KR101616189B1 - 바나듐 레독스 흐름전지를 위한 촉매 및 그 제조방법 - Google Patents

바나듐 레독스 흐름전지를 위한 촉매 및 그 제조방법 Download PDF

Info

Publication number
KR101616189B1
KR101616189B1 KR1020140089934A KR20140089934A KR101616189B1 KR 101616189 B1 KR101616189 B1 KR 101616189B1 KR 1020140089934 A KR1020140089934 A KR 1020140089934A KR 20140089934 A KR20140089934 A KR 20140089934A KR 101616189 B1 KR101616189 B1 KR 101616189B1
Authority
KR
South Korea
Prior art keywords
catalyst
carbon
solution
metal
redox flow
Prior art date
Application number
KR1020140089934A
Other languages
English (en)
Other versions
KR20160009408A (ko
Inventor
권용재
정상현
나일채
추천호
Original Assignee
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울과학기술대학교 산학협력단 filed Critical 서울과학기술대학교 산학협력단
Priority to KR1020140089934A priority Critical patent/KR101616189B1/ko
Publication of KR20160009408A publication Critical patent/KR20160009408A/ko
Application granted granted Critical
Publication of KR101616189B1 publication Critical patent/KR101616189B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9058Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 바나듐 레독스 플로우 전지의 촉매 물질 및 그 제조방법에 관한 것이다. 바나듐 레독스 플로우 전지의 성능을 향상시키기 위해서는, 양극 율속반응(V4+/5+) 속도를 향상시키는 것이 중요하다. 본 발명에서는 바나듐 레독스 플로우 전지의 촉매용 카본 담지체에 금속을 담지하는 새로운 제조방법 및 그 제조방법으로 제조된 촉매를 제안하고 있으며, 이는 양극 율속반응의 속도를 향상시켜 바나듐 레독스 플로우 전지의 성능을 향상시키는데 효과적이다.

Description

바나듐 레독스 흐름전지를 위한 촉매 및 그 제조방법 {Catalyst for Vanadium Redox Flow Battery and Method for preparing the Same}
본 발명은 바나듐 레독스 플로우 전지의 촉매용 카본 담지체에 금속을 담지하는 새로운 제조방법 및 그 제조방법으로 제조된 촉매에 관한 것으로, 이는 바나듐 레독스 플로우 전지의 율속반응 속도를 향상시켜 바나듐 레독스 플로우 전지의 성능을 향상시키는 것을 목적으로 한다.
에너지저장시스템(Energy Storage System, 이하 약칭으로 ESS라 함)은 생산된 전력을 전력계통(Grid)에 저장했다가 전력이 가장 필요한 시기에 공급하여 에너지 효율을 높이는 시스템으로, 전력계통에서 발전, 송배전, 수용가에 설치되어 운영이 가능한 시스템이다.
ESS에서 가장 중요한 구성 중에 하나는 전력을 저장하는 전력저장장치이다. 전력저장장치 중에서 바나듐 레독스 플로우 전지(Vanandium Redox Flow Battery, 이하 약칭으로 VRFB라 함)는 싼 가격, 큰 용량, 가변적인 조작조건, 모듈로서 조립이 가능한 간단한 구조(즉, 에너지 저장 부분과 에너지 방전 부분을 모듈처럼 붙이거나 해체하는 것이 용이) 등의 장점으로 인하여 각광 받고 있다.
이러한 VRFB는 에너지 충방전을 위한 연료로서 바나듐을 이용한다. 바나듐은 용액상에서 V2+부터 V5+까지 4가지 형태의 이온으로 존재하는 것이 가능한데, V2+/3+는 음극에, V4+/5+는 양극에 위치하여 상황에 따라 Redox 반응을 통해 충방전을 반복하게 된다. 도 1에서는 이러한 VRFB의 동작원리에 대하여 설명하고 있다.
최근 들어 VRFB의 상용화을 위하여 전극 성능을 향상시키기 위한 다양한 연구가 수행되고 있는데, 그중 하나가 백금계 촉매를 사용하는 것이다.
그러나 VRFB용 촉매에 백금(Pt)계와 같은 귀금속을 적용할 경우 백금의 도입으로 인하여 제조 원가가 높아지는 문제점이 발생한다. 백금은 매장량이 제한되어 있어 VRFB의 상용화에 큰 걸림돌이 되고 있다. 따라서 백금 촉매를 사용할 경우 VRFB의 상용화를 위해서는 백금 사용량을 감소시켜야 한다. 그러나 촉매에서 백금 사용량을 감소시키는 경우 VRFB의 초기 성능 및 내구성이 감소하는 등 많은 기술적인 어려움이 발생한다.
삭제
삭제
JP 2012-000602 A JP 2011-510465 A
본 발명은 백금의 사용량을 줄이면서도 VRFB의 성능 및 내구성을 유지시키기 위한 촉매 소재의 연구 및 개발에 관한 것으로, 카본 담지체에 금속을 담지하여 백금 사용량을 획기적으로 줄이기 위한 촉매의 새로운 제조방법 및 그 제조방법으로 제조된 촉매를 제안하고 있다. 이는 양극 율속반응의 속도를 향상시켜 바나듐 레독스 플로우 전지의 성능을 향상시키는데 효과적이다. 이를 통해 적은 양의 백금을 사용하면서도 촉매 활성이 향상된 고성능의 촉매 전극을 제조하여 VRFB의 상용화를 앞당기는데 그 목적이 있다.
상기 목적을 달성하기 위하여,
1) 금속전구체 및 에틸렌 글리콜의 혼합용액을 제조하는 제1단계;
2) 상기 혼합용액에 염기성 용액을 첨가하여 염기성 혼합 용액을 제조하는 제2단계;
3) 상기 염기성 혼합용액에 탄소 담지체를 첨가하는 제3단계;
4) 상기 탄소 담지체를 포함하는 염기성 혼합 용액을 100℃ 이상으로 가열하는 제4단계;
5) 상기 가열된 용액에 산을 첨가하여 산성 용액으로 제조하여 금속 전구체가 금속 상태로 탄소 담지체에 담지되는 제5단계; 및
6) 상기 금속이 담지된 탄소 담지체를 세척 및 열처리하여 나노입자 형태로 금속이 탄소 담지체에 담지된 촉매를 제조하는 제6단계;를 포함하는 VRFB용 촉매의 제조방법 및 그 제조방법으로 제조된 촉매를 특징으로 한다.
여기서 상기 제1단계의 금속 전구체는 PtCl4, K2PtCl4, H2PtCl6ㆍxH2O, PtCl2, PtBr2, PtO2, NiCl2ㆍ6H2O, CoCl2ㆍ6H2O, NiBr2, NiCl2, RuCl3, CoCl2, FeCl2, FeCl3, FeCl2ㆍ4H2O, FeCl3ㆍ6H2O, CrCl3, CrCl2, CrCl3ㆍ6H2O, CuBr2, CuCl2, CuCl2ㆍ2H2O, PdCl2, PdCl3, SnCl2, SnBr2, SnCl4, SnCl2ㆍ2H2O, MoCl2, MoCl3, WCl4, WCl6, IrCl3, 및 IrCl3ㆍxH2O 중 선택된 1종 또는 2종 이상의 전구체를 사용하는 것을 특징으로 한다. 본 발명에서 바람직한 금속 전구체는 PtCl4 이다.
또한, 제2단계에서 염기성 용액은 0.1 M NaOH 용액이고 이를 첨가하여 pH 11로 제조하는 것을 특징으로 한다.
또한, 제4단계의 온도는 160℃이고, 160℃에서 3시간동안 환류시키는 것을 포함하는 것을 특징으로 한다.
또한, 제5단계의 산성 용액의 pH는 3인 구성을 특징으로 한다. 특히 pH 3인 산성 용액에서 24시간 이상 유지되는 구성을 특징으로 한다.
또한, 제조된 촉매에서 탄소 담지체 대비 금속의 담지량이 5 ~ 90 중량%가 되도록 사용하는 것을 특징으로 한다.
또한, 탄소 담지체는 카본 분말, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 활성 탄소, 카본나노튜브, 카본나노파이버, 카본나노와이어, 카본나노혼, 카본 에어로겔, 카본크레로겔, 카본나노링 중 선택된 하나를 사용하는 것을 특징으로 한다.
또한, 이렇게 제조된 촉매는 나노 입자의 크기로 형성되는 것을 특징으로 한다.
이상에서 설명한 바와 같이, 본 발명에 따른 VRFB용 촉매의 제조방법에 의하면, 탄소 담지체 위에 금속 입자를 담지하여 나노 입자의 촉매를 제조할 수 있고, 이는 VRFB의 양극 율속반응의 속도를 향상시켜 VRFB의 성능을 향상시키는데 효과적이다. 이를 통해 적은 양의 백금을 사용하면서도 촉매 활성이 향상된 고성능 촉매 전극을 제조할 수 있다.
도 1은 VRFB의 동작원리에 관한 것이다.
도 2는 실시예 1 및 비교예 1의 (a) TEM 이미지 및 (b) XRD 데이터를 나타낸 것이다.
도 3은 실시예 1, 2와 비교예 1, 2의 전기 활성 표면적을 측정하기 위한 CV 데이터를 도시한 것이다.
도 4는 실시예 1 및 비교예 1의 촉매에 따른 VRFB의 단위 셀의 충방전 곡선을 나타낸다.
도 5는 실시예 1 및 비교예 1을 포함하는 VRFB 단위 셀 전력 효율 및 에너지 효율을 나타낸다.
본 발명은 VRFB의 촉매의 제조방법 및 그 제조방법으로 제조된 촉매에 관한 것이다.
보다 구체적으로는 VRFB의 촉매의 제조방법은 아래와 같다.
1) 금속전구체 및 에틸렌 글리콜의 혼합용액을 제조하는 제1단계;
2) 상기 혼합용액에 염기성 용액을 첨가하여 염기성 혼합 용액을 제조하는 제2단계;
3) 상기 염기성 혼합용액에 탄소 담지체를 첨가하는 제3단계;
4) 상기 탄소 담지체를 포함하는 염기성 혼합 용액을 100℃ 이상으로 가열하는 제4단계;
5) 상기 가열된 용액에 산을 첨가하여 산성 용액으로 제조하여 금속 전구체가 금속 상태로 탄소 담지체에 담지되는 제5단계; 및
6) 상기 금속이 담지된 탄소 담지체를 세척 및 열처리하여 나노입자 형태로 금속이 탄소 담지체에 담지된 촉매를 제조하는 제6단계;를 포함하는 VRFB용 촉매의 제조방법을 특징으로 한다.
여기서 상기 제1단계의 금속 전구체는 PtCl4, K2PtCl4, H2PtCl6ㆍxH2O, PtCl2, PtBr2, PtO2, NiCl2ㆍ6H2O, CoCl2ㆍ6H2O, NiBr2, NiCl2, RuCl3, CoCl2, FeCl2, FeCl3, FeCl2ㆍ4H2O, FeCl3ㆍ6H2O, CrCl3, CrCl2, CrCl3ㆍ6H2O, CuBr2, CuCl2, CuCl2ㆍ2H2O, PdCl2, PdCl3, SnCl2, SnBr2, SnCl4, SnCl2ㆍ2H2O, MoCl2, MoCl3, WCl4, WCl6, IrCl3, 및 IrCl3ㆍxH2O 중 선택된 1종 또는 2종 이상의 전구체를 사용할 수 있다. 본 발명에서 바람직한 금속 전구체는 PtCl4를 사용하는 것이다.
본 발명의 일 실시예에서, 제2단계에서의 염기성 용액은 0.1 M NaOH 용액으로서 이를 첨가하여 pH 11로 제조하는 것이 바람직하다.
본 발명의 일 실시예에서, 제4단계의 온도는 160℃이고, 160℃에서 3시간 동안 환류시키는 것을 포함하는 것이 바람직하다.
본 발명의 일 실시예에서, 제5단계의 산성 용액의 pH는 3인 것이 바람직한데, 특히 pH 3인 산성 용액에서 24시간 이상 유지되는 것이 더욱 바람직하다.
본 발명의 일 실시예에서, 제조된 촉매에서 탄소 담지체 대비 금속의 담지량이 5 ~ 90 중량%가 되도록 사용하는 것이 바람직하다.
본 발명의 일 실시예에서, 탄소 담지체는 카본 분말, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 활성 탄소, 카본나노튜브, 카본나노파이버, 카본나노와이어, 카본나노혼, 카본 에어로겔, 카본크레로겔, 카본나노링 중 선택된 하나를 사용하는 것이 바람직하다.
본 발명의 일 실시예에서, 이렇게 제조된 촉매는 나노입자의 크기로 형성되는 것이 바람직하다.
이하에서는 본 발명의 실시예 및 비교예를 참조하여 본 발명을 더욱 상세히 설명한다. 이들 실시예 및 비교예는 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들에 의해 제한되는 것은 아니다.
[실시예 1]
100 mg의 PtCl4를 25 ml의 에틸렌 글리콜에 첨가하여 30 분동안 격렬히 교반한다. 상기 용액에 0.1 M NaOH 용액을 첨가하여 pH 11인 혼합용액을 제조한다. 상기 pH 11인 혼합용액을 1시간 동안 상온에서 교반하고, 100 mg의 탄소 담지체인 Vlucan (XC-72)를 첨가하여 40 wt% Pt/C 나노입자를 제조한다. Pt/C 나노입자를 포함하는 용액을 160℃로 온도를 상승시키고, 3시간 동안 환류시킨다. 그 다음으로는 1M H2SO4 용액을 첨가하여 pH 3으로 적정한다. pH 3으로 적정되면 24시간 동안 유지하여 자기-환원 반응을 시킨다. Pt/C 나노입자만을 얻기 위하여, 이를 필터로 거르고 초순수 물로 여러번 세척한다. 이렇게 제조된 Pt/C 나노입자를 160℃, 질소 분위기에서 1시간 동안 열처리하여 반응을 종료한다. 이렇게 제조된 촉매를 실시예 1이라 한다.
[실시예 2]
상기 실시예 1에서 PtCl4와 NiCl2ㆍ6H2O을 100 mg 첨가하여 PtNi/C 촉매를 제조한 것을 제외하고는 실시예 1과 동일하게 실시하였다. 이렇게 제조된 촉매를 실시예 2라 한다.
[비교예 1]
Vulcan (XC 72) 담지체 150 mg을 무수에탄올 180 ml에 넣고 고출력 초음파에 30분, 교반기에 1시간 동안 분산시킨다. 반응기에 염화백금(PtCl4) 132.8 mg을 탄소와 백금의 중량비가 6 : 4가 되도록 첨가하고 아세트산나트륨(계면활성제)을 금속 몰수에 22배를 넣고 5분간 초음파를 작동하여 분산시킨 뒤 4시간 동안 교반하여 마이셀 용액을 제조한다. 이후 환원제로 쓰이는 수소화붕소나트륨(100 mg)을 무수에탄올 20 ml에 녹여 기존의 반응기에 빠르게 첨가하여 4시간 동안 교반하며 백금을 환원시켜 Vulcan (XC-72)와 골고루 반응시킨다. 상기 용액을 에탄올과 초순수로 1 ㎛ 이하의 멤브레인 필터{(주)Vivagen사 제품}를 사용하여 계면활성제와 환원제의 잔여물을 제거하기 위해 반복하여 여과한다. 이후 세정된 촉매는 60℃ 진공 오븐에서 12시간 이상 건조한 후 N2 분위기에서 300℃로 3시간 열처리 하여 최종적으로 Vulcan (XC 72)에 담지된 백금 촉매를 얻는다. Vulcan (XC 72)에 담지된 백금을 포함하는 촉매를 비교예 1이라 한다.
[비교예 2]
비교예 1에서 백금이 담지되지 않은 순수 Vulcan (XC 72)만을 에탄올과 초순수로 세척하고 60℃ 진공 오븐에서 12시간 이상 건조한 순수 Vulcan (XC 72)를 비교예 2라 한다.
상기 실시예 1 및 비교예 1의 촉매 입자의 크기 및 담지 상태를 측정하기 위하여 (a) TEM(Transmission Electron Microscope, 투과전자현미경) 및 (b) XRD(X-Ray Diffraction)로 측정하여 도 2에 나타내었다. 실시예 1에 의해 제조된 촉매 입자에서 금속 입자의 크기가 평균적으로 비교예 1의 금속 입자보다 34 % 적게 형성되고, 고르게 분포된 것을 확인 할 수 있었다.
촉매의 특성을 측정하기 위하여, 촉매 활성 표면적을 CV(Cyclic Voltammetry)로 측정하여 도 3에 나타내었다. 측정결과 실시예 1의 촉매 활성 표면적은 55.4 ㎡/g으로 상업 촉매인 비교예 1의 촉매 활성 표면적 51.4 ㎡/g보다 우수하였다.
또한, 도 4에 촉매에 따른 VRFB의 단위 셀의 충방전 곡선을 나타내었다. 실시예 1의 초기 1cycle의 비충방전용량이 가장 우수하게 측정되었다. 또한, 10 cycle 후의 사이클 안정성도 상업촉매인 비교예 1과 유사하게 측정되었다.
또한, 도 5에는 촉매에 따른 VRFB의 단위 셀의 전력 효율 및 에너지 효율을 나타내었다. 측정결과 실시예 1은 전력 효율이 84 %이고 에너지 효율은 71 %로서 상업 촉매인 비교예 1의 전력 효율 74 % 및 에너지 효율 66 % 보다 우수한 특성을 나타내었다.

Claims (8)

  1. 바나듐 레독스 플로우 전지용 촉매의 제조방법에 있어서,
    PtCl4 및 NiCl2ㆍ6H2O를 포함하는 금속 전구체와 에틸렌글리콜이 혼합된 4 g/L 농도의 혼합 용액을 제조하는 제1단계;
    상기 혼합 용액에 0.1M의 염기성 용액을 첨가하여 pH 11의 염기성 혼합 용액을 제조하는 제2단계;
    상기 염기성 혼합 용액에 금속 전구체와 1:1의 중량비로 탄소 담지체(C)로서 카본블랙을 첨가하는 제3단계;
    상기 탄소 담지체를 포함하는 염기성 혼합 용액을 160℃ 이상에서 3시간 동안 가열하는 제4단계;
    상기 가열된 용액에 산을 첨가하여 pH가 3인 산성 용액으로 제조하여 24시간 이상 자기-환원 반응을 수행하여 금속 전구체가 금속 상태로 탄소 담지체에 담지되는 제5단계; 및
    상기 금속이 담지된 탄소 담지체를 세척 및 열처리하여 나노입자 형태로 PtNi 금속이 탄소 담지체인 카본블랙에 담지된 촉매를 제조하는 제6단계;를 포함하는 바나듐 레독스 플로우 전지용 PtNi/C 촉매의 제조방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
KR1020140089934A 2014-07-16 2014-07-16 바나듐 레독스 흐름전지를 위한 촉매 및 그 제조방법 KR101616189B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140089934A KR101616189B1 (ko) 2014-07-16 2014-07-16 바나듐 레독스 흐름전지를 위한 촉매 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140089934A KR101616189B1 (ko) 2014-07-16 2014-07-16 바나듐 레독스 흐름전지를 위한 촉매 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20160009408A KR20160009408A (ko) 2016-01-26
KR101616189B1 true KR101616189B1 (ko) 2016-04-28

Family

ID=55307403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140089934A KR101616189B1 (ko) 2014-07-16 2014-07-16 바나듐 레독스 흐름전지를 위한 촉매 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR101616189B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2646938B1 (es) * 2016-06-15 2018-09-25 Innotecno Development S.L. Procedimiento para la modificación de electrodos de carbono para su empleo en baterías de flujo redox de vanadio
KR102294549B1 (ko) * 2019-02-08 2021-08-30 건국대학교 산학협력단 전이후 금속 및 다공성 탄소를 포함하는 복합체, 이의 제조방법 및 이를 포함하는 레독스 흐름 전지

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0801195D0 (en) 2008-01-23 2008-02-27 Acal Energy Ltd Fuel cells
KR20090090671A (ko) * 2008-02-21 2009-08-26 현대자동차주식회사 고 비율 백금 담지 촉매의 제조방법
KR100986563B1 (ko) * 2009-03-05 2010-10-07 연세대학교 산학협력단 내부식성이 우수한 연료전지용 촉매 제조 방법
KR101033883B1 (ko) * 2009-06-25 2011-05-11 기아자동차주식회사 연료전지용 고비율 백금 담지 촉매 제조방법
JP2012000602A (ja) 2010-06-21 2012-01-05 Sumitomo Chemical Co Ltd レドックス触媒、燃料電池用電極触媒及び燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. ELECTROCHEM. SOC. 2013, VOLUME 160, ISSUE 4, PAGES A690-A696 (2013.02.21)*

Also Published As

Publication number Publication date
KR20160009408A (ko) 2016-01-26

Similar Documents

Publication Publication Date Title
Zhou et al. Theoretically revealed and experimentally demonstrated synergistic electronic interaction of CoFe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions
Ji et al. Full water splitting electrocatalyzed by NiWO4 nanowire array
Wang et al. Ni–Mo nanocatalysts on N-doped graphite nanotubes for highly efficient electrochemical hydrogen evolution in acid
Gupta et al. Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon
You et al. High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks
Zhu et al. Metal–organic framework-induced synthesis of ultrasmall encased NiFe nanoparticles coupling with graphene as an efficient oxygen electrode for a rechargeable Zn–air battery
Abdelkader-Fernandez et al. Noble-metal-free MOF-74-derived nanocarbons: insights on metal composition and doping effects on the electrocatalytic activity toward oxygen reactions
Feng et al. Uniquely monodispersing NiFe alloyed nanoparticles in three-dimensional strongly linked sandwiched graphitized carbon sheets for high-efficiency oxygen evolution reaction
Wu et al. Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction
Liu et al. CoSe2 nanowires array as a 3D electrode for highly efficient electrochemical hydrogen evolution
Ning et al. Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction
Liu et al. NiCo2S4@ graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions
Shen et al. Rhodium nanoparticles/F-doped graphene composites as multifunctional electrocatalyst superior to Pt/C for hydrogen evolution and formic acid oxidation reaction
Feng et al. Ultrathin two-dimensional free-standing sandwiched NiFe/C for high-efficiency oxygen evolution reaction
Li et al. Structural modulation of Co catalyzed carbon nanotubes with Cu–Co bimetal active center to inspire oxygen reduction reaction
Devi et al. Ni (II)-dimeric complex-derived nitrogen-doped graphitized carbon-encapsulated nickel nanoparticles: efficient trifunctional electrocatalyst for oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction
Du et al. Core–shell FeCo Prussian blue analogue/Ni (OH) 2 derived porous ternary transition metal phosphides connected by graphene for effectively electrocatalytic water splitting
Huang et al. Two-dimensional cobalt/N-doped carbon hybrid structure derived from metal–organic frameworks as efficient electrocatalysts for hydrogen evolution
Yang et al. Surfactant-assisted synthesis of palladium nanosheets and nanochains for the electrooxidation of ethanol
Zhang et al. Enhancement effect of borate doping on the oxygen evolution activity of α-nickel hydroxide
Hong et al. CuO nanoplatelets with highly dispersed ce-doping derived from intercalated layered double hydroxides for synergistically enhanced oxygen reduction reaction in Al–Air batteries
Sun et al. Interfacial electronic structure modulation of hierarchical Co (OH) F/CuCo2S4 nanocatalyst for enhanced electrocatalysis and Zn–air batteries performances
Wu et al. Manganese/cobalt bimetal nanoparticles encapsulated in nitrogen-rich graphene sheets for efficient oxygen reduction reaction electrocatalysis
Zhou et al. Zeolitic imidazolate framework-derived ordered Pt–Fe intermetallic electrocatalysts for high-performance Zn-air batteries
Liu et al. A general method for constructing two-dimensional layered mesoporous mono-and binary-transition-metal nitride/graphene as an ultra-efficient support to enhance its catalytic activity and durability for electrocatalytic application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 4