcgc tatttctggc tattccgtta accatttttg tgctgtttgt tttaccgatc 60 tggttatggc tgcattacag caatcgttct ggtcgcagtg aattgtcgca aagtgagcag 120 cagcgattag cgcaactggc tgatgaagca aaacggatgc gcgaacgtat tcaggcgctg 180 gaatctattc ttgatgcaga acatccgaac tggagggatc gctaa 225

Claims (3)

재사용 대사 경로(salvage pathway)에 관여하는 유전자인 deoA, tdk, uppudp가 제거되고, 서열번호 1로 기재되는 염기서열로 이루어진 유전자 udhA, 서열번호 2로 기재되는 염기서열로 이루어진 유전자 yfjB 및 서열번호 3으로 기재되는 염기서열로 이루어진 유전자 pspB가 발현되고, 카바모일-아스파테이트 합성 억제에 관여하는 유전자인 purR, pepAargR이 제거되고, pyr 오페론(operon)을 구성하는 유전자 pyrBI, pyrC, pyrDpyrE가 과발현된 싸이미딘(thymidine) 생산능을 보유한 대장균 변이주.The re-pathway genes deoA, tdk, upp and udp involved in (salvage pathway) is removed, and gene yfjB and a sequence consisting of the nucleotide sequence represented by gene udhA, SEQ ID NO: 2 consisting of the nucleotide sequence represented by SEQ ID NO: 1 The gene pspB consisting of the nucleotide sequence of SEQ ID NO: 3 is expressed and the genes purR , pepA and argR involved in the inhibition of carbamoyl-aspartate synthesis are removed and the genes pyrBI , pyrC and pyrD constituting the pyr operon and pyrE overexpression ssayimi Dean (thymidine) E. coli mutants have a production capacity. 제1항에 있어서,
상기 대장균 변이주는 수탁번호 KFCC11603P로 한국미생물보존센터에 수탁된 Escherichia coli BLT40인 것을 특징으로 하는 대장균 변이주.
The method according to claim 1,
Wherein the Escherichia coli mutant strain is Escherichia coli BLT40 deposited in the Korean Microorganism Conservation Center under the deposit number KFCC11603P.
제1항 또는 제2항의 대장균 변이주를 사용하여 싸이미딘(thymidine)을 생산하는 방법.A method for producing thymidine using the Escherichia coli mutant of claim 1 or 2.
KR1020150004296A 2015-01-12 2015-01-12 Fermentation process for preparing thymidine by the recombinant E. coli KR101653245B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150004296A KR101653245B1 (en) 2015-01-12 2015-01-12 Fermentation process for preparing thymidine by the recombinant E. coli

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150004296A KR101653245B1 (en) 2015-01-12 2015-01-12 Fermentation process for preparing thymidine by the recombinant E. coli

Publications (2)

Publication Number Publication Date
KR20160086659A KR20160086659A (en) 2016-07-20
KR101653245B1 true KR101653245B1 (en) 2016-09-01

Family

ID=56680016

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150004296A KR101653245B1 (en) 2015-01-12 2015-01-12 Fermentation process for preparing thymidine by the recombinant E. coli

Country Status (1)

Country Link
KR (1) KR101653245B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287172B (en) * 2016-04-13 2021-02-02 南京诺云生物科技有限公司 Method for producing thymidine phosphorylase by using escherichia coli fermentation
CN108300727B (en) * 2017-01-11 2020-04-07 上海创诺医药集团有限公司 Engineering strain for producing β -thymidine and application thereof
CN114032265A (en) * 2021-12-03 2022-02-11 江西诚志生物工程有限公司 Process for producing thymidine by fermentation method
CN114410561B (en) * 2022-01-28 2023-09-01 天津科技大学 Genetically engineered strain for producing thymidine and construction method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hyeon Cheol Lee 등. Journal of Biotechnology. Vol. 149, 페이지 24-32 (2010)

Also Published As

Publication number Publication date
KR20160086659A (en) 2016-07-20

Similar Documents

Publication Publication Date Title
KR101376669B1 (en) Microorganisms for Producing 5’-Xanthylic acid and Methods for Preparing 5’-Xanthylic acid
KR101653245B1 (en) Fermentation process for preparing thymidine by the recombinant E. coli
CN115786220A (en) Recombinant strain for producing 2&#39; -fucosyllactose, construction method and application
CN116463273A (en) Method for enhancing accumulation of 5&#39; -cytidine acid and application thereof
KR101611036B1 (en) Development of strain for deoxycytidine production by a metabolic engineering in Escherichia coli
AU2002323752B2 (en) Microorganism overproducing 5&#39;-xanthylic acid
JP5230447B2 (en) New method
KR20070056491A (en) Microorganisms having a gene purf and production method of xanthosine 5&#39;-monophosphate using the same
KR100954052B1 (en) Microorganisms of corynebacterium having an inactivated gene encoding abc-transpoter and processes for the preparation of 5&#39;-inosinic acid using the same
EP1844135B1 (en) Escherichia strain capable of converting xmp to gmp and maintaining the inactivated state of gene(s) associated with gmp degradation and methods of using the same
KR100857379B1 (en) Microorganism overexpressed 5&#39;-phosphoribosyl-5-aminoimidazoleair carboxylase and the process for producing 5&#39;-inosinic acid using the same
RU2203948C2 (en) Strain of bacterium corynebacterium ammoniagenes as producer of uridine-5&#39;-monophosphate (variants), method for preparing uridine-5&#39;-monophosphate
JPH0630583B2 (en) DIA and its uses
KR100785248B1 (en) 5&#39;- microorganism overexpressed purc gene and the process for production method of 5&#39;-inosinic acid using the same
TWI627278B (en) Mutant of corynebacterium glutamicum producing l-histidine and method for producing l-histidine using the same
US20140322773A1 (en) Method for producing lactic acid
CN115125279B (en) Recombinant microorganism and method for producing 2&#39; -deoxycytidine
KR100964078B1 (en) Corynebacterium ammoniagenes having enhanced 5&#39;-inosinic acid productivity and method of producing 5&#39;-inosinic acid using the same
EP4269574A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
EP4269575A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
US20240060057A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
US20240060103A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
KR100937326B1 (en) Microorganisms of corynebacterium having an inactivated gene encoding oxidoreductase and processes for the preparation of 5&#39;-inosinic acid using the same
WO2006059877A1 (en) Microorganism producing 5&#39;-xanthylic acid and production method of 5&#39;-xanthylic acid using the same
CN117467594A (en) Genetically engineered bacterium for producing 2&#39; -fucosyllactose and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190822

Year of fee payment: 4