KR101628365B1 - Solar cell and method of fabricating the same - Google Patents

Solar cell and method of fabricating the same Download PDF

Info

Publication number
KR101628365B1
KR101628365B1 KR1020090059503A KR20090059503A KR101628365B1 KR 101628365 B1 KR101628365 B1 KR 101628365B1 KR 1020090059503 A KR1020090059503 A KR 1020090059503A KR 20090059503 A KR20090059503 A KR 20090059503A KR 101628365 B1 KR101628365 B1 KR 101628365B1
Authority
KR
South Korea
Prior art keywords
layer
rear electrode
compound
buffer layer
substrate
Prior art date
Application number
KR1020090059503A
Other languages
Korean (ko)
Other versions
KR20110001798A (en
Inventor
박희선
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020090059503A priority Critical patent/KR101628365B1/en
Publication of KR20110001798A publication Critical patent/KR20110001798A/en
Application granted granted Critical
Publication of KR101628365B1 publication Critical patent/KR101628365B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

실시예에 따른 태양전지는 기판 상에 배치된 후면전극; 상기 후면전극 상에 배치된 광 흡수층; 및 상기 광 흡수층 상에 배치된 전면전극을 포함하며, 상기 후면전극은 Na 화합물이 포함되며, 상기 Na 화합물은 Na이온이 0.01~10 %(atomic weight percent) 농도인 것을 포함한다.A solar cell according to an embodiment includes a rear electrode disposed on a substrate; A light absorbing layer disposed on the rear electrode; And a front electrode disposed on the light absorption layer, wherein the rear electrode includes an Na compound, and the Na compound includes an Na ion concentration of 0.01 to 10% (atomic weight percent).

실시예에 따른 태양전지의 제조방법은 기판 상에 후면전극을 형성하는 단계; 상기 후면전극 상에 광 흡수층을 형성하는 단계; 및 상기 광 흡수층 상에 전면전극을 형성하는 단계를 포함하며, 상기 후면전극은 Na 화합물이 포함된 것을 포함하고, 상기 Na 화합물은 Na이온이 0.01~10 %(atomic weight percent)의 농도인 것을 포함한다.A method of manufacturing a solar cell according to an embodiment includes forming a rear electrode on a substrate; Forming a light absorption layer on the rear electrode; And forming a front electrode on the light absorbing layer, wherein the rear electrode includes an Na compound, and the Na compound has a Na ion concentration of 0.01 to 10% (atomic weight percent) do.

태양전지, 고온공정 Solar cell, high temperature process

Description

태양전지 및 이의 제조방법{SOLAR CELL AND METHOD OF FABRICATING THE SAME}SOLAR CELL AND METHOD OF FABRICATING THE SAME

실시예는 태양전지 및 이의 제조방법에 관한 것이다.An embodiment relates to a solar cell and a manufacturing method thereof.

최근 에너지의 수요가 증가함에 따라서, 태양광 에너지를 전기에너지로 변환시키는 태양전지들에 대한 개발이 진행되고 있다.As demand for energy has increased recently, development of solar cells that convert solar energy into electrical energy is underway.

특히, 유리 기판, 금속 후면 전극층, p형 CIGS계 광 흡수층, 고 저항 버퍼층, n형 창층 등을 포함하는 기판 구조의 pn 헤테로 접합 장치인 CIGS계 태양전지가 널리 사용되고 있다.Particularly, a CIGS-based solar cell which is a pn heterojunction device having a substrate structure including a glass substrate, a metal back electrode layer, a p-type CIGS light absorbing layer, a high resistance buffer layer, and an n-type window layer is widely used.

이때, 유리 기판에 포함된 Na 이온이 CIGS계 광 흡수층에 확산되어 그레인 크기를 향상시킴으로써 그 효율이 증대될 수는 있으나, 확산되는 양을 조절하기 어렵다는 문제가 있다.At this time, Na ions contained in the glass substrate are diffused into the CIGS light absorbing layer to improve the grain size, thereby increasing the efficiency, but it is difficult to control the diffusion amount.

실시예는 고온공정이 가능하여 광 흡수층의 전기적 효율을 향상시킬 수 있는 태양전지 및 이의 제조방법을 제공한다.Embodiments provide a solar cell capable of enhancing the electrical efficiency of a light absorbing layer by a high-temperature process, and a method of manufacturing the solar cell.

실시예에 따른 태양전지는 기판 상에 배치된 후면전극; 상기 후면전극 상에 배치된 광 흡수층; 및 상기 광 흡수층 상에 배치된 전면전극을 포함하며, 상기 후면전극은 Na 화합물이 포함되며, 상기 Na 화합물은 Na이온이 0.01~10 %(atomic weight percent) 농도인 것을 포함한다.A solar cell according to an embodiment includes a rear electrode disposed on a substrate; A light absorbing layer disposed on the rear electrode; And a front electrode disposed on the light absorption layer, wherein the rear electrode includes an Na compound, and the Na compound includes an Na ion concentration of 0.01 to 10% (atomic weight percent).

실시예에 따른 태양전지의 제조방법은 기판 상에 후면전극을 형성하는 단계; 상기 후면전극 상에 광 흡수층을 형성하는 단계; 및 상기 광 흡수층 상에 전면전극을 형성하는 단계를 포함하며, 상기 후면전극은 Na 화합물이 포함된 것을 포함하고, 상기 Na 화합물은 Na이온이 0.01~10 %(atomic weight percent)의 농도인 것을 포함한다.A method of manufacturing a solar cell according to an embodiment includes forming a rear electrode on a substrate; Forming a light absorption layer on the rear electrode; And forming a front electrode on the light absorbing layer, wherein the rear electrode includes an Na compound, and the Na compound has a Na ion concentration of 0.01 to 10% (atomic weight percent) do.

실시예에 따른 태양전지 및 이의 제조방법은 기판을 내열성 글래스, 알루미나와 같은 세라믹 기판, 금속 기판, 플라스틱 기판 또는 폴리머 기판으로 사용하여, 고온 공정이 가능하다.The solar cell and the method of manufacturing the same according to the embodiment can use the substrate as a ceramic substrate such as a heat resistant glass, alumina, a metal substrate, a plastic substrate, or a polymer substrate to perform a high temperature process.

고온 공정은 광 흡수층의 그레인(grain) 크기를 향상시키고, 결정성을 향상시킬 수 있어, 광 흡수층의 전기적 효율을 향상시킬 수 있다.The high-temperature process can improve the grain size of the light absorption layer, improve the crystallinity, and improve the electrical efficiency of the light absorption layer.

또한, 후면전극에 포함되는 Na 화합물을 조절하여, Na 이온을 균일하게 형성시킬 수 있으며, 광 흡수층으로 확산되는 Na 이온의 농도를 원하는 양으로 조절할 수 있어, 태양전지의 특성이 향상될 수 있다.Further, the Na compound included in the rear electrode can be controlled to uniformly form Na ions, and the concentration of Na ions diffused into the light absorption layer can be controlled to a desired amount, thereby improving the characteristics of the solar cell.

실시 예의 설명에 있어서, 각 기판, 층, 막 또는 전극 등이 각 기판, 층, 막, 또는 전극 등의 "상(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상(on)"과 "아래(under)"는 "직접(directly)" 또는 "다른 구성요소를 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 구성요소의 상 또는 아래에 대한 기준은 도면을 기준으로 설명한다. 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.In the description of the embodiments, in the case where each substrate, layer, film or electrode is described as being formed "on" or "under" of each substrate, layer, film, , "On" and "under" all include being formed "directly" or "indirectly" through "another element". In addition, the upper or lower reference of each component is described with reference to the drawings. The size of each component in the drawings may be exaggerated for the sake of explanation and does not mean the size actually applied.

도 4는 실시예에 따른 태양전지를 도시한 측단면도이다.4 is a side sectional view showing a solar cell according to an embodiment.

도 4에 도시된 바와 같이, 실시예에 따른 태양전지는 기판(100) 상에 배치된 후면전극(200), 광 흡수층(300), 전면전극(500)을 포함한다.4, a solar cell according to an embodiment includes a rear electrode 200, a light absorbing layer 300, and a front electrode 500 disposed on a substrate 100. As shown in FIG.

이때, 상기 광 흡수층(300)은 상기 후면전극(200) 상에 배치되며, 상기 전면전극(500)은 상기 광 흡수층 상에 형성된다.At this time, the light absorption layer 300 is disposed on the rear electrode 200, and the front electrode 500 is formed on the light absorption layer.

이때, 상기 후면전극(200)은 Na 화합물로 형성되며, Na2Se, NaF, Na2S, NaCl 중 어느 하나의 화합물이 될 수 있다.At this time, the rear electrode 200 is formed of an Na compound, and may be any one of Na 2 Se, NaF, Na 2 S, and NaCl.

그리고, 상기 Na 화합물은 Na이온이 0.01~10 %(atomic weight percent)의 농 도가 될 수 있다.The Na compound may have a Na ion concentration of 0.01 to 10% (atomic weight percent).

또한, 상기 광 흡수층(300)과 후면전극(200) 사이에 상기 Na 화합물과 후면전극(200)의 반응에 의해 제1버퍼층(250)이 형성되며, 상기 제1버퍼층(250)은 MoSe2 또는 MoS2로 형성될 수 있다.A first buffer layer 250 is formed between the light absorbing layer 300 and the rear electrode 200 by the reaction between the Na compound and the rear electrode 200. The first buffer layer 250 may be formed of MoSe 2 or MoS 2 .

본 실시예의 태양전지에 관한 더 자세한 설명은 태양전지의 제조방법과 함께 설명하도록 한다.A more detailed description of the solar cell of this embodiment will be described together with the manufacturing method of the solar cell.

도 1 내지 도 4는 실시예에 따른 태양전지의 제조방법을 도시한 측단면도이다.1 to 4 are side cross-sectional views illustrating a method of manufacturing a solar cell according to an embodiment.

우선, 도 1에 도시된 바와 같이, 기판(100) 상에 후면전극(200)을 형성한다.First, as shown in FIG. 1, a rear electrode 200 is formed on a substrate 100.

상기 기판(100)은 내열성 글래스, 알루미나와 같은 세라믹 기판, 금속 기판, 플라스틱 기판 또는 폴리머 기판이 사용될 수 있다.The substrate 100 may be a heat-resistant glass, a ceramic substrate such as alumina, a metal substrate, a plastic substrate, or a polymer substrate.

금속 기판으로는 스테인레스 스틸 또는 티타늄을 포함하는 기판을 사용할 수 있다.As the metal substrate, a substrate including stainless steel or titanium can be used.

또한, 상기 기판(100)은 리지드(rigid)하거나 플렉서블(flexible)할 수 있다.In addition, the substrate 100 may be rigid or flexible.

상기 후면전극(200)은 금속 등의 도전체로 형성될 수 있다.The rear electrode 200 may be formed of a conductive material such as a metal.

예를 들어, 도 2에 도시된 바와 같이, 상기 후면전극(200)은 나트륨(Na) 이온이 도핑된 몰리브덴(Mo) 타겟(50)을 사용한 진공챔버(10)에서 스퍼터 링(sputtering) 공정으로 형성될 수 있다. 2, the rear electrode 200 is formed by a sputtering process in a vacuum chamber 10 using a molybdenum (Mo) target 50 doped with sodium (Na) ions, for example, .

이는, 몰리브덴(Mo)이 가진 높은 전기전도도, 광 흡수층과의 오믹(ohmic) 접합, Se 분위기 하에서의 고온 안정성 때문이다.This is due to the high electrical conductivity of molybdenum (Mo), the ohmic junction with the light absorbing layer, and the high temperature stability under Se atmosphere.

이때, 상기 나트륨(Na) 이온이 도핑된 몰리브덴(Mo) 타겟(50)은 Na2Se, NaF, Na2S, NaCl 중 어느 하나의 화합물이 포함되어 형성될 수 있으며, Na이온이 0.01~10% (atomic weight percent)의 농도로 도핑될 수 있다.At this time, the molybdenum (Mo) target 50 doped with sodium ions may be formed of any one of Na 2 Se, NaF, Na 2 S and NaCl. % < / RTI > (atomic weight percent).

즉, Na 이온의 농도를 원하는 양으로 조절하여, 이후 형성될 광 흡수층으로 Na 이온이 확산되는 양을 조절할 수 있다.That is, by controlling the concentration of Na ions to a desired amount, the amount of diffusion of Na ions into the light absorption layer to be formed can be controlled.

상기 후면전극(200)인 몰리브덴(Mo) 박막은 전극으로서 비저항이 낮아야 하고, 또한 열팽창 계수의 차이로 인하여 박리 현상이 일어나지 않도록 기판에의 점착성이 뛰어나야 한다.The molybdenum (Mo) thin film, which is the rear electrode 200, should be low in resistivity as an electrode, and should be excellent in adhesion to a substrate so that peeling does not occur due to a difference in thermal expansion coefficient.

또한, 상기 후면전극(200)은 적어도 하나 이상의 층으로 형성될 수 있다.In addition, the rear electrode 200 may be formed of at least one layer.

상기 후면전극(200)이 복수개의 층으로 형성될 때, 상기 후면전극(200)을 이루는 층들은 서로 다른 물질로 형성될 수 있다.When the rear electrode 200 is formed of a plurality of layers, the layers constituting the rear electrode 200 may be formed of different materials.

그리고, 도 3에 도시된 바와 같이, 상기 후면전극(200) 상에 광 흡수층(300)을 형성한다.3, a light absorbing layer 300 is formed on the rear electrode 200. [

상기 광 흡수층(300)은 Ⅰb-Ⅲb-Ⅵb계 화합물을 포함한다. The light absorption layer 300 includes a compound of the formula Ib-IIIb-VIb.

더 자세하게, 상기 광 흡수층(300)은 구리-인듐-갈륨-셀레나이드계(Cu(In, Ga)Se2, CIGS계) 화합물을 포함한다.More specifically, the light absorption layer 300 includes a copper-indium-gallium-selenide (Cu (In, Ga) Se 2 , CIGS) compound.

이와는 다르게, 상기 광 흡수층(300)은 구리-인듐-셀레나이드계(CuInSe2, CIS계) 화합물 또는 구리-갈륨-셀레나이드계(CuGaSe2, CGS계) 화합물을 포함할 수 있다.Alternatively, the light absorption layer 300 may include a copper-indium-selenide (CuInSe 2 , CIS) compound or a copper-gallium-selenide (CuGaSe 2 , CGS) compound.

예를 들어, 상기 광 흡수층(300)을 형성하기 위해서, 구리 타겟, 인듐 타겟 및 갈륨 타겟을 사용하여, 상기 후면전극(200) 상에 CIG계 금속 프리커서(precursor)막이 형성된다. For example, in order to form the light absorbing layer 300, a CIG-based metal precursor film is formed on the rear electrode 200 using a copper target, an indium target, and a gallium target.

이후, 상기 금속 프리커서막은 셀레니제이션(selenization) 공정에 의해서, 셀레늄(Se)과 반응하여 CIGS계 광 흡수층(300)이 형성된다.Thereafter, the metal precursor film is reacted with selenium (Se) by a selenization process to form a CIGS-based light absorbing layer 300.

또한, 상기 광 흡수층(300)은 구리,인듐,갈륨,셀레나이드(Cu, In, Ga, Se)를 동시증착법(co-evaporation)에 의해 형성할 수도 있다.The light absorption layer 300 may be formed by co-evaporation of copper, indium, gallium, selenide (Cu, In, Ga, Se).

상기 광 흡수층(300)은 외부의 광을 입사받아, 전기 에너지로 변환시킨다. 상기 광 흡수층(300)은 광전효과에 의해서 광 기전력을 생성한다.The light absorption layer 300 receives external light and converts it into electric energy. The photoabsorption layer 300 generates a photoelectromotive force by a photoelectric effect.

상기 광 흡수층(300)이 형성될 때, 상기 광 흡수층(300)과 후면전극(200) 사이에 상기 Na 화합물과 후면전극(200)의 반응에 의해 제1버퍼층(250)이 형성될 수 있다.The first buffer layer 250 may be formed between the light absorbing layer 300 and the rear electrode 200 by the reaction between the Na compound and the rear electrode 200. [

이때, 상기 제1버퍼층(250)은 MoSe2 또는 MoS2로 형성될 수 있다.At this time, the first buffer layer 250 may be formed of MoSe 2 or MoS 2 .

상기 제1버퍼층(250)이 형성됨으로 인해, 상기 광 흡수층(300)과 후면전극(200)의 접착력이 향상될 수 있으며, 접촉저항이 감소되어, 태양전지의 효율이 향상될 수 있다.Since the first buffer layer 250 is formed, adhesion between the light absorbing layer 300 and the rear electrode 200 can be improved, contact resistance can be reduced, and the efficiency of the solar cell can be improved.

또한, 상기 후면전극(200)이 Na 화합물을 포함하는 몰리브덴(Mo) 박막으로 형성되어, 상기 기판(100)을 Na 이온이 함유된 유리(glass) 기판을 사용하지 않아도 된다.In addition, the rear electrode 200 may be formed of a molybdenum (Mo) thin film containing an Na compound, so that the substrate 100 may not use a glass substrate containing Na ions.

즉, 상기 기판(100)을 내열성 글래스, 알루미나와 같은 세라믹 기판, 금속 기판, 플라스틱 기판 또는 폴리머 기판으로 사용하여, 고온 공정이 가능하다.That is, the substrate 100 can be used as a heat-resistant glass, a ceramic substrate such as alumina, a metal substrate, a plastic substrate, or a polymer substrate.

고온 공정은 상기 광 흡수층(300)의 그레인(grain) 크기를 향상시키고, 결정성을 향상시킬 수 있어, 상기 광 흡수층(300)의 전기적 효율을 향상시킬 수 있다.The high temperature process can improve the grain size of the light absorption layer 300 and improve the crystallinity, thereby improving the electrical efficiency of the light absorption layer 300.

또한, 상기 후면전극(200)에 포함되는 Na 화합물을 조절하여, Na 이온을 균일하게 형성시킬 수 있으며, 상기 광 흡수층(300)으로 확산되는 Na 이온의 농도를 원하는 양으로 조절할 수 있어, 태양전지의 특성이 향상될 수 있다.In addition, Na ions contained in the rear electrode 200 can be controlled to uniformly form Na ions, and the concentration of Na ions diffused into the light absorption layer 300 can be adjusted to a desired amount, Can be improved.

이어서, 도 4에 도시된 바와 같이, 상기 광 흡수층(300) 상에 제 2 버퍼층(400) 및 전면전극(500)을 형성한다.Next, as shown in FIG. 4, a second buffer layer 400 and a front electrode 500 are formed on the light absorption layer 300.

상기 제 2 버퍼층(400)은 황화 카드뮴(CdS) 또는 황화아연(ZnS)이 적층되어 형성될 수 있다.The second buffer layer 400 may be formed by stacking cadmium sulfide (CdS) or zinc sulfide (ZnS).

상기 제 2 버퍼층(400)은 적어도 하나의 층으로 형성되며, 상기 광 흡수층(300)이 형성된 상기 기판(100) 상에 황화 카드뮴(CdS), ITO, ZnO, i-ZnO 중 어느 하나 또는 이들의 적층으로 형성될 수 있다.The second buffer layer 400 is formed of at least one layer and is formed on the substrate 100 on which the light absorption layer 300 is formed by using any one of cadmium sulfide (CdS), ITO, ZnO, and i- And may be formed as a laminate.

이때, 상기 제 2 버퍼층(400)은 n형 반도체 층이고, 상기 광 흡수층(300)은 p형 반도체 층이다. 따라서, 상기 광 흡수층(300) 및 버퍼층(400)은 pn 접합을 형성한다.At this time, the second buffer layer 400 is an n-type semiconductor layer and the light absorption layer 300 is a p-type semiconductor layer. Accordingly, the light absorption layer 300 and the buffer layer 400 form a pn junction.

상기 제 2 버퍼층(400)은 상기 광 흡수층(300)과 이후 형성될 전면전극의 사이에 배치된다.The second buffer layer 400 is disposed between the light absorption layer 300 and a front electrode to be formed later.

즉, 상기 광 흡수층(300)과 전면전극은 격자상수와 에너지 밴드 갭의 차이가 크기 때문에, 밴드갭이 두 물질의 중간에 위치하는 상기 제 2 버퍼층(400)을 삽입하여 양호한 접합을 형성할 수 있다.That is, since the difference between the lattice constant and the energy band gap is large between the light absorption layer 300 and the front electrode, the second buffer layer 400 having the bandgap between the two materials can be inserted to form a good junction have.

본 실시예에서는 한 개의 제 2 버퍼층을 상기 광 흡수층(300) 상에 형성하였지만, 이에 한정되지 않고, 상기 제 2 버퍼층은 복수개의 층으로 형성될 수도 있다.In this embodiment, one second buffer layer is formed on the light absorbing layer 300, but the present invention is not limited to this, and the second buffer layer may be formed of a plurality of layers.

상기 전면전극(500)은 투명전도층으로 형성될 수 있으며, 알루미늄(Al), 알루미나(Al2O3), 마그네슘(Mg), 갈륨(Ga) 등의 불순물을 포함하는 아연계 산화물 또는 ITO(Indium tin Oxide)로 형성될 수 있다.The front electrode 500 may be formed of a transparent conductive layer or may be formed of a zinc oxide or an ITO (aluminum oxide) containing impurities such as aluminum (Al), alumina (Al 2 O 3 ), magnesium (Mg) Indium tin oxide (ITO).

상기 전면전극(500)은 상기 광 흡수층(300)과 pn접합을 형성하는 윈도우(window)층으로서, 태양전지 전면의 투명전극의 기능을 하기 때문에 광투과율이 높고 전기 전도성이 좋은 물질로 형성된다.The front electrode 500 is a window layer forming a pn junction with the light absorption layer 300 and is formed of a material having high light transmittance and good electrical conductivity because it functions as a transparent electrode on the entire surface of the solar cell.

이때, 상기 산화 아연에 알루미늄 또는 알루미나를 도핑함으로써 낮은 저항값을 갖는 전극을 형성할 수 있다.At this time, an electrode having a low resistance value can be formed by doping zinc oxide with aluminum or alumina.

또한, 상기 전면전극(500)은 전기광학적 특성이 뛰어난 ITO(Indium tin Oxide) 박막을 산화 아연 박막 상에 층착한 2중 구조로 형성될 수도 있다.In addition, the front electrode 500 may be formed of a double-layer structure in which an ITO (Indium Tin Oxide) thin film having excellent electro-optical properties is deposited on a zinc oxide thin film.

이상에서 설명한 실시예에 따른 태양전지 및 이의 제조방법은 기판을 내열성 글래스, 알루미나와 같은 세라믹 기판, 금속 기판, 플라스틱 기판 또는 폴리머 기판으로 사용하여, 고온 공정이 가능하다.The solar cell and the method of manufacturing the same according to the embodiments described above can be performed at a high temperature by using a substrate as a ceramic substrate such as a heat resistant glass or alumina, a metal substrate, a plastic substrate, or a polymer substrate.

고온 공정은 광 흡수층의 그레인(grain) 크기를 향상시키고, 결정성을 향상시킬 수 있어, 광 흡수층의 전기적 효율을 향상시킬 수 있다.The high-temperature process can improve the grain size of the light absorption layer, improve the crystallinity, and improve the electrical efficiency of the light absorption layer.

또한, 후면전극에 포함되는 Na 화합물을 조절하여, Na 이온을 균일하게 형성시킬 수 있으며, 광 흡수층으로 확산되는 Na 이온의 농도를 원하는 양으로 조절할 수 있어, 태양전지의 특성이 향상될 수 있다.Further, the Na compound included in the rear electrode can be controlled to uniformly form Na ions, and the concentration of Na ions diffused into the light absorption layer can be controlled to a desired amount, thereby improving the characteristics of the solar cell.

이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, It will be understood that various modifications and applications are possible. For example, each component specifically shown in the embodiments can be modified and implemented. It is to be understood that all changes and modifications that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

도 1 내지 도 4는 실시예에 따른 태양전지의 제조방법을 도시한 측단면도이다.1 to 4 are side cross-sectional views illustrating a method of manufacturing a solar cell according to an embodiment.

Claims (7)

나트륨(Na) 화합물이 포함된 타겟(target);A target containing a sodium (Na) compound; 기판 상에 배치된 후면전극;A rear electrode disposed on the substrate; 상기 후면전극 상에 배치되는 제 1 버퍼층;A first buffer layer disposed on the rear electrode; 상기 제 1 버퍼층 상에 배치되는 광 흡수층; A light absorbing layer disposed on the first buffer layer; 상기 광 흡수층 상에 배치되는 제 2 버퍼층; 및A second buffer layer disposed on the light absorption layer; And 상기 제 2 버퍼층 상에 배치되는 전면전극을 포함하며,And a front electrode disposed on the second buffer layer, 상기 후면전극은 상기 타겟에 의해 Na 화합물을 포함하는 몰리브덴(Mo) 박막이고,Wherein the rear electrode is a molybdenum (Mo) thin film containing an Na compound by the target, 상기 Na 화합물은 Na이온이 0.01~10 원자 %(atomic weight percent) 농도인 것을 포함하고,The Na compound includes Na ions at an atomic weight percent concentration of 0.01 to 10 atomic% 상기 제 1 버퍼층은 MoSe2 또는 MoS2로 형성되고, Wherein the first buffer layer is formed of MoSe 2 or MoS 2 , 상기 제 1 버퍼층은 상기 후면 전극과 상기 광흡수층 사이에 상기 Na 화합물과 후면 전극의 반응에 의하여 형성되고,Wherein the first buffer layer is formed between the rear electrode and the light absorbing layer by reaction between the Na compound and the rear electrode, 상기 제 2 버퍼층은 n형 반도체 층이고,The second buffer layer is an n-type semiconductor layer, 상기 광흡수층은 p형 반도체층인 것을 포함하는 태양전지.Wherein the light absorption layer is a p-type semiconductor layer. 제 1항에 있어서,The method according to claim 1, 상기 후면전극은 Na2Se, NaF, Na2S, NaCl 중 어느 하나의 화합물이 포함된 것을 포함하는 태양전지.Wherein the rear electrode includes any one of Na 2 Se, NaF, Na 2 S, and NaCl. 삭제delete 기판 상에 후면전극을 형성하는 단계;Forming a back electrode on the substrate; 상기 후면전극 상에 제 1 버퍼층을 형성하는 단계;Forming a first buffer layer on the rear electrode; 상기 제 1 버퍼층 상에 광 흡수층을 형성하는 단계; Forming a light absorbing layer on the first buffer layer; 상기 광 흡수층 상에 제 2 버퍼층을 형성하는 단계;Forming a second buffer layer on the light absorption layer; 상기 제 2 버퍼층 상에 전면전극을 형성하는 단계를 포함하며,And forming a front electrode on the second buffer layer, 상기 후면전극은 나트륨(Na) 화합물이 포함된 타겟(target)에 의해 Na 화합물을 포함하는 몰리브덴(Mo) 박막이고,The rear electrode is a molybdenum (Mo) thin film containing a Na compound by a target containing a sodium compound, 상기 Na 화합물은 Na이온이 0.01~10 원자 %(atomic weight percent)의 농도인 것을 포함하고,The Na compound includes Na ions at a concentration of 0.01 to 10 atomic% (atomic weight percent) 상기 제 1 버퍼층은 MoSe2 또는 MoS2로 형성되고, Wherein the first buffer layer is formed of MoSe 2 or MoS 2 , 상기 제 1 버퍼층은 상기 광흡수층 형성과 동시에, 상기 후면 전극과 상기 광흡수층 사이에 상기 Na 화합물과 후면 전극의 반응에 의하여 형성되고,The first buffer layer is formed by reaction of the Na compound and the rear electrode between the rear electrode and the light absorbing layer simultaneously with the formation of the light absorbing layer, 상기 제 2 버퍼층은 n형 반도체 층이고,The second buffer layer is an n-type semiconductor layer, 상기 광흡수층은 p형 반도체층인 것을 포함하는 태양전지의 제조방법.Wherein the light absorption layer is a p-type semiconductor layer. 제 4항에 있어서,5. The method of claim 4, 상기 타겟은 Na 화합물이 포함된 Mo 타겟이고,Wherein the target is an Mo target containing an Na compound, 상기 후면전극은 상기 타겟을 이용한 스퍼터링(sputtering) 공정을 진행하여 형성되는 것을 포함하는 태양전지의 제조방법.Wherein the rear electrode is formed by performing a sputtering process using the target. 제 5항에 있어서,6. The method of claim 5, 상기 Mo 타겟은 Na2Se, NaF, Na2S, NaCl 중 어느 하나의 Na 화합물을 포함하는 태양전지의 제조방법.Wherein the Mo target comprises any one of Na 2 Se, NaF, Na 2 S and NaCl. 삭제delete
KR1020090059503A 2009-06-30 2009-06-30 Solar cell and method of fabricating the same KR101628365B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090059503A KR101628365B1 (en) 2009-06-30 2009-06-30 Solar cell and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090059503A KR101628365B1 (en) 2009-06-30 2009-06-30 Solar cell and method of fabricating the same

Publications (2)

Publication Number Publication Date
KR20110001798A KR20110001798A (en) 2011-01-06
KR101628365B1 true KR101628365B1 (en) 2016-06-08

Family

ID=43610323

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090059503A KR101628365B1 (en) 2009-06-30 2009-06-30 Solar cell and method of fabricating the same

Country Status (1)

Country Link
KR (1) KR101628365B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226125B (en) * 2015-09-06 2017-01-18 中国石油大学(华东) Pd-MoS2 heterojunction photovoltaic solar cell device and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318424A (en) 2002-04-18 2003-11-07 Honda Motor Co Ltd Thin film solar battery and method of manufacturing same
JP2006080371A (en) 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Solar cell and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4442824C1 (en) * 1994-12-01 1996-01-25 Siemens Ag Solar cell having higher degree of activity
KR20090034079A (en) * 2007-10-02 2009-04-07 엘지전자 주식회사 Solar cell using mose2 layer and fabrication method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318424A (en) 2002-04-18 2003-11-07 Honda Motor Co Ltd Thin film solar battery and method of manufacturing same
JP2006080371A (en) 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Solar cell and its manufacturing method

Also Published As

Publication number Publication date
KR20110001798A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
KR20140109530A (en) A thin film solar cell
KR102350885B1 (en) Solar cell
KR20100109307A (en) Solar cell and method of fabricating the same
KR101592576B1 (en) Solar cell and method of fabricating the same
KR101034150B1 (en) Solar cell and method of fabircating the same
KR101091253B1 (en) Solar cell and method of fabircating the same
KR20130111815A (en) Solar cell apparatus and method of fabricating the same
KR101219835B1 (en) Solar cell apparatus and method of fabricating the same
KR101081270B1 (en) Solar cell and method of fabircating the same
KR101231364B1 (en) Solar cell and method of fabircating the same
KR101081143B1 (en) Solar cell and method of fabricating the same
KR101592582B1 (en) Solar cell and method of fabircating the same
KR101091495B1 (en) Solar cell and method of fabricating the same
KR101628360B1 (en) Solar cell and method of fabricating the same
KR101558589B1 (en) Method of fabricating of solar cell
KR101039993B1 (en) Solar cell and method of fabricating the same
KR101628365B1 (en) Solar cell and method of fabricating the same
KR101091319B1 (en) Solar cell and method of fabricating the same
KR20120043315A (en) Solar cell having a absorption layer of compound semiconductor
KR101765924B1 (en) Solar cell apparatus and method of fabricating the same
KR101846337B1 (en) Solar cell apparatus and method of fabricating the same
KR20150057820A (en) Solar cell
KR101081175B1 (en) Solar cell and method of fabricating the same
KR101283174B1 (en) Solar cell apparatus and method of fabricating the same
KR101419805B1 (en) Back contact of thin film solar cell and Thin film solar cell comprising the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee