KR101608979B1 - Protease of sequence 5 having algicidal activity, gene encoding the same and algicidal formulation comprising the same - Google Patents

Protease of sequence 5 having algicidal activity, gene encoding the same and algicidal formulation comprising the same Download PDF

Info

Publication number
KR101608979B1
KR101608979B1 KR1020140191149A KR20140191149A KR101608979B1 KR 101608979 B1 KR101608979 B1 KR 101608979B1 KR 1020140191149 A KR1020140191149 A KR 1020140191149A KR 20140191149 A KR20140191149 A KR 20140191149A KR 101608979 B1 KR101608979 B1 KR 101608979B1
Authority
KR
South Korea
Prior art keywords
gly
asn
ser
thr
leu
Prior art date
Application number
KR1020140191149A
Other languages
Korean (ko)
Other versions
KR20150009510A (en
Inventor
김상진
강성균
권개경
이정현
이현숙
강지현
손재학
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to KR1020140191149A priority Critical patent/KR101608979B1/en
Publication of KR20150009510A publication Critical patent/KR20150009510A/en
Application granted granted Critical
Publication of KR101608979B1 publication Critical patent/KR101608979B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/50Isolated enzymes; Isolated proteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)

Abstract

본 발명은 살조활성 단백질분해효소, 이를 코딩하는 유전자 및 이를 포함하는 살조제제에 관한 것으로, 본 발명의 단백질분해효소는 살조활성이 우수하므로, 적조발생 지역에서 적조의 방제에 유용하게 사용될 수 있다. The present invention relates to a germicidal active protein degrading enzyme, a gene encoding the germicidal active protein degrading enzyme, and a fungicide containing the same, and the proteinase of the present invention is excellent in fungicidal activity, .

Description

서열번호 5를 포함하는 살조활성 단백질분해효소, 이를 코딩하는 유전자 및 이를 포함하는 살조제제{PROTEASE OF SEQUENCE 5 HAVING ALGICIDAL ACTIVITY, GENE ENCODING THE SAME AND ALGICIDAL FORMULATION COMPRISING THE SAME}An algicidal activity protease comprising SEQ ID NO: 5, a gene encoding the same, and an algicide comprising the same {PROTEASE OF SEQUENCE 5 HAVING ALGICIDAL ACTIVITY, GENE ENCODING THE SAME AND ALGICIDAL FORMULATION COMPRISING THE SAME}

본 발명은 적조생물의 생장을 억제하는 단백질분해효소 및 이를 코딩하는 유전자에 관한 것이다.The present invention relates to a protease that inhibits the growth of red tide organisms and a gene encoding the same.

해양에서 적조를 유발하는 원인 종은 돌말류 (Bacillariophyceae), 침편모조류 (Raphidophyceae) 및 와편모조류 (Dinophyceae) 등의 편모조류로 구성되어 있으며, 특히 편모조류가 대부분을 차지하고 있다. 돌말류는 한천이 포함된 배지에서 생장이 가능한 반면 편모조류는 생장이 불가능하므로 소프트-아가 오버레이 (soft-agar overlay) 방법을 이용한 살조세균의 연구는 제한을 받아왔다. The causative species that cause red tides in the ocean are composed of flagella algae such as Bacillariophyceae, Raphidophyceae, and Dinophyceae, and flagella algae in particular occupy most of them. Diatoms can grow on agar-containing medium, whereas flagella algae cannot grow, so studies of algicidal bacteria using the soft-agar overlay method have been limited.

해양 및 연안 환경에서 분리된 살조세균은 알테로모나스 (Alteromonas), 바실러스 (Bacillus), 카울로박터 (Caulobacter), 사이토파가 (Cytophaga), 플라보박테리움 (Flavobacterium), 슈도알테로모나스 (Pseudoalteromonas), 슈도모나스 (Pseudomonas), 사포로스피라 (Saporospira), 비브리오 (Vibrio) 속이 주종을 이루고 있다. 해양으로부터 분리된 살조세균은 분류학상 플라보박테리움-사이토파가 복합체 (complex)와 프로테오박테리아류 (Proteobacteria branch), 예를 들어 알테로모나스, 슈도모나스, 슈도알테로모나스, 사포로스피라 및 비브리오로 구분할 수 있다. 일반적으로, 여러 가지 생체 거대분자들 (biomacromolecules)의 분해능력을 가지고 있는 플라보박테리움-사이토파가 복합체의 종들은 조류의 세포벽과 이들로부터 방출되는 배설물 (exudates)을 영양원으로 이용할 수 있기 때문에 식물 플랑크톤과 밀접한 관계를 가지고 있는 것으로 사료된다. Alteromonas isolated from marine and coastal environments are Alteromonas, Bacillus. ( Bacillus ), Cowlobacter ( Caulobacter ), Cytopaga ( Cytophaga ), Flavobacterium ( Flavobacterium ), Pseudo Alteromonas ( Pseudoalteromonas ), Pseudomonas ( Pseudomonas ), Saphorospira ( Saporospira ), vibrio ( Vibrio ) The genus is the main-slave. The saljo bacteria separated from the ocean is classified haksang Flavobacterium-Saito wave complex (complex) and proteobacteria acids (Proteobacteria branch), for example, Alteromonas, Pseudomonas, Pseudomonas Alteromonas, Spira and Vibrio Sapporo It can be classified as In general, species of the flavobacterium-cytopaga complex, which have the ability to degrade various biomacromolecules, can use the cell walls of algae and the excrements released from them as a nutrient source. It is thought to have a close relationship with plankton.

현재까지 연구된 결과에 따르면 살조세균의 살조기작은 크게 두 가지로 구분하여 정의할 수 있다. 첫 번째 기작으로는, 살조세균이 적조생물의 표면에 부착하여 적조생물을 용조하는 접촉에 의한 기작으로, 사이토파가 종과 알테로모나스 종이 그 대표적인 예로 알려져 있다. 두 번째 기작으로는, 살조세균들이 살조물질을 세포 외로 분비하여 적조생물의 성장을 억제 또는 용조하는 기작으로, 대부분의 살조세균들이 이에 포함된다. 해양으로부터 분리된 대부분의 살조세균은 세포외 물질을 생성하는 기작을 가지고 있으나 이러한 물질의 분리, 동정 및 기작에 대한 보고는 거의 없다. According to the results of the studies so far, the killing mechanisms of acaricides can be divided into two categories. The first mechanism is a contact mechanism by which algicidal bacteria attach to the surface of red tide organisms and energize red tide organisms. Bell and Alteromonas Paper is known as a representative example. The second mechanism is a mechanism by which algicidal bacteria secrete algicidal substances to the outside of cells to inhibit or aid the growth of red algal organisms, and most of the algicidal bacteria are included therein. Most algicidal bacteria isolated from the ocean have a mechanism to produce extracellular substances, but there are few reports on the separation, identification and mechanism of these substances.

본 발명자들은 적조생물인 스켈레토네마 코스타튬 (Skeletonema costatum)을 죽이는 살조세균인 코르디아 알지시다 (Kordia algicida) OT-1 균주를 분리하였으며, 이를 2008년 4월 24일자로 한국생명공학연구원내 생물자원센터 (KCTC, Korean Collection for Type Cultures)에 기탁한 바 있다 (기탁번호 KCTC 11320BP; 기탁일 2008.4.8). The present inventors isolated the Kordia algicida OT-1 strain, an acaricide that kills Skeletonema costatum , which is a red tide organism, and as of April 24, 2008, the organisms within the Korea Research Institute of Bioscience and Biotechnology. It has been deposited with the Resource Center (KCTC, Korean Collection for Type Cultures) (accession number KCTC 11320BP; accession date 2008.4.8).

또한, NCBI (national center for biotechnology information)에 등록된 균주들과 16S rRNA의 유사성을 조사하고, 16S rRNA의 염기서열을 분석한 결과, 상기 균주는 플라보박테리아 (Flavobacteria)에 속하는 신규한 균주임이 확인되었다 (Sohn 등, Int. J. Syst. Evol. Microbiol., 54:675-680, 2004).In addition, as a result of investigating the similarity of 16S rRNA with strains registered in NCBI (national center for biotechnology information), and analyzing the base sequence of 16S rRNA, it was confirmed that the strain is a novel strain belonging to Flavobacteria. (Sohn et al., Int. J. Syst. Evol. Microbiol ., 54:675-680, 2004).

본 발명의 목적은 적조생물의 생장을 억제할 수 있는 신규한 단백질 및 이를 코딩하는 유전자를 제공하는 것이다.An object of the present invention is to provide a novel protein capable of inhibiting the growth of red tide organisms and a gene encoding the same.

본 발명의 다른 목적은 상기 단백질을 활성성분으로 함유하는 살조제제를 제공하는 것이다.Another object of the present invention is to provide an algicide containing the protein as an active ingredient.

본 발명의 또 다른 목적은 상기 제제를 이용하여 적조발생 지역을 처리하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method of treating a red tide area using the above formulation.

본 발명은 서열번호: 1, 4 내지 7, 26 및 27 중 어느 하나의 아미노산 서열을 갖는 살조활성 단백질분해효소 및 상기 단백질분해효소를 코딩하는 유전자를 제공한다. The present invention provides an algicidal activity protease having an amino acid sequence of any one of SEQ ID NOs: 1, 4 to 7, 26 and 27, and a gene encoding the protease.

또한, 본 발명은 상기 단백질분해효소를 활성성분으로 함유하는 살조제제를 제공한다.In addition, the present invention provides an algicide containing the proteolytic enzyme as an active ingredient.

또한, 본 발명은 상기 살조제제를 적조현상이 발생한 지역에 처리하는 단계를 포함하는, 적조의 방제방법을 제공한다. 보다 상세하게는 코르디아 알지시다 (Kordia algicida) OT1 균주(KCTC 11320BP)를 이용하여, 서열번호 1, 7 및 27로 이루어진 그룹에서 선택된 어느 하나 이상의 단백질분해효소를 생산하는 단계; 및 상기 생산된 단백질분해효소를 활성성분으로 포함하는 살조제제를 바다에 투입하는 단계를 포함하는 것을 특징으로 하는 적조 방제 방법을 제공한다. 상기 살조제제는 상기 단백질분해효소를 생산하는 코르디아 알지시다 (Kordia algicida) OT1 균주(KCTC 11320BP)와 동시에 투입하거나, 상기 코르디아 알지시다 (Kordia algicida) OT1 균주(KCTC 11320BP)의 배양물로부터 순수 또는 부분 분리한 단백질분해효소를 유효성분으로 하여 투입할 수도 있다. 상기 배양시 해수상태와 적합하게 하기 위하여 NaCl 0.5~6%, Mg2+ 0.05g-1.2g/l 및 Ca2+ 0.05-1.0g/l를 포함하는 배지를 사용할 수 있다.In addition, the present invention provides a method for controlling red tide, including the step of treating the algicide in the area where the red tide phenomenon has occurred. In more detail , using a Cordia algicida (Kordia algicida ) OT1 strain (KCTC 11320BP), the step of producing any one or more proteases selected from the group consisting of SEQ ID NOs: 1, 7 and 27; And it provides a method for controlling red tide, comprising the step of introducing an algicide containing the produced protease as an active ingredient into the sea. The algicide is introduced at the same time as the Cordia algicida (Kordia algicida ) OT1 strain (KCTC 11320BP) producing the protease, or from the culture of the Cordia algicida (Kordia algicida ) OT1 strain (KCTC 11320BP) Pure or partially isolated protease may be added as an active ingredient. During the culture, a medium containing 0.5-6% NaCl, 0.05g-1.2g/l Mg 2+ , and 0.05-1.0g/l Ca 2+ may be used to make it suitable for seawater conditions.

이와 같이, 본 발명의 살조활성 단백질은 적조생물의 생장을 효과적으로 억제하므로, 적조발생 지역에서 적조의 방제에 유용하게 사용될 수 있다.As described above, since the algicidal activity protein of the present invention effectively inhibits the growth of red tide organisms, it can be usefully used for controlling red tide in a red tide occurrence area.

도 1은 살조세균인 코르디아 알지시다 (Kordia algicida) OT-1 균주(KCTC 11320BP)의 단백질을 비변성 (native)-PAGE (12%)에서 분리한 결과이다.
도 2는 코르디아 알지시다 OT-1 균주(KCTC 11320BP)로부터 분리된 단백질 중, 살조활성을 나타내는 밴드 번호 3 및 10의 단백질을 변성 조건 하에서 SDS-PAGE로 분리한 결과이다.
도 3은 서열번호: 1의 아미노산 서열을 갖는 KAOT1_10476 단백질의 구조를 나타낸 것이다.
도 4는 KAOT1_10476 단백질의 특성을 규명하기 위한 다양한 유전자 구조물 (construct)의 모식도이다.
도 5는 10476_1 내지 10476_9 단백질을 발현시킨 후, 발현 정도를 SDS-PAGE로 확인한 결과이다.
도 6은 10476_1, 및 10476_6 내지 10476_9 단백질을 가용화시키기 위해 리폴딩 (refolding)시킨 결과를 확인한 것이다.
도 7은 10476_1, 및 10476_6 내지 10476_9 단백질의 단백질 분해활성을 확인한 결과이다.
도 8은 10476_8 단백질의 프로세싱 (processing)을 1주일 동안 관찰한 결과이다.
도 9 10은 온도 및 pH에 따른 10476_7 단백질의 단백질 분해활성을 확인한 결과이다.
도 1112는 금속이온 (아연이온 또는 칼슘이온)에 따른 10476_7 단백질의 단백질 분해활성을 확인한 결과이다.
도 1314는 KAOT1_10476 단백질과 다양한 해양 미생물 (플라보박테리움 존소니애 (Flavobacterium johnsoniae) UW101, 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) HTCC2559, 리우웬호에키엘라 블란덴시스 (Leeuwenhoekiella blandensis) MED217 및 코르디 알지시다)의 상동성을 비교한 결과이다.
도 15는 KAOT1_10476 단백질과 상동성을 갖는 해양 미생물들의 살조활성 단백질을 발현시키기 위한 유전자를 PCR로 증폭한 결과이다.
도 16은 KAOT1_10476 단백질과 상동성을 갖는 해양 미생물들의 살조활성 단백질의 발현을 확인한 결과이다.
Figure 1 is a result of separating the protein of the algicidal bacteria Kordia algicida OT-1 strain (KCTC 11320BP) by non-denaturing (native)-PAGE (12%).
2 is a result of separating the proteins of band Nos. 3 and 10 showing algicidal activity among proteins isolated from the Cordia aljishida OT-1 strain (KCTC 11320BP) by SDS-PAGE under denaturing conditions.
Figure 3 shows the structure of the protein KAOT1_10476 having the amino acid sequence of SEQ ID NO: 1.
4 is a schematic diagram of various genetic constructs for characterizing the KAOT1_10476 protein.
5 is a result of confirming the expression level by SDS-PAGE after expressing the 10476_1 to 10476_9 proteins.
6 shows the results of refolding to solubilize the 10476_1 and 10476_6 to 10476_9 proteins.
7 is a result of confirming the proteolytic activity of proteins 10476_1 and 10476_6 to 10476_9.
8 is a result of observing the processing of the 10476_8 protein for one week.
9 and 10 are results confirming the proteolytic activity of 10476_7 protein according to temperature and pH.
11 and 12 are results confirming the proteolytic activity of 10476_7 protein according to metal ions (zinc ions or calcium ions).
13 and 14 show KAOT1_10476 protein and various marine microorganisms ( Flavobacterium johnsoniae ) UW101, Croceibacter atlanticus HTCC2559, Leeuwenhoekiella blandensis MED217 and This is the result of comparing the homology of Cordy.
FIG. 15 is a result of amplifying a gene for expressing an algicidal protein of marine microorganisms having homology to KAOT1_10476 protein by PCR.
16 is a result of confirming the expression of the algal activity protein of marine microorganisms having homology to the KAOT1_10476 protein.

본 발명은 살조세균인 코르디아 알지시다 (Kordia algicida) OT-1 균주 (KCTC 11320BP)로부터 분리한 서열번호: 1의 아미노산 서열을 갖는 살조활성 단백질분해효소를 제공한다. The present invention provides an algicidal activity protease having the amino acid sequence of SEQ ID NO: 1 isolated from the algicidal bacterium Cordia algicida (Kordia algicida) OT-1 strain (KCTC 11320BP).

서열번호: 1의 아미노산 서열에서, 1 내지 27번째 아미노산은 신호 펩타이드 (signal peptide)에 해당하고, 28 내지 98번째 아미노산은 프로세싱 펩타이드 (processing peptide)에 해당하고, 99 내지 278번째 아미노산은 성숙 단백질 (mature protein)에 해당하며, 상기 성숙 단백질은 금속 결합 (metal binding) 부위 (200 내지 217번째 아미노산)를 포함하고 있다 (도 3). In the amino acid sequence of SEQ ID NO: 1, amino acids 1 to 27 correspond to a signal peptide, amino acids 28 to 98 correspond to a processing peptide, and amino acids 99 to 278 correspond to a mature protein ( mature protein), and the mature protein includes a metal binding site (200 to 217 amino acids) ( FIG. 3 ).

상기 단백질의 아미노산 서열은 단백질분해효소의 기능에 영향을 미치지 않는 범위 내에서 아미노산의 치환, 부가 또는 결실이 이루어질 수 있으며, 목적에 따라 단백질의 일부만이 사용될 수도 있으며 이와 같이 변형된 아미노산 서열 역시 본 발명의 범위에 포함된다. 따라서, 본 발명은 상기 단백질과 실질적으로 동일한 아미노산 서열을 갖는 폴리펩타이드 및 그의 단편을 포함한다.The amino acid sequence of the protein may be substituted, added or deleted within a range that does not affect the function of the protease, and only a part of the protein may be used depending on the purpose, and the amino acid sequence modified as described above may also be used in the present invention. It is included in the scope of. Accordingly, the present invention includes a polypeptide having an amino acid sequence substantially identical to that of the protein and fragments thereof.

따라서, 본 발명은, 상기 단백질에서 신호 펩타이드를 포함하지 않는, 서열번호: 26의 아미노산 서열을 갖는 살조활성 단백질 분해효소, 및 신호펩타이드 및 프로세싱 펩타이드를 포함하지 않는, 서열번호: 27의 아미노산 서열을 갖는 살조활성 단백질 분해효소도 포함한다.Accordingly, the present invention provides the amino acid sequence of SEQ ID NO: 27, which does not include a signal peptide in the protein, and does not include a signal peptide and a processing peptide, an algicidal proteolytic enzyme having the amino acid sequence of SEQ ID NO: 26. It also includes an algicidal activity protease.

상기 단백질을 코딩하는 유전자는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 상기 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있고 코딩 영역을 제외한 부분에서도 단백질의 발현에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 그러한 변형 유전자 역시 본 발명의 범위에 포함된다. 따라서, 본 발명은 상기 서열번호: 1의 아미노산 서열을 코딩하는 염기서열과 실질적으로 동일한 서열을 갖는 폴리뉴클레오타이드 및 이의 단편을 포함하며, 바람직하게는 서열번호: 2의 염기서열을 갖는 폴리뉴클레오타이드를 포함한다.The gene encoding the protein has various modifications to the coding region within a range that does not change the amino acid sequence of the protein due to the degeneracy of the codon or considering the preferred codon in the organism to express the protein. This can be made, and various modifications or modifications can be made within a range that does not affect the expression of the protein even in portions other than the coding region, and such modified genes are also included in the scope of the present invention. Accordingly, the present invention includes a polynucleotide having substantially the same sequence as the nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1 and a fragment thereof, and preferably includes a polynucleotide having the nucleotide sequence of SEQ ID NO: 2 do.

또한, 상기 서열번호: 26 및 27의 아미노산 서열을 갖는 살조활성 단백질분해효소를 코딩하는, 서열번호: 28 및 29의 염기서열을 갖는 폴리뉴클레오타이드도 포함한다.In addition, polynucleotides having the nucleotide sequences of SEQ ID NOs: 28 and 29, which encode algicidal proteases having the amino acid sequences of SEQ ID NOs: 26 and 27, are also included.

상기 서열번호: 1의 단백질분해효소는 성숙 단백질 부분 외에 프로세싱 펩타이드를 추가로 포함하는 경우에 단백질 분해활성이 보다 우수하며, 프로세싱 펩타이드 및 성숙 단백질을 포함하는 단백질은 시간이 지남에 따라 자가절단 (autocleavage)되어 성숙 단백질로 변환되고 (도 7 및 8), 성숙 단백질의 C-말단이 단백질의 프로세싱에 매우 중요한 역할을 함을 알 수 있다. The proteolytic enzyme of SEQ ID NO: 1 has better proteolytic activity when it additionally includes a processing peptide in addition to the mature protein portion, and the protein including the processing peptide and the mature protein is self-cleaving over time. ) Is converted into a mature protein ( FIGS. 7 and 8 ), and it can be seen that the C-terminus of the mature protein plays a very important role in the processing of the protein.

또한, 본 발명의 단백질분해효소는 pH 6.5 내지 8, 바람직하게는, pH 7 내지 8, 및 온도 18 내지 28℃, 바람직하게는 20 내지 23℃, 가장 바람직하게는 20℃에서; 및 80 내지 100 mM의 칼슘이온의 존재 하에 최적 활성을 나타내며 (도 9, 10 및 12), 아연이온은 단백질분해효소의 활성을 저해함을 확인하였다(도 11). In addition, the proteolytic enzyme of the present invention is at a pH of 6.5 to 8, preferably at a pH of 7 to 8, and at a temperature of 18 to 28°C, preferably at 20 to 23°C, most preferably at 20°C; And 80 to 100 mM of calcium ions exhibited optimal activity in the presence of calcium ions ( FIGS. 9, 10 and 12 ), and it was confirmed that zinc ions inhibit the activity of proteases ( FIG. 11 ).

또한, 서열번호: 1의 아미노산 서열을 갖는 본 발명의 단백질분해효소는 코크로디니움 포리크리코이데스 (Cochlodinium polykrikoides), 딸라씨오시라 종 (Thalassiosira sp.), 헤테로시그마 아카시오 (Heterosigma akashiwo), 스켈레토네마 코스타튬 (Skeletonema costatum), 알렉산드리움 (Alexandrium sp), 캐토시로스 (Chaetoceros cuvisetus), 짐노디늄 (Gymnodium sp) 등의 조류에 대해 우수한 살조활성을 나타낸다.In addition, the protease of the present invention having the amino acid sequence of SEQ ID NO: 1 is Cochlodinium polykrikoides , Thalassiosira sp., Heterosigma akashiwo , skeletal shows the retrograde nematic Costa lithium (Skeletonema costatum), Alexandria Solarium (Alexandrium sp), caviar Toshio Ross (Chaetoceros cuvisetus), luggage saljo excellent activity against algae, such as titanium nodi (Gymnodium sp).

서열번호: 1의 아미노산 서열을 갖는 단백질분해효소는 플라보박테리움 존소니애 (Flavobacterium johnsoniae) UW101 (ZP_01247095, 서열번호: 4), 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) HTCC2559 (ZP_00951344, 서열번호: 5) 및 리우웬호에키엘라 블란덴시스 (Leeuwenhoekiella blandensis) MED217 (ZP_01059780, 서열번호: 6)과 80% 이상의 유전자 덮힘률 (gene coverage)에서 40% 이상의 동일성을 보이며, 특히 프로세싱 펩타이드 이후의 성숙한 프로테아제 부분은 50% 이상의 높은 상동성을 나타낸다 (도 13). 또한, 코르디아 알지시다 (Kordia algicida)의 KAOT1_11562 유전자 (서열번호: 7)와도 높은 상동성을 나타낸다 (도 14).The protease having the amino acid sequence of SEQ ID NO: 1 is Flavobacterium johnsoniae UW101 (ZP_01247095, SEQ ID NO: 4), Croceibacter atlanticus HTCC2559 (ZP_00951344, SEQ ID NO: : 5) and Leeuwenhoekiella blandensis MED217 (ZP_01059780, SEQ ID NO: 6) shows 40% or more identity in a gene coverage of 80% or more, and in particular, a mature protease after the processing peptide Portions show a high homology of at least 50% ( FIG. 13 ). In addition, it also shows high homology with the KAOT1_11562 gene (SEQ ID NO: 7) of Kordia algicida (FIG. 14 ).

또한, 이러한 단백질들의 발현 형태 및 활성은 서열번호: 1의 아미노산 서열을 갖는 단백질과 거의 유사하다 (도 16). In addition, the expression form and activity of these proteins are almost similar to those of the protein having the amino acid sequence of SEQ ID NO: 1 ( FIG. 16 ).

상기에서 언급한 바와 같이, 각 단백질을 코딩하는 유전자는 상기 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으므로, 본 발명은 상기 서열번호: 4 내지 7의 아미노산 서열을 코딩하는 각 염기서열과 실질적으로 동일한 서열을 갖는 폴리뉴클레오타이드 및 이의 단편을 포함하며, 이들은 바람직하게는 서열번호: 8 내지 11의 염기서열을 갖는 폴리뉴클레오타이드이다.As mentioned above, since the gene encoding each protein can be modified or modified within a range that does not change the amino acid sequence of the protein, the present invention encodes the amino acid sequence of SEQ ID NOs: 4 to 7 And polynucleotides having substantially the same sequence as each of the nucleotide sequences and fragments thereof, and these are preferably polynucleotides having the nucleotide sequences of SEQ ID NOs: 8 to 11.

본 발명의 살조활성 단백질분해효소는 우수한 살조활성을 나타내므로, 상기 단백질 및 이를 코딩하는 유전자는 적조 방제에 유용하게 사용될 수 있다.
Since the algicidal proteolytic enzyme of the present invention exhibits excellent algicidal activity, the protein and the gene encoding it can be usefully used for red tide control.

따라서, 본 발명은 또한 상기 서열번호: 1 및 4 내지 7의 아미노산 서열로부터 선택된 아미노산 서열을 갖는 단백질을 활성성분으로 함유하는 살조제제를 제공한다. 상기 활성성분은 전체 조성물의 중량을 기준으로 약 1 내지 99 중량%로 포함될 수 있다.
Accordingly, the present invention also provides an algicide containing as an active ingredient a protein having an amino acid sequence selected from the amino acid sequences of SEQ ID NOs: 1 and 4 to 7. The active ingredient may be included in about 1 to 99% by weight based on the weight of the total composition.

본 발명은 또한 상기 살조제제를 적조가 발생한 해수에 처리하여 적조를 방제하는 방법을 제공한다.The present invention also provides a method for controlling red tide by treating the algicide in seawater where red tide has occurred.

본 발명의 방법에 있어서, 상기 살조제제의 사용량은 유기물의 축적 정도, 적조발생 정도 등에 따라 가변적이다. In the method of the present invention, the amount of the algicide used is variable depending on the degree of accumulation of organic matter, the degree of occurrence of red tide, and the like.

상기 제제의 사용방법은 해수면 위에 살포하거나 또는 파이프로 해저 뻘 등에 살포하는 등 다양한 방법이 적용될 수 있으나, 이에 한정되는 것은 아니며, 이때, 상기 방법은 살조제제의 상태 및 살조제제가 적용되는 해수 또는 호수의 상태를 고려하여 적절히 사용할 수 있다.
The method of using the formulation may be applied to various methods such as spraying on the sea level or spraying on the seafloor with a pipe, but is not limited thereto. In this case, the method includes the state of the algicide and seawater to which the algicide is applied. Considering the condition of the lake, it can be used appropriately.

이하, 실시예에 의해 본 발명을 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples.

실시예 1Example 1 : 살조세균의 배양: Culture of algicide

살조세균인 코르디아 알지시다 (Kordia algicida) OT-1 균주(KCTC 11320BP)를 조벨 (ZoBell) 2216e 고형배지 (문헌 [Oppenheimer, C. H., et al., J. Mar. Res., 11:10-18, 1952] 참조)에서 생장시킨 다음, 100 ㎖의 조벨 2216e 액체배지 (상기 문헌 [Oppenheimer, C. H., et al., 1952] 참조)에 3% (v/v)의 양을 접종하여 25℃에서 150 rpm으로 1일 동안 진탕배양하여 전배양액을 준비하였다. 3ℓ의 조벨 2216e 액체배지가 포함된 5ℓ의 단지 발효기 (한국발효기사)에 상기 배양액을 3% (v/v)로 첨가한 다음, 25℃, 300 rpm 및 0.5 vvm의 조건으로 배양하였다.
The algicidal bacteria Kordia algicida OT-1 strain (KCTC 11320BP) was prepared in ZoBell 2216e solid medium (Oppenheimer, CH, et al., J. Mar. Res., 11:10-18 , 1952]), and then inoculate 100 ml of Zobel 2216e liquid medium (see Oppenheimer, CH, et al., 1952) in an amount of 3% (v/v) and inoculate 150 at 25°C. A pre-culture solution was prepared by shaking culture for 1 day at rpm. The culture solution was added at 3% (v/v) to a 5 liter pot fermentor (Korea Fermentation Engineer) containing 3 liter of Zobel 2216e liquid medium, and then cultured under conditions of 25° C., 300 rpm and 0.5 vvm.

실시예 2Example 2 : 적조생물의 준비: Preparation of red tide creatures

살조세균의 탐색을 위한 숙주생물은 코크로디니움 포리크리코이데스 (Cochlodinium polykrikoides), 딸라씨오시라 종 (Thalassiosira sp.), 헤테로시그마 아카시오 (Heterosigma akashiwo), 스켈레토네마 코스타튬 (Skeletonema costatum), 알렉산드리움 (Alexandrium sp), 캐토시로스 (Chaetoceros cuvisetus), 짐노디늄 (Gymnodium sp)를 이용하였으며, 각 조류를 F/2 액체배지 (NaNO3 0.075 g, NaH2PO4?H2O 0.005 g, Na2SiO3?9H2O 0.030 g, F/2 미량 금속 용액 1 ㎖, F/2 비타민 용액 1 ㎖ 및 묵힌 바닷물 1,000 ㎖; Stein, Handbook of phycological methods, Cambridge Univ. Press, 1973)를 이용하여 대수성장기까지 배양한 후, 탐색을 위해 다음과 같이 준비하였다. The host organisms for the search for algicidal bacteria are Cochlodinium polykrikoides , Thalassiosira sp., Heterosigma akashiwo , and Skeletonema costatum . , Alexandria Solarium (Alexandrium sp), caviar Toshio Ross (Chaetoceros cuvisetus), luggage nodi titanium was used a (Gymnodium sp), each bird a F / 2 broth (NaNO 3 0.075 g, NaH 2 PO 4? H 2 O 0.005 g, Na 2 SiO 3 ?9H 2 O 0.030 g, 1 ml F/2 trace metal solution, 1 ml F/2 vitamin solution and 1,000 ml seawater; Stein, Handbook of phycological methods, Cambridge Univ. Press, 1973). After culturing until the logarithmic growth phase by using, it was prepared as follows for exploration.

적조생물은 형광광도계 (Hitachi, 일본)를 이용하여 최종 밀도가 0.05의 형광강도 (여기 파장; 434 ㎚, 방출파장; 670 ㎚)가 되도록 F/2 액체배지로 희석한 후, 시험관 (110 ㎜×10 ㎜)에 2.7 ㎖씩 분주하여 MPN (most probable number)법을 위한 시험관을 준비하였다.
Red tide organisms are diluted with F/2 liquid medium so that the final density becomes a fluorescence intensity of 0.05 (excitation wavelength; 434 ㎚, emission wavelength; 670 ㎚) using a fluorescent photometer (Hitachi, Japan), and then a test tube (110 ㎜× 10 mm) to prepare a test tube for the MPN (most probable number) method by dispensing 2.7 ml each.

실시예 3Example 3 : 살조활성 단백질의 선별: Selection of algicidal protein

<3-1> 살조세균 단백질의 정제 및 분리<3-1> Purification and isolation of algicide protein

상기 실시예 1에서 배양된 살조세균의 살조활성 단백질을 분리하기 위하여, 상기 실시예 1에서 배양된 살조세균을 5 ℓ의 단지 발효기를 이용하여 30시간 동안 배양한 후, 초여과막 농축장치 (Ultrafiltration kit)를 이용하여 10 kDa 이상의 물질을 농축한 다음, 비변성 (native)-PAGE (12%)를 수행하여 단백질을 분리하였으며, 그 결과를 도 1에 나타내었다. 도 1에서 레인 1은 사이즈 마커이고, 레인 2는 살조세균 단백질이다.
In order to separate the agicidal activity protein of the agicidal bacteria cultured in Example 1, the algicidal bacteria cultured in Example 1 were cultured for 30 hours using a 5 liter fermentor, and then an ultrafiltration kit (Ultrafiltration kit). ) Was used to concentrate a material of 10 kDa or more, and then the protein was separated by performing a non-denaturing (native)-PAGE (12%), and the results are shown in FIG. 1. In FIG. 1 , lane 1 is a size marker, and lane 2 is a bacterium protein.

<3-2> 분리된 단백질의 살조활성 측정<3-2> Measurement of algicidal activity of the isolated protein

상기 <3-1>과 같이 분리된 단백질을 10% 폴리아크릴아마이드 겔에서 20 mA의 정전류 (constant current)로 100분 동안 비변성 전기영동시킨 후 겔의 일부를 쿠마시 브릴리언트 블루 (Coomassive brilliant blue) R-250로 염색하여 밴드의 위치를 확인하였다. 나머지 겔로부터 밴드의 패턴에 따라 13개의 밴드로 구분하여 작은 크기로 절편한 다음, 1.5 ㎖의 20 mM Tris-HCl 완충용액 (pH 8.0)을 넣고 4℃ 냉장고에서 2시간 동안 방치하였다. 상기 용액을 원심분리하여 겔을 침전시킨 후 상층액은 울트라콘 (Ultracon, cut-off size, 10 kDa)을 이용하여 농축하였으며, 농축된 시료는 스켈레토네마 코스타튬 (Skeletonema costatum)을 이용한 론 (lawn) 분석방법에 따라 살조활성을 측정하였다. 이때, 양성 대조군으로는 살조세균의 배양액을 사용하였으며, 음성 대조군으로는 시료의 조건에 따라 조벨 2216e 액체배지, F/2배지 및 20 mM Tris-HCl (pH 8.0) 완충용액을 사용하였다. The protein isolated as described in <3-1> was subjected to non-denaturing electrophoresis for 100 minutes on a 10% polyacrylamide gel at a constant current of 20 mA, and then part of the gel was Coomassive brilliant blue. By staining with R-250, the position of the band was confirmed. The remaining gel was divided into 13 bands according to the band pattern and sectioned into small sizes, and then 1.5 ml of 20 mM Tris-HCl buffer solution (pH 8.0) was added and left in a refrigerator at 4° C. for 2 hours. After centrifuging the solution to precipitate the gel, the supernatant was concentrated using Ultracon (cut-off size, 10 kDa), and the concentrated sample was Ron (Skeletonema costatum ) using ron ( lawn) The algal activity was measured according to the analysis method. At this time, a culture medium of algicidal bacteria was used as a positive control, and Zobel 2216e liquid medium, F/2 medium, and 20 mM Tris-HCl (pH 8.0) buffer solution were used as the negative control according to the conditions of the sample.

구체적으로, 스켈레토네마 코스타튬을 20℃, 광주기 14L (5000 룩스 (lux))/10D의 조건 하에서 1 내지 2주 동안 배양하였다. 활성능은 스켈레토네마 코스타튬의 론 (lawn)에 생긴 투명 영역 (clear zone)의 지름 (㎜)을 측정하여 활성정도를 비교하였으며, 투명 영역이 없으면 “-”, 투명 영역의 크기가 1 ㎜이면 “+”, 2 ㎜이면 “++”, 3 ㎜이면 “+++”, 5 ㎜이면 “++++”로 하여, 그 결과를 하기 표 1에 나타내었다.
Specifically, skeletonema costatium was cultured for 1 to 2 weeks under the conditions of 20° C., photoperiod 14L (5000 lux)/10D. The activity was compared by measuring the diameter (mm) of the clear zone created in the lawn of Skeletonema Costatium. If there is no transparent area, it is "-", and the size of the transparent area is 1 mm. If the back side is “+”, if it is 2 mm, it is “++”, if it is 3 mm, it is “+++”, and if it is 5 mm, it is “++++”, and the results are shown in Table 1 below.

도 1의 밴드 번호Band number in Figure 1 살조활성Algicidal activity 1313 -- 1212 -- 1111 ++ 1010 ++++++ 99 ++ 88 -- 77 -- 66 -- 55 -- 44 -- 33 ++++ 22 ++ 1One -- 음성 대조군Negative control -- 양성 대조군Positive control ++++++++

상기 표 1에 나타난 바와 같이, 밴드 번호 3 및 10의 단백질의 살조활성이 우수함을 알 수 있다.As shown in Table 1, it can be seen that the proteins of bands 3 and 10 have excellent algicidal activity.

또한, 상기에서 선별된 밴드 번호 3 및 10의 단백질을 변성조건 (문헌 [Laemmli, Nature, 227:680-685, 1970] 참조) 하에서 SDS-PAGE를 수행하여 밴드 번호 10의 단백질의 발현을 확인한 다음 (도 2; 레인 1: 사이즈 마커, 레인 2: 살조세균 단백질, 레인 3: 밴드 번호 3의 단백질 및 레인 4: 밴드 번호 10의 단백질), 상기 단백질의 N-말단의 아미노산 서열을 분석한 결과, 20개의 아미노산을 갖는 서열번호: 3의 아미노산 서열을 얻었다. In addition, SDS-PAGE was performed on the proteins of bands 3 and 10 selected above under denaturing conditions (refer to [Laemmli, Nature, 227:680-685, 1970]) to confirm the expression of the protein of band number 10. ( FIG. 2 ; Lane 1: size marker, lane 2: algicidal protein, lane 3: protein of band number 3 and lane 4: protein of band number 10), as a result of analyzing the amino acid sequence of the N-terminus of the protein, The amino acid sequence of SEQ ID NO: 3 having 20 amino acids was obtained.

이후, 상기 아미노산 서열을 NCBI Blast, PDF 및 SWISSPROT 등의 단백질 서열 데이터 베이스를 이용하여 유사성을 검색한 결과, 기존에 보고된 단백질 서열과는 유사성이 없는 것으로 나타났다.
Thereafter, the amino acid sequence was searched for similarity using protein sequence databases such as NCBI Blast, PDF, and SWISSPROT, and as a result, it was found that there was no similarity to the previously reported protein sequence.

실시예 4Example 4 : 살조활성 단백질의 ORF (open reading frame) 규명: Identification of ORF (open reading frame) of algicidal protein

살조세균인 코르디아 알지시다 OT-1 균주(KCTC 11320BP)의 유전체 서열을 분석한 다음, 서열번호: 3의 N-말단 아미노산 서열을 이용하여 데이터 마이닝 (data mining)을 수행한 결과, 서열번호: 3의 20개 아미노산 중 18개가 일치하는 KAOT1_10476 단백질 (서열번호: 1)을 확인하였다.
After analyzing the genomic sequence of the algicidal bacterium Cordia aljishida OT-1 strain (KCTC 11320BP), data mining was performed using the N-terminal amino acid sequence of SEQ ID NO: 3, SEQ ID NO: KAOT1_10476 protein (SEQ ID NO: 1) in which 18 of the 20 amino acids of 3 matched was identified.

실시예 5Example 5 : 살조활성 단백질 발현벡터의 구축: Construction of an algicidal protein expression vector

상기 서열번호: 1의 KAOT1_10476 단백질은 도 3에 나타난 바와 같이, 신호 펩타이드 (1 내지 27번째 아미노산), 프로세싱 (processing) 펩타이드 (28 내지 98번째 아미노산) 및 성숙 영역 (99 내지 278번째 아미노산)으로 구성된 메탈로 프로테아제 (metallo protease)인 것으로 예측되었으며, 야생형 균주로부터 분리된 N-말단 서열은 세포외로 분비되어 프로세싱 펩타이드가 제거된 성숙된 단백질분해효소일 것으로 예상되었다. The KAOT1_10476 protein of SEQ ID NO: 1 is composed of a signal peptide (1 to 27 amino acids), a processing peptide (28 to 98 amino acids) and a maturation region (99 to 278 amino acids), as shown in FIG. 3. It was predicted to be a metallo protease, and the N-terminal sequence isolated from the wild-type strain was expected to be a mature protease from which the processing peptide was removed by secreting extracellularly.

따라서, 상기 단백질의 살조활성을 확인하기 위하여, 도 4에 나타난 바와 같은 다양한 단백질이 발현되도록 하기와 같이 각각의 발현벡터를 구축하였다.Therefore, in order to confirm the algicidal activity of the protein, each expression vector was constructed as follows so that various proteins as shown in FIG . 4 were expressed.

먼저, NdeI 및 XhoI 제한효소 부위를 갖도록 디자인된 하기 표 2의 프라이머 조합, 주형으로서 서열번호: 2의 유전자 및 TLA1 폴리머라제 (Bioneer 사, 한국)를 사용하여 서열번호: 1의 KAOT1_10476 단백질 또는 이의 단편을 코딩하는 다양한 DNA를 PCR로 증폭하였다. 상기 PCR은 95℃에서 2분, 55℃에서 1분, 72℃에서 1분의 반응을 30회 반복하였다.
First, the primer combination of Table 2 below designed to have Nde I and Xho I restriction sites, using the gene of SEQ ID NO: 2 and TLA1 polymerase (Bioneer, Korea) as a template, the KAOT1_10476 protein of SEQ ID NO: 1 or Various DNAs encoding their fragments were amplified by PCR. The PCR was repeated 30 times for 2 minutes at 95°C, 1 minute at 55°C, and 1 minute at 72°C.

PCR 산물PCR product 프라이머primer 서열번호Sequence number 10476_110476_1 OT1m_tOT1m_t 1212 OT1m_bcOT1m_bc 1313 10476_210476_2 OT1p_tOT1p_t 1717 OT1m_bcOT1m_bc 1313 10476_310476_3 OT1m_tOT1m_t 1212 OT1delta5_bcOT1delta5_bc 1515 10476_410476_4 OT1m_tOT1m_t 1212 OT1delta26_bcOT1delta26_bc 1616 10476_510476_5 OT1m_tOT1m_t 1212 OT1m_bHOT1m_bH 1414 10476_610476_6 OT1p_tOT1p_t 1717 OT1m_bHOT1m_bH 1414 10476_710476_7 OT1m_tOT1m_t 1212 OT1m_bcOT1m_bc 1313 10476_810476_8 OT1p_tOT1p_t 1717 OT1m_bcOT1m_bc 1313 10476_910476_9 OT1p_tOT1p_t 1717 OT1delta5_bcOT1delta5_bc 1515

이후, pET24a 발현벡터를 제한효소 NdeI 및 SalI로 처리하여 절단한 다음, 플라스미드 정제 키트 (Qiagen 사)를 이용하여 정제하고, 상기에서 얻은 각 PCR 산물과 결찰시킨 후, 대장균 DH5α에 형질전환시켰다. 플라스미드 정제 키트를 이용하여 상기에서 얻은 형질전환체로부터 DNA를 정제한 다음, 이를 서열 분석하여 돌연변이나 프레임 이동 (frame shift)이 일어나지 않은 완전한 DNA가 클로닝되었음을 확인한 후, 상기 DNA를 BL21(DE3) (Novagen 사)에 형질전환시켰다.
Thereafter, the pET24a expression vector was digested by treatment with restriction enzymes Nde I and Sal I, and then purified using a plasmid purification kit (Qiagen), ligated with each of the PCR products obtained above, and transformed into E. coli DH5α. . After purifying the DNA from the transformant obtained above using a plasmid purification kit, and then sequencing it to confirm that the complete DNA without mutation or frame shift was cloned, the DNA was converted to BL21 (DE3) ( Novagen).

실시예 6Example 6 : 살조활성 단백질분해효소의 발현 및 리폴딩: Expression and refolding of algicidal active protease

상기 실시예 5에서 얻은 형질전환체를 카나마이신 (kanamycin, 50 ㎍/㎖)이 첨가된 LB 배지 (Difco 사)에 접종하여 37℃에서 12시간 동안 배양한 다음, 상기 배양물을 상기와 동일한 배지에 1% (v/v)로 접종하여 3시간 동안 배양한 후, IPTG (Sigma 사)를 최종 1 mM의 농도로 첨가하여 단백질분해효소를 과발현시켰다. 각 단백질분해효소의 발현 정도 및 시기를 분석하기 위하여 1시간 마다 샘플링하여 SDS-PAGE로 분석하였으며, 배양 3시간 후의 단백질분해효소 발현 정도를 도 5에 나타내었다.The transformant obtained in Example 5 was inoculated in an LB medium (Difco) to which kanamycin (50 µg/ml) was added and cultured at 37° C. for 12 hours, and the culture was then in the same medium as above. After inoculating at 1% (v/v) and incubating for 3 hours, IPTG (Sigma) was added at a final concentration of 1 mM to overexpress the protease. In order to analyze the expression level and timing of each protease, the samples were sampled every 1 hour and analyzed by SDS-PAGE, and the expression level of the protease after 3 hours of incubation was shown in FIG. 5.

도 5에 나타난 바와 같이, PCR 산물 10476_3이 삽입된 플라스미드를 제외하고는 모두 단백질분해효소가 발현됨을 확인하였다. As shown in FIG. 5, it was confirmed that the protease was expressed in all except the plasmid into which the PCR product 10476_3 was inserted.

또한, pET 시스템의 프로토콜에 따라 발현된 단백질분해효소가 용해성 분획, 불용해성 분획 및 주변세포질 (periplasmic) 영역 중 어느 곳으로 생산되는지를 확인한 결과, 대부분의 단백질분해효소가 불용성 단백질임을 확인하였다. In addition, as a result of confirming whether the expressed protease was produced in any of the soluble fraction, the insoluble fraction, and the periplasmic region according to the protocol of the pET system, it was confirmed that most of the proteases were insoluble proteins.

또한, 상기에서 얻은 10476_1, 10476_6, 10476_7 (서열번호: 27), 10476_8 (서열번호: 26) 및 10476_9 단백질분해효소의 불용해성 분획에 8M 우레아를 처리하여 단백질분해효소를 가용화시킨 다음, 이를 다시 완충용액 (50 mM Tris (pH 8.0), 1 mM CaCl2)으로 치환시켜 리폴딩을 수행함으로써 단백질분해효소를 얻었다 (도 6 참조).In addition, the insoluble fractions of 10476_1, 10476_6, 10476_7 (SEQ ID NO: 27), 10476_8 (SEQ ID NO: 26) and 10476_9 obtained above were treated with 8M urea to solubilize the protease, and then buffered again. A solution (50 mM Tris (pH 8.0), 1 mM CaCl 2 ) was substituted to perform refolding to obtain a protease ( see FIG. 6 ).

그 결과, 모든 단백질분해효소가 리폴딩됨을 확인하였다.
As a result, it was confirmed that all proteases were refolded.

실시예 7Example 7 : 살조활성 단백질분해효소의 분해활성 측정: Degradation activity measurement of algicidal protease

상기 실시예 6에서 얻은 단백질분해효소들을 각각 젤라틴 기질 겔 (gelatin substrate gel)에 전개시켜 단백질 분해활성을 측정 (문헌 [Park, H. I., J. Biol. Chem., 275:20540-20544, 2000] 참조)하였으며, 그 결과를 도 7에 나타내었다. The proteolytic enzymes obtained in Example 6 were each developed on a gelatin substrate gel to measure proteolytic activity (see [Park, HI, J. Biol. Chem., 275:20540-20544, 2000]). ), and the results are shown in FIG. 7.

도 7에 나타난 바와 같이, 10476_9 단백질을 제외한 10476_1 및 10476_6 내지 10476_8 단백질은 단백질 분해활성을 나타내었다. As shown in FIG. 7 , proteins 10476_1 and 10476_6 to 10476_8 except for the 10476_9 protein exhibited proteolytic activity.

또한, 프로세싱 펩타이드를 포함하고 있는 10476_8 단백질 (서열번호: 26)의 활성을 나타내는 밴드는 시간이 지남에 따라 점차 내려가다가, 성숙된 영역을 발현시킨 10476_7 단백질 (서열번호: 27)과 유사한 크기를 나타내었다.In addition, the band indicating the activity of the 10476_8 protein (SEQ ID NO: 26) containing the processing peptide gradually descends over time, and then exhibits a size similar to that of the 10476_7 protein (SEQ ID NO: 27) expressing the mature region. I got it.

따라서, 10476_8 단백질의 프로세싱 펩타이드가 시간이 지남에 따라 자가절단 (autocleavage)되어 성숙 단백질로 변환됨을 예상할 수 있다.Therefore, it can be expected that the processing peptide of the 10476_8 protein is converted into a mature protein through autocleavage over time.

또한, 10476_1 단백질의 결과로부터 N-말단의 His 태그의 존재가 단백질 분해활성을 방해하고 있으며, 10476_9 단백질의 결과로부터 C-말단의 결실 돌연변이는 프로세싱이 되지 않음으로써 활성을 나타내지 않음을 예상할 수 있다.
In addition, from the result of the 10476_1 protein, the presence of the N-terminal His tag interferes with the proteolytic activity, and from the result of the 10476_9 protein, it can be expected that the C-terminal deletion mutation does not show activity because it is not processed. .

실시예 8Example 8 : 살조활성 단백질분해효소의 프로세싱 현상 관찰: Observation of the processing phenomenon of algicidal protease

본 발명의 살조활성 단백질분해효소의 프로세싱 현상을 관찰하기 위하여, 10476_8 단백질 (서열번호: 26)을 4℃에서 1주일 동안 반응시킨 것을 제외하고는 상기 실시예 7과 동일한 방법으로 단백질 분해활성 분석을 수행한 후, SDS-PAGE로 확인하였으며, 그 결과를 도 8에 나타내었다.In order to observe the processing phenomenon of the algicidal protease of the present invention, the protein degradation activity analysis was performed in the same manner as in Example 7, except that 10476_8 protein (SEQ ID NO: 26) was reacted at 4° C. for 1 week. After performing, it was confirmed by SDS-PAGE, and the results are shown in FIG. 8.

도 8에 나타난 바와 같이, 10476_8 단백질은 반응 3일 후에 프로세싱 펩타이드가 분해되어 성숙한 단백질분해효소로 변환되는 현상이 확인되었으며, 7일 후에는 2개의 주요 밴드로 나타났다. 또한 주요 단백질의 양과 시간에 따라 증가한 저분자성 펩타이드의 양을 고려할 때, 성숙 과정 중, 자가절단이 수반되는 것을 확인하였다. As shown in FIG. 8 , it was confirmed that the 10476_8 protein was transformed into a mature protease by decomposing the processing peptide 3 days after the reaction, and appeared as two main bands after 7 days. In addition, when considering the amount of major protein and the amount of low-molecular peptide increased with time, it was confirmed that self-cleavage was accompanied during the maturation process.

또한, 상기와 동일한 방법으로 10476_9 단백질을 분석한 결과, 프로세싱 펩타이드를 포함하고 C-말단에 5개의 아미노산이 결실된 돌연변이인 10476_9 단백질은 잘 분리되었지만, 10476_8 단백질과 같이 밴드의 크기가 줄어드는 현상은 관찰되지 않았다. 따라서, 10476_9 단백질은 프로세싱이 되지 않음으로써 활성을 나타내지 않는 것이므로, C-말단 아미노산이 프로세싱에 중요한 역할을 함을 알 수 있다.
In addition, as a result of analyzing the 10476_9 protein in the same manner as above, the 10476_9 protein, a mutant containing the processing peptide and in which 5 amino acids were deleted at the C-terminus, was well isolated, but the phenomenon that the size of the band decreases like the 10476_8 protein was observed Didn't. Therefore, since the 10476_9 protein does not show activity by not being processed, it can be seen that the C-terminal amino acid plays an important role in the processing.

시험예 1Test Example 1 : 살조활성 단백질분해효소의 생화학적 특성 규명: Identification of biochemical properties of algicidal active protease

성숙된 단백질만을 포함하는 10476_7 단백질 (서열번호: 27)을 프로테아제의 세제 (detergent)에 대한 저항성과 EDTA를 이용한 안정성을 결합하여 SDS를 이용하여 단백질들을 용해시킨 후 이를 SDS를 포함하지 않는 50mM Tris-HCl, 1 mM EDTA, 1% 트리톤 X-100을 포함하는 완충용액으로 희석하여 리폴딩시킨 다음, 온도 및 pH에 따른 단백질 분해활성을 상기 문헌 [Park, H. I., 2000]에 기재된 방법에 따라 측정하였으며, 그 결과를 각각 도 9 및 10에 나타내었다.10476_7 protein (SEQ ID NO: 27) containing only mature protein was combined with the resistance to detergent of protease and stability using EDTA to dissolve the proteins using SDS. After diluting and refolding with a buffer solution containing HCl, 1 mM EDTA, and 1% Triton X-100, proteolytic activity according to temperature and pH was measured according to the method described in [Park, HI, 2000]. , The results are shown in Figs. 9 and 10, respectively.

도 9 및 10에 나타난 바와 같이, 10476_7 단백질은 pH 7-8 및 약 20℃에서 최적 활성을 나타내었다. 9 and 10 , the 10476_7 protein exhibited optimal activity at pH 7-8 and about 20°C.

또한, 리폴딩된 단백질 5 ㎍을 0.1% 젤라틴, 50 mM Tris-HCl (pH 8.0), 100 mM KCl에 1 mM의 아연 또는 칼슘이온이 포함된 완충용액에 넣고, 2시간 동안 20℃에서 반응시킨 후, 5% TCA 용액 (w/v)을 넣은 후 10분 동안 얼음에 방치하고, 10,000 rpm에서 5분 동안 원심분리한 다음, 상등액을 이용하여 단백질을 정량 하였다. 이를 금속이 포함되지 않은 대조군과 비교하여 금속이온에 의한 활성 저해를 측정하였으며, 그 결과를 도 11 및 12에 나타내었다.In addition, 5 ㎍ of the refolded protein was added to a buffer solution containing 1 mM zinc or calcium ions in 0.1% gelatin, 50 mM Tris-HCl (pH 8.0), and 100 mM KCl, and reacted at 20° C. for 2 hours. Thereafter, 5% TCA solution (w/v) was added and left on ice for 10 minutes, centrifuged at 10,000 rpm for 5 minutes, and then protein was quantified using the supernatant. The inhibition of activity by metal ions was measured compared to the control group containing no metal, and the results are shown in FIGS. 11 and 12.

도 11에 나타난 바와 같이, 10476_7 단백질에 대한 아연이온의 저해활성을 확인하였다. As shown in FIG. 11 , the inhibitory activity of zinc ions against 10476_7 protein was confirmed.

또한, 도 12에 나타난 바와 같이, 단백질분해효소의 활성에 칼슘이온이 필수적이며, 80 내지 100 mM의 칼슘이온에 의해 단백질분해효소의 최대 활성이 나타났다.
In addition, as shown in FIG. 12 , calcium ions are essential for the activity of the protease, and the maximum activity of the protease was exhibited by the calcium ions of 80 to 100 mM.

시험예 2Test Example 2 : 살조활성 단백질분해효소의 살조활성 분석: Analysis of algicidal activity of algicidal protease

10476_7 단백질분해효소 (서열번호: 27)의 살조활성을 확인하기 위하여, 실시예 2에서 준비된 코크로디니움 포리크리코이데스 (Cochlodinium polykrikoides), 딸라씨오시라 종 (Thalassiosira sp.), 헤테로시그마 아카시오 (Heterosigma akashiwo), 스켈레토네마 코스타튬 (Skeletonema costatum), 알렉산드리움 (Alexandrium sp), 캐토시로스 (Chaetoceros cuvisetus), 짐노디늄 (Gymnodniium sp) 배양액에 상기 단백질 (100 μg/㎖) 50 ㎕를 첨가하였다. 24시간 후에 일괄적으로 루골 요오드 용액 (Lugol's iodine solution, 1%)을 이용하여 상기 배양액을 염색한 다음, 세포의 수를 측정하여, 단백질분해효소가 첨가되지 않은 대조군과 단백질분해효소가 첨가된 실험군 (실험군 1 및 2)의 세포수 및 억제정도를 비교하였으며, 그 결과를 하기 표 3에 나타내었다.
In order to confirm the algicidal activity of 10476_7 protease (SEQ ID NO: 27), Cochlodinium polykrikoides prepared in Example 2, Thalassiosira sp., heterosigma acacio prepared in Example 2 ( Heterosigma akashiwo ), Skeletonema costatum , Alexandrium ( Alexandrium sp), Catoceros cuvisetus (Chaetoceros cuvisetus ), Gymnodinium (Gymnodniium sp) 50 μl of the above protein (100 μg/ml) in a culture solution Added. After 24 hours, the culture solution was stained with Lugol's iodine solution (1%), and then the number of cells was measured, and the control group to which protease was not added and the experimental group to which protease was added. The number of cells and the degree of inhibition were compared in (Experimental Groups 1 and 2), and the results are shown in Table 3 below.

코크로디니움 포리크리코이데스에 대한 살상검증Assurance of killing against Cocrodinium polyclicoides 대조군Control 실험군 1Experimental group 1 실험군 2Experimental group 2 세포수
(세포/㎖)
Cell count
(Cell/ml)
1,360(130)1,360(130) 960(30)960(30) 1040(90)1040(90)
(세포/㎖)(Cell/ml) 1,330(120)1,330(120) 940(60)940(60) 900(110)900(110) 억제정도 (%)Degree of inhibition (%) -- 40.740.7 30.030.0 억제정도 (%) = ((대조군-실험군)/실험군)×100
( ): 표준편차
Inhibition degree (%) = ((control-experimental group)/experimental group)×100
( ): Standard Deviation

상기 표 3에 나타난 바와 같이, 코크로디니움 포리크리코이데스 균주에 서열번호: 1의 단백질분해효소를 처리하면 균주의 성장이 효과적으로 억제됨을 확인하였다. 또한 딸라씨오시라 종 (Thalassiosira sp.), 헤테로시그마 아카시오 (Heterosigma akashiwo), 스켈레토네마 코스타튬 (Skeletonema costatum), 알렉산드리움 (Alexandrium sp), 캐토시로스 (Chaetoceros cuvisetus), 짐노디늄 (Gymnodinium sp) 에 대해서도 효과가 있는 것을 확인하였다.
As shown in Table 3, it was confirmed that the growth of the strain was effectively inhibited when the protease of SEQ ID NO: 1 was treated on the Cocrodinium polyclicoides strain. In addition, US dollars, Mr come la species (Thalassiosira sp.), Heterocyclic Sigma Oh Casio (Heterosigma akashiwo), skeletal Loreto nematic Costa lithium (Skeletonema costatum), Alexandria Solarium (Alexandrium sp), caviar Tosh Ross (Chaetoceros cuvisetus), Jim nodi uranium ( Gymnodinium sp) was also confirmed to be effective.

실시예 9Example 9 : 상동성을 갖는 유전자의 검색: Search for genes with homology

살조효과가 확인된 본 발명의 단백질분해효소의 아미노산 서열 (서열번호: 1)을 바탕으로 다양한 해양 미생물의 아미노산 서열을 NCBI Blast를 이용하여 분석한 결과, 도 13에 나타난 바와 같이 플라보박테리움 존소니애 (Flavobacterium johnsoniae) UW101 (ZP_01247095, 서열번호: 4), 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) HTCC2559 (ZP_00951344, 서열번호: 5) 및 리우웬호에키엘라 블란덴시스 (Leeuwenhoekiella blandensis) MED217 (ZP_01059780, 서열번호: 6)과 80% 이상의 유전자 덮힘률 (coverage)에서 40% 이상의 동일성을 보였고, 특히 프로세싱 펩타이드 이후의 성숙한 프로테아제 부분은 50% 이상의 높은 상동성을 나타내었다. 또한, 도 14에 나타난 바와 같이, 코르디 알지시다의 KAOT1_11562 유전자 (서열번호: 7)와도 높은 상동성을 나타내었다.
As a result of analyzing the amino acid sequence of various marine microorganisms using NCBI Blast based on the amino acid sequence (SEQ ID NO: 1) of the protease of the present invention in which the algicidal effect was confirmed, as shown in FIG . 13, the Flavobacterium zone Soniae ( Flavobacterium johnsoniae ) UW101 (ZP_01247095, SEQ ID NO: 4), Croceibacter atlanticus HTCC2559 (ZP_00951344, SEQ ID NO: 5) and Leeuwenhoekiella blandensis (Leuwenhoekiella blandensis) MED217 (ZP_01247095, SEQ ID NO: 4) , SEQ ID NO: 6) showed 40% or more identity in a gene coverage of 80% or more, and in particular, the mature protease portion after the processing peptide showed a high homology of 50% or more. In addition, as shown in Fig. 14 , it also showed high homology with the KAOT1_11562 gene (SEQ ID NO: 7) of Cordy aljishida.

실시예 10Example 10 : 상동성을 갖는 살조활성 단백질의 발현: Expression of homologous algicidal protein

서열번호: 1의 살조활성 단백질분해효소와 상동성을 보이는 살조활성 단백질을 발현시키기 위해, 하기 표 4의 프라이머 조합, 및 주형으로서 각각 서열번호: 4 내지 7의 아미노산 서열을 갖는 단백질을 코딩하는 유전자 (서열번호: 8 내지 11)를 사용한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 PCR을 수행하였으며, 그 결과를 도 15에 나타내었다.
In order to express the algicidal protein showing homology with the algicidal protease of SEQ ID NO: 1, the primer combinations in Table 4 below, and the gene encoding the protein having the amino acid sequence of SEQ ID NO: 4 to 7, respectively as a template PCR was performed in the same manner as in Example 5, except that (SEQ ID NOs: 8 to 11) was used, and the results are shown in FIG. 15.

PCR 산물PCR product 프라이머primer 서열번호Sequence number ZP_00951344ZP_00951344 HTCC2559m_tHTCC2559m_t 1818 HTCC2559m_bcHTCC2559m_bc 1919 1156211562 OT11562m_tOT11562m_t 2020 OT11562m_bcOT11562m_bc 2121 ZP_01059780ZP_01059780 MED217m_tMED217m_t 2222 MED217m_bcMED217m_bc 2323 ZP_01247095ZP_01247095 fjohnm_tfjohnm_t 2424 fjohnm_bcfjohnm_bc 2525

이후, 상기 각 PCR 산물을 사용한 것을 제외하고는 상기 실시예 5와 동일한 방법으로 pET24 발현벡터에 클로닝하고, 상기 실시예 6과 동일한 방법으로 단백질을 과발현시켜 SDS-PAGE로 분석한 결과, 4종의 단백질이 모두 잘 발현되었지만, 모두 불용해성 분획에서 검출되었다. 이에, 활성을 측정하고자 상기 시험예 1과 동일한 방법으로 단백질들을 용해시킨 후 (전), 이를 SDS를 포함하지 않는 50mM Tris-HCl, 1 mM EDTA 및 1% 트리톤 X-100을 포함하는 완충용액으로 희석하여 리폴딩 (후)을 시도하였으며, 그 결과를 도 16에 나타내었다.Thereafter, the PCR product was cloned into the pET24 expression vector in the same manner as in Example 5, except that each PCR product was used, and the protein was overexpressed in the same manner as in Example 6 and analyzed by SDS-PAGE. All proteins were well expressed, but all were detected in the insoluble fraction. Thus, to measure the activity, after dissolving the proteins in the same manner as in Test Example 1 (before), this was used as a buffer solution containing 50mM Tris-HCl, 1 mM EDTA, and 1% Triton X-100 not containing SDS. Diluted and refolded (after) was attempted, and the results are shown in FIG. 16.

도 16에 나타난 바와 같이, 크로세이박터 아틀란티쿠스 HTCC2559의 단백질 (서열번호: 5)을 제외한 다른 단백질의 경우 다량의 성숙된 단백질을 얻을 수 있었다.
As shown in FIG. 16, in the case of other proteins except for the protein of Crosseybacter atlanticus HTCC2559 (SEQ ID NO: 5), a large amount of mature protein could be obtained.

시험예 11Test Example 11 : 상동성을 갖는 살조활성 단백질의 살조활성 분석: Analysis of algicidal activity of homologous algicidal protein

플라보박테리움 존소니애 (Flavobacterium johnsoniae) UW101 (ZP_01247095, 서열번호: 4), 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) HTCC2559 (ZP_00951344, 서열번호: 5), 리우웬호에키엘라 블란덴시스 (Leeuwenhoekiella blandensis) MED217 (ZP_01059780, 서열번호: 6), 코르디 알지시다의 KAOT1_11562 유전자 (서열번호: 7)에서 제조된 단백질의 살조활성을 확인하기 위하여, 실시예 2에서 준비된 코크로디니움 포리크리코이데스 (Cochlodinium polykrikoides), 딸라씨오시라 종 (Thalassiosira sp.), 헤테로시그마 아카시오 (Heterosigma akashiwo), 스켈레토네마 코스타튬 (Skeletonema costatum), 알렉산드리움 (Alexandrium sp), 캐토시로스 (Chaetoceros cuvisetus), 짐노디늄 (Gymnodium sp) 배양액에 상기 단백질 (100 μg/㎖) 50 ㎕를 첨가하였다. 24시간 후에 일괄적으로 루골 요오드 용액 (Lugol's iodine solution, 1%)을 이용하여 상기 배양액을 염색한 다음, 세포의 수를 측정하여, 단백질분해효소가 첨가되지 않은 대조군과 단백질분해효소가 첨가된 실험군 (실험군 1 및 2)의 세포수 및 억제정도를 비교하였으며, 그 결과 코크로디니움 포리크리코이데스, 딸라씨오시라 종 (Thalassiosira sp.), 헤테로시그마 아카시오 (Heterosigma akashiwo), 스켈레토네마 코스타튬 (Skeletonema costatum), 알렉산드리움 (Alexandrium sp), 캐토시로스 (Chaetoceros cuvisetus), 짐노디늄 (Gymnodinium sp) 에 대해서도 효과가 있는 것을 확인하였다.
Flavobacterium johnsoniae UW101 (ZP_01247095, SEQ ID NO: 4), Croceibacter atlanticus HTCC2559 (ZP_00951344, SEQ ID NO: 5), Leeuwenhoekiella blendensis blandensis ) MED217 (ZP_01059780, SEQ ID NO: 6), In order to confirm the algicidal activity of the protein prepared in the KAOT1_11562 gene (SEQ ID NO: 7) of Cordy aljishida, Cocrodinium polyclicoides prepared in Example 2 ( Cochlodinium polykrikoides), US dollars, Mr come la species (Thalassiosira sp.), heterocyclic Sigma Oh Casio (Heterosigma akashiwo), skeletal Loreto nematic Costa lithium (Skeletonema costatum), Alexandria Solarium (Alexandrium sp), caviar Tosh Ross (Chaetoceros cuvisetus), Jim 50 μl of the protein (100 μg/ml) was added to the culture medium of Gymnodium sp. After 24 hours, the culture solution was stained with Lugol's iodine solution (1%), and then the number of cells was measured, and the control group to which protease was not added and the experimental group to which protease was added. The number of cells and the degree of inhibition of (Experimental Groups 1 and 2) were compared, and as a result , Cocrodinium polyclicoides , Thalassiosira sp., Heterosigma akashiwo, and Skeletonema Costa It was confirmed that there is also an effect on lithium ( Skeletonema costatum ), alexandrium ( Alexanderium sp), cateoceros cuvisetus , and gymnodinium (Gymnodinium sp).

적조살상단백질의 살상검증Killing verification of red tide killing protein FJ
(ZP_01247095)
(서열번호 4)
FJ
(ZP_01247095)
(SEQ ID NO: 4)
CRO
(ZP_00951344)
(서열번호 5)
CRO
(ZP_00951344)
(SEQ ID NO: 5)
MED
(ZP_01059780)
(서열번호 6)
MED
(ZP_01059780)
(SEQ ID NO: 6)
KAOT1_10476
(서열번호 1)
KAOT1_10476
(SEQ ID NO: 1)
KAOT1_11562
(서열번호 7)
KAOT1_11562
(SEQ ID NO: 7)
Cochlodinium polykrikoidesCochlodinium polykrikoides ++++++++ ++++++++ ++++++++ ++++++++ ++++++++ Thalassiosira sp. Thalassiosira sp. ++++++++ ++++++++ ++++++++ ++++++++ ++++++++ Heterosigma akashiwoHeterosigma akashiwo ++++++++ ++++++++ ++++++++ ++++++++ ++++++++ Skeletonema costatumSkeletonema costatum ++++ ++++++ ++++++++ ++ ++ Alexandrium sp. Alexandrium sp. ++++++++ ++++++++ ++++++++ ++++++++ ++++++++ Chaetoceros cuvisetusChaetoceros cuvisetus ++++++++ ++++++++ ++++++++ ++++++++ ++++++++ Gymnodinium sp. Gymnodinium sp. ++++++++ ++++++++ ++++++++ ++++++++ ++++++++ 억제정도 = ((대조군-실험군)/실험군)×100
+ means <25%
++ means 25-50%
++ means 50-75%
++++ means >75% 억제정도
Inhibition degree = ((control group-experimental group)/experimental group)×100
+ means <25%
++ means 25-50%
++ means 50-75%
++++ means >75% inhibition

한국생명공학연구원Korea Research Institute of Bioscience and Biotechnology KCTC11320BPKCTC11320BP 2008040820080408

<110> KOREA OCEAN RESEARCH AND DEVELOPMENT INSTITUTE <120> PROTEASE HAVING ALGICIDAL ACTIVITY, GENE ENCODING THE SAME AND ALGICIDAL FORMULATION COMPRISING THE SAME <130> F <160> 29 <170> KopatentIn 1.71 <210> 1 <211> 278 <212> PRT <213> KAOT1_10476 of Kordia algicida OT-1 <400> 1 Met Lys Lys Ile Lys Asn Leu Thr Phe Ala Leu Ala Leu Gly Leu Gly 1 5 10 15 Ile Thr Met Val Ser Cys Ser Lys Asp Thr Ala Val Val Asp Glu Glu 20 25 30 Gln Asp Thr Ala Ile Gly Ile Pro Gln Asp Val Leu Gln Lys Ala Gln 35 40 45 Ser Leu His Phe Asn Thr Phe Asp Met Gln Glu Ala Ser Phe Glu Lys 50 55 60 Pro Asn Gly Lys Ile Glu Glu Gly Tyr Met Met Glu Gly Asp Ile Phe 65 70 75 80 Phe Thr Arg Asp Gln Leu Met Asn Met Glu Leu Gly Gly Asp Ile Thr 85 90 95 Ser Lys Gln Tyr Arg Thr Asn Asn Leu Val Ser Pro Gly Val Ile Thr 100 105 110 Ile Ile Gly Tyr Thr Gly Asn Asn Ser Asn Gly Leu Thr Thr Lys Met 115 120 125 Gln Thr Gly Leu Arg Trp Ala Val Asp Asn Tyr Asn Ala Leu Asn Leu 130 135 140 Ser Ile Ser Phe Gln Leu Thr Phe Gly Thr Asp Tyr Gln Asn Lys Asp 145 150 155 160 Met Val Val Tyr Gln Val Gln Gly Gly Ala Gly Gly Ser Ala Gly Phe 165 170 175 Pro Ser Gly Gly Asn Pro Tyr Lys Trp Val Lys Ile Asn Ser Gly Met 180 185 190 Ala Pro Tyr Ser Asn Asn Val His Glu His Val Ile Gly His Glu Ile 195 200 205 Gly His Ser Ile Gly Phe Arg His Ser Asp Tyr Phe Ser Arg Gln Ser 210 215 220 Cys Gly Gln Asn Ser Asn Glu Gly Ser Ala Gly Val Gly Ala Ile His 225 230 235 240 Ile Pro Gly Thr Pro Thr Gly Trp Asp Pro Thr Ser Leu Met Asn Ala 245 250 255 Cys Phe Ser Ser Ser Glu Asp Gly Glu Phe Asn Gly Asn Asp Ile Thr 260 265 270 Ala Leu Asn Phe Leu Tyr 275 <210> 2 <211> 834 <212> DNA <213> KAOT1_10476 of Kordia algicida OT-1 <400> 2 atgaaaaaaa ttaaaaactt aacctttgcg ttggcattag ggttagggat cactatggta 60 tcttgtagta aagacactgc cgtagtagac gaggagcaag acacagctat cggaatccca 120 caagacgtac ttcaaaaagc acaatcactt cacttcaaca cattcgatat gcaagaagca 180 tctttcgaaa agccaaatgg taaaatcgaa gaaggatata tgatggaagg tgatatcttc 240 tttacacgtg accaattaat gaacatggaa ctcggtggag atattacaag caaacaatat 300 cgtacaaaca atttagtttc tccaggagta attacaatca ttggatatac aggaaataac 360 tctaatggat taacaactaa aatgcaaact ggacttagat gggcagtaga taactataat 420 gcattaaacc taagtattag tttccaatta acatttggta ctgactatca aaataaagat 480 atggtagtat atcaagtaca aggtggagca ggtggatctg caggtttccc ttcaggagga 540 aatccataca agtgggttaa aattaactca ggtatggctc cttacagtaa caatgtacat 600 gaacatgtaa ttggacatga aataggacac tcgattggat tccgtcattc agactacttc 660 agcagacaaa gttgtggaca aaattcaaat gaaggtagtg caggagttgg agcaatccat 720 attccaggaa cacctacagg ttgggatcca acatctttaa tgaatgcttg tttcagttct 780 tcagaagatg gagaatttaa cggaaacgac attactgctt taaacttctt atac 834 <210> 3 <211> 20 <212> PRT <213> N-terminus of KAOT_1 10476 <400> 3 Gln Tyr Val Thr Asn Asn Leu Val Ser Pro Gly Val Ile Thr Ile Ile 1 5 10 15 Gly Tyr Thr Phe 20 <210> 4 <211> 276 <212> PRT <213> Flavobacterium johnsoniae UW101 (ZP_01247095) <400> 4 Met Lys Lys Ile Lys Ser Ile Leu Ile Leu Ser Phe Thr Ala Leu Val 1 5 10 15 Leu Leu Ser Cys Asn Lys Glu Asp Glu Thr Val Ser Ser Gly Gln Glu 20 25 30 Ser Leu Lys Val Thr Pro Glu Val Leu Glu Lys Leu Lys Ser Leu Ser 35 40 45 Leu Asn Thr Ser Asp Val Gln Val Ile Gln Asn Thr Ser Leu Glu Gly 50 55 60 Ala Val Glu Asp Ala Phe Leu Val Glu Gly Asp Ile Ile Ile Thr Gln 65 70 75 80 Ala Gln Leu Asn Lys Met Asp Leu His Gly Gly Ile Thr Thr Glu Gln 85 90 95 Tyr Arg Thr Thr Asn Leu Val Ser Ala Pro Arg Thr Ile Lys Val Val 100 105 110 Gly Leu Ser Gly Thr Gly Thr Thr Ala Leu Thr Thr Asn Met Arg Asn 115 120 125 Gly Leu Gln Ala Ala Ile Asn Arg Tyr Asn Asn Leu Gly Leu Ser Ile 130 135 140 Asn Phe Thr Leu Thr Phe Ser Ser Ser Thr Ser Gly Ala Asn Ile Val 145 150 155 160 Val Arg Arg Gln Thr Gly Ser Ala Gly Gly Val Ala Gly Phe Pro Ser 165 170 175 Gly Gly Asn Pro Tyr Asn Ser Val Thr Leu Tyr Ser Gly Leu Asp Ser 180 185 190 Tyr Ser Thr Asn Val Asn Ala His Val Ala Ala His Glu Ile Gly His 195 200 205 Cys Ile Gly Leu Arg His Thr Asp Trp Phe Ser Arg Gln Ser Cys Gly 210 215 220 Gln Asn Ser Asn Glu Gly Thr Ala Gly Val Gly Ala Ile Leu Ile Pro 225 230 235 240 Gly Thr Pro Ser Gly Tyr Asp Ala Thr Ser Tyr Met Arg Ala Cys Phe 245 250 255 Gly Ser Asn Glu Thr Gly Ala Phe Asn Ala Asn Asp Ile Thr Ala Leu 260 265 270 Asn Tyr Leu Tyr 275 <210> 5 <211> 284 <212> PRT <213> Croceibacter atlanticus HTCC2559 (ZP_00951344) <400> 5 Met Val Phe Val Ser Cys Glu Lys Asp Asn Asp Thr Asn Asn Ala Glu 1 5 10 15 Val Ala Asp Thr Asn Glu Val Thr Thr Gly Ser Leu Glu Thr Leu Gly 20 25 30 Val Asn Thr Asp Leu Thr Pro Thr Asn Leu Asp Gln Ala Thr Leu Asp 35 40 45 Leu Ile Ala Ser Lys His Leu Ser Pro Ile Gly Ala Gln Glu Glu Leu 50 55 60 Arg Tyr Leu Pro Asp Gly Thr Ser Glu Lys Ala Ile Arg Ile Glu Gly 65 70 75 80 Asp Ile Val Met Thr Lys Ala Glu Leu Glu Glu Leu Glu Phe Asn Gly 85 90 95 Tyr Ser Asn Glu Asn Ala Gln Tyr Ser Thr Asn Ala Leu Val Ser Pro 100 105 110 Gln Thr Ile Thr Ile Ile Gly Tyr Thr Gly Gly Ser Gln Ala Leu Thr 115 120 125 Ser Ser Glu Gln Thr Ala Leu Gln Trp Ala Val Ala Asn Tyr Asn Arg 130 135 140 Leu Asn Leu Asn Ile Asn Phe Ser Leu Thr Phe Gly Thr Asn Tyr Gln 145 150 155 160 Asn Lys Asp Met Val Val Tyr Asn Asn Thr Val Asn Asn Pro Ser Gly 165 170 175 Ala Gly Gly Ser Ala Gly Phe Pro Ser Gly Gly Asn Pro His Lys Phe 180 185 190 Val Gln Ile Tyr Gly Leu Ser Asn Tyr Asn Thr Asn Val Ile Glu His 195 200 205 Val Ile Thr His Glu Ile Gly His Ser Val Gly Phe Arg His Thr Asp 210 215 220 Tyr Phe Ser Arg Gln Ser Cys Gly Gln Asn Thr Asn Glu Gly Thr Ala 225 230 235 240 Gly Val Gly Ala Asn His Ile Pro Gly Thr Pro Thr Gly Tyr Asp Ser 245 250 255 Thr Ser Ile Met Leu Ala Cys Phe Ser Ser Gly Glu Asp Gly Glu Phe 260 265 270 Asn Ser Asn Asp Ile Thr Ala Leu Asn Tyr Leu Tyr 275 280 <210> 6 <211> 270 <212> PRT <213> Leeuwenhoekiella blandensis MED217 (ZP_01059780) <400> 6 Met Thr Ser Cys Ser Glu Asp Ala Glu Gln Thr Thr Leu Pro Glu Ala 1 5 10 15 Gln Pro Thr Ser Asn Leu Glu Val Ser Ser Glu Ile Ile Gln Gln Val 20 25 30 Glu Asp Leu Gly Met Asn Ala Asn Tyr Val Arg Trp Asp Asp Phe Tyr 35 40 45 Phe Pro Asp Gly Ser Ser Glu Pro Arg Leu Phe Leu Glu Glu Asp Val 50 55 60 Val Val Thr Pro Glu Gln Leu Ser Ser Met Ser Ala Asn Val Glu Glu 65 70 75 80 Ser Lys Ser Gly Lys Gly Asp Ser Lys Gln Tyr Arg Thr Ser Ala Leu 85 90 95 Val Ser Gln Gly Arg Thr Ile Ser Ile Ile Gly Tyr Thr Gly Gly Ser 100 105 110 Gln Ala Leu Ser Gln Lys Glu Arg Thr Ala Leu Gln Trp Ala Val Ala 115 120 125 Asn Tyr Asn Arg Leu Ser Gly Val Ser Ile Ser Phe Asn Leu Thr Phe 130 135 140 Gly Thr Asp Tyr Gln Asn Lys Asp Met Val Val Tyr Asn Asn Thr Val 145 150 155 160 Asn Asn Pro Ser Gly Ala Gly Gly Ser Ala Gly Phe Pro Ser Asn Gly 165 170 175 Leu Pro Tyr Lys Phe Val Gln Ile Tyr Gly Leu Ala Asn Tyr Asp Thr 180 185 190 Asn Val Val Glu His Val Met Thr His Glu Ile Gly His Ser Val Gly 195 200 205 Phe Arg His Thr Asp Trp Phe Ser Arg Gln Ser Cys Gly Gln Asn Val 210 215 220 Tyr Glu Gly Gly Asp Ala Asn His Val Ser Gly Thr Pro Thr Gly Tyr 225 230 235 240 Asp Ser Thr Ser Ile Met Leu Ala Cys Phe Ser Ala Asn Glu Asp Gly 245 250 255 Glu Phe Asn Ala Asn Asp Ile Thr Ala Leu Asn Asn Met Tyr 260 265 270 <210> 7 <211> 378 <212> PRT <213> Kordia algicida KAOT1_11562 <400> 7 Met Lys Arg Asn Phe Lys Ile Gln Met Leu Tyr Val Leu Leu Thr Met 1 5 10 15 Leu Leu Leu Ala Gly Cys Gln Asn Asp Thr Glu Glu Glu Leu Val Glu 20 25 30 Glu Ala Thr Thr Ala Val Glu Arg Val Asp Val Lys Trp Leu Ala Pro 35 40 45 Asp Asp His Pro Val Val Gln Leu Leu Tyr Ser Arg Gly Tyr Glu Arg 50 55 60 Gly Thr Ile Tyr Glu Thr Asp Glu His Phe Leu Ala Pro Pro Asp Leu 65 70 75 80 Leu Tyr Ser Lys Asp Ile Asn Asp Tyr Asp Leu Ser Asp Asn Gly Ser 85 90 95 Asn Ala Glu Gln Ala Tyr Asn Thr Gly Lys Leu Val Ser Leu Asn Arg 100 105 110 Met Arg Ile Asn Val Phe Leu Asp Asn Ser Ile Gly Thr Asp Leu Gln 115 120 125 Thr Gln Ser Val Asn Ala Met Asn Glu Leu Asn Gly Ile Asn Asn Cys 130 135 140 Ala Leu Phe Phe Val Arg Val Phe Asn Ala Asn Gln Ala Gln Ile Thr 145 150 155 160 Ile Arg Ser Asp Phe Gly Ala Glu Ser Asn Asn Val Leu Gly Arg Ala 165 170 175 Gly Phe Pro Ser Asn Gly Arg Pro Phe Asp Thr Val Thr Leu Asn Val 180 185 190 Asp Arg Leu Asp Asp Phe Gly Ala Asp Ile Arg Arg Asn Thr Ile Ile 195 200 205 His Glu Leu Gly His Cys Val Gly Leu Arg His Thr Asp Trp Gln Ala 210 215 220 Asn Arg Glu Arg Ser Ala Val Asn Ile Pro Gly Thr Ser Ala Asn Asp 225 230 235 240 Thr Gly Ser Ile Met Trp His Thr Ile Asn Gly Gly Thr Pro Phe Thr 245 250 255 Asn Gly Asp Leu Thr Ala Phe Arg Ala Leu Phe Pro Arg Ala Leu Arg 260 265 270 Ile Asp Val Val Asn Glu Ile Asp Asp Tyr Asp Tyr Ser Gly Glu Ile 275 280 285 Tyr Val Leu Asp Asn Val Phe Val Asp Val Phe Thr Asp Gly Ser Tyr 290 295 300 Ser Thr Gln Thr Thr Leu Asn Arg Asn Val Asn Val Ser Tyr Arg Ile 305 310 315 320 Asn Val Gln Glu Tyr Asn His Thr Ser Gly Thr Tyr Tyr Tyr Ser Arg 325 330 335 Asn Arg Thr Leu Thr Ala Gly Asn Asn Arg Tyr Tyr Ile Asp Asp Glu 340 345 350 Glu Glu Glu Cys Ser Pro Tyr Gln Gly Glu Thr Cys Thr Arg Gln Asp 355 360 365 Leu Glu Ile Arg Leu Ala Thr Ser Ile Leu 370 375 <210> 8 <211> 828 <212> DNA <213> Flavobacterium johnsoniae UW101 (ZP_01247095) <400> 8 atgaaaaaaa ttaaatcaat cctgattctg tcatttacag cattagtact attgtcttgt 60 aacaaagaag atgagactgt atcatctggt caagagtctt taaaagtaac accagaggtg 120 ttggaaaaac ttaaatcact ttctttgaac acctcagatg tgcaggtgat ccaaaatact 180 agtttagaag gtgctgttga agacgcgttc cttgtagaag gggatattat catcacgcag 240 gcacaattaa acaaaatgga tcttcacgga ggtattacaa cagaacaata ccgtactact 300 aatttagtat ctgctccaag aacgatcaaa gttgttggtt tatcaggaac tggtacaaca 360 gccctgacta ccaatatgcg taacggactg caggctgcta taaacagata caataattta 420 ggattatcta taaactttac tttgactttt agttcaagta cttcaggcgc aaacattgta 480 gtgcggagac aaaccggatc tgccggcgga gtagctggtt tcccttcagg aggaaatcca 540 tataattcag ttaccttata ttcaggatta gattcttatt caacaaatgt aaacgcacac 600 gttgcggcac atgaaatagg acattgtatt ggtctgcgtc atacagactg gttcagccgt 660 caaagctgcg ggcagaattc aaatgaagga actgctggtg taggagcaat tcttattccg 720 ggaacacctt ctggatatga tgctacttct tacatgagag cgtgtttcgg ttcaaacgaa 780 accggtgctt tcaatgctaa tgatattaca gcattgaact atttatat 828 <210> 9 <211> 852 <212> DNA <213> Croceibacter atlanticus HTCC2559 (ZP_00951344) <400> 9 atggtattcg tttcttgtga gaaagataat gatacaaaca acgcagaggt tgcagacact 60 aatgaagtta caacaggttc tcttgaaact ttaggtgtta atacagacct taccccaaca 120 aatttagatc aagctacttt agatttaatt gcttctaaac atcttagtcc tatcggagct 180 caagaagagt taagatattt accagacggt acatcagaaa aagctatacg tatagaaggt 240 gatatcgtaa tgactaaagc tgaacttgaa gagttggagt ttaatggtta ttcaaatgaa 300 aatgctcaat atagtactaa cgcattagtt agtcctcaaa caattacaat tattggttat 360 actggtggaa gccaggcgtt aactagtagc gagcaaactg cattacaatg ggcagttgca 420 aactataata gattaaacct taacatcaat ttctctttaa cttttggtac aaactaccaa 480 aacaaagata tggttgttta caacaatact gtaaataacc caagtggtgc aggaggatct 540 gcaggtttcc caagtggagg aaacccacat aaatttgtac agatttatgg attaagtaac 600 tataacacaa atgtaattga gcacgttatt actcacgaaa taggacactc tgtaggattc 660 cgtcacacag attactttag ccgtcagagt tgtggtcaaa atacaaacga aggaactgca 720 ggagttggtg ctaaccacat cccaggaact ccaacaggat atgattctac gtctattatg 780 ttagcttgtt ttagcagtgg tgaagatgga gagtttaaca gtaatgatat tactgcttta 840 aactaccttt at 852 <210> 10 <211> 810 <212> DNA <213> Leeuwenhoekiella blandensis MED217 (ZP_01059780) <400> 10 atgacctctt gttcagaaga tgctgagcaa actacgttgc cagaagcaca acctacttcc 60 aaccttgagg tttcttcaga aattatccag caagttgaag atttaggcat gaacgctaat 120 tatgtgcgtt gggatgattt ttattttcct gatggttctt ctgaacctcg tctattttta 180 gaagaagatg ttgtcgtaac tcctgaacaa ttatcctcaa tgtccgctaa cgttgaagaa 240 tcaaaatcag gaaaaggtga ttctaaacaa tatcgcactt ctgctttggt aagtcaggga 300 agaacgattt ctatcatcgg ttataccggc ggtagtcagg cgctaagcca aaaagagcgt 360 accgccttac aatgggctgt tgcaaattac aatcggttaa gcggtgtaag catcagcttc 420 aatttgacat ttggtaccga ctatcaaaac aaagacatgg tagtttacaa caacacggta 480 aataacccaa gtggcgcagg tggtagtgcc ggtttcccga gtaatggact tccttataaa 540 tttgttcaga tctatgggct cgctaattac gacaccaatg ttgttgaaca cgtaatgacg 600 cacgagatag gtcattcggt tggatttaga cacacagatt ggtttagtag acaaagctgt 660 ggacagaacg tttatgaagg tggtgacgca aatcacgttt cgggaacccc aacaggttac 720 gactcgactt caattatgct agcttgcttt agtgccaatg aagatggcga atttaatgcc 780 aatgatatta ccgcattaaa caatatgtac 810 <210> 11 <211> 1134 <212> DNA <213> Kordia algicida KAOT1_11562 <400> 11 atgaaaagaa attttaaaat ccaaatgctg tatgttttgt tgacaatgct cctgcttgca 60 ggttgtcaaa acgatacgga agaagaatta gtagaagaag caacaactgc tgtagaacgt 120 gttgatgtaa aatggcttgc accagacgat catcctgtgg tacaattatt atacagcaga 180 ggttatgaac gaggaacaat ctatgaaact gatgagcatt ttttagcgcc accagattta 240 ttgtacagta aagatatcaa cgattatgac ctatctgaca atggtagcaa tgccgaacaa 300 gcctacaaca cagggaaatt agtatctcta aacagaatgc gtatcaatgt gtttttagac 360 aactctattg ggacagattt gcaaacacaa tccgtaaatg caatgaatga acttaacgga 420 atcaacaatt gtgctttatt ctttgtacgt gttttcaatg ccaatcaggc acaaattacg 480 atacgaagtg actttggagc agaatccaat aatgttttag gtcgtgcagg ttttccatct 540 aacggacgtc catttgatac agtgacccta aacgttgatc gtttggatga cttcggagct 600 gacattcgta gaaacaccat tattcatgaa cttggtcatt gtgtcggatt gcgccataca 660 gattggcaag ccaacagaga acgtagtgct gtaaacattc ctggtacaag tgccaatgat 720 acaggatcaa tcatgtggca taccatcaat ggaggaacac cttttacaaa cggagattta 780 actgctttta gagccttatt tccacgagct ttgcgcatag atgttgtcaa tgaaattgac 840 gattatgatt acagtggtga aatttatgtt ttagacaatg tatttgtcga tgtctttacc 900 gatggaagct acagtacgca aacaacgctt aaccgaaatg taaacgtaag ttaccgtatt 960 aacgtacaag aatacaatca cacctcagga acttattatt acagtcgaaa tcgaacttta 1020 acggctggta ataatcgtta ttatattgat gatgaggaag aagaatgttc gccataccaa 1080 ggagaaacct gtacacgaca agaccttgaa atcagattgg caacttcaat acta 1134 <210> 12 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> OT1m_t <400> 12 cgacccggca tatgcaatat cgtacaaaca atttagtttc 40 <210> 13 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> OT1m_bc <400> 13 ctccacatct cgagctagta taagaagttt aaagcag 37 <210> 14 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> OT1m_bH <400> 14 ctccacatct cgaggtataa gaagtttaaa gcagtaatg 39 <210> 15 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> OT1delta5_bc <400> 15 ctccacatct cgagctaagc agtaatgtcg tttccgttaa a 41 <210> 16 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> OT1delta26_bc <400> 16 ctccacatct cgagctaaga tgttggatcc caacctg 37 <210> 17 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> OT1p_t <400> 17 cgacccggca tatgagtaaa gacactgccg tagtagac 38 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> HTCC2559m_t <400> 18 cgacccggca tatgcaatat agtactaacg cattagttag 40 <210> 19 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> HTCC2559m_bc <400> 19 ctccacatct cgagttaata aaggtagttt aaagcag 37 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> OT11562m_t <400> 20 cgacccggca tatgcaagcc tacaacacag ggaaattag 39 <210> 21 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> OT11562m_bc <400> 21 ctccacatct cgagttatag tattgaagtt gccaatc 37 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> MED217m_t <400> 22 cgacccggca tatgcaatat cgcacttctg ctttggtaag 40 <210> 23 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> MED217m_bc <400> 23 ctccacatct cgagctagta catattgttt aatgcgg 37 <210> 24 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> fjohnm_t <400> 24 cgacccggca tatgcaatac cgtactacta atttagtatc 40 <210> 25 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> fjohnm_bc <400> 25 ctccacatct cgagttaata taaatagttc aatgctg 37 <210> 26 <211> 251 <212> PRT <213> KAOT1_10476 of Kordia algicida OT-1 lacking singal peptide <400> 26 Val Val Asp Glu Glu Gln Asp Thr Ala Ile Gly Ile Pro Gln Asp Val 1 5 10 15 Leu Gln Lys Ala Gln Ser Leu His Phe Asn Thr Phe Asp Met Gln Glu 20 25 30 Ala Ser Phe Glu Lys Pro Asn Gly Lys Ile Glu Glu Gly Tyr Met Met 35 40 45 Glu Gly Asp Ile Phe Phe Thr Arg Asp Gln Leu Met Asn Met Glu Leu 50 55 60 Gly Gly Asp Ile Thr Ser Lys Gln Tyr Arg Thr Asn Asn Leu Val Ser 65 70 75 80 Pro Gly Val Ile Thr Ile Ile Gly Tyr Thr Gly Asn Asn Ser Asn Gly 85 90 95 Leu Thr Thr Lys Met Gln Thr Gly Leu Arg Trp Ala Val Asp Asn Tyr 100 105 110 Asn Ala Leu Asn Leu Ser Ile Ser Phe Gln Leu Thr Phe Gly Thr Asp 115 120 125 Tyr Gln Asn Lys Asp Met Val Val Tyr Gln Val Gln Gly Gly Ala Gly 130 135 140 Gly Ser Ala Gly Phe Pro Ser Gly Gly Asn Pro Tyr Lys Trp Val Lys 145 150 155 160 Ile Asn Ser Gly Met Ala Pro Tyr Ser Asn Asn Val His Glu His Val 165 170 175 Ile Gly His Glu Ile Gly His Ser Ile Gly Phe Arg His Ser Asp Tyr 180 185 190 Phe Ser Arg Gln Ser Cys Gly Gln Asn Ser Asn Glu Gly Ser Ala Gly 195 200 205 Val Gly Ala Ile His Ile Pro Gly Thr Pro Thr Gly Trp Asp Pro Thr 210 215 220 Ser Leu Met Asn Ala Cys Phe Ser Ser Ser Glu Asp Gly Glu Phe Asn 225 230 235 240 Gly Asn Asp Ile Thr Ala Leu Asn Phe Leu Tyr 245 250 <210> 27 <211> 180 <212> PRT <213> KAOT1_10476 of Kordia algicida OT-1 lacking signal and processing peptide <400> 27 Gln Tyr Arg Thr Asn Asn Leu Val Ser Pro Gly Val Ile Thr Ile Ile 1 5 10 15 Gly Tyr Thr Gly Asn Asn Ser Asn Gly Leu Thr Thr Lys Met Gln Thr 20 25 30 Gly Leu Arg Trp Ala Val Asp Asn Tyr Asn Ala Leu Asn Leu Ser Ile 35 40 45 Ser Phe Gln Leu Thr Phe Gly Thr Asp Tyr Gln Asn Lys Asp Met Val 50 55 60 Val Tyr Gln Val Gln Gly Gly Ala Gly Gly Ser Ala Gly Phe Pro Ser 65 70 75 80 Gly Gly Asn Pro Tyr Lys Trp Val Lys Ile Asn Ser Gly Met Ala Pro 85 90 95 Tyr Ser Asn Asn Val His Glu His Val Ile Gly His Glu Ile Gly His 100 105 110 Ser Ile Gly Phe Arg His Ser Asp Tyr Phe Ser Arg Gln Ser Cys Gly 115 120 125 Gln Asn Ser Asn Glu Gly Ser Ala Gly Val Gly Ala Ile His Ile Pro 130 135 140 Gly Thr Pro Thr Gly Trp Asp Pro Thr Ser Leu Met Asn Ala Cys Phe 145 150 155 160 Ser Ser Ser Glu Asp Gly Glu Phe Asn Gly Asn Asp Ile Thr Ala Leu 165 170 175 Asn Phe Leu Tyr 180 <210> 28 <211> 753 <212> DNA <213> KAOT1_10476 of Kordia algicida OT-1 lacking signal peptide <400> 28 gtagtagacg aggagcaaga cacagctatc ggaatcccac aagacgtact tcaaaaagca 60 caatcacttc acttcaacac attcgatatg caagaagcat ctttcgaaaa gccaaatggt 120 aaaatcgaag aaggatatat gatggaaggt gatatcttct ttacacgtga ccaattaatg 180 aacatggaac tcggtggaga tattacaagc aaacaatatc gtacaaacaa tttagtttct 240 ccaggagtaa ttacaatcat tggatataca ggaaataact ctaatggatt aacaactaaa 300 atgcaaactg gacttagatg ggcagtagat aactataatg cattaaacct aagtattagt 360 ttccaattaa catttggtac tgactatcaa aataaagata tggtagtata tcaagtacaa 420 ggtggagcag gtggatctgc aggtttccct tcaggaggaa atccatacaa gtgggttaaa 480 attaactcag gtatggctcc ttacagtaac aatgtacatg aacatgtaat tggacatgaa 540 ataggacact cgattggatt ccgtcattca gactacttca gcagacaaag ttgtggacaa 600 aattcaaatg aaggtagtgc aggagttgga gcaatccata ttccaggaac acctacaggt 660 tgggatccaa catctttaat gaatgcttgt ttcagttctt cagaagatgg agaatttaac 720 ggaaacgaca ttactgcttt aaacttctta tac 753 <210> 29 <211> 540 <212> DNA <213> KAOT1_10476 of Kordia algicida OT-1 lacking signal and processing peptide <400> 29 caatatcgta caaacaattt agtttctcca ggagtaatta caatcattgg atatacagga 60 aataactcta atggattaac aactaaaatg caaactggac ttagatgggc agtagataac 120 tataatgcat taaacctaag tattagtttc caattaacat ttggtactga ctatcaaaat 180 aaagatatgg tagtatatca agtacaaggt ggagcaggtg gatctgcagg tttcccttca 240 ggaggaaatc catacaagtg ggttaaaatt aactcaggta tggctcctta cagtaacaat 300 gtacatgaac atgtaattgg acatgaaata ggacactcga ttggattccg tcattcagac 360 tacttcagca gacaaagttg tggacaaaat tcaaatgaag gtagtgcagg agttggagca 420 atccatattc caggaacacc tacaggttgg gatccaacat ctttaatgaa tgcttgtttc 480 agttcttcag aagatggaga atttaacgga aacgacatta ctgctttaaa cttcttatac 540 540 <110> KOREA OCEAN RESEARCH AND DEVELOPMENT INSTITUTE <120> PROTEASE HAVING ALGICIDAL ACTIVITY, GENE ENCODING THE SAME AND ALGICIDAL FORMULATION COMPRISING THE SAME <130> F <160> 29 <170> KopatentIn 1.71 <210> 1 <211> 278 <212> PRT <213> KAOT1_10476 of Kordia algicida OT-1 <400> 1 Met Lys Lys Ile Lys Asn Leu Thr Phe Ala Leu Ala Leu Gly Leu Gly 1 5 10 15 Ile Thr Met Val Ser Cys Ser Lys Asp Thr Ala Val Val Asp Glu Glu 20 25 30 Gln Asp Thr Ala Ile Gly Ile Pro Gln Asp Val Leu Gln Lys Ala Gln 35 40 45 Ser Leu His Phe Asn Thr Phe Asp Met Gln Glu Ala Ser Phe Glu Lys 50 55 60 Pro Asn Gly Lys Ile Glu Glu Gly Tyr Met Met Glu Gly Asp Ile Phe 65 70 75 80 Phe Thr Arg Asp Gln Leu Met Asn Met Glu Leu Gly Gly Asp Ile Thr 85 90 95 Ser Lys Gln Tyr Arg Thr Asn Asn Leu Val Ser Pro Gly Val Ile Thr 100 105 110 Ile Ile Gly Tyr Thr Gly Asn Asn Ser Asn Gly Leu Thr Thr Lys Met 115 120 125 Gln Thr Gly Leu Arg Trp Ala Val Asp Asn Tyr Asn Ala Leu Asn Leu 130 135 140 Ser Ile Ser Phe Gln Leu Thr Phe Gly Thr Asp Tyr Gln Asn Lys Asp 145 150 155 160 Met Val Val Tyr Gln Val Gln Gly Gly Ala Gly Gly Ser Ala Gly Phe 165 170 175 Pro Ser Gly Gly Asn Pro Tyr Lys Trp Val Lys Ile Asn Ser Gly Met 180 185 190 Ala Pro Tyr Ser Asn Asn Val His Glu His Val Ile Gly His Glu Ile 195 200 205 Gly His Ser Ile Gly Phe Arg His Ser Asp Tyr Phe Ser Arg Gln Ser 210 215 220 Cys Gly Gln Asn Ser Asn Glu Gly Ser Ala Gly Val Gly Ala Ile His 225 230 235 240 Ile Pro Gly Thr Pro Thr Gly Trp Asp Pro Thr Ser Leu Met Asn Ala 245 250 255 Cys Phe Ser Ser Ser Glu Asp Gly Glu Phe Asn Gly Asn Asp Ile Thr 260 265 270 Ala Leu Asn Phe Leu Tyr 275 <210> 2 <211> 834 <212> DNA <213> KAOT1_10476 of Kordia algicida OT-1 <400> 2 atgaaaaaaa ttaaaaactt aacctttgcg ttggcattag ggttagggat cactatggta 60 tcttgtagta aagacactgc cgtagtagac gaggagcaag acacagctat cggaatccca 120 caagacgtac ttcaaaaagc acaatcactt cacttcaaca cattcgatat gcaagaagca 180 tctttcgaaa agccaaatgg taaaatcgaa gaaggatata tgatggaagg tgatatcttc 240 tttacacgtg accaattaat gaacatggaa ctcggtggag atattacaag caaacaatat 300 cgtacaaaca atttagtttc tccaggagta attacaatca ttggatatac aggaaataac 360 tctaatggat taacaactaa aatgcaaact ggacttagat gggcagtaga taactataat 420 gcattaaacc taagtattag tttccaatta acatttggta ctgactatca aaataaagat 480 atggtagtat atcaagtaca aggtggagca ggtggatctg caggtttccc ttcaggagga 540 aatccataca agtgggttaa aattaactca ggtatggctc cttacagtaa caatgtacat 600 gaacatgtaa ttggacatga aataggacac tcgattggat tccgtcattc agactacttc 660 agcagacaaa gttgtggaca aaattcaaat gaaggtagtg caggagttgg agcaatccat 720 attccaggaa cacctacagg ttgggatcca acatctttaa tgaatgcttg tttcagttct 780 tcagaagatg gagaatttaa cggaaacgac attactgctt taaacttctt atac 834 <210> 3 <211> 20 <212> PRT <213> N-terminus of KAOT_1 10476 <400> 3 Gln Tyr Val Thr Asn Asn Leu Val Ser Pro Gly Val Ile Thr Ile Ile 1 5 10 15 Gly Tyr Thr Phe 20 <210> 4 <211> 276 <212> PRT <213> Flavobacterium johnsoniae UW101 (ZP_01247095) <400> 4 Met Lys Lys Ile Lys Ser Ile Leu Ile Leu Ser Phe Thr Ala Leu Val 1 5 10 15 Leu Leu Ser Cys Asn Lys Glu Asp Glu Thr Val Ser Ser Gly Gln Glu 20 25 30 Ser Leu Lys Val Thr Pro Glu Val Leu Glu Lys Leu Lys Ser Leu Ser 35 40 45 Leu Asn Thr Ser Asp Val Gln Val Ile Gln Asn Thr Ser Leu Glu Gly 50 55 60 Ala Val Glu Asp Ala Phe Leu Val Glu Gly Asp Ile Ile Ile Thr Gln 65 70 75 80 Ala Gln Leu Asn Lys Met Asp Leu His Gly Gly Ile Thr Thr Glu Gln 85 90 95 Tyr Arg Thr Thr Asn Leu Val Ser Ala Pro Arg Thr Ile Lys Val Val 100 105 110 Gly Leu Ser Gly Thr Gly Thr Thr Ala Leu Thr Thr Asn Met Arg Asn 115 120 125 Gly Leu Gln Ala Ala Ile Asn Arg Tyr Asn Asn Leu Gly Leu Ser Ile 130 135 140 Asn Phe Thr Leu Thr Phe Ser Ser Ser Thr Ser Gly Ala Asn Ile Val 145 150 155 160 Val Arg Arg Gln Thr Gly Ser Ala Gly Gly Val Ala Gly Phe Pro Ser 165 170 175 Gly Gly Asn Pro Tyr Asn Ser Val Thr Leu Tyr Ser Gly Leu Asp Ser 180 185 190 Tyr Ser Thr Asn Val Asn Ala His Val Ala Ala His Glu Ile Gly His 195 200 205 Cys Ile Gly Leu Arg His Thr Asp Trp Phe Ser Arg Gln Ser Cys Gly 210 215 220 Gln Asn Ser Asn Glu Gly Thr Ala Gly Val Gly Ala Ile Leu Ile Pro 225 230 235 240 Gly Thr Pro Ser Gly Tyr Asp Ala Thr Ser Tyr Met Arg Ala Cys Phe 245 250 255 Gly Ser Asn Glu Thr Gly Ala Phe Asn Ala Asn Asp Ile Thr Ala Leu 260 265 270 Asn Tyr Leu Tyr 275 <210> 5 <211> 284 <212> PRT <213> Croceibacter atlanticus HTCC2559 (ZP_00951344) <400> 5 Met Val Phe Val Ser Cys Glu Lys Asp Asn Asp Thr Asn Asn Ala Glu 1 5 10 15 Val Ala Asp Thr Asn Glu Val Thr Thr Gly Ser Leu Glu Thr Leu Gly 20 25 30 Val Asn Thr Asp Leu Thr Pro Thr Asn Leu Asp Gln Ala Thr Leu Asp 35 40 45 Leu Ile Ala Ser Lys His Leu Ser Pro Ile Gly Ala Gln Glu Glu Leu 50 55 60 Arg Tyr Leu Pro Asp Gly Thr Ser Glu Lys Ala Ile Arg Ile Glu Gly 65 70 75 80 Asp Ile Val Met Thr Lys Ala Glu Leu Glu Glu Leu Glu Phe Asn Gly 85 90 95 Tyr Ser Asn Glu Asn Ala Gln Tyr Ser Thr Asn Ala Leu Val Ser Pro 100 105 110 Gln Thr Ile Thr Ile Ile Gly Tyr Thr Gly Gly Ser Gln Ala Leu Thr 115 120 125 Ser Ser Glu Gln Thr Ala Leu Gln Trp Ala Val Ala Asn Tyr Asn Arg 130 135 140 Leu Asn Leu Asn Ile Asn Phe Ser Leu Thr Phe Gly Thr Asn Tyr Gln 145 150 155 160 Asn Lys Asp Met Val Val Tyr Asn Asn Thr Val Asn Asn Pro Ser Gly 165 170 175 Ala Gly Gly Ser Ala Gly Phe Pro Ser Gly Gly Asn Pro His Lys Phe 180 185 190 Val Gln Ile Tyr Gly Leu Ser Asn Tyr Asn Thr Asn Val Ile Glu His 195 200 205 Val Ile Thr His Glu Ile Gly His Ser Val Gly Phe Arg His Thr Asp 210 215 220 Tyr Phe Ser Arg Gln Ser Cys Gly Gln Asn Thr Asn Glu Gly Thr Ala 225 230 235 240 Gly Val Gly Ala Asn His Ile Pro Gly Thr Pro Thr Gly Tyr Asp Ser 245 250 255 Thr Ser Ile Met Leu Ala Cys Phe Ser Ser Gly Glu Asp Gly Glu Phe 260 265 270 Asn Ser Asn Asp Ile Thr Ala Leu Asn Tyr Leu Tyr 275 280 <210> 6 <211> 270 <212> PRT <213> Leeuwenhoekiella blandensis MED217 (ZP_01059780) <400> 6 Met Thr Ser Cys Ser Glu Asp Ala Glu Gln Thr Thr Leu Pro Glu Ala 1 5 10 15 Gln Pro Thr Ser Asn Leu Glu Val Ser Ser Glu Ile Ile Gln Gln Val 20 25 30 Glu Asp Leu Gly Met Asn Ala Asn Tyr Val Arg Trp Asp Asp Phe Tyr 35 40 45 Phe Pro Asp Gly Ser Ser Glu Pro Arg Leu Phe Leu Glu Glu Asp Val 50 55 60 Val Val Thr Pro Glu Gln Leu Ser Ser Met Ser Ala Asn Val Glu Glu 65 70 75 80 Ser Lys Ser Gly Lys Gly Asp Ser Lys Gln Tyr Arg Thr Ser Ala Leu 85 90 95 Val Ser Gln Gly Arg Thr Ile Ser Ile Ile Gly Tyr Thr Gly Gly Ser 100 105 110 Gln Ala Leu Ser Gln Lys Glu Arg Thr Ala Leu Gln Trp Ala Val Ala 115 120 125 Asn Tyr Asn Arg Leu Ser Gly Val Ser Ile Ser Phe Asn Leu Thr Phe 130 135 140 Gly Thr Asp Tyr Gln Asn Lys Asp Met Val Val Tyr Asn Asn Thr Val 145 150 155 160 Asn Asn Pro Ser Gly Ala Gly Gly Ser Ala Gly Phe Pro Ser Asn Gly 165 170 175 Leu Pro Tyr Lys Phe Val Gln Ile Tyr Gly Leu Ala Asn Tyr Asp Thr 180 185 190 Asn Val Val Glu His Val Met Thr His Glu Ile Gly His Ser Val Gly 195 200 205 Phe Arg His Thr Asp Trp Phe Ser Arg Gln Ser Cys Gly Gln Asn Val 210 215 220 Tyr Glu Gly Gly Asp Ala Asn His Val Ser Gly Thr Pro Thr Gly Tyr 225 230 235 240 Asp Ser Thr Ser Ile Met Leu Ala Cys Phe Ser Ala Asn Glu Asp Gly 245 250 255 Glu Phe Asn Ala Asn Asp Ile Thr Ala Leu Asn Asn Met Tyr 260 265 270 <210> 7 <211> 378 <212> PRT <213> Kordia algicida KAOT1_11562 <400> 7 Met Lys Arg Asn Phe Lys Ile Gln Met Leu Tyr Val Leu Leu Thr Met 1 5 10 15 Leu Leu Leu Ala Gly Cys Gln Asn Asp Thr Glu Glu Glu Leu Val Glu 20 25 30 Glu Ala Thr Thr Ala Val Glu Arg Val Asp Val Lys Trp Leu Ala Pro 35 40 45 Asp Asp His Pro Val Val Gln Leu Leu Tyr Ser Arg Gly Tyr Glu Arg 50 55 60 Gly Thr Ile Tyr Glu Thr Asp Glu His Phe Leu Ala Pro Pro Asp Leu 65 70 75 80 Leu Tyr Ser Lys Asp Ile Asn Asp Tyr Asp Leu Ser Asp Asn Gly Ser 85 90 95 Asn Ala Glu Gln Ala Tyr Asn Thr Gly Lys Leu Val Ser Leu Asn Arg 100 105 110 Met Arg Ile Asn Val Phe Leu Asp Asn Ser Ile Gly Thr Asp Leu Gln 115 120 125 Thr Gln Ser Val Asn Ala Met Asn Glu Leu Asn Gly Ile Asn Asn Cys 130 135 140 Ala Leu Phe Phe Val Arg Val Phe Asn Ala Asn Gln Ala Gln Ile Thr 145 150 155 160 Ile Arg Ser Asp Phe Gly Ala Glu Ser Asn Asn Val Leu Gly Arg Ala 165 170 175 Gly Phe Pro Ser Asn Gly Arg Pro Phe Asp Thr Val Thr Leu Asn Val 180 185 190 Asp Arg Leu Asp Asp Phe Gly Ala Asp Ile Arg Arg Asn Thr Ile Ile 195 200 205 His Glu Leu Gly His Cys Val Gly Leu Arg His Thr Asp Trp Gln Ala 210 215 220 Asn Arg Glu Arg Ser Ala Val Asn Ile Pro Gly Thr Ser Ala Asn Asp 225 230 235 240 Thr Gly Ser Ile Met Trp His Thr Ile Asn Gly Gly Thr Pro Phe Thr 245 250 255 Asn Gly Asp Leu Thr Ala Phe Arg Ala Leu Phe Pro Arg Ala Leu Arg 260 265 270 Ile Asp Val Val Asn Glu Ile Asp Asp Tyr Asp Tyr Ser Gly Glu Ile 275 280 285 Tyr Val Leu Asp Asn Val Phe Val Asp Val Phe Thr Asp Gly Ser Tyr 290 295 300 Ser Thr Gln Thr Thr Leu Asn Arg Asn Val Asn Val Ser Tyr Arg Ile 305 310 315 320 Asn Val Gln Glu Tyr Asn His Thr Ser Gly Thr Tyr Tyr Tyr Ser Arg 325 330 335 Asn Arg Thr Leu Thr Ala Gly Asn Asn Arg Tyr Tyr Ile Asp Asp Glu 340 345 350 Glu Glu Glu Cys Ser Pro Tyr Gln Gly Glu Thr Cys Thr Arg Gln Asp 355 360 365 Leu Glu Ile Arg Leu Ala Thr Ser Ile Leu 370 375 <210> 8 <211> 828 <212> DNA <213> Flavobacterium johnsoniae UW101 (ZP_01247095) <400> 8 atgaaaaaaa ttaaatcaat cctgattctg tcatttacag cattagtact attgtcttgt 60 aacaaagaag atgagactgt atcatctggt caagagtctt taaaagtaac accagaggtg 120 ttggaaaaac ttaaatcact ttctttgaac acctcagatg tgcaggtgat ccaaaatact 180 agtttagaag gtgctgttga agacgcgttc cttgtagaag gggatattat catcacgcag 240 gcacaattaa acaaaatgga tcttcacgga ggtattacaa cagaacaata ccgtactact 300 aatttagtat ctgctccaag aacgatcaaa gttgttggtt tatcaggaac tggtacaaca 360 gccctgacta ccaatatgcg taacggactg caggctgcta taaacagata caataattta 420 ggattatcta taaactttac tttgactttt agttcaagta cttcaggcgc aaacattgta 480 gtgcggagac aaaccggatc tgccggcgga gtagctggtt tcccttcagg aggaaatcca 540 tataattcag ttaccttata ttcaggatta gattcttatt caacaaatgt aaacgcacac 600 gttgcggcac atgaaatagg acattgtatt ggtctgcgtc atacagactg gttcagccgt 660 caaagctgcg ggcagaattc aaatgaagga actgctggtg taggagcaat tcttattccg 720 ggaacacctt ctggatatga tgctacttct tacatgagag cgtgtttcgg ttcaaacgaa 780 accggtgctt tcaatgctaa tgatattaca gcattgaact atttatat 828 <210> 9 <211> 852 <212> DNA <213> Croceibacter atlanticus HTCC2559 (ZP_00951344) <400> 9 atggtattcg tttcttgtga gaaagataat gatacaaaca acgcagaggt tgcagacact 60 aatgaagtta caacaggttc tcttgaaact ttaggtgtta atacagacct taccccaaca 120 aatttagatc aagctacttt agatttaatt gcttctaaac atcttagtcc tatcggagct 180 caagaagagt taagatattt accagacggt acatcagaaa aagctatacg tatagaaggt 240 gatatcgtaa tgactaaagc tgaacttgaa gagttggagt ttaatggtta ttcaaatgaa 300 aatgctcaat atagtactaa cgcattagtt agtcctcaaa caattacaat tattggttat 360 actggtggaa gccaggcgtt aactagtagc gagcaaactg cattacaatg ggcagttgca 420 aactataata gattaaacct taacatcaat ttctctttaa cttttggtac aaactaccaa 480 aacaaagata tggttgttta caacaatact gtaaataacc caagtggtgc aggaggatct 540 gcaggtttcc caagtggagg aaacccacat aaatttgtac agatttatgg attaagtaac 600 tataacacaa atgtaattga gcacgttatt actcacgaaa taggacactc tgtaggattc 660 cgtcacacag attactttag ccgtcagagt tgtggtcaaa atacaaacga aggaactgca 720 ggagttggtg ctaaccacat cccaggaact ccaacaggat atgattctac gtctattatg 780 ttagcttgtt ttagcagtgg tgaagatgga gagtttaaca gtaatgatat tactgcttta 840 aactaccttt at 852 <210> 10 <211> 810 <212> DNA <213> Leeuwenhoekiella blandensis MED217 (ZP_01059780) <400> 10 atgacctctt gttcagaaga tgctgagcaa actacgttgc cagaagcaca acctacttcc 60 aaccttgagg tttcttcaga aattatccag caagttgaag atttaggcat gaacgctaat 120 tatgtgcgtt gggatgattt ttattttcct gatggttctt ctgaacctcg tctattttta 180 gaagaagatg ttgtcgtaac tcctgaacaa ttatcctcaa tgtccgctaa cgttgaagaa 240 tcaaaatcag gaaaaggtga ttctaaacaa tatcgcactt ctgctttggt aagtcaggga 300 agaacgattt ctatcatcgg ttataccggc ggtagtcagg cgctaagcca aaaagagcgt 360 accgccttac aatgggctgt tgcaaattac aatcggttaa gcggtgtaag catcagcttc 420 aatttgacat ttggtaccga ctatcaaaac aaagacatgg tagtttacaa caacacggta 480 aataacccaa gtggcgcagg tggtagtgcc ggtttcccga gtaatggact tccttataaa 540 tttgttcaga tctatgggct cgctaattac gacaccaatg ttgttgaaca cgtaatgacg 600 cacgagatag gtcattcggt tggatttaga cacacagatt ggtttagtag acaaagctgt 660 ggacagaacg tttatgaagg tggtgacgca aatcacgttt cgggaacccc aacaggttac 720 gactcgactt caattatgct agcttgcttt agtgccaatg aagatggcga atttaatgcc 780 aatgatatta ccgcattaaa caatatgtac 810 <210> 11 <211> 1134 <212> DNA <213> Kordia algicida KAOT1_11562 <400> 11 atgaaaagaa attttaaaat ccaaatgctg tatgttttgt tgacaatgct cctgcttgca 60 ggttgtcaaa acgatacgga agaagaatta gtagaagaag caacaactgc tgtagaacgt 120 gttgatgtaa aatggcttgc accagacgat catcctgtgg tacaattatt atacagcaga 180 ggttatgaac gaggaacaat ctatgaaact gatgagcatt ttttagcgcc accagattta 240 ttgtacagta aagatatcaa cgattatgac ctatctgaca atggtagcaa tgccgaacaa 300 gcctacaaca cagggaaatt agtatctcta aacagaatgc gtatcaatgt gtttttagac 360 aactctattg ggacagattt gcaaacacaa tccgtaaatg caatgaatga acttaacgga 420 atcaacaatt gtgctttatt ctttgtacgt gttttcaatg ccaatcaggc acaaattacg 480 atacgaagtg actttggagc agaatccaat aatgttttag gtcgtgcagg ttttccatct 540 aacggacgtc catttgatac agtgacccta aacgttgatc gtttggatga cttcggagct 600 gacattcgta gaaacaccat tattcatgaa cttggtcatt gtgtcggatt gcgccataca 660 gattggcaag ccaacagaga acgtagtgct gtaaacattc ctggtacaag tgccaatgat 720 acaggatcaa tcatgtggca taccatcaat ggaggaacac cttttacaaa cggagattta 780 actgctttta gagccttatt tccacgagct ttgcgcatag atgttgtcaa tgaaattgac 840 gattatgatt acagtggtga aatttatgtt ttagacaatg tatttgtcga tgtctttacc 900 gatggaagct acagtacgca aacaacgctt aaccgaaatg taaacgtaag ttaccgtatt 960 aacgtacaag aatacaatca cacctcagga acttattatt acagtcgaaa tcgaacttta 1020 acggctggta ataatcgtta ttatattgat gatgaggaag aagaatgttc gccataccaa 1080 ggagaaacct gtacacgaca agaccttgaa atcagattgg caacttcaat acta 1134 <210> 12 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> OT1m_t <400> 12 cgacccggca tatgcaatat cgtacaaaca atttagtttc 40 <210> 13 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> OT1m_bc <400> 13 ctccacatct cgagctagta taagaagttt aaagcag 37 <210> 14 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> OT1m_bH <400> 14 ctccacatct cgaggtataa gaagtttaaa gcagtaatg 39 <210> 15 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> OT1delta5_bc <400> 15 ctccacatct cgagctaagc agtaatgtcg tttccgttaa a 41 <210> 16 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> OT1delta26_bc <400> 16 ctccacatct cgagctaaga tgttggatcc caacctg 37 <210> 17 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> OT1p_t <400> 17 cgacccggca tatgagtaaa gacactgccg tagtagac 38 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> HTCC2559m_t <400> 18 cgacccggca tatgcaatat agtactaacg cattagttag 40 <210> 19 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> HTCC2559m_bc <400> 19 ctccacatct cgagttaata aaggtagttt aaagcag 37 <210> 20 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> OT11562m_t <400> 20 cgacccggca tatgcaagcc tacaacacag ggaaattag 39 <210> 21 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> OT11562m_bc <400> 21 ctccacatct cgagttatag tattgaagtt gccaatc 37 <210> 22 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> MED217m_t <400> 22 cgacccggca tatgcaatat cgcacttctg ctttggtaag 40 <210> 23 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> MED217m_bc <400> 23 ctccacatct cgagctagta catattgttt aatgcgg 37 <210> 24 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> fjohnm_t <400> 24 cgacccggca tatgcaatac cgtactacta atttagtatc 40 <210> 25 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> fjohnm_bc <400> 25 ctccacatct cgagttaata taaatagttc aatgctg 37 <210> 26 <211> 251 <212> PRT <213> KAOT1_10476 of Kordia algicida OT-1 lacking singal peptide <400> 26 Val Val Asp Glu Glu Gln Asp Thr Ala Ile Gly Ile Pro Gln Asp Val 1 5 10 15 Leu Gln Lys Ala Gln Ser Leu His Phe Asn Thr Phe Asp Met Gln Glu 20 25 30 Ala Ser Phe Glu Lys Pro Asn Gly Lys Ile Glu Glu Gly Tyr Met Met 35 40 45 Glu Gly Asp Ile Phe Phe Thr Arg Asp Gln Leu Met Asn Met Glu Leu 50 55 60 Gly Gly Asp Ile Thr Ser Lys Gln Tyr Arg Thr Asn Asn Leu Val Ser 65 70 75 80 Pro Gly Val Ile Thr Ile Ile Gly Tyr Thr Gly Asn Asn Ser Asn Gly 85 90 95 Leu Thr Thr Lys Met Gln Thr Gly Leu Arg Trp Ala Val Asp Asn Tyr 100 105 110 Asn Ala Leu Asn Leu Ser Ile Ser Phe Gln Leu Thr Phe Gly Thr Asp 115 120 125 Tyr Gln Asn Lys Asp Met Val Val Tyr Gln Val Gln Gly Gly Ala Gly 130 135 140 Gly Ser Ala Gly Phe Pro Ser Gly Gly Asn Pro Tyr Lys Trp Val Lys 145 150 155 160 Ile Asn Ser Gly Met Ala Pro Tyr Ser Asn Asn Val His Glu His Val 165 170 175 Ile Gly His Glu Ile Gly His Ser Ile Gly Phe Arg His Ser Asp Tyr 180 185 190 Phe Ser Arg Gln Ser Cys Gly Gln Asn Ser Asn Glu Gly Ser Ala Gly 195 200 205 Val Gly Ala Ile His Ile Pro Gly Thr Pro Thr Gly Trp Asp Pro Thr 210 215 220 Ser Leu Met Asn Ala Cys Phe Ser Ser Ser Glu Asp Gly Glu Phe Asn 225 230 235 240 Gly Asn Asp Ile Thr Ala Leu Asn Phe Leu Tyr 245 250 <210> 27 <211> 180 <212> PRT <213> KAOT1_10476 of Kordia algicida OT-1 lacking signal and processing peptide <400> 27 Gln Tyr Arg Thr Asn Asn Leu Val Ser Pro Gly Val Ile Thr Ile Ile 1 5 10 15 Gly Tyr Thr Gly Asn Asn Ser Asn Gly Leu Thr Thr Lys Met Gln Thr 20 25 30 Gly Leu Arg Trp Ala Val Asp Asn Tyr Asn Ala Leu Asn Leu Ser Ile 35 40 45 Ser Phe Gln Leu Thr Phe Gly Thr Asp Tyr Gln Asn Lys Asp Met Val 50 55 60 Val Tyr Gln Val Gln Gly Gly Ala Gly Gly Ser Ala Gly Phe Pro Ser 65 70 75 80 Gly Gly Asn Pro Tyr Lys Trp Val Lys Ile Asn Ser Gly Met Ala Pro 85 90 95 Tyr Ser Asn Asn Val His Glu His Val Ile Gly His Glu Ile Gly His 100 105 110 Ser Ile Gly Phe Arg His Ser Asp Tyr Phe Ser Arg Gln Ser Cys Gly 115 120 125 Gln Asn Ser Asn Glu Gly Ser Ala Gly Val Gly Ala Ile His Ile Pro 130 135 140 Gly Thr Pro Thr Gly Trp Asp Pro Thr Ser Leu Met Asn Ala Cys Phe 145 150 155 160 Ser Ser Ser Glu Asp Gly Glu Phe Asn Gly Asn Asp Ile Thr Ala Leu 165 170 175 Asn Phe Leu Tyr 180 <210> 28 <211> 753 <212> DNA <213> KAOT1_10476 of Kordia algicida OT-1 lacking signal peptide <400> 28 gtagtagacg aggagcaaga cacagctatc ggaatcccac aagacgtact tcaaaaagca 60 caatcacttc acttcaacac attcgatatg caagaagcat ctttcgaaaa gccaaatggt 120 aaaatcgaag aaggatatat gatggaaggt gatatcttct ttacacgtga ccaattaatg 180 aacatggaac tcggtggaga tattacaagc aaacaatatc gtacaaacaa tttagtttct 240 ccaggagtaa ttacaatcat tggatataca ggaaataact ctaatggatt aacaactaaa 300 atgcaaactg gacttagatg ggcagtagat aactataatg cattaaacct aagtattagt 360 ttccaattaa catttggtac tgactatcaa aataaagata tggtagtata tcaagtacaa 420 ggtggagcag gtggatctgc aggtttccct tcaggaggaa atccatacaa gtgggttaaa 480 attaactcag gtatggctcc ttacagtaac aatgtacatg aacatgtaat tggacatgaa 540 ataggacact cgattggatt ccgtcattca gactacttca gcagacaaag ttgtggacaa 600 aattcaaatg aaggtagtgc aggagttgga gcaatccata ttccaggaac acctacaggt 660 tgggatccaa catctttaat gaatgcttgt ttcagttctt cagaagatgg agaatttaac 720 ggaaacgaca ttactgcttt aaacttctta tac 753 <210> 29 <211> 540 <212> DNA <213> KAOT1_10476 of Kordia algicida OT-1 lacking signal and processing peptide <400> 29 caatatcgta caaacaattt agtttctcca ggagtaatta caatcattgg atatacagga 60 aataactcta atggattaac aactaaaatg caaactggac ttagatgggc agtagataac 120 tataatgcat taaacctaag tattagtttc caattaacat ttggtactga ctatcaaaat 180 aaagatatgg tagtatatca agtacaaggt ggagcaggtg gatctgcagg tttcccttca 240 ggaggaaatc catacaagtg ggttaaaatt aactcaggta tggctcctta cagtaacaat 300 gtacatgaac atgtaattgg acatgaaata ggacactcga ttggattccg tcattcagac 360 tacttcagca gacaaagttg tggacaaaat tcaaatgaag gtagtgcagg agttggagca 420 atccatattc caggaacacc tacaggttgg gatccaacat ctttaatgaa tgcttgtttc 480 agttcttcag aagatggaga atttaacgga aacgacatta ctgctttaaa cttcttatac 540 540

Claims (5)

서열번호: 5의 아미노산 서열로 이루어진 살조활성 단백질분해효소.A tortoise active protease consisting of the amino acid sequence of SEQ ID NO: 5. 제 1 항의 단백질분해효소를 코딩하는 폴리뉴클레오타이드.A polynucleotide encoding the protease of claim 1. 제 2 항에 있어서, 상기 폴리뉴클레오타이드가 서열번호: 9의 염기서열로 이루어진 것을 특징으로 하는 폴리뉴클레오타이드.3. The polynucleotide according to claim 2, wherein the polynucleotide comprises the nucleotide sequence of SEQ ID NO: 9. 제 1 항의 단백질분해효소를 활성성분으로 함유하는 살조제제.A pharmaceutical preparation containing the protease of claim 1 as an active ingredient. 제 4 항의 살조제제를 적조현상이 발생한 지역에 처리하는 단계를 포함하는, 적조의 방제방법.
A method for controlling red tide, comprising treating the fungicide of claim 4 in an area where red tide has occurred.
KR1020140191149A 2014-12-26 2014-12-26 Protease of sequence 5 having algicidal activity, gene encoding the same and algicidal formulation comprising the same KR101608979B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140191149A KR101608979B1 (en) 2014-12-26 2014-12-26 Protease of sequence 5 having algicidal activity, gene encoding the same and algicidal formulation comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140191149A KR101608979B1 (en) 2014-12-26 2014-12-26 Protease of sequence 5 having algicidal activity, gene encoding the same and algicidal formulation comprising the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020080054757A Division KR101756769B1 (en) 2007-06-11 2008-06-11 Protease of sequence number 1 having algicidal activity, gene encoding the same and algicidal formulation comprising the same

Publications (2)

Publication Number Publication Date
KR20150009510A KR20150009510A (en) 2015-01-26
KR101608979B1 true KR101608979B1 (en) 2016-04-05

Family

ID=52572699

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140191149A KR101608979B1 (en) 2014-12-26 2014-12-26 Protease of sequence 5 having algicidal activity, gene encoding the same and algicidal formulation comprising the same

Country Status (1)

Country Link
KR (1) KR101608979B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl Environ Microbiol., Vol. 66, No. 10, pages 4334-4339 (2000.10.)

Also Published As

Publication number Publication date
KR20150009510A (en) 2015-01-26

Similar Documents

Publication Publication Date Title
ES2595500T3 (en) New proteases that can hydrolyze gluten peptides and proteins at an acidic pH, from Actinomycete Actinoallomurus
CN110922457B (en) Plant immune induced resistance protein FgPII1 secreted by fusarium graminearum and application thereof
KR101756769B1 (en) Protease of sequence number 1 having algicidal activity, gene encoding the same and algicidal formulation comprising the same
Zhang et al. Cloning, characterization, and production of a novel lysozyme by different expression hosts
Naumann et al. Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens
Liu et al. Variation and inheritance of the Xanthomonas raxX‐raxSTAB gene cluster required for activation of XA21‐mediated immunity
CN105062992B (en) A kind of endolysin and the polynucleotides for encoding this endolysin
Mohd-Yusoff et al. Trypsin inhibitor isolated from Streptomyces misionensis UMS1 has anti-bacterial activities and activates α-amylase
CN107266539A (en) A kind of bacillus licheniformis W10 antibacterial proteins and application
KR101608977B1 (en) Protease of sequence 4 having algicidal activity, gene encoding the same and algicidal formulation comprising the same
KR101608979B1 (en) Protease of sequence 5 having algicidal activity, gene encoding the same and algicidal formulation comprising the same
KR101617362B1 (en) Protease of sequence 6 having algicidal activity, gene encoding the same and algicidal formulation comprising the same
CN110846301A (en) Recombinant chitin deacetylase and preparation method and application thereof
Kaewnum et al. A pectate lyase homolog, xagP, in Xanthomonas axonopodis pv. glycines is associated with hypersensitive response induction on tobacco
KR20150014425A (en) Protease of sequence 7 having algicidal activity, gene encoding the same and algicidal formulation comprising the same
CN113980918A (en) Antarctic ice algae MAAs synthetase and coding gene and application thereof
Khan et al. Disruption and molecular characterization of calpains-related (MoCAPN1, MoCAPN3 and MoCAPN4) genes in Magnaporthe oryzae
CN110305825A (en) Show the Ko subtilis and preparation method thereof of organic phosphoric acid acid anhydrides enzyme
RU2325398C2 (en) Antibacterial protein chlamisin b, gene, which is coding it, and system that expresses it
El-Hadedy et al. Isolation and cloning of sprA gene alkaline protease activity from Streptomyces flavogriseus ADEM7 and characterization of its antioxidant and antitumor activities
CN109825531A (en) The method for removing pXO2 plasmid in Bacillus anthracis
EP2206777A1 (en) Method for producing aminopeptidase
CN109825530A (en) The method for removing pXO1 plasmid in Bacillus anthracis
RU2786706C2 (en) Composition based on hybrid recombinant polypeptide for protecting plants from diseases caused by oomycetes
KR102089573B1 (en) Novel Protein Inhibiting Growth and Gene Coding the Protein

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 5