KR101648489B1 - 박막 증착 장치 및 이를 이용한 박막 증착 방법 - Google Patents

박막 증착 장치 및 이를 이용한 박막 증착 방법 Download PDF

Info

Publication number
KR101648489B1
KR101648489B1 KR1020140188187A KR20140188187A KR101648489B1 KR 101648489 B1 KR101648489 B1 KR 101648489B1 KR 1020140188187 A KR1020140188187 A KR 1020140188187A KR 20140188187 A KR20140188187 A KR 20140188187A KR 101648489 B1 KR101648489 B1 KR 101648489B1
Authority
KR
South Korea
Prior art keywords
radiation angle
substrate
angle adjusting
linear
evaporation source
Prior art date
Application number
KR1020140188187A
Other languages
English (en)
Other versions
KR20160078627A (ko
Inventor
원동찬
허무용
강창호
송기철
최병호
Original Assignee
주식회사 에스에프에이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스에프에이 filed Critical 주식회사 에스에프에이
Priority to KR1020140188187A priority Critical patent/KR101648489B1/ko
Publication of KR20160078627A publication Critical patent/KR20160078627A/ko
Application granted granted Critical
Publication of KR101648489B1 publication Critical patent/KR101648489B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 박막 증착용 증발물질의 효율성을 증대할 수 있고, 박막 증착 공정 시간의 단축이 가능한 박막 증착 장치 및 이를 이용한 박막 증착 방법에 관한 것으로, 본 발명에 따른 박막 증착 장치는 내부공간에 기판이 제공되는 챔버; 상기 기판과 서로 대향하도록 제공되고, 증발물질이 방사되는 노즐이 제1 방향으로 선형으로 형성된 선형 증발원; 및 제1 방향으로 선형으로 형성된 상기 노즐 양쪽 상부 측에 배치되고, 소정의 간격으로 서로 이격되어 쌍을 이루는 방사각 조절부;를 포함하고, 상기 방사각 조절부는 상기 제1 방향에 수직한 방향으로 이동하여 상기 간격을 변화시킨다.

Description

박막 증착 장치 및 이를 이용한 박막 증착 방법{Apparatus for depositing thin films and method using the same}
본 발명은 박막 증착 장치 및 이를 이용한 박막 증착 방법에 관한 것으로, 보다 구체적으로 박막 증착 재료의 효율성을 증대할 수 있고, 증착 공정 시간의 단축이 가능한 박막 증착 장치 및 이를 이용한 박막 증착 방법에 관한 것이다.
정보 통신 기술의 비약적인 발전과 시장의 팽창에 따라 유기발광소자(OLED)는 휴대전화, 카오디오, 디지털카메라와 같은 소형기기의 디스플레이 및 조명기기 등에 주로 사용되고 있으며, 빠른 응답속도, 기존의 LCD보다 낮은 소비 전력, 경량성, 별도의 백라이트(back light) 장치가 필요 없어서 초박형으로 만들 수 있는 점, 고휘도 등의 장점으로 인해서 최근에는 TV 등 대형기기의 디스플레이, 플렉서블 디스플레이 등에 이용될 수 있는 차세대 디스플레이 소자로 주목받고 있다.
이러한 유기발광소자는 기판 위에 애노드(anode), 정공 주입층(hole injection layer), 정공 운송층(hole transfer layer), 발광층(emitting layer), 전자 운송층(electron transfer layer), 전자 주입층(electron injection layer), 캐소드(cathode) 등의 막이 순서대로 적층되어 형성하고, 애노드와 캐소드 사이에 전압을 걸어주면, 에너지의 차이가 적층 구조에 형성되고 주입된 전자와 정공(hole)이 재결합하면서, 남는 여기 에너지가 빛으로 발생되는 것이다.
유기발광소자로서 풀 칼라(full color)를 구현하기 위해서는 발광층을 패터닝해야 하는데, 마스크 방식을 적용하여 OLED를 제작하는 경우에는 공정챔버 내부에 기판과 패터닝(patterning)된 마스크를 수평으로 배치시킨 후에 마스크를 향해 유기 증발물질을 증발하여 기판에 증발물질을 증착시키는 수평식 상향 증착공법이 널리 적용되고 있다. 수평식 상향 증착공법은, 공정챔버의 바닥면에 대해 수평으로 배치된 기판과 마스크를 상호 얼라인한 후 합착시켜 수평상태에서 기판에 유기물을 증착하는 방법이다. 한편, 2세대 이하의 소형기판에 대한 증착공정은 복수의 포인트 소스(point source) 상부에서 기판을 이송하는 동시에 기판에 박막을 증착할 수도 있다.
일반적인 유기발광소자 제조 장치에서는, 증발재료는 증발원의 증발구에 상당하는 개구부(노즐)의 중심으로부터 그 개구를 포함하는 면의 법선 방향의 축을 중심축으로 해서 등방적으로 증발하고, 증발한 재료는 진공 중에 비상해서 기판 표면에 부착되어 박막이 증착된다. 즉, 증발원에서 증발된 재료는 기판이 위치하는 수직방향뿐만 아니라 기판이 위치하지 않는 방향으로도 증발된다. 이로 인해서 기판 이외에도 챔버 내부의 다른 구성들에도 증착됨으로써 챔버 내부의 다른 구성들이 오염되기도 하고, 반복된 증착으로 인해서 파티클이 생성되어 불순물로서 작용하는 등의 문제점을 발생시킨다. 또한, 기판 이외의 불필요한 부분을 향해서도 재료가 증발됨으로써 증발재료의 불필요한 소모가 발생하게 된다.
공개특허 제2012-0077382호
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 것으로서, 스캔 길이를 줄임으로써 박막 증착용 증발물질의 효율성을 증대할 수 있고, 박막 증착 공정 시간의 단축이 가능한 박막 증착 장치 및 이를 이용한 박막 증착 방법을 제공하고자 한다.
상기와 같은 목적을 달성하기 위하여 본 발명의 실시예에 따른 박막 증착 장치는 내부공간에 기판이 제공되는 챔버; 상기 기판과 서로 대향하도록 제공되고, 증발물질이 방사되는 노즐이 제1 방향으로 선형으로 형성된 선형 증발원; 및 제1 방향으로 정렬된 상기 노즐 양쪽 상부 측에 배치되고, 소정의 간격으로 서로 이격되어 쌍을 이루는 방사각 조절부;를 포함하고, 상기 방사각 조절부는 상기 제1 방향에 수직한 방향으로 이동하여 상기 간격을 변화할 수 있다.
상기 방사각 조절부는 제1 방향으로 선형으로 형성된 상기 노즐을 가로지르는 가상의 면을 중심으로 대칭적으로 배치되고, 상기 가상의 면을 중심으로 서로 대칭적으로 이동할 수 있다.
상기 방사각 조절부는 상기 간격을 변화함으로써 증착물질이 방사되는 방사각을 조절할 수 있다.
상기 기판 및 상기 선형 증발원의 상대적인 위치에 따라 상기 방사각 조절부 사이의 간격을 변화할 수 있다.
상기 기판 또는 상기 선형 증발원를 지지하는 캐리어부; 및 상기 제1 방향과 교차하는 제2 방향으로 상기 캐리어부를 이송하는 캐리어 이송부를 더 포함할 수 있다.
상기 기판 위치에 대응하는 증착영역에서는 상기 방사각 조절부는 제1 간격으로 서로 이격되고, 상기 제2 방향으로 상기 증착영역의 전단 또는 후단에 위치하는 회피영역에서는 상기 방사각 조절부는 상기 제1 간격보다 좁은 제2 간격으로 서로 이격될 수 있다.
상기 기판 또는 상기 선형 증발원의 상대적인 위치를 검출하는 위치 검출부를 더 포함할 수 있다.
진공으로 유지되는 상기 내부공간에 밀폐공간을 제공되는 대기압 박스부를 더 포함하고, 상기 대기압 박스부의 밀폐공간은 대기압으로 유지되고, 상기 밀폐공간에 상기 방사각 조절부를 이동시키는 구동력을 제공하는 구동부를 수용할 수 있다.
상기 구동부에 연결되는 연동하는 선형 이동부; 상기 선형 이동부의 이동 경로를 가이드하는 선형 가이드부; 및 상기 선형 이동부와 상기 방사각 조절부에 연결되어 상기 구동력을 전달하는 암(arm)부를 더 포함할 수 있다.
상기 방사각 조절부는 상기 선형 증발원을 따라 제1 방향으로 연장된 형태로 이루어지고, 상기 선형 증발원의 높이보다 높은 높이를 갖는 격벽부와 상기 격벽부의 상단에서 내측으로 절곡된 절곡부를 포함할 수 있다.
쌍을 이루는 상기 방사각 조절부는 상기 제1 방향을 따라서 동일한 간격을 갖도록 배치될 수 있다.
상기 박막 증착 장치는 서로 다른 증발물질을 방사하는 복수의 상기 선형 증발원; 및 상기 복수의 선형 증발원 각각에 대응하는 복수의 상기 방사각 조절부;를 포함할 수 있다.
복수의 상기 선형 증발원 각각의 온도와, 복수의 상기 방사각 조절부 각각의 간격을 서로 독립적으로 조절할 수도 있다.
본 발명의 다른 실시예에 따른 박막 증착 방법은 증발물질이 방사되는 노즐이 제1 방향으로 선형으로 형성된 선형 증발원; 및 제1 방향으로 정렬된 상기 노즐 양쪽 상부 측에 배치되고, 소정의 간격으로 서로 이격되어 쌍을 이루는 방사각 조절부;를 포함하는 박막 증착 장치를 이용하여 기판 상에 박막을 증착하는 박막 증착 방법에 있어서, 상기 제1 방향과 수직하는 스캔 방향으로 상기 기판 또는 상기 선형 증발원을 이동시키는 단계; 상기 선형 증발원이 제1 회피영역을 스캔하는 동안에는 제1 방사각도로 상기 증발물질을 방사하는 단계; 상기 선형 증발원이 증착영역을 스캔하는 동안에는 제1 방사각도보다 넓은 제2 방사각도로 상기 증발물질을 방사하는 단계; 및 상기 선형 증발원이 제2 회피영역을 스캔하는 동안에는 제2 방사각도보다 좁은 방사각도로 상기 증발물질을 방사하는 단계;를 포함할 수 있다.
쌍을 이루는 상기 방사각 조절부는 상기 스캔 방향에 평행하게 대칭적으로 서로 이동시켜 상기 간격을 변화함으로써 증발물질의 방사각도를 조절할 수 있다.
상기 기판 및 상기 선형 증발원의 상대적인 위치에 따라 상기 방사각 조절부 사이의 간격을 변화함으로써 증발물질의 방사각도를 조절할 수 있다.
본 발명에 따른 박막 증착 장치 및 이를 이용한 박막 증착 방법에 의하면, 선형 증발원에서 증발되는 증발물질의 방사각도를 조절함으로써 선형 증발원 또는 기판의 스캔 길이를 줄일 수 있고, 이로 인해서 증발물질의 사용 효율성을 증대할 수 있고, 박막 증착 공정 시간의 단축 등과 같은 공정 효율도 향상시킬 수 있을 뿐만 아니라 박막 증착 장치의 크기를 감소시킬 수 있다.
그리고, 증발물질이 기판 이외의 불필요한 부분으로 증발되는 것을 제한하여 챔버 내 구성들의 오염이나 반복된 증착에 따른 파티클 형성 등도 줄일 수 있어서, 오염된 챔버 내부 구성들의 세척 공정을 줄일 수 있고, 불순물 감소로 인해서 유기발광소자의 양산화를 용이하게 달성할 수 있다.
또한, 서로 대향하는 쌍으로 이루어진 방사각 조절부의 간격을 조절함으로써 간단히 방사각을 제어할 수 있고, 진공의 챔버 내에서 대기압으로 유지되는 소형의 대기압 박스부에 방사각 조절부용 구동부를 제공하여 기판 또는 선형 증발원의 스캔과 간섭되지 않도록 할 수 있어서 간단한 방법과 장치로서 증발물질의 방사각 조절과 스캔 길이를 제어할 수 있다.
도 1은 본 발명의 실시예에 따른 박막 증착 장치의 정면도 및 단면도이다.
도 2는 본 발명의 실시예에 따른 방사각 조절부의 단면도이다.
도 3는 본 발명의 실시예에 따른 방사각 조절부의 작동을 나타낸 단면도이다.
도 4는 본 발명의 실시예에 따른 방사각 조절부의 구동 장치를 설명하는 사시도이다.
도 5는 본 발명의 다른 실시예에 따른 박막 증착 장치의 계략적인 단면도이다.
도 6은 본 발명의 또 다른 실시예에 따른 박막 증착 장치의 계략적인 단면도이다.
도 7은 본 발명의 또 다른 실시예에 따른 박막 증착 방법의 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 내시경의 다양한 실시예들을 상세히 설명한다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이다. 단지 본 발명의 실시 예는 본 발명의 개시가 완전하도록 하고, 해당분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면은 실시 예를 설명하기 위해 그 크기가 과장될 수 있고, 도면상의 동일 부호는 동일한 요소를 지칭한다.
도 1은 본 발명의 실시예에 따른 박막 증착 장치의 정면도 및 단면도이고, 도 2는 본 발명의 실시예에 따른 방사각 조절부의 단면도이고, 도 3는 본 발명의 실시예에 따른 방사각 조절부의 작동을 나타낸 단면도이다.
도 1 내지 도 3을 참조하면, 본 발명에 따른 박막 증착 장치는 내부공간에 기판(10)이 제공되는 챔버(미도시); 상기 기판(10)과 서로 대향하도록 제공되고, 증발물질이 방사되는 노즐(110)이 제1 방향으로 선형으로 형성된 선형 증발원(100); 및 제1 방향으로 선형으로 형성된 상기 노즐(110) 양쪽 상부 측에 배치되고, 소정의 간격으로 서로 이격되어 쌍을 이루는 방사각 조절부(200);를 포함할 수 있다.
챔버는 기판(10) 상에 박막을 증착하는 공정이 진행되는 내부 공간을 제공하고, 증착 공정이 진행되는 동안 챔버 내부 공간은 증착 공정의 신뢰성을 확보할 수 있도록 진공상태를 유지한다.
유리 등으로 이루어진 기판(10)은 일반적으로 목적하는 구조를 갖도록 패터닝(patterning)된 마스크를 어라인하여 배치시키는데, 상향 증착법의 경우에는 기판을 챔버의 상부에 배치하고, 유기 증발물질을 증발하는 증발원을 챔버의 하부에 배치하여 서로 대향하는 증발원으로부터 증발물질이 방사되어 기판 상에 도달하여 박막이 증착한다. 이러한 기판과 증발원의 배치는 특별히 한정되지 않고, 챔버 내부공간에서 서로 대향되어 배치되면 족하다.
선형 증발원(100)은 제1 방향으로 연장된 선형으로 이루어지고, 내부에 제공된 증발물질을 가열하여 증발물질을 증발시키는 본체부(120)과 본체부(120)의 상단에 위치하여 증발된 증발물질이 기판을 향하여 방사되도록 하는 노즐(110)을 포함하여 구성된다. 이때 노즐(110)은 선형 증발원(100)의 장축 방향(제1 방향)으로 선형으로 형성되는데, 도 1에서와 같이 복수의 노즐(110)이 제1 방향으로 일렬로 정렬되어 형성될 수도 있고, 하나 또는 복수의 노즐이 제1 방향으로 길쭉한 형태로 형성된 개구부로 이루어질 수도 있다.
한편, 대면적 기판의 경우 복수의 점증발원을 이용하는 것보다 장비 및 공정의 효율성을 위하여 선형 증발원을 기판에 대향하도록 배치한 후에 기판(10) 또는 선형 증발원(100)을 상대적으로 이동시켜서 기판(10)을 선형 증발원(100)이 1회 또는 필요에 따라서는 복수 회 스캔함으로써 대면적 기판 상에 원하는 박막을 증착할 수 있다. 도 1 내지 도 3에서는 기판이 정지하고 있고 선형 증발원(100)이 이동하여 스캔하는 것으로 도시되어 있는데, 특별히 이에 한정되지 아니하고 고정된 캐리어(320) 상이 배치되어 선형 증발원(100)이 정지하고 있고, 기판(10)을 지지하는 캐리어부(310)를 이송하는 캐리어 이송부(400)에 의해서 기판(10)이 이동하여 스캔하는 것도 무방하다(도 6 참조).
방사각 조절부(200)는 제1 방향을 따라서 선형으로 형성된 노즐(110)의 양쪽 상부 측에 배치되고, 소정의 간격으로 서로 이격되어 쌍을 이루도록 제공된다. 증발물질은 증발원의 증발구에 상당하는 노즐의 중심으로부터 그 노즐을 포함하는 면의 법선 방향의 축을 중심축으로 해서 등방적으로 증발하여, 기판 뿐만 아니라 원치 않는 부분에도 증착하는 문제점을 해소하기 위하여 본 발명의 방사각 조절부(200)는 노즐(110)과 기판(10) 사이의 공간(즉, 노즐(110)의 양쪽 상부 측)에 배치하여, 일정 각도로 방사되는 증발물질만 통과하고 나머지 각도로 증발되는 증발물질은 차단되도록 한다.
한편, 방사각 조절부(200)는 선형 증발원(200)을 따라 제1 방향으로 연장된 형태로 이루어지고, 선형 증발원(100)의 측면과 나란한 격벽부와 격벽부의 상단부에서 내측으로 절곡된 절곡부로 구성되는데, 이때 증발 물질의 차단효과를 위하여 격벽부의 높이는 선형 증발원(200)의 높이보다 높고, 절곡부는 기판(100)과 평행하게 형성될 수 있다.
선형 증발원(100)에서 방사된 증발물질은 방사각 조절부(200)의 절곡부 사이의 간격(오픈 영역)을 통하여 기판을 향하여 방출될 수 있고, 그외 영역으로 방사된 증발물질은 방사각 조절부(200)의 내부면에 증착되어 차단된다. 따라서, 방사각 조절부(200) 사이의 간격이 넓으면 방사각은 넓고, 방사각 조절부(200) 사이의 간격이 좁으면 방사각은 좁게 조절된다(도 2 참조). 쌍을 이루는 방사각 조절부(200)는 제1 방향을 따라서 동일한 간격을 갖도록 배치하여(즉, 마주보는 방사각 조절부(200) 한 쌍이 평행하게 배치하여), 선형 증발원(100)의 노즐을 통해서 증발하는 증발물질이 선형 증발원(100)의 길이 방향(제1 방향)에 대해서 대칭적으로 방사될 수 있도록 하여 기판(10) 상에 증착되는 박막의 균일성도 향상 시킬 뿐만 아니라, 방사각 조절부(200)의 내부면에 부착되는 증발물질도 일정하게 제어할 수 있다.
노즐을 포함하는 면의 법선 방향의 축을 중심축으로 해서 등방적으로 증발되는데, 본 발명에서는 증발물질의 방사각은 방사각 조절부(200) 절곡부 사이의 간격을 조절하여 변화시킬 수 있는데, 특히 쌍을 이루는 방사각 조절부(200) 각각은 선형 증발원(100)의 길이 방향(즉, 제1 방향)에 수직한 방향으로 이동하여 상기 간격을 변화할 수 있다.
이때, 방사각 조절부(200)는 제1 방향을 따라 선형으로 형성된 상기 노즐(110)을 가로지르는 가상의 면을 중심으로 대칭적으로 배치되고, 간격을 변화시킬 필요가 있는 경우에는 상기 가상의 면을 중심으로 방사각 조절부(200)의 쌍이 서로 대칭적으로 이동하도록 할 수 있다. 쌍을 이루는 방사각 조절부(200)이 노즐(110)을 가로지르는 가상의 면에 대해서 비대칭적으로 배치되거나, 간격 조절을 위해서 일방만을 이동하거나, 비대칭적으로 이동할 수도 있으나, 이런 경우에는 방사각 조절부(200)의 내부면에 증착되는 증발물질의 양이 서로 상이하여 일방에 많이 싸이게 되어, 파티클의 형성 등에 의한 불순물 생성 가능성이 증대하므로 보다 자주 방사각 조절부(200)의 클리닝이 요구될 문제점이 있으므로, 방사각 조절부(200)의 쌍은 대칭적으로 배치되고, 대칭적으로 이동할 수 있다.
한편, 방사각 조절부(200)는 제1 방향에 수직한 방향으로 이동하는 단순한 방법으로 간격을 변화함으로써 증착물질이 방사되는 방사각을 조절할 수 있다. 즉, 도 2(a)에서와 같이 간격이 크면 증발물질의 방사각이 크고, 도 2(b)에서와 같이 방사각 조절부(200)의 간격을 좁게 하면 증발물질의 방사각이 좁게 할 수 있다.
기판(10)과 선형 증발원(100)의 상대적인 이동을 통하여 스캔하는 경우에, 기판이 위치하는 영역에 대응하는 증착영역만 선형 증발원(100)이 스캔하면 기판 상에 증착되는 박막의 두께가 스캔 방향을 따라서 일정하지 않고 기판의 가장자리에서 얇아지는 문제점이 발생한다. 이를 해결하기 위해서 선형 증발원(100)은 증착영역뿐만 아니라, 스캔 방향에 대해서 증착영역의 전단과 후단에 존재하는 회피영역까지 선형 증발원(100)은 스캔하여야 한다(도 1(a) 참조). 즉, 기판(10)과 선형 증발원(100)의 상대적인 이동을 통하여 스캔되는 거리는 증착영역, 및 증착영역의 전단과 후단에 위치하는 회피영역을 포함한다.
도 3(a)는 방사각 조절부(200)의 간격이 변화하지 않는 경우를 나타내고, 도3(b)는 방사각 조절부(200)의 간격이 기판(10) 및 선형 증발원(100)의 상대적인 위치에 따라서 변화하는 경우를 나타낸다.
방사각 조절부(200)의 간격에 따라서 증발물질의 방사각이 변화하는데, 도 3(a)는 방사각 조절부(200)의 간격이 변화하는 경우에는 방사각 조절부(200) 간격(오픈 영역)을 통해서만 증발물질이 방사되므로, 증착영역에서는 증발물질의 사용을 가능한 많이 하여 박막을 증착하기 위해서 방사각 조절부(200) 간격(오픈 영역)을 넓게해야 한다. 스캔 방향을 따라서 증착영역의 전단과 후단에 위치하는 회피영역에서도 증착영역에서와 같은 방사각 조절부(200) 간격(방사각)을 유지하게 되므로, 회피영역에서의 방사영역(방사각) 외부에 기판이 존재할 때까지 선형 증발원(100)은 스캔(이동)해야 한다. 선형 증발원(100)의 노즐(110)로부터 법선 방향의 축을 중심축으로 해서 등방적으로 증발하고, 노즐(100)로부터 법선 방향으로 기판까지의 거리가 최단이므로, 기판에 도달하는 증발물질의 단위 면적당 양은 노즐(100)로부터 법선 방향의 기판 위치(점)가 가장 많고, 주변으로 갈수록 줄어든다. 따라서, 선형 증발원(100) 노즐(110)의 중심은 기판 가장자리를 통과하여, 적어도 증발물질의 방사영역(방사각에 대응) 최외각이 기판의 가장자리에 위치할 수 있도록 스캔되야만 한다. 물론 그 이상의 외측까지도 스캔되어도 무방하나, 불필요한 증발물질의 소비가 일어나므로 바람직하지 않다.
반면에 도 3(b)는 방사각 조절부(200)의 간격이 기판(10) 및 선형 증발원(100)의 상대적인 위치에 따라서 변화하는 경우는, 선형 증발원(100)이 증착영역을 스캔하는 동안에는 증발물질의 사용을 가능한 많이 하여 박막을 증착하기 위해서 방사각 조절부(200) 간격(제1 간격)을 넓게 이격하고, 선형 증발원(100)이 증착영역(기판)의 경계를 넘어서 회피영역을 스캔하는 경우에는 상기 제1 간격보다 좁은 제2 간격으로 서로 이격할 수 있다. 기판 상에 형성되는 박막의 균일성을 위해서 선형 증발원(100) 노즐의 중심이 회피영역에서 최소한 스캔(이동)해야하는 거리는 회피영역에서 방사영역의 직경(거리)의 1/2에 해당하므로, 선형 증발원(100) 노즐의 중심이 증착영역(기판) 가장자리를 통과하여 선형 증발원(100)이 회피영역을 스캔하는 동안에는 방사각 조절부(200)의 쌍을 제1 방향에 수직한 방향으로 이동하여 제1 간격보다 좁은 제2 간격으로 이격하여 방사하면, 선형 증발원(100)의 전체 스캔 거리는 방사각 조절부(200)의 간격을 일정하게 유지하는 경우(도 3(a) 참조)에 대비해서 감소하게 된다. 스캔 거리가 감소하게 되면, 스캔 시에 증발되는 증발물질의 절대량이 줄어들 뿐만 아니라, 전체 스캔 시 증발재료의 양 대비 증착영역 스캔시의 증발재료의 양이 상대적으로 많아져서 증발재료의 사용 효율이 향상된다.
한편, 선형 증발원(100)에서 증발되는 증발물질은 방사각 조절부(200)의 내부면에도 증착되어 소비되므로, 방사각 조절부(200)의 간격(방사각)을 변화하면 방사각 조절부(200)의 내부면에 증착되는 증발물질의 양도 변화하게 된다. 즉, 도 3 (b)에서와 같이 회피영역에서 방사각 조절부(200) 사이의 간격(방사각)을 줄여서 방사하면 방사각 조절부(200)에 의해서 차단되는 방사량(방사각 조절부의 내부면에 증착되는 양)이 많을 수 있다. 표 1은 기판(10) 및 선형 증발원(100)의 상대적인 이동에 따른 스캔에 의해서 방사각 조절부 내부면에 증착되는 양과 기판 상에 증착되는 양, 그리고 1회 스캔 시의 전체 증발물질의 소모량을 모사한 결과이다. 이때, 모사는 선형 증발원(100)이 증착영역을 스캔할 때의 간격(방사각)을 1로 하고, 회피영역을 스캔할 때의 간격(방사각)을 0.8로 유지한 것을 조건으로 실시하였다. 방사각 조절부의 간격(방사각)을 회피영역에서 좁게 변화하는 경우에는 방사각 조절부 내부면에 증착되는 증발물질의 양은 다소 증가하나, 기판 상에 증착되는 증발물질의 양이 스캔 거리의 감소에 따라서 크게 감소하므로, 1회 스캔에 따른 전체적인 증발물질의 사용량은 감소하는 것으로 나타났다. 즉, 증착영역에 대응하는 방사각을 전체 스캔 구간에 일정하게 유지하는 경우에 대비해서, 증착영역과 회피영역에 따라 방사각을 조절하는 경우는 증발물질 사용 효율 측면에서 131%의 증가가 이루어 진다.
방사각 유지시(도 3(a) 대응) 방사각 변동시(도 3(b) 대응)
방사각 조절부 내부면 증착량 1 1.02
기판 증착량 1 0.74
전체 증발물질 사용량 1 0.76
본 발명에 따른 박막 증착 장치에서는 기판(10) 또는 선형 증발원(100)이 상대적으로 이동하여 스캔하는데, 이를 위하여 기판(10) 또는 선형 증발원(100)를 지지하고 이동 가능한 캐리어부(300, 310); 및 제1 방향과 교차하는 제2 방향으로 상기 캐리어부(300, 310)를 이송하는 캐리어 이송부(400)를 더 포함할 수 있다. 캐리어 이송부(400)는 기판(10) 또는 선형 증발원(100)의 양단측에 이송방향인 제2 방향을 따라서 평행하고 상호 이격된 선형의 형태로 배열될 수 있는데, 복수의 회전체와 복수의 회전체에 연결되어 회전력을 제공하는 회전체 구동부로 구성되거나, 제2 스캔 방향으로 배열된 선형이동(LM) 레일(가이드)과 선형이동 레일 상에서 움직이는 선형이동 블록으로 구성될 수 있다. 캐리어부(300, 310)는 회전체 또는 선형이동 블록에 안착되고, 회전체의 회전에 따라서 캐리어부는 제2 방향으로 이송되어 스캔하게 된다(도 1 및 도 6 참조). 한편, 스캔 방향인 제2 방향은 제1 방향과 평행하지 않고 교차하면 족하고, 제2 방향이 전체 구간에서 제1 방향과 반드시 수직일 필요는 없이 필요에 따라서 다양하게 변형될 수 있다.
앞서 설명한 바와 같이 기판 또는 선형 증발원이 스캔하는 방향(제2 방향)을 따라서 증착영역과 그 전단과 후단에 회피영역이 존재하는데(기판이 스캔하는 경우는 가사의 증착영역과 가상의 회피 영역이 존재), 기판(10) 위치에 대응하는 증착영역에서는 방사각 조절부(200)는 제1 간격으로 서로 이격되고, 회피영역에서는 방사각 조절부(200)는 제1 간격보다 좁은 제2 간격으로 서로 이격될 수 있다. 이를 위하여 본 발명에 따른 박막 증착 장치는 기판(10) 또는 선형 증발원(100)의 상대적인 위치를 검출하는 위치 검출부(미도시)를 더 포함할 수 있다. 위치 검출부는 스캔 방향(제2 방향)을 따라서 배치된 복수의 위치 센서일 수 있는데, 복수의 위치 센서를 이용하여 이동하는 기판(10) 또는 선형 증발원(100)의 위치를 검출함으로써 이들의 상대적인 위치를 검출할 수 있다. 또한 위치 검출부는 기판(10) 또는 선형 증발원(100)의 초기 위치와 크기를 확인하고, 제어 가능한 스캔(이동) 속도와 초기 위치 및 크기로부터 연산하여 기판(10) 또는 선형 증발원(100)의 상대적인 위치를 검출할 수도 있다.
본 발명에 따른 박막 증착 장치에서는 기판(10) 또는 선형 증발원(100)을 제2 방향으로 스캔하기 위해서 기판(10) 또는 선형 증발원(100)의 양단측에 이송방향인 제2 방향을 따라서 평행하고 상호 이격된 선형의 형태로 길게 배열되는 캐리어 이송부(400)을 필요로 하고, 동시에 방사각 조절부(200)의 간격을 조절하기 위해서 제1 방향에 수직한 방향으로 방사각 조절부(200)을 이동시키는 별도의 이송 메카니즘이 필요하다. 챔버의 내부공간에 별도로 움직이는 두개의 이송 메카니즘(이송부)이 존재하는 경우에, 이들 상호 간에 간섭이 일어날 가능성이 있다. 특히, 선형 증발원(100)이 선형의 형태로 길게 배열된 캐리어 이송부(400)를 이용하여 스캔 방향으로 이동하면서, 방사각 조절부(200)의 이동이 필요한 경우에는 이러한 간섭이 일어날 가능성은 더 크고, 이를 해결하기 위한 이송 메카니즘의 설계는 복잡할 수 있다.
도 4는 본 발명의 실시예에 따른 방사각 조절부의 구동 장치를 설명하는 사시도이다. 도 5를 참조하면, 본 발명의 박막 증착 장치는 방사각 조절부(200)를 제1 방향에 수직한 방향으로 대칭 이동시키는 구동력을 제공하는 방사각 조절부 구동 장치(500)를 포함한다. 방사각 조절부 구동 장치(500)는 진공으로 유지되는 챔버의 내부공간에 밀폐공간을 제공되는 대기압 박스부(510)를 포함한다. 대기압 박스부(510)의 밀폐공간은 대기압으로 유지되고, 방사각 조절부(200)이 선형 증발원(100)의 길이 방향(제1 방향)에 수직한 방향으로 이동하기 위한 구동력을 제공하는 구동부(520)는 대기압으로 유지되는 밀폐공간 내부에 제공된다.
구동부(520)는 대기압에서 사용할 수 있는 모터 혹은 실린더일 수 있다. 대기압에서 사용하는 모터 혹은 실린더를 고진공으로 유지되는 챔버 내에서 사용하는 경우에는 고진공 환경에 의해서 모터 혹은 실린더가 손상되기가 쉽고, 또는 모터 또는 실린더의 고속 이동 등에 의해서 부품 간 마찰 또는 윤활제로부터 발생하는 미세 입자에 의해서 진공계가 손상될 수 있다. 모터 등의 구동부를 진공 상태에서 그대로 사용하기 위해서는 특수코팅 처리 부품과 같은 고가의 부품을 사용하여야 하는데, 본 발명에서는 대기압으로 유지되는 대기압 박스부(510) 내부의 밀폐공간에 구동부(520)을 위치시키고 작동함으로써 진공 상태 전용 구동부를 사용할 필요없이 저렴한 비용으로 제작할 수 있도록 하였다.
대기압 박스부(510) 내에 존재하는 구동부(520)의 구동력은 구동축(530)과 ferroseal과 같은 실링 부품을 통하여 대기압 박스부(510)의 외부(즉, 진공의 챔버 내부)에 존재하는 동력전달부(미도시)에 전달된다. 동력전달부는 모터 등의 회전운동을 직선운동으로 변환해주는 구성으로, 양방향 볼 스크류(Ball Screw) 타입, 랙 앤드 피니언 기어(Rack and Pinion gear) 타입, 또는 Link 타입 등일 수 있다. 예를 들어, 구동축(530)의 회전운동이 진공의 챔버 내부에 존재하는 피니언 기어에 전달되고, 피니언 기어의 회전운동이 피니언 기어의 양측에 대칭적으로 배치된 한 쌍의 랙 기어의 직선운동으로 변환되어 전달된다. 운동 형태를 변환하여 전달하는 동력전달부를 경유하여 구동부(520)에 연결되어 연동함으로써 서로 대칭적으로 선형이동하는 한 쌍의 선형 이동부(540), 및 선형 이동부(540)의 이동 경로를 가이드할 수 있도록 서로 평행하게 배열된 한 쌍의 선형 가이드부(550)에 의해서 대기압 박스부(510) 내부의 구동부(520)의 (회전)운동이 진공으로 유지되는 챔버 내에서 서로 이격되고 상호 평행한 두 축을 따라서 대칭적으로 선형 이동하는 선형운동(Linear Motion)으로 변환된다. 대칭적으로 선형 이동하는 선형 이동부(540)는 암(arm)부(560)에 의해서 방사각 조절부(200)의 하단부와 연결되고, 선형 이동부(540)에 연결된 방사각 조절부(200)은 제1 방향에 수직한 방향으로 대칭적으로 이동할 수 있게 된다.
본 발명에 따른 방사각 조절부의 구동 메카니즘을 제공하는 방사각 조절부 구동 장치(500)는 챔버 내에서 스캔 방향을 따라서 선형의 형태로 길게 배열된 캐리어 이송부(400)와는 달리 간단한 소형의 장치로 구성될 수 있어서, 선형 증발원(100)과 방사각 조절부(200)의 하부에 부착되어 간단한 구조로써 방사각 조절부(200)를 제1 방향에 수직한 방향으로 이동시킬 수 있다. 따라서, 간단한 구조의 방사각 조절부 구동 장치(500)를 이용하여 기판(10) 또는 선형 증발원(100)을 스캔하는 캐리어 이송부(400)와 간섭이 발생되지 않고도 방사각 조절부(200)를 원하는 방향으로 이동시킬 수 있다. 특히 선형 증발원(100)이 스캔하는 경우에도, 방사각 조절부의 구동 장치(500)는 이동하는 선형 증발원(100)의 하단에 부착되어 스캔 방향으로 함께 이동하면서 방사각 조절부(200)을 이동시킬 수 있어서, 챔버 내부를 제2 방향을 따라 길게 배치되는 캐리어 이송부(400)에 간섭되는 문제점을 야기하지 않고도 증발물질의 방사각을 조절하는 것이 가능하다.
도 5는 본 발명의 다른 실시예에 따른 박막 증착 장치의 계략적인 단면도로서, 이를 참조하면 본 발명의 박막 증착 장치는 서로 다른 증발물질을 방사하는 복수의 선형 증발원(100, 100', 100'') 및 복수의 선형 증발원(100, 100', 100'') 각각에 대응하는 복수의 상기 방사각 조절부(200, 200', 200'')를 포함할 수 있다.
유기발광소자를 이용하여 풀 컬러를 구현하기 위해서는 적색 발광층 재료, 녹색 발광층 재료, 청색 바로강층 재료를 방사하는 멀티 선형 증착원을 구비할 수 있다. 예를 들어, 복수의 선형 증발원(100, 100', 100'')에는 각각 적색 발광층 재료, 녹색 발광층 재료, 청색 발광층 재료를 구비하여 서로 다른 발광색을 나타내는 증발물질을 방사하여 기판 상에 적색/녹색/청색 발광층을 한번에 증착할 수 있다. 종래의 유기발광소자 제조 장치에서는 각 색상별로 별도의 챔버와 마스크를 구비하는 것이 일반적이었으나, 본 발명에 따른 박막 증착 장치를 이용하면, 복수의 선형 증발원(100, 100', 100'')을 이용하면 적색/녹색/청색 발광층을 한번에 증착할 수 있어서, 풀 컬러 유기발광 디스플레이 장치의 생산 시간이 획기적으로 감소할 수 있고, 필요한 챔버 수가 감소하여 장치 비용 또한 현저하게 절감되는 효과를 얻을 수 있다.
여기서, 적색/녹색/청색 발광층 등과 같은 서로 다른 층을 형성하는 서로 다른 증발물질들은 서로 기화 온도와 증발 특성이 상이할 수 있으므로, 복수의 선형 증발원(100, 100', 100'')의 온도와 복수의 방사각 조절부(200, 200', 200'')의 간격(방사각)을 서로 다르게 독립적으로 조절할 수도 있다.
도 7은 본 발명의 또 다른 실시예에 따른 박막 증착 방법의 순서도이다. 도 7을 참조하면, 본 발명의 박막 증착 방법은 증발물질이 방사되는 노즐이 제1 방향으로 선형으로 형성된 선형 증발원(100); 및 제1 방향으로 정렬된 상기 노즐 양쪽 상부 측에 배치되고, 소정의 간격으로 서로 이격되어 쌍을 이루는 방사각 조절부(200);를 포함하는 박막 증착 장치를 이용하여 기판(10) 상에 박막을 증착하는 박막 증착 방법에 있어서, 상기 제1 방향과 수직하는 스캔 방향으로 상기 기판 또는 상기 선형 증발원(100)을 이동시키는 단계; 상기 선형 증발원(100)이 제1 회피영역(스캔 방향에 있어서 증착영역의 전단에 위치하는 회피영역)을 스캔하는 동안에는 제1 방사각도로 상기 증발물질을 방사하는 단계; 상기 선형 증발원(100)이 기판(10)에 대응되는 증착영역을 스캔하는 동안에는 제1 방사각도보다 넓은 제2 방사각도로 상기 증발물질을 방사하는 단계; 및 상기 선형 증발원(100)이 제2 회피영역(스캔 방향에 있어서 증착영역의 후단에 위치하는 회피영역)을 스캔하는 동안에는 제2 방사각도보다 좁은 방사각도로 상기 증발물질을 방사하는 단계;를 포함할 수 있다.
한편, 쌍을 이루는 방사각 조절부(200)는 상기 스캔 방향에 평행하게 대칭적으로 서로 이동시켜 상기 간격을 변화함으로써 증발물질의 방사각도를 조절하거나, 기판(10) 및 선형 증발원(100)의 상대적인 위치에 따라 상기 방사각 조절부 사이의 간격을 변화함으로써 증발물질의 방사각도를 조절할 수 있다.
상기 살펴본 바와 같이 본 발명에 따르면 선형 증발원(100)에서 증발되는 증발물질의 방사각도를 조절함으로써 선형 증발원 또는 기판의 스캔 길이를 줄일 수 있을 뿐만 아니라 증발물질의 사용 효율성을 향상시킬 수 있고, 동일한 크기의 증착영역에 박막을 증착하기 위해서 필요한 스캔 거리와 시간이 감소하므로 박막 증착 장치의 크기와 박막 증착 공정 시간을 줄일 수 있다. 이에 의해서 부가적으로 디스플레이 패널 제작 원가와 박막 증착 장치 제작 원가를 현저히 줄일 수 있다.
그리고, 증발물질이 소비량이 줄어들므로 기판 이외의 불필요한 부분에 증착되는 증발물질의 양도 감소하여, 오염된 챔버 내부 구성들을 세척하는 주기를 늘릴 수 있고, 챔버 내 구성들의 오염이나 반복된 증착에 의해 발생하는 파티클 감소로 인해서 유기발광소자의 양산화를 용이하게 달성할 수 있다.
또한, 서로 대향하는 쌍으로 이루어진 방사각 조절부의 간격을 조절함으로써 간단히 방사각을 제어할 수 있고, 진공의 챔버 내에서 대기압으로 유지되는 소형의 대기압 박스부에 구동부를 위치시킨 소형의 방사각 조절부 구동 장치를 이용하여 기판 또는 선형 증발원의 스캔 메카니즘과 간섭되지 않도록 할 수 있어서 간단한 방법과 장치로서 증발물질의 방사각 조절과 스캔 길이를 제어할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 도시하고 또한 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.
10: 기판 100: 선형 증발원
110: 노즐 120: 본체부
200: 방사각 조절부 300, 310, 320: 캐리어부
400: 캐리어 이송부 500: 방사각 조절부 구동장치
510: 대기압 박스부 520: 구동부
530: 구동축 540: 선형 이동부
550: 선형 이동 가이드부 560: 암(arm)부

Claims (16)

  1. 내부공간에 기판이 제공되는 챔버;
    상기 기판과 서로 대향하도록 제공되고, 증발물질이 방사되는 노즐이 제1 방향으로 선형으로 형성된 선형 증발원;
    제1 방향으로 선형으로 형성된 상기 노즐 양쪽 상부 측에 배치되고, 소정의 간격으로 서로 이격되어 쌍을 이루고, 상기 제1 방향과 교차하는 방향으로 이동하여 상기 간격을 변화하는 방사각 조절부;
    진공으로 유지되는 상기 내부공간에 밀폐공간을 제공하는 대기압 박스부;
    상기 방사각 조절부를 이동시키는 구동력을 제공하고, 상기 대기압 박스부의 밀폐공간에 수용되는 구동부;
    상기 구동부에 연결되어 연동하는 선형 이동부;
    상기 선형 이동부의 이동 경로를 가이드하는 선형 가이드부; 및
    상기 선형 이동부와 상기 방사각 조절부에 연결되어 상기 구동력을 전달하는 암(arm)부;를 포함하는 박막 증착 장치.
  2. 청구항 1에 있어서,
    상기 방사각 조절부는 제1 방향으로 선형으로 형성된 상기 노즐을 가로지르는 가상의 면을 중심으로 대칭적으로 배치되고, 상기 가상의 면을 중심으로 서로 대칭적으로 이동하는 박막 증착 장치.
  3. 청구항 1에 있어서,
    상기 방사각 조절부는 상기 간격을 변화함으로써 증착물질이 방사되는 방사각을 조절하는 박막 증착 장치.
  4. 청구항 1에 있어서,
    상기 기판 및 상기 선형 증발원의 상대적인 위치에 따라 상기 방사각 조절부 사이의 간격을 변화하는 박막 증착 장치.
  5. 청구항 1에 있어서,
    상기 기판 또는 상기 선형 증발원를 지지하는 캐리어부; 및
    상기 제1 방향과 교차하는 제2 방향으로 상기 캐리어부를 이송하는 캐리어 이송부를 더 포함하는 박막 증착 장치.
  6. 청구항 5에 있어서,
    상기 기판 위치에 대응하는 증착영역에서는 상기 방사각 조절부는 제1 간격으로 서로 이격되고,
    상기 제2 방향으로 상기 증착영역의 전단 또는 후단에 위치하는 회피영역에서는 상기 방사각 조절부는 상기 제1 간격보다 좁은 제2 간격으로 서로 이격되는 박막 증착 장치.
  7. 청구항 1에 있어서,
    상기 기판 또는 상기 선형 증발원의 상대적인 위치를 검출하는 위치 검출부를 더 포함하는 박막 증착 장치.
  8. 삭제
  9. 삭제
  10. 청구항 1에 있어서
    상기 방사각 조절부는 상기 선형 증발원을 따라 제1 방향으로 연장된 형태로 이루어지고,
    상기 선형 증발원보다 높은 높이를 갖는 격벽부와 상기 격벽부의 상단에서 내측으로 절곡된 절곡부를 포함하는 박막 증착 장치.
  11. 청구항 1에 있어서
    쌍을 이루는 상기 방사각 조절부는 상기 제1 방향을 따라서 동일한 간격을 갖도록 배치되는 박막 증착 장치.
  12. 청구항 1에 있어서,
    상기 박막 증착 장치는 서로 다른 증발물질을 방사하는 복수의 상기 선형 증발원; 및 상기 복수의 선형 증발원 각각에 대응하는 복수의 상기 방사각 조절부;를 포함하는 박막 증착 장치.
  13. 청구항 12에 있어서,
    복수의 상기 선형 증발원 각각의 온도와, 복수의 상기 방사각 조절부 각각의 간격을 서로 독립적으로 조절할 수 있는 박막 증착 장치.
  14. 청구항 1 내지 청구항 7, 및 청구항 10 내지 청구항 13 중 어느 한 항의 박막 증착 장치를 이용하여 기판 상에 박막을 증착하는 박막 증착 방법에 있어서,
    상기 제1 방향과 수직하는 스캔 방향으로 상기 기판 또는 상기 선형 증발원을 이동시키는 단계;
    상기 선형 증발원이 제1 회피영역을 스캔하는 동안에는 제1 방사각도로 상기 증발물질을 방사하는 단계;
    상기 선형 증발원이 증착영역을 스캔하는 동안에는 제1 방사각도보다 넓은 제2 방사각도로 상기 증발물질을 방사하는 단계; 및
    상기 선형 증발원이 제2 회피영역을 스캔하는 동안에는 제2 방사각도보다 좁은 방사각도로 상기 증발물질을 방사하는 단계;를 포함하는 박막 증착 방법.
  15. 청구항 14에 있어서,
    쌍을 이루는 상기 방사각 조절부는 상기 스캔 방향에 평행하게 대칭적으로 서로 이동시켜 상기 간격을 변화함으로써 증발물질의 방사각도를 조절하는 박막 증착 방법.
  16. 청구항 14에 있어서,
    상기 기판 및 상기 선형 증발원의 상대적인 위치에 따라 상기 방사각 조절부 사이의 간격을 변화함으로써 증발물질의 방사각도를 조절하는 박막 증착 방법.
KR1020140188187A 2014-12-24 2014-12-24 박막 증착 장치 및 이를 이용한 박막 증착 방법 KR101648489B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140188187A KR101648489B1 (ko) 2014-12-24 2014-12-24 박막 증착 장치 및 이를 이용한 박막 증착 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140188187A KR101648489B1 (ko) 2014-12-24 2014-12-24 박막 증착 장치 및 이를 이용한 박막 증착 방법

Publications (2)

Publication Number Publication Date
KR20160078627A KR20160078627A (ko) 2016-07-05
KR101648489B1 true KR101648489B1 (ko) 2016-08-17

Family

ID=56501813

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140188187A KR101648489B1 (ko) 2014-12-24 2014-12-24 박막 증착 장치 및 이를 이용한 박막 증착 방법

Country Status (1)

Country Link
KR (1) KR101648489B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102180070B1 (ko) * 2017-10-31 2020-11-17 엘지디스플레이 주식회사 초미세 패턴 증착장치, 이를 이용한 초미세 패턴 증착방법 그리고 초미세 패턴 증착방법에 의해 제작된 전계발광표시장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173965A (ja) * 2012-02-23 2013-09-05 Mitsubishi Heavy Ind Ltd 蒸着装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245532B1 (ko) 2010-12-30 2013-03-21 엘아이지에이디피 주식회사 박막 증착 장치
KR102050482B1 (ko) * 2013-03-27 2019-12-02 삼성디스플레이 주식회사 증착장치, 이를 이용한 유기발광 디스플레이 장치 제조 방법 및 유기발광 디스플레이 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173965A (ja) * 2012-02-23 2013-09-05 Mitsubishi Heavy Ind Ltd 蒸着装置

Also Published As

Publication number Publication date
KR20160078627A (ko) 2016-07-05

Similar Documents

Publication Publication Date Title
US8186299B2 (en) Evaporation apparatus and thin film forming method using the same
JP6049774B2 (ja) 薄膜蒸着装置及び有機発光ディスプレイ装置の製造方法
KR101174875B1 (ko) 박막 증착 장치, 이를 이용한 유기 발광 디스플레이 장치의 제조방법 및 이에 따라 제조된 유기 발광 디스플레이 장치
JP5985796B2 (ja) 薄膜蒸着装置及び有機発光ディスプレイ装置の製造方法
JP5328727B2 (ja) 薄膜蒸着装置及びこれを利用した有機発光ディスプレイ装置の製造方法
JP2013032587A (ja) 蒸着源アセンブリ、有機層蒸着装置及びそれを利用した有機発光表示装置の製造方法
KR20100138139A (ko) 유기 발광 디스플레이 장치 및 이를 제조하기 위한 유기막 증착 장치
KR101193192B1 (ko) 박막 증착 장치
JP2011105962A (ja) 真空蒸着装置、真空蒸着方法、および、有機el表示装置の製造方法
TWI686490B (zh) 蒸發源、具有蒸發源之一蒸發源陣列、操作蒸發源陣列之方法、及操作蒸發源之方法
JP6429491B2 (ja) 蒸着装置用マスク、蒸着装置、蒸着方法、及び、有機エレクトロルミネッセンス素子の製造方法
KR102216676B1 (ko) 박막 증착 장치 및 이를 이용한 유기 발광 디스플레이 장치 제조 방법
KR101983009B1 (ko) 증발원 및 이를 구비한 진공 증착 장치
KR102030683B1 (ko) 재료 증착 어레인지먼트, 진공 증착 시스템 및 이를 위한 방법
US11038155B2 (en) Film formation device, vapor-deposited film formation method, and organic EL display device production method
KR101648489B1 (ko) 박막 증착 장치 및 이를 이용한 박막 증착 방법
JP2015001024A (ja) 有機層蒸着装置及びそれを利用した有機発光ディスプレイ装置の製造方法
KR102160509B1 (ko) 기판 증착장치
JP2013209696A6 (ja) 真空蒸着装置およびその蒸着源
JP2013209696A (ja) 真空蒸着装置およびその蒸着源
KR101889919B1 (ko) 유기층증착장치
KR20200110135A (ko) 성막 장치, 성막 시스템
KR101234231B1 (ko) 박막 증착 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법
KR101481096B1 (ko) 유기물 증착 시스템
KR102568327B1 (ko) 트림 플레이트를 갖는 증착 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant